mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-26 18:04:22 +03:00
fc0c72b167
This is initial support for x86 vectorized implementations of ZFS parity and checksum algorithms. For the compilation phase, configure step checks if toolchain supports relevant instruction sets. Each implementation must ensure that the code is not passed to compiler if relevant instruction set is not supported. For this purpose, following new defines are provided if instruction set is supported: - HAVE_SSE, - HAVE_SSE2, - HAVE_SSE3, - HAVE_SSSE3, - HAVE_SSE4_1, - HAVE_SSE4_2, - HAVE_AVX, - HAVE_AVX2. For detecting if an instruction set can be used in runtime, following functions are provided in (include/linux/simd_x86.h): - zfs_sse_available() - zfs_sse2_available() - zfs_sse3_available() - zfs_ssse3_available() - zfs_sse4_1_available() - zfs_sse4_2_available() - zfs_avx_available() - zfs_avx2_available() - zfs_bmi1_available() - zfs_bmi2_available() These function should be called once, on module load, or initialization. They are safe to use from user and kernel space. If an implementation is using more than single instruction set, both compiler and runtime support for all relevant instruction sets should be checked. Kernel fpu methods: - kfpu_begin() - kfpu_end() Use __get_cpuid_max and __cpuid_count from <cpuid.h> Both gcc and clang have support for these. They also handle ebx register in case it is used for PIC code. Signed-off-by: Gvozden Neskovic <neskovic@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Chunwei Chen <tuxoko@gmail.com> Closes #4381
389 lines
8.2 KiB
C
389 lines
8.2 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2016 Gvozden Neskovic <neskovic@compeng.uni-frankfurt.de>.
|
|
*/
|
|
|
|
/*
|
|
* USER API:
|
|
*
|
|
* Kernel fpu methods:
|
|
* kfpu_begin()
|
|
* kfpu_end()
|
|
*
|
|
* SIMD support:
|
|
*
|
|
* Following functions should be called to determine whether CPU feature
|
|
* is supported. All functions are usable in kernel and user space.
|
|
* If a SIMD algorithm is using more than one instruction set
|
|
* all relevant feature test functions should be called.
|
|
*
|
|
* Supported features:
|
|
* zfs_sse_available()
|
|
* zfs_sse2_available()
|
|
* zfs_sse3_available()
|
|
* zfs_ssse3_available()
|
|
* zfs_sse4_1_available()
|
|
* zfs_sse4_2_available()
|
|
* zfs_avx_available()
|
|
* zfs_avx2_available()
|
|
* zfs_bmi1_available()
|
|
* zfs_bmi2_available()
|
|
*/
|
|
|
|
#ifndef _SIMD_X86_H
|
|
#define _SIMD_X86_H
|
|
|
|
#include <sys/isa_defs.h>
|
|
|
|
/* only for __x86 */
|
|
#if defined(__x86)
|
|
|
|
#include <sys/types.h>
|
|
|
|
#if defined(_KERNEL)
|
|
#include <asm/cpufeature.h>
|
|
#else
|
|
#include <cpuid.h>
|
|
#endif
|
|
|
|
#if defined(_KERNEL)
|
|
#if defined(HAVE_FPU_API_H)
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/fpu/internal.h>
|
|
#define kfpu_begin() \
|
|
{ \
|
|
preempt_disable(); \
|
|
__kernel_fpu_begin(); \
|
|
}
|
|
#define kfpu_end() \
|
|
{ \
|
|
__kernel_fpu_end(); \
|
|
preempt_enable(); \
|
|
}
|
|
#else
|
|
#include <asm/i387.h>
|
|
#include <asm/xcr.h>
|
|
#define kfpu_begin() kernel_fpu_begin()
|
|
#define kfpu_end() kernel_fpu_end()
|
|
#endif /* defined(HAVE_FPU_API_H) */
|
|
#else
|
|
/*
|
|
* fpu dummy methods for userspace
|
|
*/
|
|
#define kfpu_begin() do {} while (0)
|
|
#define kfpu_end() do {} while (0)
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
/*
|
|
* CPUID feature tests for user-space. Linux kernel provides an interface for
|
|
* CPU feature testing.
|
|
*/
|
|
#if !defined(_KERNEL)
|
|
|
|
/*
|
|
* x86 registers used implicitly by CPUID
|
|
*/
|
|
typedef enum cpuid_regs {
|
|
EAX = 0,
|
|
EBX,
|
|
ECX,
|
|
EDX,
|
|
CPUID_REG_CNT = 4
|
|
} cpuid_regs_t;
|
|
|
|
/*
|
|
* List of instruction sets identified by CPUID
|
|
*/
|
|
typedef enum cpuid_inst_sets {
|
|
SSE = 0,
|
|
SSE2,
|
|
SSE3,
|
|
SSSE3,
|
|
SSE4_1,
|
|
SSE4_2,
|
|
OSXSAVE,
|
|
AVX,
|
|
AVX2,
|
|
BMI1,
|
|
BMI2
|
|
} cpuid_inst_sets_t;
|
|
|
|
/*
|
|
* Instruction set descriptor.
|
|
*/
|
|
typedef struct cpuid_feature_desc {
|
|
uint32_t leaf; /* CPUID leaf */
|
|
uint32_t subleaf; /* CPUID subleaf */
|
|
uint32_t flag; /* bit mask of the feature */
|
|
cpuid_regs_t reg; /* which CPUID return register to test */
|
|
} cpuid_feature_desc_t;
|
|
|
|
/*
|
|
* Descriptions of supported instruction sets
|
|
*/
|
|
static const cpuid_feature_desc_t cpuid_features[] = {
|
|
[SSE] = {1U, 0U, 1U << 25, EDX },
|
|
[SSE2] = {1U, 0U, 1U << 26, EDX },
|
|
[SSE3] = {1U, 0U, 1U << 0, ECX },
|
|
[SSSE3] = {1U, 0U, 1U << 9, ECX },
|
|
[SSE4_1] = {1U, 0U, 1U << 19, ECX },
|
|
[SSE4_2] = {1U, 0U, 1U << 20, ECX },
|
|
[OSXSAVE] = {1U, 0U, 1U << 27, ECX },
|
|
[AVX] = {1U, 0U, 1U << 28, ECX },
|
|
[AVX2] = {7U, 0U, 1U << 5, EBX },
|
|
[BMI1] = {7U, 0U, 1U << 3, EBX },
|
|
[BMI2] = {7U, 0U, 1U << 8, EBX }
|
|
};
|
|
|
|
/*
|
|
* Check if OS supports AVX and AVX2 by checking XCR0
|
|
* Only call this function if CPUID indicates that AVX feature is
|
|
* supported by the CPU, otherwise it might be an illegal instruction.
|
|
*/
|
|
static inline uint64_t
|
|
xgetbv(uint32_t index)
|
|
{
|
|
uint32_t eax, edx;
|
|
/* xgetbv - instruction byte code */
|
|
__asm__ __volatile__(".byte 0x0f; .byte 0x01; .byte 0xd0"
|
|
: "=a" (eax), "=d" (edx)
|
|
: "c" (index));
|
|
|
|
return ((((uint64_t)edx)<<32) | (uint64_t)eax);
|
|
}
|
|
|
|
/*
|
|
* Check if CPU supports a feature
|
|
*/
|
|
static inline boolean_t
|
|
__cpuid_check_feature(const cpuid_feature_desc_t *desc)
|
|
{
|
|
uint32_t r[CPUID_REG_CNT];
|
|
|
|
if (__get_cpuid_max(0, NULL) >= desc->leaf) {
|
|
/*
|
|
* __cpuid_count is needed to properly check
|
|
* for AVX2. It is a macro, so return parameters
|
|
* are passed by value.
|
|
*/
|
|
__cpuid_count(desc->leaf, desc->subleaf,
|
|
r[EAX], r[EBX], r[ECX], r[EDX]);
|
|
return (!!(r[desc->reg] & desc->flag));
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
#define CPUID_FEATURE_CHECK(name, id) \
|
|
static inline boolean_t \
|
|
__cpuid_has_ ## name(void)\
|
|
{ \
|
|
return (__cpuid_check_feature(&cpuid_features[id])); \
|
|
}
|
|
|
|
/*
|
|
* Define functions for user-space CPUID features testing
|
|
*/
|
|
CPUID_FEATURE_CHECK(sse, SSE);
|
|
CPUID_FEATURE_CHECK(sse2, SSE2);
|
|
CPUID_FEATURE_CHECK(sse3, SSE3);
|
|
CPUID_FEATURE_CHECK(ssse3, SSSE3);
|
|
CPUID_FEATURE_CHECK(sse4_1, SSE4_1);
|
|
CPUID_FEATURE_CHECK(sse4_2, SSE4_2);
|
|
CPUID_FEATURE_CHECK(avx, AVX);
|
|
CPUID_FEATURE_CHECK(avx2, AVX2);
|
|
CPUID_FEATURE_CHECK(osxsave, OSXSAVE);
|
|
CPUID_FEATURE_CHECK(bmi1, BMI1);
|
|
CPUID_FEATURE_CHECK(bmi2, BMI2);
|
|
|
|
#endif /* !defined(_KERNEL) */
|
|
|
|
/*
|
|
* Detect ymm register set support
|
|
*/
|
|
static inline boolean_t
|
|
__ymm_enabled(void)
|
|
{
|
|
static const uint64_t XSTATE_SSE_AVX = 0x2 | 0x4;
|
|
boolean_t has_osxsave;
|
|
uint64_t xcr0;
|
|
|
|
#if defined(_KERNEL) && defined(X86_FEATURE_OSXSAVE)
|
|
has_osxsave = !!boot_cpu_has(X86_FEATURE_OSXSAVE);
|
|
#elif defined(_KERNEL) && !defined(X86_FEATURE_OSXSAVE)
|
|
has_osxsave = B_FALSE;
|
|
#else
|
|
has_osxsave = __cpuid_has_osxsave();
|
|
#endif
|
|
|
|
if (!has_osxsave)
|
|
return (B_FALSE);
|
|
|
|
xcr0 = xgetbv(0);
|
|
return ((xcr0 & XSTATE_SSE_AVX) == XSTATE_SSE_AVX);
|
|
}
|
|
|
|
/*
|
|
* Check if SSE instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM));
|
|
#else
|
|
return (__cpuid_has_sse());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if SSE2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse2_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM2));
|
|
#else
|
|
return (__cpuid_has_sse2());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if SSE3 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse3_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM3));
|
|
#else
|
|
return (__cpuid_has_sse3());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if SSSE3 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_ssse3_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_SSSE3));
|
|
#else
|
|
return (__cpuid_has_ssse3());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if SSE4.1 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse4_1_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM4_1));
|
|
#else
|
|
return (__cpuid_has_sse4_1());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if SSE4.2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse4_2_available(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM4_2));
|
|
#else
|
|
return (__cpuid_has_sse4_2());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if AVX instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx_available(void)
|
|
{
|
|
boolean_t has_avx;
|
|
#if defined(_KERNEL)
|
|
has_avx = !!boot_cpu_has(X86_FEATURE_AVX);
|
|
#else
|
|
has_avx = __cpuid_has_avx();
|
|
#endif
|
|
|
|
return (has_avx && __ymm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx2_available(void)
|
|
{
|
|
boolean_t has_avx2;
|
|
#if defined(_KERNEL) && defined(X86_FEATURE_AVX2)
|
|
has_avx2 = !!boot_cpu_has(X86_FEATURE_AVX2);
|
|
#elif defined(_KERNEL) && !defined(X86_FEATURE_AVX2)
|
|
has_avx2 = B_FALSE;
|
|
#else
|
|
has_avx2 = __cpuid_has_avx2();
|
|
#endif
|
|
|
|
return (has_avx2 && __ymm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if BMI1 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_bmi1_available(void)
|
|
{
|
|
#if defined(_KERNEL) && defined(X86_FEATURE_BMI1)
|
|
return (!!boot_cpu_has(X86_FEATURE_BMI1));
|
|
#elif defined(_KERNEL) && !defined(X86_FEATURE_BMI1)
|
|
return (B_FALSE);
|
|
#else
|
|
return (__cpuid_has_bmi1());
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if BMI2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_bmi2_available(void)
|
|
{
|
|
#if defined(_KERNEL) && defined(X86_FEATURE_BMI2)
|
|
return (!!boot_cpu_has(X86_FEATURE_BMI2));
|
|
#elif defined(_KERNEL) && !defined(X86_FEATURE_BMI2)
|
|
return (B_FALSE);
|
|
#else
|
|
return (__cpuid_has_bmi2());
|
|
#endif
|
|
}
|
|
|
|
#endif /* defined(__x86) */
|
|
|
|
#endif /* _SIMD_X86_H */
|