mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-27 03:19:35 +03:00
ab8d9c1783
Various module parameters such as `zfs_arc_max` were originally `uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long` for Linux compatibility because Linux's kernel default module parameter implementation did not support 64-bit types on 32-bit platforms. This caused problems when porting OpenZFS to Windows because its LLP64 memory model made `unsigned long` a 32-bit type on 64-bit, which created the undesireable situation that parameters that should accept 64-bit values could not on 64-bit Windows. Upon inspection, it turns out that the Linux kernel module parameter interface is extensible, such that we are allowed to define our own types. Rather than maintaining the original type change via hacks to to continue shrinking module parameters on 32-bit Linux, we implement support for 64-bit module parameters on Linux. After doing a review of all 64-bit kernel parameters (found via the man page and also proposed changes by Andrew Innes), the kernel module parameters fell into a few groups: Parameters that were originally 64-bit on Illumos: * dbuf_cache_max_bytes * dbuf_metadata_cache_max_bytes * l2arc_feed_min_ms * l2arc_feed_secs * l2arc_headroom * l2arc_headroom_boost * l2arc_write_boost * l2arc_write_max * metaslab_aliquot * metaslab_force_ganging * zfetch_array_rd_sz * zfs_arc_max * zfs_arc_meta_limit * zfs_arc_meta_min * zfs_arc_min * zfs_async_block_max_blocks * zfs_condense_max_obsolete_bytes * zfs_condense_min_mapping_bytes * zfs_deadman_checktime_ms * zfs_deadman_synctime_ms * zfs_initialize_chunk_size * zfs_initialize_value * zfs_lua_max_instrlimit * zfs_lua_max_memlimit * zil_slog_bulk Parameters that were originally 32-bit on Illumos: * zfs_per_txg_dirty_frees_percent Parameters that were originally `ssize_t` on Illumos: * zfs_immediate_write_sz Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It has been upgraded to 64-bit. Parameters that were `long`/`unsigned long` because of Linux/FreeBSD influence: * l2arc_rebuild_blocks_min_l2size * zfs_key_max_salt_uses * zfs_max_log_walking * zfs_max_logsm_summary_length * zfs_metaslab_max_size_cache_sec * zfs_min_metaslabs_to_flush * zfs_multihost_interval * zfs_unflushed_log_block_max * zfs_unflushed_log_block_min * zfs_unflushed_log_block_pct * zfs_unflushed_max_mem_amt * zfs_unflushed_max_mem_ppm New parameters that do not exist in Illumos: * l2arc_trim_ahead * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_arc_sys_free * zfs_deadman_ziotime_ms * zfs_delete_blocks * zfs_history_output_max * zfs_livelist_max_entries * zfs_max_async_dedup_frees * zfs_max_nvlist_src_size * zfs_rebuild_max_segment * zfs_rebuild_vdev_limit * zfs_unflushed_log_txg_max * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift * zfs_vnops_read_chunk_size * zvol_max_discard_blocks Rather than clutter the lists with commentary, the module parameters that need comments are repeated below. A few parameters were defined in Linux/FreeBSD specific code, where the use of ulong/long is not an issue for portability, so we leave them alone: * zfs_delete_blocks * zfs_key_max_salt_uses * zvol_max_discard_blocks The documentation for a few parameters was found to be incorrect: * zfs_deadman_checktime_ms - incorrectly documented as int * zfs_delete_blocks - not documented as Linux only * zfs_history_output_max - incorrectly documented as int * zfs_vnops_read_chunk_size - incorrectly documented as long * zvol_max_discard_blocks - incorrectly documented as ulong The documentation for these has been fixed, alongside the changes to document the switch to fixed width types. In addition, several kernel module parameters were percentages or held ashift values, so being 64-bit never made sense for them. They have been downgraded to 32-bit: * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_per_txg_dirty_frees_percent * zfs_unflushed_log_block_pct * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift Of special note are `zfs_vdev_max_auto_ashift` and `zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`, and passed to the kernel as `ulong`. This is inherently buggy on big endian 32-bit Linux, since the values would not be written to the correct locations. 32-bit FreeBSD was unaffected because its sysctl code correctly treated this as a `uint64_t`. Lastly, a code comment suggests that `zfs_arc_sys_free` is Linux-specific, but there is nothing to indicate to me that it is Linux-specific. Nothing was done about that. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Original-patch-by: Andrew Innes <andrew.c12@gmail.com> Original-patch-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13984 Closes #14004
570 lines
16 KiB
C
570 lines
16 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2013, 2017 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_zfetch.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/kstat.h>
|
|
#include <sys/wmsum.h>
|
|
|
|
/*
|
|
* This tunable disables predictive prefetch. Note that it leaves "prescient"
|
|
* prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
|
|
* prescient prefetch never issues i/os that end up not being needed,
|
|
* so it can't hurt performance.
|
|
*/
|
|
|
|
static int zfs_prefetch_disable = B_FALSE;
|
|
|
|
/* max # of streams per zfetch */
|
|
static unsigned int zfetch_max_streams = 8;
|
|
/* min time before stream reclaim */
|
|
static unsigned int zfetch_min_sec_reap = 1;
|
|
/* max time before stream delete */
|
|
static unsigned int zfetch_max_sec_reap = 2;
|
|
/* min bytes to prefetch per stream (default 4MB) */
|
|
static unsigned int zfetch_min_distance = 4 * 1024 * 1024;
|
|
/* max bytes to prefetch per stream (default 64MB) */
|
|
unsigned int zfetch_max_distance = 64 * 1024 * 1024;
|
|
/* max bytes to prefetch indirects for per stream (default 64MB) */
|
|
unsigned int zfetch_max_idistance = 64 * 1024 * 1024;
|
|
/* max number of bytes in an array_read in which we allow prefetching (1MB) */
|
|
uint64_t zfetch_array_rd_sz = 1024 * 1024;
|
|
|
|
typedef struct zfetch_stats {
|
|
kstat_named_t zfetchstat_hits;
|
|
kstat_named_t zfetchstat_misses;
|
|
kstat_named_t zfetchstat_max_streams;
|
|
kstat_named_t zfetchstat_io_issued;
|
|
} zfetch_stats_t;
|
|
|
|
static zfetch_stats_t zfetch_stats = {
|
|
{ "hits", KSTAT_DATA_UINT64 },
|
|
{ "misses", KSTAT_DATA_UINT64 },
|
|
{ "max_streams", KSTAT_DATA_UINT64 },
|
|
{ "io_issued", KSTAT_DATA_UINT64 },
|
|
};
|
|
|
|
struct {
|
|
wmsum_t zfetchstat_hits;
|
|
wmsum_t zfetchstat_misses;
|
|
wmsum_t zfetchstat_max_streams;
|
|
wmsum_t zfetchstat_io_issued;
|
|
} zfetch_sums;
|
|
|
|
#define ZFETCHSTAT_BUMP(stat) \
|
|
wmsum_add(&zfetch_sums.stat, 1)
|
|
#define ZFETCHSTAT_ADD(stat, val) \
|
|
wmsum_add(&zfetch_sums.stat, val)
|
|
|
|
|
|
static kstat_t *zfetch_ksp;
|
|
|
|
static int
|
|
zfetch_kstats_update(kstat_t *ksp, int rw)
|
|
{
|
|
zfetch_stats_t *zs = ksp->ks_data;
|
|
|
|
if (rw == KSTAT_WRITE)
|
|
return (EACCES);
|
|
zs->zfetchstat_hits.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_hits);
|
|
zs->zfetchstat_misses.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_misses);
|
|
zs->zfetchstat_max_streams.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_max_streams);
|
|
zs->zfetchstat_io_issued.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_io_issued);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zfetch_init(void)
|
|
{
|
|
wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
|
|
|
|
zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
|
|
KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
|
|
if (zfetch_ksp != NULL) {
|
|
zfetch_ksp->ks_data = &zfetch_stats;
|
|
zfetch_ksp->ks_update = zfetch_kstats_update;
|
|
kstat_install(zfetch_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
zfetch_fini(void)
|
|
{
|
|
if (zfetch_ksp != NULL) {
|
|
kstat_delete(zfetch_ksp);
|
|
zfetch_ksp = NULL;
|
|
}
|
|
|
|
wmsum_fini(&zfetch_sums.zfetchstat_hits);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_misses);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
|
|
}
|
|
|
|
/*
|
|
* This takes a pointer to a zfetch structure and a dnode. It performs the
|
|
* necessary setup for the zfetch structure, grokking data from the
|
|
* associated dnode.
|
|
*/
|
|
void
|
|
dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
|
|
{
|
|
if (zf == NULL)
|
|
return;
|
|
zf->zf_dnode = dno;
|
|
zf->zf_numstreams = 0;
|
|
|
|
list_create(&zf->zf_stream, sizeof (zstream_t),
|
|
offsetof(zstream_t, zs_node));
|
|
|
|
mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_stream_fini(zstream_t *zs)
|
|
{
|
|
ASSERT(!list_link_active(&zs->zs_node));
|
|
zfs_refcount_destroy(&zs->zs_callers);
|
|
zfs_refcount_destroy(&zs->zs_refs);
|
|
kmem_free(zs, sizeof (*zs));
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zf->zf_lock));
|
|
list_remove(&zf->zf_stream, zs);
|
|
zf->zf_numstreams--;
|
|
membar_producer();
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
}
|
|
|
|
/*
|
|
* Clean-up state associated with a zfetch structure (e.g. destroy the
|
|
* streams). This doesn't free the zfetch_t itself, that's left to the caller.
|
|
*/
|
|
void
|
|
dmu_zfetch_fini(zfetch_t *zf)
|
|
{
|
|
zstream_t *zs;
|
|
|
|
mutex_enter(&zf->zf_lock);
|
|
while ((zs = list_head(&zf->zf_stream)) != NULL)
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
mutex_exit(&zf->zf_lock);
|
|
list_destroy(&zf->zf_stream);
|
|
mutex_destroy(&zf->zf_lock);
|
|
|
|
zf->zf_dnode = NULL;
|
|
}
|
|
|
|
/*
|
|
* If there aren't too many active streams already, create one more.
|
|
* In process delete/reuse all streams without hits for zfetch_max_sec_reap.
|
|
* If needed, reuse oldest stream without hits for zfetch_min_sec_reap or ever.
|
|
* The "blkid" argument is the next block that we expect this stream to access.
|
|
*/
|
|
static void
|
|
dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
|
|
{
|
|
zstream_t *zs, *zs_next, *zs_old = NULL;
|
|
hrtime_t now = gethrtime(), t;
|
|
|
|
ASSERT(MUTEX_HELD(&zf->zf_lock));
|
|
|
|
/*
|
|
* Delete too old streams, reusing the first found one.
|
|
*/
|
|
t = now - SEC2NSEC(zfetch_max_sec_reap);
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL; zs = zs_next) {
|
|
zs_next = list_next(&zf->zf_stream, zs);
|
|
/*
|
|
* Skip if still active. 1 -- zf_stream reference.
|
|
*/
|
|
if (zfs_refcount_count(&zs->zs_refs) != 1)
|
|
continue;
|
|
if (zs->zs_atime > t)
|
|
continue;
|
|
if (zs_old)
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
else
|
|
zs_old = zs;
|
|
}
|
|
if (zs_old) {
|
|
zs = zs_old;
|
|
goto reuse;
|
|
}
|
|
|
|
/*
|
|
* The maximum number of streams is normally zfetch_max_streams,
|
|
* but for small files we lower it such that it's at least possible
|
|
* for all the streams to be non-overlapping.
|
|
*/
|
|
uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
|
|
zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
|
|
zfetch_max_distance));
|
|
if (zf->zf_numstreams >= max_streams) {
|
|
t = now - SEC2NSEC(zfetch_min_sec_reap);
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL;
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
|
if (zfs_refcount_count(&zs->zs_refs) != 1)
|
|
continue;
|
|
if (zs->zs_atime > t)
|
|
continue;
|
|
if (zs_old == NULL || zs->zs_atime < zs_old->zs_atime)
|
|
zs_old = zs;
|
|
}
|
|
if (zs_old) {
|
|
zs = zs_old;
|
|
goto reuse;
|
|
}
|
|
ZFETCHSTAT_BUMP(zfetchstat_max_streams);
|
|
return;
|
|
}
|
|
|
|
zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
|
|
zs->zs_fetch = zf;
|
|
zfs_refcount_create(&zs->zs_callers);
|
|
zfs_refcount_create(&zs->zs_refs);
|
|
/* One reference for zf_stream. */
|
|
zfs_refcount_add(&zs->zs_refs, NULL);
|
|
zf->zf_numstreams++;
|
|
list_insert_head(&zf->zf_stream, zs);
|
|
|
|
reuse:
|
|
zs->zs_blkid = blkid;
|
|
zs->zs_pf_dist = 0;
|
|
zs->zs_pf_start = blkid;
|
|
zs->zs_pf_end = blkid;
|
|
zs->zs_ipf_dist = 0;
|
|
zs->zs_ipf_start = blkid;
|
|
zs->zs_ipf_end = blkid;
|
|
/* Allow immediate stream reuse until first hit. */
|
|
zs->zs_atime = now - SEC2NSEC(zfetch_min_sec_reap);
|
|
zs->zs_missed = B_FALSE;
|
|
zs->zs_more = B_FALSE;
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t io_issued)
|
|
{
|
|
zstream_t *zs = arg;
|
|
|
|
if (io_issued && level == 0 && blkid < zs->zs_blkid)
|
|
zs->zs_more = B_TRUE;
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
}
|
|
|
|
/*
|
|
* This is the predictive prefetch entry point. dmu_zfetch_prepare()
|
|
* associates dnode access specified with blkid and nblks arguments with
|
|
* prefetch stream, predicts further accesses based on that stats and returns
|
|
* the stream pointer on success. That pointer must later be passed to
|
|
* dmu_zfetch_run() to initiate the speculative prefetch for the stream and
|
|
* release it. dmu_zfetch() is a wrapper for simple cases when window between
|
|
* prediction and prefetch initiation is not needed.
|
|
* fetch_data argument specifies whether actual data blocks should be fetched:
|
|
* FALSE -- prefetch only indirect blocks for predicted data blocks;
|
|
* TRUE -- prefetch predicted data blocks plus following indirect blocks.
|
|
*/
|
|
zstream_t *
|
|
dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
|
|
boolean_t fetch_data, boolean_t have_lock)
|
|
{
|
|
zstream_t *zs;
|
|
spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
|
|
|
|
if (zfs_prefetch_disable)
|
|
return (NULL);
|
|
/*
|
|
* If we haven't yet loaded the indirect vdevs' mappings, we
|
|
* can only read from blocks that we carefully ensure are on
|
|
* concrete vdevs (or previously-loaded indirect vdevs). So we
|
|
* can't allow the predictive prefetcher to attempt reads of other
|
|
* blocks (e.g. of the MOS's dnode object).
|
|
*/
|
|
if (!spa_indirect_vdevs_loaded(spa))
|
|
return (NULL);
|
|
|
|
/*
|
|
* As a fast path for small (single-block) files, ignore access
|
|
* to the first block.
|
|
*/
|
|
if (!have_lock && blkid == 0)
|
|
return (NULL);
|
|
|
|
if (!have_lock)
|
|
rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
|
|
|
|
/*
|
|
* A fast path for small files for which no prefetch will
|
|
* happen.
|
|
*/
|
|
uint64_t maxblkid = zf->zf_dnode->dn_maxblkid;
|
|
if (maxblkid < 2) {
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return (NULL);
|
|
}
|
|
mutex_enter(&zf->zf_lock);
|
|
|
|
/*
|
|
* Find matching prefetch stream. Depending on whether the accesses
|
|
* are block-aligned, first block of the new access may either follow
|
|
* the last block of the previous access, or be equal to it.
|
|
*/
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL;
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
|
if (blkid == zs->zs_blkid) {
|
|
break;
|
|
} else if (blkid + 1 == zs->zs_blkid) {
|
|
blkid++;
|
|
nblks--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the file is ending, remove the matching stream if found.
|
|
* If not found then it is too late to create a new one now.
|
|
*/
|
|
uint64_t end_of_access_blkid = blkid + nblks;
|
|
if (end_of_access_blkid >= maxblkid) {
|
|
if (zs != NULL)
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
mutex_exit(&zf->zf_lock);
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return (NULL);
|
|
}
|
|
|
|
/* Exit if we already prefetched this block before. */
|
|
if (nblks == 0) {
|
|
mutex_exit(&zf->zf_lock);
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return (NULL);
|
|
}
|
|
|
|
if (zs == NULL) {
|
|
/*
|
|
* This access is not part of any existing stream. Create
|
|
* a new stream for it.
|
|
*/
|
|
dmu_zfetch_stream_create(zf, end_of_access_blkid);
|
|
mutex_exit(&zf->zf_lock);
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
ZFETCHSTAT_BUMP(zfetchstat_misses);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* This access was to a block that we issued a prefetch for on
|
|
* behalf of this stream. Calculate further prefetch distances.
|
|
*
|
|
* Start prefetch from the demand access size (nblks). Double the
|
|
* distance every access up to zfetch_min_distance. After that only
|
|
* if needed increase the distance by 1/8 up to zfetch_max_distance.
|
|
*/
|
|
unsigned int nbytes = nblks << zf->zf_dnode->dn_datablkshift;
|
|
unsigned int pf_nblks;
|
|
if (fetch_data) {
|
|
if (unlikely(zs->zs_pf_dist < nbytes))
|
|
zs->zs_pf_dist = nbytes;
|
|
else if (zs->zs_pf_dist < zfetch_min_distance)
|
|
zs->zs_pf_dist *= 2;
|
|
else if (zs->zs_more)
|
|
zs->zs_pf_dist += zs->zs_pf_dist / 8;
|
|
zs->zs_more = B_FALSE;
|
|
if (zs->zs_pf_dist > zfetch_max_distance)
|
|
zs->zs_pf_dist = zfetch_max_distance;
|
|
pf_nblks = zs->zs_pf_dist >> zf->zf_dnode->dn_datablkshift;
|
|
} else {
|
|
pf_nblks = 0;
|
|
}
|
|
if (zs->zs_pf_start < end_of_access_blkid)
|
|
zs->zs_pf_start = end_of_access_blkid;
|
|
if (zs->zs_pf_end < end_of_access_blkid + pf_nblks)
|
|
zs->zs_pf_end = end_of_access_blkid + pf_nblks;
|
|
|
|
/*
|
|
* Do the same for indirects, starting where we will stop reading
|
|
* data blocks (and the indirects that point to them).
|
|
*/
|
|
if (unlikely(zs->zs_ipf_dist < nbytes))
|
|
zs->zs_ipf_dist = nbytes;
|
|
else
|
|
zs->zs_ipf_dist *= 2;
|
|
if (zs->zs_ipf_dist > zfetch_max_idistance)
|
|
zs->zs_ipf_dist = zfetch_max_idistance;
|
|
pf_nblks = zs->zs_ipf_dist >> zf->zf_dnode->dn_datablkshift;
|
|
if (zs->zs_ipf_start < zs->zs_pf_end)
|
|
zs->zs_ipf_start = zs->zs_pf_end;
|
|
if (zs->zs_ipf_end < zs->zs_pf_end + pf_nblks)
|
|
zs->zs_ipf_end = zs->zs_pf_end + pf_nblks;
|
|
|
|
zs->zs_blkid = end_of_access_blkid;
|
|
/* Protect the stream from reclamation. */
|
|
zs->zs_atime = gethrtime();
|
|
zfs_refcount_add(&zs->zs_refs, NULL);
|
|
/* Count concurrent callers. */
|
|
zfs_refcount_add(&zs->zs_callers, NULL);
|
|
mutex_exit(&zf->zf_lock);
|
|
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
|
|
ZFETCHSTAT_BUMP(zfetchstat_hits);
|
|
return (zs);
|
|
}
|
|
|
|
void
|
|
dmu_zfetch_run(zstream_t *zs, boolean_t missed, boolean_t have_lock)
|
|
{
|
|
zfetch_t *zf = zs->zs_fetch;
|
|
int64_t pf_start, pf_end, ipf_start, ipf_end;
|
|
int epbs, issued;
|
|
|
|
if (missed)
|
|
zs->zs_missed = missed;
|
|
|
|
/*
|
|
* Postpone the prefetch if there are more concurrent callers.
|
|
* It happens when multiple requests are waiting for the same
|
|
* indirect block. The last one will run the prefetch for all.
|
|
*/
|
|
if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
|
|
/* Drop reference taken in dmu_zfetch_prepare(). */
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&zf->zf_lock);
|
|
if (zs->zs_missed) {
|
|
pf_start = zs->zs_pf_start;
|
|
pf_end = zs->zs_pf_start = zs->zs_pf_end;
|
|
} else {
|
|
pf_start = pf_end = 0;
|
|
}
|
|
ipf_start = zs->zs_ipf_start;
|
|
ipf_end = zs->zs_ipf_start = zs->zs_ipf_end;
|
|
mutex_exit(&zf->zf_lock);
|
|
ASSERT3S(pf_start, <=, pf_end);
|
|
ASSERT3S(ipf_start, <=, ipf_end);
|
|
|
|
epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
|
|
ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
|
|
ASSERT3S(ipf_start, <=, ipf_end);
|
|
issued = pf_end - pf_start + ipf_end - ipf_start;
|
|
if (issued > 1) {
|
|
/* More references on top of taken in dmu_zfetch_prepare(). */
|
|
for (int i = 0; i < issued - 1; i++)
|
|
zfs_refcount_add(&zs->zs_refs, NULL);
|
|
} else if (issued == 0) {
|
|
/* Some other thread has done our work, so drop the ref. */
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
return;
|
|
}
|
|
|
|
if (!have_lock)
|
|
rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
|
|
|
|
issued = 0;
|
|
for (int64_t blk = pf_start; blk < pf_end; blk++) {
|
|
issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
|
|
ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH,
|
|
dmu_zfetch_done, zs);
|
|
}
|
|
for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
|
|
issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
|
|
ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH,
|
|
dmu_zfetch_done, zs);
|
|
}
|
|
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
|
|
if (issued)
|
|
ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
|
|
}
|
|
|
|
void
|
|
dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
|
|
boolean_t missed, boolean_t have_lock)
|
|
{
|
|
zstream_t *zs;
|
|
|
|
zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
|
|
if (zs)
|
|
dmu_zfetch_run(zs, missed, have_lock);
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
|
|
"Disable all ZFS prefetching");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
|
|
"Max number of streams per zfetch");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
|
|
"Min time before stream reclaim");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_sec_reap, UINT, ZMOD_RW,
|
|
"Max time before stream delete");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_distance, UINT, ZMOD_RW,
|
|
"Min bytes to prefetch per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
|
|
"Max bytes to prefetch per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
|
|
"Max bytes to prefetch indirects for per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, array_rd_sz, U64, ZMOD_RW,
|
|
"Number of bytes in a array_read");
|