1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-17 05:27:11 +03:00
mirror_zfs/module/os/linux/zfs/zvol_os.c
Alexander Motin cf33166336
ZVOL: Minor code cleanup
- Remove zsda_tx field, it is used only once.
 - Remove unneeded string lengths checks, all names are terminated.
 - Replace few explicit MAXNAMELEN usages with sizeof().
 - Change dsname from MAXNAMELEN to ZFS_MAX_DATASET_NAME_LEN, as
expected by dsl_dataset_name().  Both are 256 bytes now, but it is
better to be safe.

This should have no functional difference.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes 
2023-11-27 13:16:59 -08:00

1656 lines
43 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2012, 2020 by Delphix. All rights reserved.
*/
#include <sys/dataset_kstats.h>
#include <sys/dbuf.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dir.h>
#include <sys/zap.h>
#include <sys/zfeature.h>
#include <sys/zil_impl.h>
#include <sys/dmu_tx.h>
#include <sys/zio.h>
#include <sys/zfs_rlock.h>
#include <sys/spa_impl.h>
#include <sys/zvol.h>
#include <sys/zvol_impl.h>
#include <linux/blkdev_compat.h>
#include <linux/task_io_accounting_ops.h>
#ifdef HAVE_BLK_MQ
#include <linux/blk-mq.h>
#endif
static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
struct request *rq, boolean_t force_sync);
static unsigned int zvol_major = ZVOL_MAJOR;
static unsigned int zvol_request_sync = 0;
static unsigned int zvol_prefetch_bytes = (128 * 1024);
static unsigned long zvol_max_discard_blocks = 16384;
#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
static unsigned int zvol_open_timeout_ms = 1000;
#endif
static unsigned int zvol_threads = 0;
#ifdef HAVE_BLK_MQ
static unsigned int zvol_blk_mq_threads = 0;
static unsigned int zvol_blk_mq_actual_threads;
static boolean_t zvol_use_blk_mq = B_FALSE;
/*
* The maximum number of volblocksize blocks to process per thread. Typically,
* write heavy workloads preform better with higher values here, and read
* heavy workloads preform better with lower values, but that's not a hard
* and fast rule. It's basically a knob to tune between "less overhead with
* less parallelism" and "more overhead, but more parallelism".
*
* '8' was chosen as a reasonable, balanced, default based off of sequential
* read and write tests to a zvol in an NVMe pool (with 16 CPUs).
*/
static unsigned int zvol_blk_mq_blocks_per_thread = 8;
#endif
#ifndef BLKDEV_DEFAULT_RQ
/* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
#define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
#endif
/*
* Finalize our BIO or request.
*/
#ifdef HAVE_BLK_MQ
#define END_IO(zv, bio, rq, error) do { \
if (bio) { \
BIO_END_IO(bio, error); \
} else { \
blk_mq_end_request(rq, errno_to_bi_status(error)); \
} \
} while (0)
#else
#define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error)
#endif
#ifdef HAVE_BLK_MQ
static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
static unsigned int zvol_actual_blk_mq_queue_depth;
#endif
struct zvol_state_os {
struct gendisk *zvo_disk; /* generic disk */
struct request_queue *zvo_queue; /* request queue */
dev_t zvo_dev; /* device id */
#ifdef HAVE_BLK_MQ
struct blk_mq_tag_set tag_set;
#endif
/* Set from the global 'zvol_use_blk_mq' at zvol load */
boolean_t use_blk_mq;
};
static taskq_t *zvol_taskq;
static struct ida zvol_ida;
typedef struct zv_request_stack {
zvol_state_t *zv;
struct bio *bio;
struct request *rq;
} zv_request_t;
typedef struct zv_work {
struct request *rq;
struct work_struct work;
} zv_work_t;
typedef struct zv_request_task {
zv_request_t zvr;
taskq_ent_t ent;
} zv_request_task_t;
static zv_request_task_t *
zv_request_task_create(zv_request_t zvr)
{
zv_request_task_t *task;
task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
taskq_init_ent(&task->ent);
task->zvr = zvr;
return (task);
}
static void
zv_request_task_free(zv_request_task_t *task)
{
kmem_free(task, sizeof (*task));
}
#ifdef HAVE_BLK_MQ
/*
* This is called when a new block multiqueue request comes in. A request
* contains one or more BIOs.
*/
static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct request *rq = bd->rq;
zvol_state_t *zv = rq->q->queuedata;
/* Tell the kernel that we are starting to process this request */
blk_mq_start_request(rq);
if (blk_rq_is_passthrough(rq)) {
/* Skip non filesystem request */
blk_mq_end_request(rq, BLK_STS_IOERR);
return (BLK_STS_IOERR);
}
zvol_request_impl(zv, NULL, rq, 0);
/* Acknowledge to the kernel that we got this request */
return (BLK_STS_OK);
}
static struct blk_mq_ops zvol_blk_mq_queue_ops = {
.queue_rq = zvol_mq_queue_rq,
};
/* Initialize our blk-mq struct */
static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
{
struct zvol_state_os *zso = zv->zv_zso;
memset(&zso->tag_set, 0, sizeof (zso->tag_set));
/* Initialize tag set. */
zso->tag_set.ops = &zvol_blk_mq_queue_ops;
zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
zso->tag_set.numa_node = NUMA_NO_NODE;
zso->tag_set.cmd_size = 0;
/*
* We need BLK_MQ_F_BLOCKING here since we do blocking calls in
* zvol_request_impl()
*/
zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
zso->tag_set.driver_data = zv;
return (blk_mq_alloc_tag_set(&zso->tag_set));
}
#endif /* HAVE_BLK_MQ */
/*
* Given a path, return TRUE if path is a ZVOL.
*/
boolean_t
zvol_os_is_zvol(const char *path)
{
dev_t dev = 0;
if (vdev_lookup_bdev(path, &dev) != 0)
return (B_FALSE);
if (MAJOR(dev) == zvol_major)
return (B_TRUE);
return (B_FALSE);
}
static void
zvol_write(zv_request_t *zvr)
{
struct bio *bio = zvr->bio;
struct request *rq = zvr->rq;
int error = 0;
zfs_uio_t uio;
zvol_state_t *zv = zvr->zv;
struct request_queue *q;
struct gendisk *disk;
unsigned long start_time = 0;
boolean_t acct = B_FALSE;
ASSERT3P(zv, !=, NULL);
ASSERT3U(zv->zv_open_count, >, 0);
ASSERT3P(zv->zv_zilog, !=, NULL);
q = zv->zv_zso->zvo_queue;
disk = zv->zv_zso->zvo_disk;
/* bio marked as FLUSH need to flush before write */
if (io_is_flush(bio, rq))
zil_commit(zv->zv_zilog, ZVOL_OBJ);
/* Some requests are just for flush and nothing else. */
if (io_size(bio, rq) == 0) {
rw_exit(&zv->zv_suspend_lock);
END_IO(zv, bio, rq, 0);
return;
}
zfs_uio_bvec_init(&uio, bio, rq);
ssize_t start_resid = uio.uio_resid;
/*
* With use_blk_mq, accounting is done by blk_mq_start_request()
* and blk_mq_end_request(), so we can skip it here.
*/
if (bio) {
acct = blk_queue_io_stat(q);
if (acct) {
start_time = blk_generic_start_io_acct(q, disk, WRITE,
bio);
}
}
boolean_t sync =
io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
uio.uio_loffset, uio.uio_resid, RL_WRITER);
uint64_t volsize = zv->zv_volsize;
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
uint64_t off = uio.uio_loffset;
dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
if (bytes > volsize - off) /* don't write past the end */
bytes = volsize - off;
dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
/* This will only fail for ENOSPC */
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
break;
}
error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
if (error == 0) {
zvol_log_write(zv, tx, off, bytes, sync);
}
dmu_tx_commit(tx);
if (error)
break;
}
zfs_rangelock_exit(lr);
int64_t nwritten = start_resid - uio.uio_resid;
dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
task_io_account_write(nwritten);
if (sync)
zil_commit(zv->zv_zilog, ZVOL_OBJ);
rw_exit(&zv->zv_suspend_lock);
if (bio && acct) {
blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
}
END_IO(zv, bio, rq, -error);
}
static void
zvol_write_task(void *arg)
{
zv_request_task_t *task = arg;
zvol_write(&task->zvr);
zv_request_task_free(task);
}
static void
zvol_discard(zv_request_t *zvr)
{
struct bio *bio = zvr->bio;
struct request *rq = zvr->rq;
zvol_state_t *zv = zvr->zv;
uint64_t start = io_offset(bio, rq);
uint64_t size = io_size(bio, rq);
uint64_t end = start + size;
boolean_t sync;
int error = 0;
dmu_tx_t *tx;
struct request_queue *q = zv->zv_zso->zvo_queue;
struct gendisk *disk = zv->zv_zso->zvo_disk;
unsigned long start_time = 0;
boolean_t acct = B_FALSE;
ASSERT3P(zv, !=, NULL);
ASSERT3U(zv->zv_open_count, >, 0);
ASSERT3P(zv->zv_zilog, !=, NULL);
if (bio) {
acct = blk_queue_io_stat(q);
if (acct) {
start_time = blk_generic_start_io_acct(q, disk, WRITE,
bio);
}
}
sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
if (end > zv->zv_volsize) {
error = SET_ERROR(EIO);
goto unlock;
}
/*
* Align the request to volume block boundaries when a secure erase is
* not required. This will prevent dnode_free_range() from zeroing out
* the unaligned parts which is slow (read-modify-write) and useless
* since we are not freeing any space by doing so.
*/
if (!io_is_secure_erase(bio, rq)) {
start = P2ROUNDUP(start, zv->zv_volblocksize);
end = P2ALIGN(end, zv->zv_volblocksize);
size = end - start;
}
if (start >= end)
goto unlock;
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
start, size, RL_WRITER);
tx = dmu_tx_create(zv->zv_objset);
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error != 0) {
dmu_tx_abort(tx);
} else {
zvol_log_truncate(zv, tx, start, size);
dmu_tx_commit(tx);
error = dmu_free_long_range(zv->zv_objset,
ZVOL_OBJ, start, size);
}
zfs_rangelock_exit(lr);
if (error == 0 && sync)
zil_commit(zv->zv_zilog, ZVOL_OBJ);
unlock:
rw_exit(&zv->zv_suspend_lock);
if (bio && acct) {
blk_generic_end_io_acct(q, disk, WRITE, bio,
start_time);
}
END_IO(zv, bio, rq, -error);
}
static void
zvol_discard_task(void *arg)
{
zv_request_task_t *task = arg;
zvol_discard(&task->zvr);
zv_request_task_free(task);
}
static void
zvol_read(zv_request_t *zvr)
{
struct bio *bio = zvr->bio;
struct request *rq = zvr->rq;
int error = 0;
zfs_uio_t uio;
boolean_t acct = B_FALSE;
zvol_state_t *zv = zvr->zv;
struct request_queue *q;
struct gendisk *disk;
unsigned long start_time = 0;
ASSERT3P(zv, !=, NULL);
ASSERT3U(zv->zv_open_count, >, 0);
zfs_uio_bvec_init(&uio, bio, rq);
q = zv->zv_zso->zvo_queue;
disk = zv->zv_zso->zvo_disk;
ssize_t start_resid = uio.uio_resid;
/*
* When blk-mq is being used, accounting is done by
* blk_mq_start_request() and blk_mq_end_request().
*/
if (bio) {
acct = blk_queue_io_stat(q);
if (acct)
start_time = blk_generic_start_io_acct(q, disk, READ,
bio);
}
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
uio.uio_loffset, uio.uio_resid, RL_READER);
uint64_t volsize = zv->zv_volsize;
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
/* don't read past the end */
if (bytes > volsize - uio.uio_loffset)
bytes = volsize - uio.uio_loffset;
error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
if (error) {
/* convert checksum errors into IO errors */
if (error == ECKSUM)
error = SET_ERROR(EIO);
break;
}
}
zfs_rangelock_exit(lr);
int64_t nread = start_resid - uio.uio_resid;
dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
task_io_account_read(nread);
rw_exit(&zv->zv_suspend_lock);
if (bio && acct) {
blk_generic_end_io_acct(q, disk, READ, bio, start_time);
}
END_IO(zv, bio, rq, -error);
}
static void
zvol_read_task(void *arg)
{
zv_request_task_t *task = arg;
zvol_read(&task->zvr);
zv_request_task_free(task);
}
/*
* Process a BIO or request
*
* Either 'bio' or 'rq' should be set depending on if we are processing a
* bio or a request (both should not be set).
*
* force_sync: Set to 0 to defer processing to a background taskq
* Set to 1 to process data synchronously
*/
static void
zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
boolean_t force_sync)
{
fstrans_cookie_t cookie = spl_fstrans_mark();
uint64_t offset = io_offset(bio, rq);
uint64_t size = io_size(bio, rq);
int rw = io_data_dir(bio, rq);
if (zvol_request_sync || zv->zv_threading == B_FALSE)
force_sync = 1;
zv_request_t zvr = {
.zv = zv,
.bio = bio,
.rq = rq,
};
if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
zv->zv_zso->zvo_disk->disk_name,
(long long unsigned)offset,
(long unsigned)size);
END_IO(zv, bio, rq, -SET_ERROR(EIO));
goto out;
}
zv_request_task_t *task;
if (rw == WRITE) {
if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
END_IO(zv, bio, rq, -SET_ERROR(EROFS));
goto out;
}
/*
* Prevents the zvol from being suspended, or the ZIL being
* concurrently opened. Will be released after the i/o
* completes.
*/
rw_enter(&zv->zv_suspend_lock, RW_READER);
/*
* Open a ZIL if this is the first time we have written to this
* zvol. We protect zv->zv_zilog with zv_suspend_lock rather
* than zv_state_lock so that we don't need to acquire an
* additional lock in this path.
*/
if (zv->zv_zilog == NULL) {
rw_exit(&zv->zv_suspend_lock);
rw_enter(&zv->zv_suspend_lock, RW_WRITER);
if (zv->zv_zilog == NULL) {
zv->zv_zilog = zil_open(zv->zv_objset,
zvol_get_data, &zv->zv_kstat.dk_zil_sums);
zv->zv_flags |= ZVOL_WRITTEN_TO;
/* replay / destroy done in zvol_create_minor */
VERIFY0((zv->zv_zilog->zl_header->zh_flags &
ZIL_REPLAY_NEEDED));
}
rw_downgrade(&zv->zv_suspend_lock);
}
/*
* We don't want this thread to be blocked waiting for i/o to
* complete, so we instead wait from a taskq callback. The
* i/o may be a ZIL write (via zil_commit()), or a read of an
* indirect block, or a read of a data block (if this is a
* partial-block write). We will indicate that the i/o is
* complete by calling END_IO() from the taskq callback.
*
* This design allows the calling thread to continue and
* initiate more concurrent operations by calling
* zvol_request() again. There are typically only a small
* number of threads available to call zvol_request() (e.g.
* one per iSCSI target), so keeping the latency of
* zvol_request() low is important for performance.
*
* The zvol_request_sync module parameter allows this
* behavior to be altered, for performance evaluation
* purposes. If the callback blocks, setting
* zvol_request_sync=1 will result in much worse performance.
*
* We can have up to zvol_threads concurrent i/o's being
* processed for all zvols on the system. This is typically
* a vast improvement over the zvol_request_sync=1 behavior
* of one i/o at a time per zvol. However, an even better
* design would be for zvol_request() to initiate the zio
* directly, and then be notified by the zio_done callback,
* which would call END_IO(). Unfortunately, the DMU/ZIL
* interfaces lack this functionality (they block waiting for
* the i/o to complete).
*/
if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
if (force_sync) {
zvol_discard(&zvr);
} else {
task = zv_request_task_create(zvr);
taskq_dispatch_ent(zvol_taskq,
zvol_discard_task, task, 0, &task->ent);
}
} else {
if (force_sync) {
zvol_write(&zvr);
} else {
task = zv_request_task_create(zvr);
taskq_dispatch_ent(zvol_taskq,
zvol_write_task, task, 0, &task->ent);
}
}
} else {
/*
* The SCST driver, and possibly others, may issue READ I/Os
* with a length of zero bytes. These empty I/Os contain no
* data and require no additional handling.
*/
if (size == 0) {
END_IO(zv, bio, rq, 0);
goto out;
}
rw_enter(&zv->zv_suspend_lock, RW_READER);
/* See comment in WRITE case above. */
if (force_sync) {
zvol_read(&zvr);
} else {
task = zv_request_task_create(zvr);
taskq_dispatch_ent(zvol_taskq,
zvol_read_task, task, 0, &task->ent);
}
}
out:
spl_fstrans_unmark(cookie);
}
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
#ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
static void
zvol_submit_bio(struct bio *bio)
#else
static blk_qc_t
zvol_submit_bio(struct bio *bio)
#endif
#else
static MAKE_REQUEST_FN_RET
zvol_request(struct request_queue *q, struct bio *bio)
#endif
{
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
#if defined(HAVE_BIO_BDEV_DISK)
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
#else
struct request_queue *q = bio->bi_disk->queue;
#endif
#endif
zvol_state_t *zv = q->queuedata;
zvol_request_impl(zv, bio, NULL, 0);
#if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
return (BLK_QC_T_NONE);
#endif
}
static int
#ifdef HAVE_BLK_MODE_T
zvol_open(struct gendisk *disk, blk_mode_t flag)
#else
zvol_open(struct block_device *bdev, fmode_t flag)
#endif
{
zvol_state_t *zv;
int error = 0;
boolean_t drop_suspend = B_FALSE;
#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
hrtime_t start = gethrtime();
retry:
#endif
rw_enter(&zvol_state_lock, RW_READER);
/*
* Obtain a copy of private_data under the zvol_state_lock to make
* sure that either the result of zvol free code path setting
* disk->private_data to NULL is observed, or zvol_os_free()
* is not called on this zv because of the positive zv_open_count.
*/
#ifdef HAVE_BLK_MODE_T
zv = disk->private_data;
#else
zv = bdev->bd_disk->private_data;
#endif
if (zv == NULL) {
rw_exit(&zvol_state_lock);
return (SET_ERROR(-ENXIO));
}
mutex_enter(&zv->zv_state_lock);
/*
* Make sure zvol is not suspended during first open
* (hold zv_suspend_lock) and respect proper lock acquisition
* ordering - zv_suspend_lock before zv_state_lock
*/
if (zv->zv_open_count == 0) {
if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
mutex_exit(&zv->zv_state_lock);
rw_enter(&zv->zv_suspend_lock, RW_READER);
mutex_enter(&zv->zv_state_lock);
/* check to see if zv_suspend_lock is needed */
if (zv->zv_open_count != 0) {
rw_exit(&zv->zv_suspend_lock);
} else {
drop_suspend = B_TRUE;
}
} else {
drop_suspend = B_TRUE;
}
}
rw_exit(&zvol_state_lock);
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
if (zv->zv_open_count == 0) {
boolean_t drop_namespace = B_FALSE;
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
/*
* In all other call paths the spa_namespace_lock is taken
* before the bdev->bd_mutex lock. However, on open(2)
* the __blkdev_get() function calls fops->open() with the
* bdev->bd_mutex lock held. This can result in a deadlock
* when zvols from one pool are used as vdevs in another.
*
* To prevent a lock inversion deadlock we preemptively
* take the spa_namespace_lock. Normally the lock will not
* be contended and this is safe because spa_open_common()
* handles the case where the caller already holds the
* spa_namespace_lock.
*
* When the lock cannot be aquired after multiple retries
* this must be the vdev on zvol deadlock case and we have
* no choice but to return an error. For 5.12 and older
* kernels returning -ERESTARTSYS will result in the
* bdev->bd_mutex being dropped, then reacquired, and
* fops->open() being called again. This process can be
* repeated safely until both locks are acquired. For 5.13
* and newer the -ERESTARTSYS retry logic was removed from
* the kernel so the only option is to return the error for
* the caller to handle it.
*/
if (!mutex_owned(&spa_namespace_lock)) {
if (!mutex_tryenter(&spa_namespace_lock)) {
mutex_exit(&zv->zv_state_lock);
rw_exit(&zv->zv_suspend_lock);
#ifdef HAVE_BLKDEV_GET_ERESTARTSYS
schedule();
return (SET_ERROR(-ERESTARTSYS));
#else
if ((gethrtime() - start) > timeout)
return (SET_ERROR(-ERESTARTSYS));
schedule_timeout(MSEC_TO_TICK(10));
goto retry;
#endif
} else {
drop_namespace = B_TRUE;
}
}
error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
if (drop_namespace)
mutex_exit(&spa_namespace_lock);
}
if (error == 0) {
if ((blk_mode_is_open_write(flag)) &&
(zv->zv_flags & ZVOL_RDONLY)) {
if (zv->zv_open_count == 0)
zvol_last_close(zv);
error = SET_ERROR(-EROFS);
} else {
zv->zv_open_count++;
}
}
mutex_exit(&zv->zv_state_lock);
if (drop_suspend)
rw_exit(&zv->zv_suspend_lock);
if (error == 0)
#ifdef HAVE_BLK_MODE_T
disk_check_media_change(disk);
#else
zfs_check_media_change(bdev);
#endif
return (error);
}
static void
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
zvol_release(struct gendisk *disk)
#else
zvol_release(struct gendisk *disk, fmode_t unused)
#endif
{
#if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
(void) unused;
#endif
zvol_state_t *zv;
boolean_t drop_suspend = B_TRUE;
rw_enter(&zvol_state_lock, RW_READER);
zv = disk->private_data;
mutex_enter(&zv->zv_state_lock);
ASSERT3U(zv->zv_open_count, >, 0);
/*
* make sure zvol is not suspended during last close
* (hold zv_suspend_lock) and respect proper lock acquisition
* ordering - zv_suspend_lock before zv_state_lock
*/
if (zv->zv_open_count == 1) {
if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
mutex_exit(&zv->zv_state_lock);
rw_enter(&zv->zv_suspend_lock, RW_READER);
mutex_enter(&zv->zv_state_lock);
/* check to see if zv_suspend_lock is needed */
if (zv->zv_open_count != 1) {
rw_exit(&zv->zv_suspend_lock);
drop_suspend = B_FALSE;
}
}
} else {
drop_suspend = B_FALSE;
}
rw_exit(&zvol_state_lock);
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
zv->zv_open_count--;
if (zv->zv_open_count == 0) {
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
zvol_last_close(zv);
}
mutex_exit(&zv->zv_state_lock);
if (drop_suspend)
rw_exit(&zv->zv_suspend_lock);
}
static int
zvol_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
zvol_state_t *zv = bdev->bd_disk->private_data;
int error = 0;
ASSERT3U(zv->zv_open_count, >, 0);
switch (cmd) {
case BLKFLSBUF:
#ifdef HAVE_FSYNC_BDEV
fsync_bdev(bdev);
#elif defined(HAVE_SYNC_BLOCKDEV)
sync_blockdev(bdev);
#else
#error "Neither fsync_bdev() nor sync_blockdev() found"
#endif
invalidate_bdev(bdev);
rw_enter(&zv->zv_suspend_lock, RW_READER);
if (!(zv->zv_flags & ZVOL_RDONLY))
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
rw_exit(&zv->zv_suspend_lock);
break;
case BLKZNAME:
mutex_enter(&zv->zv_state_lock);
error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
mutex_exit(&zv->zv_state_lock);
break;
default:
error = -ENOTTY;
break;
}
return (SET_ERROR(error));
}
#ifdef CONFIG_COMPAT
static int
zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
return (zvol_ioctl(bdev, mode, cmd, arg));
}
#else
#define zvol_compat_ioctl NULL
#endif
static unsigned int
zvol_check_events(struct gendisk *disk, unsigned int clearing)
{
unsigned int mask = 0;
rw_enter(&zvol_state_lock, RW_READER);
zvol_state_t *zv = disk->private_data;
if (zv != NULL) {
mutex_enter(&zv->zv_state_lock);
mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
zv->zv_changed = 0;
mutex_exit(&zv->zv_state_lock);
}
rw_exit(&zvol_state_lock);
return (mask);
}
static int
zvol_revalidate_disk(struct gendisk *disk)
{
rw_enter(&zvol_state_lock, RW_READER);
zvol_state_t *zv = disk->private_data;
if (zv != NULL) {
mutex_enter(&zv->zv_state_lock);
set_capacity(zv->zv_zso->zvo_disk,
zv->zv_volsize >> SECTOR_BITS);
mutex_exit(&zv->zv_state_lock);
}
rw_exit(&zvol_state_lock);
return (0);
}
int
zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
{
struct gendisk *disk = zv->zv_zso->zvo_disk;
#if defined(HAVE_REVALIDATE_DISK_SIZE)
revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
#elif defined(HAVE_REVALIDATE_DISK)
revalidate_disk(disk);
#else
zvol_revalidate_disk(disk);
#endif
return (0);
}
void
zvol_os_clear_private(zvol_state_t *zv)
{
/*
* Cleared while holding zvol_state_lock as a writer
* which will prevent zvol_open() from opening it.
*/
zv->zv_zso->zvo_disk->private_data = NULL;
}
/*
* Provide a simple virtual geometry for legacy compatibility. For devices
* smaller than 1 MiB a small head and sector count is used to allow very
* tiny devices. For devices over 1 Mib a standard head and sector count
* is used to keep the cylinders count reasonable.
*/
static int
zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
zvol_state_t *zv = bdev->bd_disk->private_data;
sector_t sectors;
ASSERT3U(zv->zv_open_count, >, 0);
sectors = get_capacity(zv->zv_zso->zvo_disk);
if (sectors > 2048) {
geo->heads = 16;
geo->sectors = 63;
} else {
geo->heads = 2;
geo->sectors = 4;
}
geo->start = 0;
geo->cylinders = sectors / (geo->heads * geo->sectors);
return (0);
}
/*
* Why have two separate block_device_operations structs?
*
* Normally we'd just have one, and assign 'submit_bio' as needed. However,
* it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
* can't just change submit_bio dynamically at runtime. So just create two
* separate structs to get around this.
*/
static const struct block_device_operations zvol_ops_blk_mq = {
.open = zvol_open,
.release = zvol_release,
.ioctl = zvol_ioctl,
.compat_ioctl = zvol_compat_ioctl,
.check_events = zvol_check_events,
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
.revalidate_disk = zvol_revalidate_disk,
#endif
.getgeo = zvol_getgeo,
.owner = THIS_MODULE,
};
static const struct block_device_operations zvol_ops = {
.open = zvol_open,
.release = zvol_release,
.ioctl = zvol_ioctl,
.compat_ioctl = zvol_compat_ioctl,
.check_events = zvol_check_events,
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
.revalidate_disk = zvol_revalidate_disk,
#endif
.getgeo = zvol_getgeo,
.owner = THIS_MODULE,
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
.submit_bio = zvol_submit_bio,
#endif
};
static int
zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
{
#if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
#if defined(HAVE_BLK_ALLOC_DISK)
zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
if (zso->zvo_disk == NULL)
return (1);
zso->zvo_disk->minors = ZVOL_MINORS;
zso->zvo_queue = zso->zvo_disk->queue;
#else
zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
if (zso->zvo_queue == NULL)
return (1);
zso->zvo_disk = alloc_disk(ZVOL_MINORS);
if (zso->zvo_disk == NULL) {
blk_cleanup_queue(zso->zvo_queue);
return (1);
}
zso->zvo_disk->queue = zso->zvo_queue;
#endif /* HAVE_BLK_ALLOC_DISK */
#else
zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
if (zso->zvo_queue == NULL)
return (1);
zso->zvo_disk = alloc_disk(ZVOL_MINORS);
if (zso->zvo_disk == NULL) {
blk_cleanup_queue(zso->zvo_queue);
return (1);
}
zso->zvo_disk->queue = zso->zvo_queue;
#endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
return (0);
}
static int
zvol_alloc_blk_mq(zvol_state_t *zv)
{
#ifdef HAVE_BLK_MQ
struct zvol_state_os *zso = zv->zv_zso;
/* Allocate our blk-mq tag_set */
if (zvol_blk_mq_alloc_tag_set(zv) != 0)
return (1);
#if defined(HAVE_BLK_ALLOC_DISK)
zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
if (zso->zvo_disk == NULL) {
blk_mq_free_tag_set(&zso->tag_set);
return (1);
}
zso->zvo_queue = zso->zvo_disk->queue;
zso->zvo_disk->minors = ZVOL_MINORS;
#else
zso->zvo_disk = alloc_disk(ZVOL_MINORS);
if (zso->zvo_disk == NULL) {
blk_cleanup_queue(zso->zvo_queue);
blk_mq_free_tag_set(&zso->tag_set);
return (1);
}
/* Allocate queue */
zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
if (IS_ERR(zso->zvo_queue)) {
blk_mq_free_tag_set(&zso->tag_set);
return (1);
}
/* Our queue is now created, assign it to our disk */
zso->zvo_disk->queue = zso->zvo_queue;
#endif
#endif
return (0);
}
/*
* Allocate memory for a new zvol_state_t and setup the required
* request queue and generic disk structures for the block device.
*/
static zvol_state_t *
zvol_alloc(dev_t dev, const char *name)
{
zvol_state_t *zv;
struct zvol_state_os *zso;
uint64_t volmode;
int ret;
if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
return (NULL);
if (volmode == ZFS_VOLMODE_DEFAULT)
volmode = zvol_volmode;
if (volmode == ZFS_VOLMODE_NONE)
return (NULL);
zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
zv->zv_zso = zso;
zv->zv_volmode = volmode;
list_link_init(&zv->zv_next);
mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
#ifdef HAVE_BLK_MQ
zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
#endif
/*
* The block layer has 3 interfaces for getting BIOs:
*
* 1. blk-mq request queues (new)
* 2. submit_bio() (oldest)
* 3. regular request queues (old).
*
* Each of those interfaces has two permutations:
*
* a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
* both the disk and its queue (5.14 kernel or newer)
*
* b) We don't have blk_*alloc_disk(), and have to allocate the
* disk and the queue separately. (5.13 kernel or older)
*/
if (zv->zv_zso->use_blk_mq) {
ret = zvol_alloc_blk_mq(zv);
zso->zvo_disk->fops = &zvol_ops_blk_mq;
} else {
ret = zvol_alloc_non_blk_mq(zso);
zso->zvo_disk->fops = &zvol_ops;
}
if (ret != 0)
goto out_kmem;
blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
/* Limit read-ahead to a single page to prevent over-prefetching. */
blk_queue_set_read_ahead(zso->zvo_queue, 1);
if (!zv->zv_zso->use_blk_mq) {
/* Disable write merging in favor of the ZIO pipeline. */
blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
}
/* Enable /proc/diskstats */
blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
zso->zvo_queue->queuedata = zv;
zso->zvo_dev = dev;
zv->zv_open_count = 0;
strlcpy(zv->zv_name, name, sizeof (zv->zv_name));
zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
zso->zvo_disk->major = zvol_major;
zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
/*
* Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
* This is accomplished by limiting the number of minors for the
* device to one and explicitly disabling partition scanning.
*/
if (volmode == ZFS_VOLMODE_DEV) {
zso->zvo_disk->minors = 1;
zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
}
zso->zvo_disk->first_minor = (dev & MINORMASK);
zso->zvo_disk->private_data = zv;
snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
ZVOL_DEV_NAME, (dev & MINORMASK));
return (zv);
out_kmem:
kmem_free(zso, sizeof (struct zvol_state_os));
kmem_free(zv, sizeof (zvol_state_t));
return (NULL);
}
/*
* Cleanup then free a zvol_state_t which was created by zvol_alloc().
* At this time, the structure is not opened by anyone, is taken off
* the zvol_state_list, and has its private data set to NULL.
* The zvol_state_lock is dropped.
*
* This function may take many milliseconds to complete (e.g. we've seen
* it take over 256ms), due to the calls to "blk_cleanup_queue" and
* "del_gendisk". Thus, consumers need to be careful to account for this
* latency when calling this function.
*/
void
zvol_os_free(zvol_state_t *zv)
{
ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
ASSERT0(zv->zv_open_count);
ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
rw_destroy(&zv->zv_suspend_lock);
zfs_rangelock_fini(&zv->zv_rangelock);
del_gendisk(zv->zv_zso->zvo_disk);
#if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
defined(HAVE_BLK_ALLOC_DISK)
#if defined(HAVE_BLK_CLEANUP_DISK)
blk_cleanup_disk(zv->zv_zso->zvo_disk);
#else
put_disk(zv->zv_zso->zvo_disk);
#endif
#else
blk_cleanup_queue(zv->zv_zso->zvo_queue);
put_disk(zv->zv_zso->zvo_disk);
#endif
#ifdef HAVE_BLK_MQ
if (zv->zv_zso->use_blk_mq)
blk_mq_free_tag_set(&zv->zv_zso->tag_set);
#endif
ida_simple_remove(&zvol_ida,
MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
mutex_destroy(&zv->zv_state_lock);
dataset_kstats_destroy(&zv->zv_kstat);
kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
kmem_free(zv, sizeof (zvol_state_t));
}
void
zvol_wait_close(zvol_state_t *zv)
{
}
/*
* Create a block device minor node and setup the linkage between it
* and the specified volume. Once this function returns the block
* device is live and ready for use.
*/
int
zvol_os_create_minor(const char *name)
{
zvol_state_t *zv;
objset_t *os;
dmu_object_info_t *doi;
uint64_t volsize;
uint64_t len;
unsigned minor = 0;
int error = 0;
int idx;
uint64_t hash = zvol_name_hash(name);
uint64_t volthreading;
bool replayed_zil = B_FALSE;
if (zvol_inhibit_dev)
return (0);
idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
if (idx < 0)
return (SET_ERROR(-idx));
minor = idx << ZVOL_MINOR_BITS;
zv = zvol_find_by_name_hash(name, hash, RW_NONE);
if (zv) {
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
mutex_exit(&zv->zv_state_lock);
ida_simple_remove(&zvol_ida, idx);
return (SET_ERROR(EEXIST));
}
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
if (error)
goto out_doi;
error = dmu_object_info(os, ZVOL_OBJ, doi);
if (error)
goto out_dmu_objset_disown;
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
if (error)
goto out_dmu_objset_disown;
zv = zvol_alloc(MKDEV(zvol_major, minor), name);
if (zv == NULL) {
error = SET_ERROR(EAGAIN);
goto out_dmu_objset_disown;
}
zv->zv_hash = hash;
if (dmu_objset_is_snapshot(os))
zv->zv_flags |= ZVOL_RDONLY;
zv->zv_volblocksize = doi->doi_data_block_size;
zv->zv_volsize = volsize;
zv->zv_objset = os;
/* Default */
zv->zv_threading = B_TRUE;
if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
== 0)
zv->zv_threading = volthreading;
set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
(DMU_MAX_ACCESS / 4) >> 9);
if (zv->zv_zso->use_blk_mq) {
/*
* IO requests can be really big (1MB). When an IO request
* comes in, it is passed off to zvol_read() or zvol_write()
* in a new thread, where it is chunked up into 'volblocksize'
* sized pieces and processed. So for example, if the request
* is a 1MB write and your volblocksize is 128k, one zvol_write
* thread will take that request and sequentially do ten 128k
* IOs. This is due to the fact that the thread needs to lock
* each volblocksize sized block. So you might be wondering:
* "instead of passing the whole 1MB request to one thread,
* why not pass ten individual 128k chunks to ten threads and
* process the whole write in parallel?" The short answer is
* that there's a sweet spot number of chunks that balances
* the greater parallelism with the added overhead of more
* threads. The sweet spot can be different depending on if you
* have a read or write heavy workload. Writes typically want
* high chunk counts while reads typically want lower ones. On
* a test pool with 6 NVMe drives in a 3x 2-disk mirror
* configuration, with volblocksize=8k, the sweet spot for good
* sequential reads and writes was at 8 chunks.
*/
/*
* Below we tell the kernel how big we want our requests
* to be. You would think that blk_queue_io_opt() would be
* used to do this since it is used to "set optimal request
* size for the queue", but that doesn't seem to do
* anything - the kernel still gives you huge requests
* with tons of little PAGE_SIZE segments contained within it.
*
* Knowing that the kernel will just give you PAGE_SIZE segments
* no matter what, you can say "ok, I want PAGE_SIZE byte
* segments, and I want 'N' of them per request", where N is
* the correct number of segments for the volblocksize and
* number of chunks you want.
*/
#ifdef HAVE_BLK_MQ
if (zvol_blk_mq_blocks_per_thread != 0) {
unsigned int chunks;
chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
PAGE_SIZE);
blk_queue_max_segments(zv->zv_zso->zvo_queue,
(zv->zv_volblocksize * chunks) / PAGE_SIZE);
} else {
/*
* Special case: zvol_blk_mq_blocks_per_thread = 0
* Max everything out.
*/
blk_queue_max_segments(zv->zv_zso->zvo_queue,
UINT16_MAX);
blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
UINT_MAX);
}
#endif
} else {
blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
}
blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
zv->zv_volblocksize);
blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
(zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
zv->zv_volblocksize);
#ifdef QUEUE_FLAG_DISCARD
blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
#endif
#ifdef QUEUE_FLAG_NONROT
blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
#endif
#ifdef QUEUE_FLAG_ADD_RANDOM
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
#endif
/* This flag was introduced in kernel version 4.12. */
#ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
#endif
ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
if (error)
goto out_dmu_objset_disown;
ASSERT3P(zv->zv_zilog, ==, NULL);
zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
if (spa_writeable(dmu_objset_spa(os))) {
if (zil_replay_disable)
replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
else
replayed_zil = zil_replay(os, zv, zvol_replay_vector);
}
if (replayed_zil)
zil_close(zv->zv_zilog);
zv->zv_zilog = NULL;
/*
* When udev detects the addition of the device it will immediately
* invoke blkid(8) to determine the type of content on the device.
* Prefetching the blocks commonly scanned by blkid(8) will speed
* up this process.
*/
len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
if (len > 0) {
dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
ZIO_PRIORITY_SYNC_READ);
}
zv->zv_objset = NULL;
out_dmu_objset_disown:
dmu_objset_disown(os, B_TRUE, FTAG);
out_doi:
kmem_free(doi, sizeof (dmu_object_info_t));
/*
* Keep in mind that once add_disk() is called, the zvol is
* announced to the world, and zvol_open()/zvol_release() can
* be called at any time. Incidentally, add_disk() itself calls
* zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
* directly as well.
*/
if (error == 0) {
rw_enter(&zvol_state_lock, RW_WRITER);
zvol_insert(zv);
rw_exit(&zvol_state_lock);
#ifdef HAVE_ADD_DISK_RET
error = add_disk(zv->zv_zso->zvo_disk);
#else
add_disk(zv->zv_zso->zvo_disk);
#endif
} else {
ida_simple_remove(&zvol_ida, idx);
}
return (error);
}
void
zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
{
int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
ASSERT(RW_LOCK_HELD(&zvol_state_lock));
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
/* move to new hashtable entry */
zv->zv_hash = zvol_name_hash(zv->zv_name);
hlist_del(&zv->zv_hlink);
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
/*
* The block device's read-only state is briefly changed causing
* a KOBJ_CHANGE uevent to be issued. This ensures udev detects
* the name change and fixes the symlinks. This does not change
* ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
* changes. This would normally be done using kobject_uevent() but
* that is a GPL-only symbol which is why we need this workaround.
*/
set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
set_disk_ro(zv->zv_zso->zvo_disk, readonly);
dataset_kstats_rename(&zv->zv_kstat, newname);
}
void
zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
{
set_disk_ro(zv->zv_zso->zvo_disk, flags);
}
void
zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
{
set_capacity(zv->zv_zso->zvo_disk, capacity);
}
int
zvol_init(void)
{
int error;
/*
* zvol_threads is the module param the user passes in.
*
* zvol_actual_threads is what we use internally, since the user can
* pass zvol_thread = 0 to mean "use all the CPUs" (the default).
*/
static unsigned int zvol_actual_threads;
if (zvol_threads == 0) {
/*
* See dde9380a1 for why 32 was chosen here. This should
* probably be refined to be some multiple of the number
* of CPUs.
*/
zvol_actual_threads = MAX(num_online_cpus(), 32);
} else {
zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
}
error = register_blkdev(zvol_major, ZVOL_DRIVER);
if (error) {
printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
return (error);
}
#ifdef HAVE_BLK_MQ
if (zvol_blk_mq_queue_depth == 0) {
zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
} else {
zvol_actual_blk_mq_queue_depth =
MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
}
if (zvol_blk_mq_threads == 0) {
zvol_blk_mq_actual_threads = num_online_cpus();
} else {
zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1024);
}
#endif
zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_actual_threads, maxclsyspri,
zvol_actual_threads, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
if (zvol_taskq == NULL) {
unregister_blkdev(zvol_major, ZVOL_DRIVER);
return (-ENOMEM);
}
zvol_init_impl();
ida_init(&zvol_ida);
return (0);
}
void
zvol_fini(void)
{
zvol_fini_impl();
unregister_blkdev(zvol_major, ZVOL_DRIVER);
taskq_destroy(zvol_taskq);
ida_destroy(&zvol_ida);
}
/* BEGIN CSTYLED */
module_param(zvol_inhibit_dev, uint, 0644);
MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
module_param(zvol_major, uint, 0444);
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
module_param(zvol_threads, uint, 0444);
MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
"to 0 to use all active CPUs");
module_param(zvol_request_sync, uint, 0644);
MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
module_param(zvol_max_discard_blocks, ulong, 0444);
MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
module_param(zvol_prefetch_bytes, uint, 0644);
MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
module_param(zvol_volmode, uint, 0644);
MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
#ifdef HAVE_BLK_MQ
module_param(zvol_blk_mq_queue_depth, uint, 0644);
MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
module_param(zvol_use_blk_mq, uint, 0644);
MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
"Process volblocksize blocks per thread");
#endif
#ifndef HAVE_BLKDEV_GET_ERESTARTSYS
module_param(zvol_open_timeout_ms, uint, 0644);
MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
#endif
/* END CSTYLED */