mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-17 18:11:00 +03:00
1229323d5f
Under Linux filesystem threads responsible for handling I/O are normally created with the maximum priority. Non-I/O filesystem processes run with the default priority. ZFS should adopt the same priority scheme under Linux to maintain good performance and so that it will complete fairly when other Linux filesystems are active. The priorities have been updated to the following: $ ps -eLo rtprio,cls,pid,pri,nice,cmd | egrep 'z_|spl_|zvol|arc|dbu|meta' - TS 10743 19 -20 [spl_kmem_cache] - TS 10744 19 -20 [spl_system_task] - TS 10745 19 -20 [spl_dynamic_tas] - TS 10764 19 0 [dbu_evict] - TS 10765 19 0 [arc_prune] - TS 10766 19 0 [arc_reclaim] - TS 10767 19 0 [arc_user_evicts] - TS 10768 19 0 [l2arc_feed] - TS 10769 39 0 [z_unmount] - TS 10770 39 -20 [zvol] - TS 11011 39 -20 [z_null_iss] - TS 11012 39 -20 [z_null_int] - TS 11013 39 -20 [z_rd_iss] - TS 11014 39 -20 [z_rd_int_0] - TS 11022 38 -19 [z_wr_iss] - TS 11023 39 -20 [z_wr_iss_h] - TS 11024 39 -20 [z_wr_int_0] - TS 11032 39 -20 [z_wr_int_h] - TS 11033 39 -20 [z_fr_iss_0] - TS 11041 39 -20 [z_fr_int] - TS 11042 39 -20 [z_cl_iss] - TS 11043 39 -20 [z_cl_int] - TS 11044 39 -20 [z_ioctl_iss] - TS 11045 39 -20 [z_ioctl_int] - TS 11046 39 -20 [metaslab_group_] - TS 11050 19 0 [z_iput] - TS 11121 38 -19 [z_wr_iss] Note that under Linux the meaning of a processes priority is inverted with respect to illumos. High values on Linux indicate a _low_ priority while high value on illumos indicate a _high_ priority. In order to preserve the logical meaning of the minclsyspri and maxclsyspri macros when they are used by the illumos wrapper functions their values have been inverted. This way when changes are merged from upstream illumos we won't need to remember to invert the macro. It could also lead to confusion. This patch depends on https://github.com/zfsonlinux/spl/pull/466. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ned Bass <bass6@llnl.gov> Closes #3607
1108 lines
32 KiB
C
1108 lines
32 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2014 by Delphix. All rights reserved.
|
|
* Copyright (c) 2013 Steven Hartland. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/dsl_deadlist.h>
|
|
#include <sys/bptree.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/dsl_userhold.h>
|
|
#include <sys/trace_txg.h>
|
|
|
|
/*
|
|
* ZFS Write Throttle
|
|
* ------------------
|
|
*
|
|
* ZFS must limit the rate of incoming writes to the rate at which it is able
|
|
* to sync data modifications to the backend storage. Throttling by too much
|
|
* creates an artificial limit; throttling by too little can only be sustained
|
|
* for short periods and would lead to highly lumpy performance. On a per-pool
|
|
* basis, ZFS tracks the amount of modified (dirty) data. As operations change
|
|
* data, the amount of dirty data increases; as ZFS syncs out data, the amount
|
|
* of dirty data decreases. When the amount of dirty data exceeds a
|
|
* predetermined threshold further modifications are blocked until the amount
|
|
* of dirty data decreases (as data is synced out).
|
|
*
|
|
* The limit on dirty data is tunable, and should be adjusted according to
|
|
* both the IO capacity and available memory of the system. The larger the
|
|
* window, the more ZFS is able to aggregate and amortize metadata (and data)
|
|
* changes. However, memory is a limited resource, and allowing for more dirty
|
|
* data comes at the cost of keeping other useful data in memory (for example
|
|
* ZFS data cached by the ARC).
|
|
*
|
|
* Implementation
|
|
*
|
|
* As buffers are modified dsl_pool_willuse_space() increments both the per-
|
|
* txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
|
|
* dirty space used; dsl_pool_dirty_space() decrements those values as data
|
|
* is synced out from dsl_pool_sync(). While only the poolwide value is
|
|
* relevant, the per-txg value is useful for debugging. The tunable
|
|
* zfs_dirty_data_max determines the dirty space limit. Once that value is
|
|
* exceeded, new writes are halted until space frees up.
|
|
*
|
|
* The zfs_dirty_data_sync tunable dictates the threshold at which we
|
|
* ensure that there is a txg syncing (see the comment in txg.c for a full
|
|
* description of transaction group stages).
|
|
*
|
|
* The IO scheduler uses both the dirty space limit and current amount of
|
|
* dirty data as inputs. Those values affect the number of concurrent IOs ZFS
|
|
* issues. See the comment in vdev_queue.c for details of the IO scheduler.
|
|
*
|
|
* The delay is also calculated based on the amount of dirty data. See the
|
|
* comment above dmu_tx_delay() for details.
|
|
*/
|
|
|
|
/*
|
|
* zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
|
|
* capped at zfs_dirty_data_max_max. It can also be overridden with a module
|
|
* parameter.
|
|
*/
|
|
unsigned long zfs_dirty_data_max = 0;
|
|
unsigned long zfs_dirty_data_max_max = 0;
|
|
int zfs_dirty_data_max_percent = 10;
|
|
int zfs_dirty_data_max_max_percent = 25;
|
|
|
|
/*
|
|
* If there is at least this much dirty data, push out a txg.
|
|
*/
|
|
unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024;
|
|
|
|
/*
|
|
* Once there is this amount of dirty data, the dmu_tx_delay() will kick in
|
|
* and delay each transaction.
|
|
* This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
|
|
*/
|
|
int zfs_delay_min_dirty_percent = 60;
|
|
|
|
/*
|
|
* This controls how quickly the delay approaches infinity.
|
|
* Larger values cause it to delay more for a given amount of dirty data.
|
|
* Therefore larger values will cause there to be less dirty data for a
|
|
* given throughput.
|
|
*
|
|
* For the smoothest delay, this value should be about 1 billion divided
|
|
* by the maximum number of operations per second. This will smoothly
|
|
* handle between 10x and 1/10th this number.
|
|
*
|
|
* Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
|
|
* multiply in dmu_tx_delay().
|
|
*/
|
|
unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
|
|
|
|
hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
|
|
hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
|
|
|
|
int
|
|
dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
|
|
{
|
|
uint64_t obj;
|
|
int err;
|
|
|
|
err = zap_lookup(dp->dp_meta_objset,
|
|
dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
|
|
name, sizeof (obj), 1, &obj);
|
|
if (err)
|
|
return (err);
|
|
|
|
return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
|
|
}
|
|
|
|
static dsl_pool_t *
|
|
dsl_pool_open_impl(spa_t *spa, uint64_t txg)
|
|
{
|
|
dsl_pool_t *dp;
|
|
blkptr_t *bp = spa_get_rootblkptr(spa);
|
|
|
|
dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
|
|
dp->dp_spa = spa;
|
|
dp->dp_meta_rootbp = *bp;
|
|
rrw_init(&dp->dp_config_rwlock, B_TRUE);
|
|
txg_init(dp, txg);
|
|
|
|
txg_list_create(&dp->dp_dirty_datasets,
|
|
offsetof(dsl_dataset_t, ds_dirty_link));
|
|
txg_list_create(&dp->dp_dirty_zilogs,
|
|
offsetof(zilog_t, zl_dirty_link));
|
|
txg_list_create(&dp->dp_dirty_dirs,
|
|
offsetof(dsl_dir_t, dd_dirty_link));
|
|
txg_list_create(&dp->dp_sync_tasks,
|
|
offsetof(dsl_sync_task_t, dst_node));
|
|
|
|
mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
dp->dp_iput_taskq = taskq_create("z_iput", max_ncpus, defclsyspri,
|
|
max_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
|
|
|
|
return (dp);
|
|
}
|
|
|
|
int
|
|
dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
|
|
{
|
|
int err;
|
|
dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
|
|
|
|
err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
|
|
&dp->dp_meta_objset);
|
|
if (err != 0)
|
|
dsl_pool_close(dp);
|
|
else
|
|
*dpp = dp;
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dsl_pool_open(dsl_pool_t *dp)
|
|
{
|
|
int err;
|
|
dsl_dir_t *dd;
|
|
dsl_dataset_t *ds;
|
|
uint64_t obj;
|
|
|
|
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
|
|
&dp->dp_root_dir_obj);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
|
|
NULL, dp, &dp->dp_root_dir);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
|
|
err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
|
|
if (err)
|
|
goto out;
|
|
err = dsl_dataset_hold_obj(dp,
|
|
dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
|
|
if (err == 0) {
|
|
err = dsl_dataset_hold_obj(dp,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
|
|
&dp->dp_origin_snap);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
dsl_dir_rele(dd, dp);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
|
|
err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
|
|
&dp->dp_free_dir);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
|
|
if (err)
|
|
goto out;
|
|
VERIFY0(bpobj_open(&dp->dp_free_bpobj,
|
|
dp->dp_meta_objset, obj));
|
|
}
|
|
|
|
/*
|
|
* Note: errors ignored, because the leak dir will not exist if we
|
|
* have not encountered a leak yet.
|
|
*/
|
|
(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
|
|
&dp->dp_leak_dir);
|
|
|
|
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
|
|
&dp->dp_bptree_obj);
|
|
if (err != 0)
|
|
goto out;
|
|
}
|
|
|
|
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
|
|
&dp->dp_empty_bpobj);
|
|
if (err != 0)
|
|
goto out;
|
|
}
|
|
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
|
|
&dp->dp_tmp_userrefs_obj);
|
|
if (err == ENOENT)
|
|
err = 0;
|
|
if (err)
|
|
goto out;
|
|
|
|
err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
|
|
|
|
out:
|
|
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
dsl_pool_close(dsl_pool_t *dp)
|
|
{
|
|
/*
|
|
* Drop our references from dsl_pool_open().
|
|
*
|
|
* Since we held the origin_snap from "syncing" context (which
|
|
* includes pool-opening context), it actually only got a "ref"
|
|
* and not a hold, so just drop that here.
|
|
*/
|
|
if (dp->dp_origin_snap)
|
|
dsl_dataset_rele(dp->dp_origin_snap, dp);
|
|
if (dp->dp_mos_dir)
|
|
dsl_dir_rele(dp->dp_mos_dir, dp);
|
|
if (dp->dp_free_dir)
|
|
dsl_dir_rele(dp->dp_free_dir, dp);
|
|
if (dp->dp_leak_dir)
|
|
dsl_dir_rele(dp->dp_leak_dir, dp);
|
|
if (dp->dp_root_dir)
|
|
dsl_dir_rele(dp->dp_root_dir, dp);
|
|
|
|
bpobj_close(&dp->dp_free_bpobj);
|
|
|
|
/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
|
|
if (dp->dp_meta_objset)
|
|
dmu_objset_evict(dp->dp_meta_objset);
|
|
|
|
txg_list_destroy(&dp->dp_dirty_datasets);
|
|
txg_list_destroy(&dp->dp_dirty_zilogs);
|
|
txg_list_destroy(&dp->dp_sync_tasks);
|
|
txg_list_destroy(&dp->dp_dirty_dirs);
|
|
|
|
/*
|
|
* We can't set retry to TRUE since we're explicitly specifying
|
|
* a spa to flush. This is good enough; any missed buffers for
|
|
* this spa won't cause trouble, and they'll eventually fall
|
|
* out of the ARC just like any other unused buffer.
|
|
*/
|
|
arc_flush(dp->dp_spa, FALSE);
|
|
|
|
txg_fini(dp);
|
|
dsl_scan_fini(dp);
|
|
dmu_buf_user_evict_wait();
|
|
|
|
rrw_destroy(&dp->dp_config_rwlock);
|
|
mutex_destroy(&dp->dp_lock);
|
|
taskq_destroy(dp->dp_iput_taskq);
|
|
if (dp->dp_blkstats)
|
|
vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
|
|
kmem_free(dp, sizeof (dsl_pool_t));
|
|
}
|
|
|
|
dsl_pool_t *
|
|
dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
|
|
{
|
|
int err;
|
|
dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
|
|
dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
|
|
objset_t *os;
|
|
dsl_dataset_t *ds;
|
|
uint64_t obj;
|
|
|
|
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
|
|
|
/* create and open the MOS (meta-objset) */
|
|
dp->dp_meta_objset = dmu_objset_create_impl(spa,
|
|
NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
|
|
|
|
/* create the pool directory */
|
|
err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
|
|
ASSERT0(err);
|
|
|
|
/* Initialize scan structures */
|
|
VERIFY0(dsl_scan_init(dp, txg));
|
|
|
|
/* create and open the root dir */
|
|
dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
|
|
VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
|
|
NULL, dp, &dp->dp_root_dir));
|
|
|
|
/* create and open the meta-objset dir */
|
|
(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
|
|
VERIFY0(dsl_pool_open_special_dir(dp,
|
|
MOS_DIR_NAME, &dp->dp_mos_dir));
|
|
|
|
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
|
|
/* create and open the free dir */
|
|
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
|
|
FREE_DIR_NAME, tx);
|
|
VERIFY0(dsl_pool_open_special_dir(dp,
|
|
FREE_DIR_NAME, &dp->dp_free_dir));
|
|
|
|
/* create and open the free_bplist */
|
|
obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
|
|
VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
|
|
VERIFY0(bpobj_open(&dp->dp_free_bpobj,
|
|
dp->dp_meta_objset, obj));
|
|
}
|
|
|
|
if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
|
|
dsl_pool_create_origin(dp, tx);
|
|
|
|
/* create the root dataset */
|
|
obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
|
|
|
|
/* create the root objset */
|
|
VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
|
|
VERIFY(NULL != (os = dmu_objset_create_impl(dp->dp_spa, ds,
|
|
dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx)));
|
|
#ifdef _KERNEL
|
|
zfs_create_fs(os, kcred, zplprops, tx);
|
|
#endif
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
|
|
|
return (dp);
|
|
}
|
|
|
|
/*
|
|
* Account for the meta-objset space in its placeholder dsl_dir.
|
|
*/
|
|
void
|
|
dsl_pool_mos_diduse_space(dsl_pool_t *dp,
|
|
int64_t used, int64_t comp, int64_t uncomp)
|
|
{
|
|
ASSERT3U(comp, ==, uncomp); /* it's all metadata */
|
|
mutex_enter(&dp->dp_lock);
|
|
dp->dp_mos_used_delta += used;
|
|
dp->dp_mos_compressed_delta += comp;
|
|
dp->dp_mos_uncompressed_delta += uncomp;
|
|
mutex_exit(&dp->dp_lock);
|
|
}
|
|
|
|
static int
|
|
deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
dsl_deadlist_t *dl = arg;
|
|
dsl_deadlist_insert(dl, bp, tx);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
{
|
|
zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
|
dmu_objset_sync(dp->dp_meta_objset, zio, tx);
|
|
VERIFY0(zio_wait(zio));
|
|
dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
|
|
spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
|
|
}
|
|
|
|
static void
|
|
dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
|
|
{
|
|
ASSERT(MUTEX_HELD(&dp->dp_lock));
|
|
|
|
if (delta < 0)
|
|
ASSERT3U(-delta, <=, dp->dp_dirty_total);
|
|
|
|
dp->dp_dirty_total += delta;
|
|
|
|
/*
|
|
* Note: we signal even when increasing dp_dirty_total.
|
|
* This ensures forward progress -- each thread wakes the next waiter.
|
|
*/
|
|
if (dp->dp_dirty_total <= zfs_dirty_data_max)
|
|
cv_signal(&dp->dp_spaceavail_cv);
|
|
}
|
|
|
|
void
|
|
dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
|
|
{
|
|
zio_t *zio;
|
|
dmu_tx_t *tx;
|
|
dsl_dir_t *dd;
|
|
dsl_dataset_t *ds;
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
list_t synced_datasets;
|
|
|
|
list_create(&synced_datasets, sizeof (dsl_dataset_t),
|
|
offsetof(dsl_dataset_t, ds_synced_link));
|
|
|
|
tx = dmu_tx_create_assigned(dp, txg);
|
|
|
|
/*
|
|
* Write out all dirty blocks of dirty datasets.
|
|
*/
|
|
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
|
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
|
|
/*
|
|
* We must not sync any non-MOS datasets twice, because
|
|
* we may have taken a snapshot of them. However, we
|
|
* may sync newly-created datasets on pass 2.
|
|
*/
|
|
ASSERT(!list_link_active(&ds->ds_synced_link));
|
|
list_insert_tail(&synced_datasets, ds);
|
|
dsl_dataset_sync(ds, zio, tx);
|
|
}
|
|
VERIFY0(zio_wait(zio));
|
|
|
|
/*
|
|
* We have written all of the accounted dirty data, so our
|
|
* dp_space_towrite should now be zero. However, some seldom-used
|
|
* code paths do not adhere to this (e.g. dbuf_undirty(), also
|
|
* rounding error in dbuf_write_physdone).
|
|
* Shore up the accounting of any dirtied space now.
|
|
*/
|
|
dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
|
|
|
|
/*
|
|
* After the data blocks have been written (ensured by the zio_wait()
|
|
* above), update the user/group space accounting.
|
|
*/
|
|
for (ds = list_head(&synced_datasets); ds != NULL;
|
|
ds = list_next(&synced_datasets, ds)) {
|
|
dmu_objset_do_userquota_updates(ds->ds_objset, tx);
|
|
}
|
|
|
|
/*
|
|
* Sync the datasets again to push out the changes due to
|
|
* userspace updates. This must be done before we process the
|
|
* sync tasks, so that any snapshots will have the correct
|
|
* user accounting information (and we won't get confused
|
|
* about which blocks are part of the snapshot).
|
|
*/
|
|
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
|
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
|
|
ASSERT(list_link_active(&ds->ds_synced_link));
|
|
dmu_buf_rele(ds->ds_dbuf, ds);
|
|
dsl_dataset_sync(ds, zio, tx);
|
|
}
|
|
VERIFY0(zio_wait(zio));
|
|
|
|
/*
|
|
* Now that the datasets have been completely synced, we can
|
|
* clean up our in-memory structures accumulated while syncing:
|
|
*
|
|
* - move dead blocks from the pending deadlist to the on-disk deadlist
|
|
* - release hold from dsl_dataset_dirty()
|
|
*/
|
|
while ((ds = list_remove_head(&synced_datasets)) != NULL) {
|
|
ASSERTV(objset_t *os = ds->ds_objset);
|
|
bplist_iterate(&ds->ds_pending_deadlist,
|
|
deadlist_enqueue_cb, &ds->ds_deadlist, tx);
|
|
ASSERT(!dmu_objset_is_dirty(os, txg));
|
|
dmu_buf_rele(ds->ds_dbuf, ds);
|
|
}
|
|
|
|
while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
|
|
dsl_dir_sync(dd, tx);
|
|
}
|
|
|
|
/*
|
|
* The MOS's space is accounted for in the pool/$MOS
|
|
* (dp_mos_dir). We can't modify the mos while we're syncing
|
|
* it, so we remember the deltas and apply them here.
|
|
*/
|
|
if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
|
|
dp->dp_mos_uncompressed_delta != 0) {
|
|
dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
|
|
dp->dp_mos_used_delta,
|
|
dp->dp_mos_compressed_delta,
|
|
dp->dp_mos_uncompressed_delta, tx);
|
|
dp->dp_mos_used_delta = 0;
|
|
dp->dp_mos_compressed_delta = 0;
|
|
dp->dp_mos_uncompressed_delta = 0;
|
|
}
|
|
|
|
if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
|
|
list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
|
|
dsl_pool_sync_mos(dp, tx);
|
|
}
|
|
|
|
/*
|
|
* If we modify a dataset in the same txg that we want to destroy it,
|
|
* its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
|
|
* dsl_dir_destroy_check() will fail if there are unexpected holds.
|
|
* Therefore, we want to sync the MOS (thus syncing the dd_dbuf
|
|
* and clearing the hold on it) before we process the sync_tasks.
|
|
* The MOS data dirtied by the sync_tasks will be synced on the next
|
|
* pass.
|
|
*/
|
|
if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
|
|
dsl_sync_task_t *dst;
|
|
/*
|
|
* No more sync tasks should have been added while we
|
|
* were syncing.
|
|
*/
|
|
ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
|
|
while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
|
|
dsl_sync_task_sync(dst, tx);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
|
|
}
|
|
|
|
void
|
|
dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
|
|
{
|
|
zilog_t *zilog;
|
|
|
|
while ((zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg))) {
|
|
dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
|
|
zil_clean(zilog, txg);
|
|
ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
|
|
dmu_buf_rele(ds->ds_dbuf, zilog);
|
|
}
|
|
ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
|
|
}
|
|
|
|
/*
|
|
* TRUE if the current thread is the tx_sync_thread or if we
|
|
* are being called from SPA context during pool initialization.
|
|
*/
|
|
int
|
|
dsl_pool_sync_context(dsl_pool_t *dp)
|
|
{
|
|
return (curthread == dp->dp_tx.tx_sync_thread ||
|
|
spa_is_initializing(dp->dp_spa));
|
|
}
|
|
|
|
uint64_t
|
|
dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
|
|
{
|
|
uint64_t space, resv;
|
|
|
|
/*
|
|
* If we're trying to assess whether it's OK to do a free,
|
|
* cut the reservation in half to allow forward progress
|
|
* (e.g. make it possible to rm(1) files from a full pool).
|
|
*/
|
|
space = spa_get_dspace(dp->dp_spa);
|
|
resv = spa_get_slop_space(dp->dp_spa);
|
|
if (netfree)
|
|
resv >>= 1;
|
|
|
|
return (space - resv);
|
|
}
|
|
|
|
boolean_t
|
|
dsl_pool_need_dirty_delay(dsl_pool_t *dp)
|
|
{
|
|
uint64_t delay_min_bytes =
|
|
zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
|
|
boolean_t rv;
|
|
|
|
mutex_enter(&dp->dp_lock);
|
|
if (dp->dp_dirty_total > zfs_dirty_data_sync)
|
|
txg_kick(dp);
|
|
rv = (dp->dp_dirty_total > delay_min_bytes);
|
|
mutex_exit(&dp->dp_lock);
|
|
return (rv);
|
|
}
|
|
|
|
void
|
|
dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
|
|
{
|
|
if (space > 0) {
|
|
mutex_enter(&dp->dp_lock);
|
|
dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
|
|
dsl_pool_dirty_delta(dp, space);
|
|
mutex_exit(&dp->dp_lock);
|
|
}
|
|
}
|
|
|
|
void
|
|
dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
|
|
{
|
|
ASSERT3S(space, >=, 0);
|
|
if (space == 0)
|
|
return;
|
|
|
|
mutex_enter(&dp->dp_lock);
|
|
if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
|
|
/* XXX writing something we didn't dirty? */
|
|
space = dp->dp_dirty_pertxg[txg & TXG_MASK];
|
|
}
|
|
ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
|
|
dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
|
|
ASSERT3U(dp->dp_dirty_total, >=, space);
|
|
dsl_pool_dirty_delta(dp, -space);
|
|
mutex_exit(&dp->dp_lock);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
|
|
{
|
|
dmu_tx_t *tx = arg;
|
|
dsl_dataset_t *ds, *prev = NULL;
|
|
int err;
|
|
|
|
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
|
|
if (err)
|
|
return (err);
|
|
|
|
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
|
|
err = dsl_dataset_hold_obj(dp,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
|
|
if (err) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
|
|
break;
|
|
dsl_dataset_rele(ds, FTAG);
|
|
ds = prev;
|
|
prev = NULL;
|
|
}
|
|
|
|
if (prev == NULL) {
|
|
prev = dp->dp_origin_snap;
|
|
|
|
/*
|
|
* The $ORIGIN can't have any data, or the accounting
|
|
* will be wrong.
|
|
*/
|
|
ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
|
|
|
|
/* The origin doesn't get attached to itself */
|
|
if (ds->ds_object == prev->ds_object) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg =
|
|
dsl_dataset_phys(prev)->ds_creation_txg;
|
|
|
|
dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
|
|
dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
|
|
|
|
dmu_buf_will_dirty(prev->ds_dbuf, tx);
|
|
dsl_dataset_phys(prev)->ds_num_children++;
|
|
|
|
if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
|
|
ASSERT(ds->ds_prev == NULL);
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj,
|
|
ds, &ds->ds_prev));
|
|
}
|
|
}
|
|
|
|
ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
|
|
ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
|
|
|
|
if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
|
|
dmu_buf_will_dirty(prev->ds_dbuf, tx);
|
|
dsl_dataset_phys(prev)->ds_next_clones_obj =
|
|
zap_create(dp->dp_meta_objset,
|
|
DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
|
|
}
|
|
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
|
dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
if (prev != dp->dp_origin_snap)
|
|
dsl_dataset_rele(prev, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
{
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
ASSERT(dp->dp_origin_snap != NULL);
|
|
|
|
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
|
|
tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
|
{
|
|
dmu_tx_t *tx = arg;
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
|
|
if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
|
|
dsl_dataset_t *origin;
|
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
|
dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
|
|
|
|
if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
|
|
dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
|
|
dsl_dir_phys(origin->ds_dir)->dd_clones =
|
|
zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
|
|
0, tx);
|
|
}
|
|
|
|
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
|
dsl_dir_phys(origin->ds_dir)->dd_clones,
|
|
ds->ds_object, tx));
|
|
|
|
dsl_dataset_rele(origin, FTAG);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
{
|
|
uint64_t obj;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
|
|
VERIFY0(dsl_pool_open_special_dir(dp,
|
|
FREE_DIR_NAME, &dp->dp_free_dir));
|
|
|
|
/*
|
|
* We can't use bpobj_alloc(), because spa_version() still
|
|
* returns the old version, and we need a new-version bpobj with
|
|
* subobj support. So call dmu_object_alloc() directly.
|
|
*/
|
|
obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
|
|
SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
|
|
VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
|
|
VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
|
|
|
|
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
|
|
upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
|
|
}
|
|
|
|
void
|
|
dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
{
|
|
uint64_t dsobj;
|
|
dsl_dataset_t *ds;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
ASSERT(dp->dp_origin_snap == NULL);
|
|
ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
|
|
|
|
/* create the origin dir, ds, & snap-ds */
|
|
dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
|
|
NULL, 0, kcred, tx);
|
|
VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
|
|
dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
|
|
VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
|
|
dp, &dp->dp_origin_snap));
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
|
|
taskq_t *
|
|
dsl_pool_iput_taskq(dsl_pool_t *dp)
|
|
{
|
|
return (dp->dp_iput_taskq);
|
|
}
|
|
|
|
/*
|
|
* Walk through the pool-wide zap object of temporary snapshot user holds
|
|
* and release them.
|
|
*/
|
|
void
|
|
dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
|
|
{
|
|
zap_attribute_t za;
|
|
zap_cursor_t zc;
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
uint64_t zapobj = dp->dp_tmp_userrefs_obj;
|
|
nvlist_t *holds;
|
|
|
|
if (zapobj == 0)
|
|
return;
|
|
ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
|
|
|
|
holds = fnvlist_alloc();
|
|
|
|
for (zap_cursor_init(&zc, mos, zapobj);
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
char *htag;
|
|
nvlist_t *tags;
|
|
|
|
htag = strchr(za.za_name, '-');
|
|
*htag = '\0';
|
|
++htag;
|
|
if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
|
|
tags = fnvlist_alloc();
|
|
fnvlist_add_boolean(tags, htag);
|
|
fnvlist_add_nvlist(holds, za.za_name, tags);
|
|
fnvlist_free(tags);
|
|
} else {
|
|
fnvlist_add_boolean(tags, htag);
|
|
}
|
|
}
|
|
dsl_dataset_user_release_tmp(dp, holds);
|
|
fnvlist_free(holds);
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
|
|
/*
|
|
* Create the pool-wide zap object for storing temporary snapshot holds.
|
|
*/
|
|
void
|
|
dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
{
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
|
|
ASSERT(dp->dp_tmp_userrefs_obj == 0);
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
|
|
}
|
|
|
|
static int
|
|
dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
|
|
const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
|
|
{
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
uint64_t zapobj = dp->dp_tmp_userrefs_obj;
|
|
char *name;
|
|
int error;
|
|
|
|
ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
/*
|
|
* If the pool was created prior to SPA_VERSION_USERREFS, the
|
|
* zap object for temporary holds might not exist yet.
|
|
*/
|
|
if (zapobj == 0) {
|
|
if (holding) {
|
|
dsl_pool_user_hold_create_obj(dp, tx);
|
|
zapobj = dp->dp_tmp_userrefs_obj;
|
|
} else {
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
}
|
|
|
|
name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
|
|
if (holding)
|
|
error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
|
|
else
|
|
error = zap_remove(mos, zapobj, name, tx);
|
|
strfree(name);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Add a temporary hold for the given dataset object and tag.
|
|
*/
|
|
int
|
|
dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
|
|
uint64_t now, dmu_tx_t *tx)
|
|
{
|
|
return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
|
|
}
|
|
|
|
/*
|
|
* Release a temporary hold for the given dataset object and tag.
|
|
*/
|
|
int
|
|
dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
|
|
dmu_tx_t *tx)
|
|
{
|
|
return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
|
|
tx, B_FALSE));
|
|
}
|
|
|
|
/*
|
|
* DSL Pool Configuration Lock
|
|
*
|
|
* The dp_config_rwlock protects against changes to DSL state (e.g. dataset
|
|
* creation / destruction / rename / property setting). It must be held for
|
|
* read to hold a dataset or dsl_dir. I.e. you must call
|
|
* dsl_pool_config_enter() or dsl_pool_hold() before calling
|
|
* dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
|
|
* must be held continuously until all datasets and dsl_dirs are released.
|
|
*
|
|
* The only exception to this rule is that if a "long hold" is placed on
|
|
* a dataset, then the dp_config_rwlock may be dropped while the dataset
|
|
* is still held. The long hold will prevent the dataset from being
|
|
* destroyed -- the destroy will fail with EBUSY. A long hold can be
|
|
* obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
|
|
* (by calling dsl_{dataset,objset}_{try}own{_obj}).
|
|
*
|
|
* Legitimate long-holders (including owners) should be long-running, cancelable
|
|
* tasks that should cause "zfs destroy" to fail. This includes DMU
|
|
* consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
|
|
* "zfs send", and "zfs diff". There are several other long-holders whose
|
|
* uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
|
|
*
|
|
* The usual formula for long-holding would be:
|
|
* dsl_pool_hold()
|
|
* dsl_dataset_hold()
|
|
* ... perform checks ...
|
|
* dsl_dataset_long_hold()
|
|
* dsl_pool_rele()
|
|
* ... perform long-running task ...
|
|
* dsl_dataset_long_rele()
|
|
* dsl_dataset_rele()
|
|
*
|
|
* Note that when the long hold is released, the dataset is still held but
|
|
* the pool is not held. The dataset may change arbitrarily during this time
|
|
* (e.g. it could be destroyed). Therefore you shouldn't do anything to the
|
|
* dataset except release it.
|
|
*
|
|
* User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
|
|
* or modifying operations.
|
|
*
|
|
* Modifying operations should generally use dsl_sync_task(). The synctask
|
|
* infrastructure enforces proper locking strategy with respect to the
|
|
* dp_config_rwlock. See the comment above dsl_sync_task() for details.
|
|
*
|
|
* Read-only operations will manually hold the pool, then the dataset, obtain
|
|
* information from the dataset, then release the pool and dataset.
|
|
* dmu_objset_{hold,rele}() are convenience routines that also do the pool
|
|
* hold/rele.
|
|
*/
|
|
|
|
int
|
|
dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
|
|
{
|
|
spa_t *spa;
|
|
int error;
|
|
|
|
error = spa_open(name, &spa, tag);
|
|
if (error == 0) {
|
|
*dp = spa_get_dsl(spa);
|
|
dsl_pool_config_enter(*dp, tag);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
dsl_pool_rele(dsl_pool_t *dp, void *tag)
|
|
{
|
|
dsl_pool_config_exit(dp, tag);
|
|
spa_close(dp->dp_spa, tag);
|
|
}
|
|
|
|
void
|
|
dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
|
|
{
|
|
/*
|
|
* We use a "reentrant" reader-writer lock, but not reentrantly.
|
|
*
|
|
* The rrwlock can (with the track_all flag) track all reading threads,
|
|
* which is very useful for debugging which code path failed to release
|
|
* the lock, and for verifying that the *current* thread does hold
|
|
* the lock.
|
|
*
|
|
* (Unlike a rwlock, which knows that N threads hold it for
|
|
* read, but not *which* threads, so rw_held(RW_READER) returns TRUE
|
|
* if any thread holds it for read, even if this thread doesn't).
|
|
*/
|
|
ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
|
|
rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
|
|
}
|
|
|
|
void
|
|
dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
|
|
{
|
|
ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
|
|
rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
|
|
}
|
|
|
|
void
|
|
dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
|
|
{
|
|
rrw_exit(&dp->dp_config_rwlock, tag);
|
|
}
|
|
|
|
boolean_t
|
|
dsl_pool_config_held(dsl_pool_t *dp)
|
|
{
|
|
return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
|
|
}
|
|
|
|
boolean_t
|
|
dsl_pool_config_held_writer(dsl_pool_t *dp)
|
|
{
|
|
return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
EXPORT_SYMBOL(dsl_pool_config_enter);
|
|
EXPORT_SYMBOL(dsl_pool_config_exit);
|
|
|
|
/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
|
|
module_param(zfs_dirty_data_max_percent, int, 0444);
|
|
MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");
|
|
|
|
/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
|
|
module_param(zfs_dirty_data_max_max_percent, int, 0444);
|
|
MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
|
|
"zfs_dirty_data_max upper bound as % of RAM");
|
|
|
|
module_param(zfs_delay_min_dirty_percent, int, 0644);
|
|
MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");
|
|
|
|
module_param(zfs_dirty_data_max, ulong, 0644);
|
|
MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");
|
|
|
|
/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
|
|
module_param(zfs_dirty_data_max_max, ulong, 0444);
|
|
MODULE_PARM_DESC(zfs_dirty_data_max_max,
|
|
"zfs_dirty_data_max upper bound in bytes");
|
|
|
|
module_param(zfs_dirty_data_sync, ulong, 0644);
|
|
MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data");
|
|
|
|
module_param(zfs_delay_scale, ulong, 0644);
|
|
MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");
|
|
#endif
|