mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-01 05:49:35 +03:00
55427add3c
- When receiving memory pressure signal from OS be more strict trying to free some memory. Otherwise kernel may come again and request much more. Return as result how much arc_c was actually reduced due to this request, that may be less than requested. - On Linux when receiving direct reclaim from some file system (that may be ZFS) instead of ignoring request completely, just shrink the ARC, but do not wait for eviction. Waiting there may cause deadlock. Ignoring it as before may put extra pressure on other caches and/or swap, and cause OOM if nothing help. While not waiting may result in more ARC evicted later, and may be too late if OOM killer activate right now, but I hope it to be better than doing nothing at all. - On Linux set arc_no_grow before waiting for reclaim, not after, or it may grow back while we are waiting. - On Linux add new parameter zfs_arc_shrinker_seeks to balance ARC eviction cost, relative to page cache and other subsystems. - Slightly update Linux arc_set_sys_free() math for new kernels. Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored by: iXsystems, Inc. Reviewed-by: Rob Norris <rob.norris@klarasystems.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov>
509 lines
14 KiB
C
509 lines
14 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2018, Joyent, Inc.
|
|
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
|
|
* Copyright 2017 Nexenta Systems, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/spa.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zio_compress.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/zfs_refcount.h>
|
|
#include <sys/vdev.h>
|
|
#include <sys/vdev_trim.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/multilist.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/fm/fs/zfs.h>
|
|
#ifdef _KERNEL
|
|
#include <sys/shrinker.h>
|
|
#include <sys/vmsystm.h>
|
|
#include <sys/zpl.h>
|
|
#include <linux/page_compat.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/version.h>
|
|
#endif
|
|
#include <sys/callb.h>
|
|
#include <sys/kstat.h>
|
|
#include <sys/zthr.h>
|
|
#include <zfs_fletcher.h>
|
|
#include <sys/arc_impl.h>
|
|
#include <sys/trace_zfs.h>
|
|
#include <sys/aggsum.h>
|
|
|
|
#ifdef _KERNEL
|
|
/*
|
|
* This is a limit on how many pages the ARC shrinker makes available for
|
|
* eviction in response to one page allocation attempt. Note that in
|
|
* practice, the kernel's shrinker can ask us to evict up to about 4x this
|
|
* for one allocation attempt.
|
|
*
|
|
* The default limit of 10,000 (in practice, 160MB per allocation attempt
|
|
* with 4K pages) limits the amount of time spent attempting to reclaim ARC
|
|
* memory to less than 100ms per allocation attempt, even with a small
|
|
* average compressed block size of ~8KB.
|
|
*
|
|
* See also the comment in arc_shrinker_count().
|
|
* Set to 0 to disable limit.
|
|
*/
|
|
static int zfs_arc_shrinker_limit = 10000;
|
|
|
|
/*
|
|
* Relative cost of ARC eviction, AKA number of seeks needed to restore evicted
|
|
* page. Bigger values make ARC more precious and evictions smaller comparing
|
|
* to other kernel subsystems. Value of 4 means parity with page cache,
|
|
* according to my reading of kernel's do_shrink_slab() and other code.
|
|
*/
|
|
static int zfs_arc_shrinker_seeks = DEFAULT_SEEKS;
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static struct notifier_block arc_hotplug_callback_mem_nb;
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Return a default max arc size based on the amount of physical memory.
|
|
* This may be overridden by tuning the zfs_arc_max module parameter.
|
|
*/
|
|
uint64_t
|
|
arc_default_max(uint64_t min, uint64_t allmem)
|
|
{
|
|
uint64_t size;
|
|
|
|
if (allmem >= 1 << 30)
|
|
size = allmem - (1 << 30);
|
|
else
|
|
size = min;
|
|
return (MAX(allmem * 5 / 8, size));
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
/*
|
|
* Return maximum amount of memory that we could possibly use. Reduced
|
|
* to half of all memory in user space which is primarily used for testing.
|
|
*/
|
|
uint64_t
|
|
arc_all_memory(void)
|
|
{
|
|
#ifdef CONFIG_HIGHMEM
|
|
return (ptob(zfs_totalram_pages - zfs_totalhigh_pages));
|
|
#else
|
|
return (ptob(zfs_totalram_pages));
|
|
#endif /* CONFIG_HIGHMEM */
|
|
}
|
|
|
|
/*
|
|
* Return the amount of memory that is considered free. In user space
|
|
* which is primarily used for testing we pretend that free memory ranges
|
|
* from 0-20% of all memory.
|
|
*/
|
|
uint64_t
|
|
arc_free_memory(void)
|
|
{
|
|
#ifdef CONFIG_HIGHMEM
|
|
struct sysinfo si;
|
|
si_meminfo(&si);
|
|
return (ptob(si.freeram - si.freehigh));
|
|
#else
|
|
return (ptob(nr_free_pages() +
|
|
nr_inactive_file_pages()));
|
|
#endif /* CONFIG_HIGHMEM */
|
|
}
|
|
|
|
/*
|
|
* Return the amount of memory that can be consumed before reclaim will be
|
|
* needed. Positive if there is sufficient free memory, negative indicates
|
|
* the amount of memory that needs to be freed up.
|
|
*/
|
|
int64_t
|
|
arc_available_memory(void)
|
|
{
|
|
return (arc_free_memory() - arc_sys_free);
|
|
}
|
|
|
|
static uint64_t
|
|
arc_evictable_memory(void)
|
|
{
|
|
int64_t asize = aggsum_value(&arc_sums.arcstat_size);
|
|
uint64_t arc_clean =
|
|
zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
|
|
zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
|
|
zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
|
|
zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
|
|
uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
|
|
|
|
/*
|
|
* Scale reported evictable memory in proportion to page cache, cap
|
|
* at specified min/max.
|
|
*/
|
|
uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
|
|
min = MAX(arc_c_min, MIN(arc_c_max, min));
|
|
|
|
if (arc_dirty >= min)
|
|
return (arc_clean);
|
|
|
|
return (MAX((int64_t)asize - (int64_t)min, 0));
|
|
}
|
|
|
|
/*
|
|
* The _count() function returns the number of free-able objects.
|
|
* The _scan() function returns the number of objects that were freed.
|
|
*/
|
|
static unsigned long
|
|
arc_shrinker_count(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
/*
|
|
* The kernel's shrinker code may not understand how many pages the
|
|
* ARC's callback actually frees, so it may ask the ARC to shrink a
|
|
* lot for one page allocation. This is problematic because it may
|
|
* take a long time, thus delaying the page allocation, and because
|
|
* it may force the ARC to unnecessarily shrink very small.
|
|
*
|
|
* Therefore, we limit the amount of data that we say is evictable,
|
|
* which limits the amount that the shrinker will ask us to evict for
|
|
* one page allocation attempt.
|
|
*
|
|
* In practice, we may be asked to shrink 4x the limit to satisfy one
|
|
* page allocation, before the kernel's shrinker code gives up on us.
|
|
* When that happens, we rely on the kernel code to find the pages
|
|
* that we freed before invoking the OOM killer. This happens in
|
|
* __alloc_pages_slowpath(), which retries and finds the pages we
|
|
* freed when it calls get_page_from_freelist().
|
|
*
|
|
* See also the comment above zfs_arc_shrinker_limit.
|
|
*/
|
|
int64_t can_free = btop(arc_evictable_memory());
|
|
int64_t limit = zfs_arc_shrinker_limit != 0 ?
|
|
zfs_arc_shrinker_limit : INT64_MAX;
|
|
return (MIN(can_free, limit));
|
|
}
|
|
|
|
static unsigned long
|
|
arc_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc)
|
|
{
|
|
/* The arc is considered warm once reclaim has occurred */
|
|
if (unlikely(arc_warm == B_FALSE))
|
|
arc_warm = B_TRUE;
|
|
|
|
/*
|
|
* We are experiencing memory pressure which the arc_evict_zthr was
|
|
* unable to keep up with. Set arc_no_grow to briefly pause ARC
|
|
* growth to avoid compounding the memory pressure.
|
|
*/
|
|
arc_no_grow = B_TRUE;
|
|
|
|
/*
|
|
* Evict the requested number of pages by reducing arc_c and waiting
|
|
* for the requested amount of data to be evicted. To avoid deadlock
|
|
* do not wait for eviction if we may be called from ZFS itself (see
|
|
* kmem_flags_convert() removing __GFP_FS). It may cause excessive
|
|
* eviction later if many evictions are accumulated, but just skipping
|
|
* the eviction is not good either if most of memory is used by ARC.
|
|
*/
|
|
uint64_t to_free = arc_reduce_target_size(ptob(sc->nr_to_scan));
|
|
if (sc->gfp_mask & __GFP_FS)
|
|
arc_wait_for_eviction(to_free, B_FALSE, B_FALSE);
|
|
if (current->reclaim_state != NULL)
|
|
#ifdef HAVE_RECLAIM_STATE_RECLAIMED
|
|
current->reclaim_state->reclaimed += btop(to_free);
|
|
#else
|
|
current->reclaim_state->reclaimed_slab += btop(to_free);
|
|
#endif
|
|
|
|
/*
|
|
* When direct reclaim is observed it usually indicates a rapid
|
|
* increase in memory pressure. This occurs because the kswapd
|
|
* threads were unable to asynchronously keep enough free memory
|
|
* available.
|
|
*/
|
|
if (current_is_kswapd()) {
|
|
ARCSTAT_BUMP(arcstat_memory_indirect_count);
|
|
} else {
|
|
ARCSTAT_BUMP(arcstat_memory_direct_count);
|
|
}
|
|
|
|
return (btop(to_free));
|
|
}
|
|
|
|
static struct shrinker *arc_shrinker = NULL;
|
|
|
|
int
|
|
arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
|
|
{
|
|
uint64_t free_memory = arc_free_memory();
|
|
|
|
if (free_memory > arc_all_memory() * arc_lotsfree_percent / 100)
|
|
return (0);
|
|
|
|
if (txg > spa->spa_lowmem_last_txg) {
|
|
spa->spa_lowmem_last_txg = txg;
|
|
spa->spa_lowmem_page_load = 0;
|
|
}
|
|
/*
|
|
* If we are in pageout, we know that memory is already tight,
|
|
* the arc is already going to be evicting, so we just want to
|
|
* continue to let page writes occur as quickly as possible.
|
|
*/
|
|
if (current_is_kswapd()) {
|
|
if (spa->spa_lowmem_page_load >
|
|
MAX(arc_sys_free / 4, free_memory) / 4) {
|
|
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
|
|
return (SET_ERROR(ERESTART));
|
|
}
|
|
/* Note: reserve is inflated, so we deflate */
|
|
atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
|
|
return (0);
|
|
} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
|
|
/* memory is low, delay before restarting */
|
|
ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
|
|
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
|
|
return (SET_ERROR(EAGAIN));
|
|
}
|
|
spa->spa_lowmem_page_load = 0;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
arc_set_sys_free(uint64_t allmem)
|
|
{
|
|
/*
|
|
* The ARC tries to keep at least this much memory available for the
|
|
* system. This gives the ARC time to shrink in response to memory
|
|
* pressure, before running completely out of memory and invoking the
|
|
* direct-reclaim ARC shrinker.
|
|
*
|
|
* This should be more than twice high_wmark_pages(), so that
|
|
* arc_wait_for_eviction() will wait until at least the
|
|
* high_wmark_pages() are free (see arc_evict_state_impl()).
|
|
*
|
|
* Note: If concurrent allocations consume these pages, there may
|
|
* still be insufficient free pages, and the OOM killer takes action.
|
|
*
|
|
* By setting arc_sys_free large enough, and having
|
|
* arc_wait_for_eviction() wait until there is at least arc_sys_free/2
|
|
* free memory, it is much less likely that concurrent allocations can
|
|
* consume all the memory that was evicted before checking for
|
|
* OOM.
|
|
*
|
|
* It's hard to iterate the zones from a linux kernel module, which
|
|
* makes it difficult to determine the watermark dynamically. Instead
|
|
* we compute the maximum high watermark for this system, based
|
|
* on the amount of memory, using the same method as the kernel uses
|
|
* to calculate its internal `min_free_kbytes` variable. See
|
|
* torvalds/linux@ee8eb9a5fe86 for the change in the upper clamp value
|
|
* from 64M to 256M.
|
|
*/
|
|
|
|
/*
|
|
* Base wmark_low is 4 * the square root of Kbytes of RAM.
|
|
*/
|
|
long wmark = int_sqrt(allmem / 1024 * 16) * 1024;
|
|
|
|
/*
|
|
* Clamp to between 128K and 256/64MB.
|
|
*/
|
|
wmark = MAX(wmark, 128 * 1024);
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 7, 0)
|
|
wmark = MIN(wmark, 256 * 1024 * 1024);
|
|
#else
|
|
wmark = MIN(wmark, 64 * 1024 * 1024);
|
|
#endif
|
|
|
|
/*
|
|
* watermark_boost can increase the wmark by up to 150%.
|
|
*/
|
|
wmark += wmark * 150 / 100;
|
|
|
|
/*
|
|
* arc_sys_free needs to be more than 2x the watermark, because
|
|
* arc_wait_for_eviction() waits for half of arc_sys_free. Bump this up
|
|
* to 3x to ensure we're above it.
|
|
*/
|
|
arc_sys_free = wmark * 3 + allmem / 32;
|
|
}
|
|
|
|
void
|
|
arc_lowmem_init(void)
|
|
{
|
|
uint64_t allmem = arc_all_memory();
|
|
|
|
/*
|
|
* Register a shrinker to support synchronous (direct) memory
|
|
* reclaim from the arc. This is done to prevent kswapd from
|
|
* swapping out pages when it is preferable to shrink the arc.
|
|
*/
|
|
arc_shrinker = spl_register_shrinker("zfs-arc-shrinker",
|
|
arc_shrinker_count, arc_shrinker_scan, zfs_arc_shrinker_seeks);
|
|
VERIFY(arc_shrinker);
|
|
|
|
arc_set_sys_free(allmem);
|
|
}
|
|
|
|
void
|
|
arc_lowmem_fini(void)
|
|
{
|
|
spl_unregister_shrinker(arc_shrinker);
|
|
arc_shrinker = NULL;
|
|
}
|
|
|
|
int
|
|
param_set_arc_u64(const char *buf, zfs_kernel_param_t *kp)
|
|
{
|
|
int error;
|
|
|
|
error = spl_param_set_u64(buf, kp);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
arc_tuning_update(B_TRUE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
param_set_arc_min(const char *buf, zfs_kernel_param_t *kp)
|
|
{
|
|
return (param_set_arc_u64(buf, kp));
|
|
}
|
|
|
|
int
|
|
param_set_arc_max(const char *buf, zfs_kernel_param_t *kp)
|
|
{
|
|
return (param_set_arc_u64(buf, kp));
|
|
}
|
|
|
|
int
|
|
param_set_arc_int(const char *buf, zfs_kernel_param_t *kp)
|
|
{
|
|
int error;
|
|
|
|
error = param_set_int(buf, kp);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
arc_tuning_update(B_TRUE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static int
|
|
arc_hotplug_callback(struct notifier_block *self, unsigned long action,
|
|
void *arg)
|
|
{
|
|
(void) self, (void) arg;
|
|
uint64_t allmem = arc_all_memory();
|
|
if (action != MEM_ONLINE)
|
|
return (NOTIFY_OK);
|
|
|
|
arc_set_limits(allmem);
|
|
|
|
#ifdef __LP64__
|
|
if (zfs_dirty_data_max_max == 0)
|
|
zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
|
|
allmem * zfs_dirty_data_max_max_percent / 100);
|
|
#else
|
|
if (zfs_dirty_data_max_max == 0)
|
|
zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
|
|
allmem * zfs_dirty_data_max_max_percent / 100);
|
|
#endif
|
|
|
|
arc_set_sys_free(allmem);
|
|
return (NOTIFY_OK);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
arc_register_hotplug(void)
|
|
{
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
arc_hotplug_callback_mem_nb.notifier_call = arc_hotplug_callback;
|
|
/* There is no significance to the value 100 */
|
|
arc_hotplug_callback_mem_nb.priority = 100;
|
|
register_memory_notifier(&arc_hotplug_callback_mem_nb);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
arc_unregister_hotplug(void)
|
|
{
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
unregister_memory_notifier(&arc_hotplug_callback_mem_nb);
|
|
#endif
|
|
}
|
|
#else /* _KERNEL */
|
|
int64_t
|
|
arc_available_memory(void)
|
|
{
|
|
int64_t lowest = INT64_MAX;
|
|
|
|
/* Every 100 calls, free a small amount */
|
|
if (random_in_range(100) == 0)
|
|
lowest = -1024;
|
|
|
|
return (lowest);
|
|
}
|
|
|
|
int
|
|
arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
|
|
{
|
|
(void) spa, (void) reserve, (void) txg;
|
|
return (0);
|
|
}
|
|
|
|
uint64_t
|
|
arc_all_memory(void)
|
|
{
|
|
return (ptob(physmem) / 2);
|
|
}
|
|
|
|
uint64_t
|
|
arc_free_memory(void)
|
|
{
|
|
return (random_in_range(arc_all_memory() * 20 / 100));
|
|
}
|
|
|
|
void
|
|
arc_register_hotplug(void)
|
|
{
|
|
}
|
|
|
|
void
|
|
arc_unregister_hotplug(void)
|
|
{
|
|
}
|
|
#endif /* _KERNEL */
|
|
|
|
ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_limit, INT, ZMOD_RW,
|
|
"Limit on number of pages that ARC shrinker can reclaim at once");
|
|
ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_seeks, INT, ZMOD_RD,
|
|
"Relative cost of ARC eviction vs other kernel subsystems");
|