mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 19:19:32 +03:00
060f0226e6
When Multihost is enabled, and a pool is imported, uberblock writes include ub_mmp_delay to allow an importing node to calculate the duration of an activity test. This value, is not enough information. If zfs_multihost_fail_intervals > 0 on the node with the pool imported, the safe minimum duration of the activity test is well defined, but does not depend on ub_mmp_delay: zfs_multihost_fail_intervals * zfs_multihost_interval and if zfs_multihost_fail_intervals == 0 on that node, there is no such well defined safe duration, but the importing host cannot tell whether mmp_delay is high due to I/O delays, or due to a very large zfs_multihost_interval setting on the host which last imported the pool. As a result, it may use a far longer period for the activity test than is necessary. This patch renames ub_mmp_sequence to ub_mmp_config and uses it to record the zfs_multihost_interval and zfs_multihost_fail_intervals values, as well as the mmp sequence. This allows a shorter activity test duration to be calculated by the importing host in most situations. These values are also added to the multihost_history kstat records. It calculates the activity test duration differently depending on whether the new fields are present or not; for importing pools with only ub_mmp_delay, it uses (zfs_multihost_interval + ub_mmp_delay) * zfs_multihost_import_intervals Which results in an activity test duration less sensitive to the leaf count. In addition, it makes a few other improvements: * It updates the "sequence" part of ub_mmp_config when MMP writes in between syncs occur. This allows an importing host to detect MMP on the remote host sooner, when the pool is idle, as it is not limited to the granularity of ub_timestamp (1 second). * It issues writes immediately when zfs_multihost_interval is changed so remote hosts see the updated value as soon as possible. * It fixes a bug where setting zfs_multihost_fail_intervals = 1 results in immediate pool suspension. * Update tests to verify activity check duration is based on recorded tunable values, not tunable values on importing host. * Update tests to verify the expected number of uberblocks have valid MMP fields - fail_intervals, mmp_interval, mmp_seq (sequence number), that sequence number is incrementing, and that uberblock values match tunable settings. Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7842
6261 lines
167 KiB
C
6261 lines
167 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014 Integros [integros.com]
|
|
* Copyright 2016 Nexenta Systems, Inc.
|
|
* Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
|
|
* Copyright (c) 2015, 2017, Intel Corporation.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <stdio_ext.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/zfs_sa.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/sa_impl.h>
|
|
#include <sys/vdev.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zio_compress.h>
|
|
#include <sys/zfs_fuid.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/blkptr.h>
|
|
#include <sys/dsl_crypt.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <zfs_comutil.h>
|
|
|
|
#include <libnvpair.h>
|
|
#include <libzutil.h>
|
|
|
|
#include "zdb.h"
|
|
|
|
#define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \
|
|
zio_compress_table[(idx)].ci_name : "UNKNOWN")
|
|
#define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \
|
|
zio_checksum_table[(idx)].ci_name : "UNKNOWN")
|
|
#define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \
|
|
(idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \
|
|
DMU_OT_ZAP_OTHER : \
|
|
(idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \
|
|
DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES)
|
|
|
|
static char *
|
|
zdb_ot_name(dmu_object_type_t type)
|
|
{
|
|
if (type < DMU_OT_NUMTYPES)
|
|
return (dmu_ot[type].ot_name);
|
|
else if ((type & DMU_OT_NEWTYPE) &&
|
|
((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS))
|
|
return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name);
|
|
else
|
|
return ("UNKNOWN");
|
|
}
|
|
|
|
extern int reference_tracking_enable;
|
|
extern int zfs_recover;
|
|
extern uint64_t zfs_arc_max, zfs_arc_meta_limit;
|
|
extern int zfs_vdev_async_read_max_active;
|
|
extern boolean_t spa_load_verify_dryrun;
|
|
extern int zfs_reconstruct_indirect_combinations_max;
|
|
|
|
static const char cmdname[] = "zdb";
|
|
uint8_t dump_opt[256];
|
|
|
|
typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
|
|
|
|
uint64_t *zopt_object = NULL;
|
|
static unsigned zopt_objects = 0;
|
|
uint64_t max_inflight = 1000;
|
|
static int leaked_objects = 0;
|
|
static range_tree_t *mos_refd_objs;
|
|
|
|
static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *);
|
|
static void mos_obj_refd(uint64_t);
|
|
static void mos_obj_refd_multiple(uint64_t);
|
|
|
|
/*
|
|
* These libumem hooks provide a reasonable set of defaults for the allocator's
|
|
* debugging facilities.
|
|
*/
|
|
const char *
|
|
_umem_debug_init(void)
|
|
{
|
|
return ("default,verbose"); /* $UMEM_DEBUG setting */
|
|
}
|
|
|
|
const char *
|
|
_umem_logging_init(void)
|
|
{
|
|
return ("fail,contents"); /* $UMEM_LOGGING setting */
|
|
}
|
|
|
|
static void
|
|
usage(void)
|
|
{
|
|
(void) fprintf(stderr,
|
|
"Usage:\t%s [-AbcdDFGhikLMPsvX] [-e [-V] [-p <path> ...]] "
|
|
"[-I <inflight I/Os>]\n"
|
|
"\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
|
|
"\t\t[<poolname> [<object> ...]]\n"
|
|
"\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] <dataset>\n"
|
|
"\t\t[<object> ...]\n"
|
|
"\t%s -C [-A] [-U <cache>]\n"
|
|
"\t%s -l [-Aqu] <device>\n"
|
|
"\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
|
|
"[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
|
|
"\t%s -O <dataset> <path>\n"
|
|
"\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
|
|
"\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
|
|
"\t%s -E [-A] word0:word1:...:word15\n"
|
|
"\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
|
|
"<poolname>\n\n",
|
|
cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
|
|
cmdname, cmdname);
|
|
|
|
(void) fprintf(stderr, " Dataset name must include at least one "
|
|
"separator character '/' or '@'\n");
|
|
(void) fprintf(stderr, " If dataset name is specified, only that "
|
|
"dataset is dumped\n");
|
|
(void) fprintf(stderr, " If object numbers are specified, only "
|
|
"those objects are dumped\n\n");
|
|
(void) fprintf(stderr, " Options to control amount of output:\n");
|
|
(void) fprintf(stderr, " -b block statistics\n");
|
|
(void) fprintf(stderr, " -c checksum all metadata (twice for "
|
|
"all data) blocks\n");
|
|
(void) fprintf(stderr, " -C config (or cachefile if alone)\n");
|
|
(void) fprintf(stderr, " -d dataset(s)\n");
|
|
(void) fprintf(stderr, " -D dedup statistics\n");
|
|
(void) fprintf(stderr, " -E decode and display block from an "
|
|
"embedded block pointer\n");
|
|
(void) fprintf(stderr, " -h pool history\n");
|
|
(void) fprintf(stderr, " -i intent logs\n");
|
|
(void) fprintf(stderr, " -l read label contents\n");
|
|
(void) fprintf(stderr, " -k examine the checkpointed state "
|
|
"of the pool\n");
|
|
(void) fprintf(stderr, " -L disable leak tracking (do not "
|
|
"load spacemaps)\n");
|
|
(void) fprintf(stderr, " -m metaslabs\n");
|
|
(void) fprintf(stderr, " -M metaslab groups\n");
|
|
(void) fprintf(stderr, " -O perform object lookups by path\n");
|
|
(void) fprintf(stderr, " -R read and display block from a "
|
|
"device\n");
|
|
(void) fprintf(stderr, " -s report stats on zdb's I/O\n");
|
|
(void) fprintf(stderr, " -S simulate dedup to measure effect\n");
|
|
(void) fprintf(stderr, " -v verbose (applies to all "
|
|
"others)\n\n");
|
|
(void) fprintf(stderr, " Below options are intended for use "
|
|
"with other options:\n");
|
|
(void) fprintf(stderr, " -A ignore assertions (-A), enable "
|
|
"panic recovery (-AA) or both (-AAA)\n");
|
|
(void) fprintf(stderr, " -e pool is exported/destroyed/"
|
|
"has altroot/not in a cachefile\n");
|
|
(void) fprintf(stderr, " -F attempt automatic rewind within "
|
|
"safe range of transaction groups\n");
|
|
(void) fprintf(stderr, " -G dump zfs_dbgmsg buffer before "
|
|
"exiting\n");
|
|
(void) fprintf(stderr, " -I <number of inflight I/Os> -- "
|
|
"specify the maximum number of\n "
|
|
"checksumming I/Os [default is 200]\n");
|
|
(void) fprintf(stderr, " -o <variable>=<value> set global "
|
|
"variable to an unsigned 32-bit integer\n");
|
|
(void) fprintf(stderr, " -p <path> -- use one or more with "
|
|
"-e to specify path to vdev dir\n");
|
|
(void) fprintf(stderr, " -P print numbers in parseable form\n");
|
|
(void) fprintf(stderr, " -q don't print label contents\n");
|
|
(void) fprintf(stderr, " -t <txg> -- highest txg to use when "
|
|
"searching for uberblocks\n");
|
|
(void) fprintf(stderr, " -u uberblock\n");
|
|
(void) fprintf(stderr, " -U <cachefile_path> -- use alternate "
|
|
"cachefile\n");
|
|
(void) fprintf(stderr, " -V do verbatim import\n");
|
|
(void) fprintf(stderr, " -x <dumpdir> -- "
|
|
"dump all read blocks into specified directory\n");
|
|
(void) fprintf(stderr, " -X attempt extreme rewind (does not "
|
|
"work with dataset)\n");
|
|
(void) fprintf(stderr, " -Y attempt all reconstruction "
|
|
"combinations for split blocks\n");
|
|
(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
|
|
"to make only that option verbose\n");
|
|
(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
|
|
exit(1);
|
|
}
|
|
|
|
static void
|
|
dump_debug_buffer(void)
|
|
{
|
|
if (dump_opt['G']) {
|
|
(void) printf("\n");
|
|
(void) fflush(stdout);
|
|
zfs_dbgmsg_print("zdb");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called for usage errors that are discovered after a call to spa_open(),
|
|
* dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
|
|
*/
|
|
|
|
static void
|
|
fatal(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
(void) fprintf(stderr, "%s: ", cmdname);
|
|
(void) vfprintf(stderr, fmt, ap);
|
|
va_end(ap);
|
|
(void) fprintf(stderr, "\n");
|
|
|
|
dump_debug_buffer();
|
|
|
|
exit(1);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
nvlist_t *nv;
|
|
size_t nvsize = *(uint64_t *)data;
|
|
char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
|
|
|
|
VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
|
|
|
|
VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
|
|
|
|
umem_free(packed, nvsize);
|
|
|
|
dump_nvlist(nv, 8);
|
|
|
|
nvlist_free(nv);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
spa_history_phys_t *shp = data;
|
|
|
|
if (shp == NULL)
|
|
return;
|
|
|
|
(void) printf("\t\tpool_create_len = %llu\n",
|
|
(u_longlong_t)shp->sh_pool_create_len);
|
|
(void) printf("\t\tphys_max_off = %llu\n",
|
|
(u_longlong_t)shp->sh_phys_max_off);
|
|
(void) printf("\t\tbof = %llu\n",
|
|
(u_longlong_t)shp->sh_bof);
|
|
(void) printf("\t\teof = %llu\n",
|
|
(u_longlong_t)shp->sh_eof);
|
|
(void) printf("\t\trecords_lost = %llu\n",
|
|
(u_longlong_t)shp->sh_records_lost);
|
|
}
|
|
|
|
static void
|
|
zdb_nicenum(uint64_t num, char *buf, size_t buflen)
|
|
{
|
|
if (dump_opt['P'])
|
|
(void) snprintf(buf, buflen, "%llu", (longlong_t)num);
|
|
else
|
|
nicenum(num, buf, sizeof (buf));
|
|
}
|
|
|
|
static const char histo_stars[] = "****************************************";
|
|
static const uint64_t histo_width = sizeof (histo_stars) - 1;
|
|
|
|
static void
|
|
dump_histogram(const uint64_t *histo, int size, int offset)
|
|
{
|
|
int i;
|
|
int minidx = size - 1;
|
|
int maxidx = 0;
|
|
uint64_t max = 0;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
if (histo[i] > max)
|
|
max = histo[i];
|
|
if (histo[i] > 0 && i > maxidx)
|
|
maxidx = i;
|
|
if (histo[i] > 0 && i < minidx)
|
|
minidx = i;
|
|
}
|
|
|
|
if (max < histo_width)
|
|
max = histo_width;
|
|
|
|
for (i = minidx; i <= maxidx; i++) {
|
|
(void) printf("\t\t\t%3u: %6llu %s\n",
|
|
i + offset, (u_longlong_t)histo[i],
|
|
&histo_stars[(max - histo[i]) * histo_width / max]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_zap_stats(objset_t *os, uint64_t object)
|
|
{
|
|
int error;
|
|
zap_stats_t zs;
|
|
|
|
error = zap_get_stats(os, object, &zs);
|
|
if (error)
|
|
return;
|
|
|
|
if (zs.zs_ptrtbl_len == 0) {
|
|
ASSERT(zs.zs_num_blocks == 1);
|
|
(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
|
|
(u_longlong_t)zs.zs_blocksize,
|
|
(u_longlong_t)zs.zs_num_entries);
|
|
return;
|
|
}
|
|
|
|
(void) printf("\tFat ZAP stats:\n");
|
|
|
|
(void) printf("\t\tPointer table:\n");
|
|
(void) printf("\t\t\t%llu elements\n",
|
|
(u_longlong_t)zs.zs_ptrtbl_len);
|
|
(void) printf("\t\t\tzt_blk: %llu\n",
|
|
(u_longlong_t)zs.zs_ptrtbl_zt_blk);
|
|
(void) printf("\t\t\tzt_numblks: %llu\n",
|
|
(u_longlong_t)zs.zs_ptrtbl_zt_numblks);
|
|
(void) printf("\t\t\tzt_shift: %llu\n",
|
|
(u_longlong_t)zs.zs_ptrtbl_zt_shift);
|
|
(void) printf("\t\t\tzt_blks_copied: %llu\n",
|
|
(u_longlong_t)zs.zs_ptrtbl_blks_copied);
|
|
(void) printf("\t\t\tzt_nextblk: %llu\n",
|
|
(u_longlong_t)zs.zs_ptrtbl_nextblk);
|
|
|
|
(void) printf("\t\tZAP entries: %llu\n",
|
|
(u_longlong_t)zs.zs_num_entries);
|
|
(void) printf("\t\tLeaf blocks: %llu\n",
|
|
(u_longlong_t)zs.zs_num_leafs);
|
|
(void) printf("\t\tTotal blocks: %llu\n",
|
|
(u_longlong_t)zs.zs_num_blocks);
|
|
(void) printf("\t\tzap_block_type: 0x%llx\n",
|
|
(u_longlong_t)zs.zs_block_type);
|
|
(void) printf("\t\tzap_magic: 0x%llx\n",
|
|
(u_longlong_t)zs.zs_magic);
|
|
(void) printf("\t\tzap_salt: 0x%llx\n",
|
|
(u_longlong_t)zs.zs_salt);
|
|
|
|
(void) printf("\t\tLeafs with 2^n pointers:\n");
|
|
dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
|
|
|
|
(void) printf("\t\tBlocks with n*5 entries:\n");
|
|
dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
|
|
|
|
(void) printf("\t\tBlocks n/10 full:\n");
|
|
dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
|
|
|
|
(void) printf("\t\tEntries with n chunks:\n");
|
|
dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
|
|
|
|
(void) printf("\t\tBuckets with n entries:\n");
|
|
dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_none(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
(void) printf("\tUNKNOWN OBJECT TYPE\n");
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t attr;
|
|
void *prop;
|
|
unsigned i;
|
|
|
|
dump_zap_stats(os, object);
|
|
(void) printf("\n");
|
|
|
|
for (zap_cursor_init(&zc, os, object);
|
|
zap_cursor_retrieve(&zc, &attr) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
(void) printf("\t\t%s = ", attr.za_name);
|
|
if (attr.za_num_integers == 0) {
|
|
(void) printf("\n");
|
|
continue;
|
|
}
|
|
prop = umem_zalloc(attr.za_num_integers *
|
|
attr.za_integer_length, UMEM_NOFAIL);
|
|
(void) zap_lookup(os, object, attr.za_name,
|
|
attr.za_integer_length, attr.za_num_integers, prop);
|
|
if (attr.za_integer_length == 1) {
|
|
(void) printf("%s", (char *)prop);
|
|
} else {
|
|
for (i = 0; i < attr.za_num_integers; i++) {
|
|
switch (attr.za_integer_length) {
|
|
case 2:
|
|
(void) printf("%u ",
|
|
((uint16_t *)prop)[i]);
|
|
break;
|
|
case 4:
|
|
(void) printf("%u ",
|
|
((uint32_t *)prop)[i]);
|
|
break;
|
|
case 8:
|
|
(void) printf("%lld ",
|
|
(u_longlong_t)((int64_t *)prop)[i]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
(void) printf("\n");
|
|
umem_free(prop, attr.za_num_integers * attr.za_integer_length);
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
|
|
static void
|
|
dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
bpobj_phys_t *bpop = data;
|
|
uint64_t i;
|
|
char bytes[32], comp[32], uncomp[32];
|
|
|
|
/* make sure the output won't get truncated */
|
|
CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ);
|
|
|
|
if (bpop == NULL)
|
|
return;
|
|
|
|
zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
|
|
zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
|
|
zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
|
|
|
|
(void) printf("\t\tnum_blkptrs = %llu\n",
|
|
(u_longlong_t)bpop->bpo_num_blkptrs);
|
|
(void) printf("\t\tbytes = %s\n", bytes);
|
|
if (size >= BPOBJ_SIZE_V1) {
|
|
(void) printf("\t\tcomp = %s\n", comp);
|
|
(void) printf("\t\tuncomp = %s\n", uncomp);
|
|
}
|
|
if (size >= sizeof (*bpop)) {
|
|
(void) printf("\t\tsubobjs = %llu\n",
|
|
(u_longlong_t)bpop->bpo_subobjs);
|
|
(void) printf("\t\tnum_subobjs = %llu\n",
|
|
(u_longlong_t)bpop->bpo_num_subobjs);
|
|
}
|
|
|
|
if (dump_opt['d'] < 5)
|
|
return;
|
|
|
|
for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
blkptr_t bp;
|
|
|
|
int err = dmu_read(os, object,
|
|
i * sizeof (bp), sizeof (bp), &bp, 0);
|
|
if (err != 0) {
|
|
(void) printf("got error %u from dmu_read\n", err);
|
|
break;
|
|
}
|
|
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp);
|
|
(void) printf("\t%s\n", blkbuf);
|
|
}
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
dmu_object_info_t doi;
|
|
int64_t i;
|
|
|
|
VERIFY0(dmu_object_info(os, object, &doi));
|
|
uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
|
|
|
|
int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
|
|
if (err != 0) {
|
|
(void) printf("got error %u from dmu_read\n", err);
|
|
kmem_free(subobjs, doi.doi_max_offset);
|
|
return;
|
|
}
|
|
|
|
int64_t last_nonzero = -1;
|
|
for (i = 0; i < doi.doi_max_offset / 8; i++) {
|
|
if (subobjs[i] != 0)
|
|
last_nonzero = i;
|
|
}
|
|
|
|
for (i = 0; i <= last_nonzero; i++) {
|
|
(void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
|
|
}
|
|
kmem_free(subobjs, doi.doi_max_offset);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
dump_zap_stats(os, object);
|
|
/* contents are printed elsewhere, properly decoded */
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t attr;
|
|
|
|
dump_zap_stats(os, object);
|
|
(void) printf("\n");
|
|
|
|
for (zap_cursor_init(&zc, os, object);
|
|
zap_cursor_retrieve(&zc, &attr) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
(void) printf("\t\t%s = ", attr.za_name);
|
|
if (attr.za_num_integers == 0) {
|
|
(void) printf("\n");
|
|
continue;
|
|
}
|
|
(void) printf(" %llx : [%d:%d:%d]\n",
|
|
(u_longlong_t)attr.za_first_integer,
|
|
(int)ATTR_LENGTH(attr.za_first_integer),
|
|
(int)ATTR_BSWAP(attr.za_first_integer),
|
|
(int)ATTR_NUM(attr.za_first_integer));
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t attr;
|
|
uint16_t *layout_attrs;
|
|
unsigned i;
|
|
|
|
dump_zap_stats(os, object);
|
|
(void) printf("\n");
|
|
|
|
for (zap_cursor_init(&zc, os, object);
|
|
zap_cursor_retrieve(&zc, &attr) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
(void) printf("\t\t%s = [", attr.za_name);
|
|
if (attr.za_num_integers == 0) {
|
|
(void) printf("\n");
|
|
continue;
|
|
}
|
|
|
|
VERIFY(attr.za_integer_length == 2);
|
|
layout_attrs = umem_zalloc(attr.za_num_integers *
|
|
attr.za_integer_length, UMEM_NOFAIL);
|
|
|
|
VERIFY(zap_lookup(os, object, attr.za_name,
|
|
attr.za_integer_length,
|
|
attr.za_num_integers, layout_attrs) == 0);
|
|
|
|
for (i = 0; i != attr.za_num_integers; i++)
|
|
(void) printf(" %d ", (int)layout_attrs[i]);
|
|
(void) printf("]\n");
|
|
umem_free(layout_attrs,
|
|
attr.za_num_integers * attr.za_integer_length);
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t attr;
|
|
const char *typenames[] = {
|
|
/* 0 */ "not specified",
|
|
/* 1 */ "FIFO",
|
|
/* 2 */ "Character Device",
|
|
/* 3 */ "3 (invalid)",
|
|
/* 4 */ "Directory",
|
|
/* 5 */ "5 (invalid)",
|
|
/* 6 */ "Block Device",
|
|
/* 7 */ "7 (invalid)",
|
|
/* 8 */ "Regular File",
|
|
/* 9 */ "9 (invalid)",
|
|
/* 10 */ "Symbolic Link",
|
|
/* 11 */ "11 (invalid)",
|
|
/* 12 */ "Socket",
|
|
/* 13 */ "Door",
|
|
/* 14 */ "Event Port",
|
|
/* 15 */ "15 (invalid)",
|
|
};
|
|
|
|
dump_zap_stats(os, object);
|
|
(void) printf("\n");
|
|
|
|
for (zap_cursor_init(&zc, os, object);
|
|
zap_cursor_retrieve(&zc, &attr) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
(void) printf("\t\t%s = %lld (type: %s)\n",
|
|
attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
|
|
typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
|
|
static int
|
|
get_dtl_refcount(vdev_t *vd)
|
|
{
|
|
int refcount = 0;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
space_map_t *sm = vd->vdev_dtl_sm;
|
|
|
|
if (sm != NULL &&
|
|
sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
for (unsigned c = 0; c < vd->vdev_children; c++)
|
|
refcount += get_dtl_refcount(vd->vdev_child[c]);
|
|
return (refcount);
|
|
}
|
|
|
|
static int
|
|
get_metaslab_refcount(vdev_t *vd)
|
|
{
|
|
int refcount = 0;
|
|
|
|
if (vd->vdev_top == vd) {
|
|
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
|
|
space_map_t *sm = vd->vdev_ms[m]->ms_sm;
|
|
|
|
if (sm != NULL &&
|
|
sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
|
|
refcount++;
|
|
}
|
|
}
|
|
for (unsigned c = 0; c < vd->vdev_children; c++)
|
|
refcount += get_metaslab_refcount(vd->vdev_child[c]);
|
|
|
|
return (refcount);
|
|
}
|
|
|
|
static int
|
|
get_obsolete_refcount(vdev_t *vd)
|
|
{
|
|
uint64_t obsolete_sm_object;
|
|
int refcount = 0;
|
|
|
|
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
|
|
if (vd->vdev_top == vd && obsolete_sm_object != 0) {
|
|
dmu_object_info_t doi;
|
|
VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
|
|
obsolete_sm_object, &doi));
|
|
if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
|
|
refcount++;
|
|
}
|
|
} else {
|
|
ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
|
|
ASSERT3U(obsolete_sm_object, ==, 0);
|
|
}
|
|
for (unsigned c = 0; c < vd->vdev_children; c++) {
|
|
refcount += get_obsolete_refcount(vd->vdev_child[c]);
|
|
}
|
|
|
|
return (refcount);
|
|
}
|
|
|
|
static int
|
|
get_prev_obsolete_spacemap_refcount(spa_t *spa)
|
|
{
|
|
uint64_t prev_obj =
|
|
spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
|
|
if (prev_obj != 0) {
|
|
dmu_object_info_t doi;
|
|
VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
|
|
if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
get_checkpoint_refcount(vdev_t *vd)
|
|
{
|
|
int refcount = 0;
|
|
|
|
if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
|
|
zap_contains(spa_meta_objset(vd->vdev_spa),
|
|
vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
|
|
refcount++;
|
|
|
|
for (uint64_t c = 0; c < vd->vdev_children; c++)
|
|
refcount += get_checkpoint_refcount(vd->vdev_child[c]);
|
|
|
|
return (refcount);
|
|
}
|
|
|
|
static int
|
|
verify_spacemap_refcounts(spa_t *spa)
|
|
{
|
|
uint64_t expected_refcount = 0;
|
|
uint64_t actual_refcount;
|
|
|
|
(void) feature_get_refcount(spa,
|
|
&spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
|
|
&expected_refcount);
|
|
actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
|
|
actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
|
|
actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
|
|
actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
|
|
actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
|
|
|
|
if (expected_refcount != actual_refcount) {
|
|
(void) printf("space map refcount mismatch: expected %lld != "
|
|
"actual %lld\n",
|
|
(longlong_t)expected_refcount,
|
|
(longlong_t)actual_refcount);
|
|
return (2);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dump_spacemap(objset_t *os, space_map_t *sm)
|
|
{
|
|
const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
|
|
"INVALID", "INVALID", "INVALID", "INVALID" };
|
|
|
|
if (sm == NULL)
|
|
return;
|
|
|
|
(void) printf("space map object %llu:\n",
|
|
(longlong_t)sm->sm_object);
|
|
(void) printf(" smp_length = 0x%llx\n",
|
|
(longlong_t)sm->sm_phys->smp_length);
|
|
(void) printf(" smp_alloc = 0x%llx\n",
|
|
(longlong_t)sm->sm_phys->smp_alloc);
|
|
|
|
if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
|
|
return;
|
|
|
|
/*
|
|
* Print out the freelist entries in both encoded and decoded form.
|
|
*/
|
|
uint8_t mapshift = sm->sm_shift;
|
|
int64_t alloc = 0;
|
|
uint64_t word, entry_id = 0;
|
|
for (uint64_t offset = 0; offset < space_map_length(sm);
|
|
offset += sizeof (word)) {
|
|
|
|
VERIFY0(dmu_read(os, space_map_object(sm), offset,
|
|
sizeof (word), &word, DMU_READ_PREFETCH));
|
|
|
|
if (sm_entry_is_debug(word)) {
|
|
(void) printf("\t [%6llu] %s: txg %llu pass %llu\n",
|
|
(u_longlong_t)entry_id,
|
|
ddata[SM_DEBUG_ACTION_DECODE(word)],
|
|
(u_longlong_t)SM_DEBUG_TXG_DECODE(word),
|
|
(u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(word));
|
|
entry_id++;
|
|
continue;
|
|
}
|
|
|
|
uint8_t words;
|
|
char entry_type;
|
|
uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
|
|
|
|
if (sm_entry_is_single_word(word)) {
|
|
entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
|
|
'A' : 'F';
|
|
entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
|
|
sm->sm_start;
|
|
entry_run = SM_RUN_DECODE(word) << mapshift;
|
|
words = 1;
|
|
} else {
|
|
/* it is a two-word entry so we read another word */
|
|
ASSERT(sm_entry_is_double_word(word));
|
|
|
|
uint64_t extra_word;
|
|
offset += sizeof (extra_word);
|
|
VERIFY0(dmu_read(os, space_map_object(sm), offset,
|
|
sizeof (extra_word), &extra_word,
|
|
DMU_READ_PREFETCH));
|
|
|
|
ASSERT3U(offset, <=, space_map_length(sm));
|
|
|
|
entry_run = SM2_RUN_DECODE(word) << mapshift;
|
|
entry_vdev = SM2_VDEV_DECODE(word);
|
|
entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
|
|
'A' : 'F';
|
|
entry_off = (SM2_OFFSET_DECODE(extra_word) <<
|
|
mapshift) + sm->sm_start;
|
|
words = 2;
|
|
}
|
|
|
|
(void) printf("\t [%6llu] %c range:"
|
|
" %010llx-%010llx size: %06llx vdev: %06llu words: %u\n",
|
|
(u_longlong_t)entry_id,
|
|
entry_type, (u_longlong_t)entry_off,
|
|
(u_longlong_t)(entry_off + entry_run),
|
|
(u_longlong_t)entry_run,
|
|
(u_longlong_t)entry_vdev, words);
|
|
|
|
if (entry_type == 'A')
|
|
alloc += entry_run;
|
|
else
|
|
alloc -= entry_run;
|
|
entry_id++;
|
|
}
|
|
if ((uint64_t)alloc != space_map_allocated(sm)) {
|
|
(void) printf("space_map_object alloc (%lld) INCONSISTENT "
|
|
"with space map summary (%lld)\n",
|
|
(longlong_t)space_map_allocated(sm), (longlong_t)alloc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_metaslab_stats(metaslab_t *msp)
|
|
{
|
|
char maxbuf[32];
|
|
range_tree_t *rt = msp->ms_allocatable;
|
|
avl_tree_t *t = &msp->ms_allocatable_by_size;
|
|
int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
|
|
|
|
/* max sure nicenum has enough space */
|
|
CTASSERT(sizeof (maxbuf) >= NN_NUMBUF_SZ);
|
|
|
|
zdb_nicenum(metaslab_block_maxsize(msp), maxbuf, sizeof (maxbuf));
|
|
|
|
(void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
|
|
"segments", avl_numnodes(t), "maxsize", maxbuf,
|
|
"freepct", free_pct);
|
|
(void) printf("\tIn-memory histogram:\n");
|
|
dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
|
|
}
|
|
|
|
static void
|
|
dump_metaslab(metaslab_t *msp)
|
|
{
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
space_map_t *sm = msp->ms_sm;
|
|
char freebuf[32];
|
|
|
|
zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
|
|
sizeof (freebuf));
|
|
|
|
(void) printf(
|
|
"\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
|
|
(u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
|
|
(u_longlong_t)space_map_object(sm), freebuf);
|
|
|
|
if (dump_opt['m'] > 2 && !dump_opt['L']) {
|
|
mutex_enter(&msp->ms_lock);
|
|
VERIFY0(metaslab_load(msp));
|
|
range_tree_stat_verify(msp->ms_allocatable);
|
|
dump_metaslab_stats(msp);
|
|
metaslab_unload(msp);
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
if (dump_opt['m'] > 1 && sm != NULL &&
|
|
spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
|
|
/*
|
|
* The space map histogram represents free space in chunks
|
|
* of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
|
|
*/
|
|
(void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
|
|
(u_longlong_t)msp->ms_fragmentation);
|
|
dump_histogram(sm->sm_phys->smp_histogram,
|
|
SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
|
|
}
|
|
|
|
ASSERT(msp->ms_size == (1ULL << vd->vdev_ms_shift));
|
|
dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
|
|
}
|
|
|
|
static void
|
|
print_vdev_metaslab_header(vdev_t *vd)
|
|
{
|
|
vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
|
|
const char *bias_str;
|
|
|
|
bias_str = (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) ?
|
|
VDEV_ALLOC_BIAS_LOG :
|
|
(alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
|
|
(alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP :
|
|
vd->vdev_islog ? "log" : "";
|
|
|
|
(void) printf("\tvdev %10llu %s\n"
|
|
"\t%-10s%5llu %-19s %-15s %-12s\n",
|
|
(u_longlong_t)vd->vdev_id, bias_str,
|
|
"metaslabs", (u_longlong_t)vd->vdev_ms_count,
|
|
"offset", "spacemap", "free");
|
|
(void) printf("\t%15s %19s %15s %12s\n",
|
|
"---------------", "-------------------",
|
|
"---------------", "------------");
|
|
}
|
|
|
|
static void
|
|
dump_metaslab_groups(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
metaslab_class_t *mc = spa_normal_class(spa);
|
|
uint64_t fragmentation;
|
|
|
|
metaslab_class_histogram_verify(mc);
|
|
|
|
for (unsigned c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
if (mg == NULL || mg->mg_class != mc)
|
|
continue;
|
|
|
|
metaslab_group_histogram_verify(mg);
|
|
mg->mg_fragmentation = metaslab_group_fragmentation(mg);
|
|
|
|
(void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
|
|
"fragmentation",
|
|
(u_longlong_t)tvd->vdev_id,
|
|
(u_longlong_t)tvd->vdev_ms_count);
|
|
if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
|
|
(void) printf("%3s\n", "-");
|
|
} else {
|
|
(void) printf("%3llu%%\n",
|
|
(u_longlong_t)mg->mg_fragmentation);
|
|
}
|
|
dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
|
|
}
|
|
|
|
(void) printf("\tpool %s\tfragmentation", spa_name(spa));
|
|
fragmentation = metaslab_class_fragmentation(mc);
|
|
if (fragmentation == ZFS_FRAG_INVALID)
|
|
(void) printf("\t%3s\n", "-");
|
|
else
|
|
(void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
|
|
dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
|
|
}
|
|
|
|
static void
|
|
print_vdev_indirect(vdev_t *vd)
|
|
{
|
|
vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
|
|
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
|
|
vdev_indirect_births_t *vib = vd->vdev_indirect_births;
|
|
|
|
if (vim == NULL) {
|
|
ASSERT3P(vib, ==, NULL);
|
|
return;
|
|
}
|
|
|
|
ASSERT3U(vdev_indirect_mapping_object(vim), ==,
|
|
vic->vic_mapping_object);
|
|
ASSERT3U(vdev_indirect_births_object(vib), ==,
|
|
vic->vic_births_object);
|
|
|
|
(void) printf("indirect births obj %llu:\n",
|
|
(longlong_t)vic->vic_births_object);
|
|
(void) printf(" vib_count = %llu\n",
|
|
(longlong_t)vdev_indirect_births_count(vib));
|
|
for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
|
|
vdev_indirect_birth_entry_phys_t *cur_vibe =
|
|
&vib->vib_entries[i];
|
|
(void) printf("\toffset %llx -> txg %llu\n",
|
|
(longlong_t)cur_vibe->vibe_offset,
|
|
(longlong_t)cur_vibe->vibe_phys_birth_txg);
|
|
}
|
|
(void) printf("\n");
|
|
|
|
(void) printf("indirect mapping obj %llu:\n",
|
|
(longlong_t)vic->vic_mapping_object);
|
|
(void) printf(" vim_max_offset = 0x%llx\n",
|
|
(longlong_t)vdev_indirect_mapping_max_offset(vim));
|
|
(void) printf(" vim_bytes_mapped = 0x%llx\n",
|
|
(longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
|
|
(void) printf(" vim_count = %llu\n",
|
|
(longlong_t)vdev_indirect_mapping_num_entries(vim));
|
|
|
|
if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
|
|
return;
|
|
|
|
uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
|
|
|
|
for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
|
|
vdev_indirect_mapping_entry_phys_t *vimep =
|
|
&vim->vim_entries[i];
|
|
(void) printf("\t<%llx:%llx:%llx> -> "
|
|
"<%llx:%llx:%llx> (%x obsolete)\n",
|
|
(longlong_t)vd->vdev_id,
|
|
(longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
|
|
(longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
|
|
(longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
|
|
(longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
|
|
(longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
|
|
counts[i]);
|
|
}
|
|
(void) printf("\n");
|
|
|
|
uint64_t obsolete_sm_object;
|
|
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
|
|
if (obsolete_sm_object != 0) {
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
(void) printf("obsolete space map object %llu:\n",
|
|
(u_longlong_t)obsolete_sm_object);
|
|
ASSERT(vd->vdev_obsolete_sm != NULL);
|
|
ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
|
|
obsolete_sm_object);
|
|
dump_spacemap(mos, vd->vdev_obsolete_sm);
|
|
(void) printf("\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_metaslabs(spa_t *spa)
|
|
{
|
|
vdev_t *vd, *rvd = spa->spa_root_vdev;
|
|
uint64_t m, c = 0, children = rvd->vdev_children;
|
|
|
|
(void) printf("\nMetaslabs:\n");
|
|
|
|
if (!dump_opt['d'] && zopt_objects > 0) {
|
|
c = zopt_object[0];
|
|
|
|
if (c >= children)
|
|
(void) fatal("bad vdev id: %llu", (u_longlong_t)c);
|
|
|
|
if (zopt_objects > 1) {
|
|
vd = rvd->vdev_child[c];
|
|
print_vdev_metaslab_header(vd);
|
|
|
|
for (m = 1; m < zopt_objects; m++) {
|
|
if (zopt_object[m] < vd->vdev_ms_count)
|
|
dump_metaslab(
|
|
vd->vdev_ms[zopt_object[m]]);
|
|
else
|
|
(void) fprintf(stderr, "bad metaslab "
|
|
"number %llu\n",
|
|
(u_longlong_t)zopt_object[m]);
|
|
}
|
|
(void) printf("\n");
|
|
return;
|
|
}
|
|
children = c + 1;
|
|
}
|
|
for (; c < children; c++) {
|
|
vd = rvd->vdev_child[c];
|
|
print_vdev_metaslab_header(vd);
|
|
|
|
print_vdev_indirect(vd);
|
|
|
|
for (m = 0; m < vd->vdev_ms_count; m++)
|
|
dump_metaslab(vd->vdev_ms[m]);
|
|
(void) printf("\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
|
|
{
|
|
const ddt_phys_t *ddp = dde->dde_phys;
|
|
const ddt_key_t *ddk = &dde->dde_key;
|
|
const char *types[4] = { "ditto", "single", "double", "triple" };
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
blkptr_t blk;
|
|
int p;
|
|
|
|
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
|
|
if (ddp->ddp_phys_birth == 0)
|
|
continue;
|
|
ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
|
|
(void) printf("index %llx refcnt %llu %s %s\n",
|
|
(u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
|
|
types[p], blkbuf);
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_dedup_ratio(const ddt_stat_t *dds)
|
|
{
|
|
double rL, rP, rD, D, dedup, compress, copies;
|
|
|
|
if (dds->dds_blocks == 0)
|
|
return;
|
|
|
|
rL = (double)dds->dds_ref_lsize;
|
|
rP = (double)dds->dds_ref_psize;
|
|
rD = (double)dds->dds_ref_dsize;
|
|
D = (double)dds->dds_dsize;
|
|
|
|
dedup = rD / D;
|
|
compress = rL / rP;
|
|
copies = rD / rP;
|
|
|
|
(void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
|
|
"dedup * compress / copies = %.2f\n\n",
|
|
dedup, compress, copies, dedup * compress / copies);
|
|
}
|
|
|
|
static void
|
|
dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
|
|
{
|
|
char name[DDT_NAMELEN];
|
|
ddt_entry_t dde;
|
|
uint64_t walk = 0;
|
|
dmu_object_info_t doi;
|
|
uint64_t count, dspace, mspace;
|
|
int error;
|
|
|
|
error = ddt_object_info(ddt, type, class, &doi);
|
|
|
|
if (error == ENOENT)
|
|
return;
|
|
ASSERT(error == 0);
|
|
|
|
error = ddt_object_count(ddt, type, class, &count);
|
|
ASSERT(error == 0);
|
|
if (count == 0)
|
|
return;
|
|
|
|
dspace = doi.doi_physical_blocks_512 << 9;
|
|
mspace = doi.doi_fill_count * doi.doi_data_block_size;
|
|
|
|
ddt_object_name(ddt, type, class, name);
|
|
|
|
(void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
|
|
name,
|
|
(u_longlong_t)count,
|
|
(u_longlong_t)(dspace / count),
|
|
(u_longlong_t)(mspace / count));
|
|
|
|
if (dump_opt['D'] < 3)
|
|
return;
|
|
|
|
zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
|
|
|
|
if (dump_opt['D'] < 4)
|
|
return;
|
|
|
|
if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
|
|
return;
|
|
|
|
(void) printf("%s contents:\n\n", name);
|
|
|
|
while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
|
|
dump_dde(ddt, &dde, walk);
|
|
|
|
ASSERT3U(error, ==, ENOENT);
|
|
|
|
(void) printf("\n");
|
|
}
|
|
|
|
static void
|
|
dump_all_ddts(spa_t *spa)
|
|
{
|
|
ddt_histogram_t ddh_total;
|
|
ddt_stat_t dds_total;
|
|
|
|
bzero(&ddh_total, sizeof (ddh_total));
|
|
bzero(&dds_total, sizeof (dds_total));
|
|
|
|
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
|
|
ddt_t *ddt = spa->spa_ddt[c];
|
|
for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
|
|
for (enum ddt_class class = 0; class < DDT_CLASSES;
|
|
class++) {
|
|
dump_ddt(ddt, type, class);
|
|
}
|
|
}
|
|
}
|
|
|
|
ddt_get_dedup_stats(spa, &dds_total);
|
|
|
|
if (dds_total.dds_blocks == 0) {
|
|
(void) printf("All DDTs are empty\n");
|
|
return;
|
|
}
|
|
|
|
(void) printf("\n");
|
|
|
|
if (dump_opt['D'] > 1) {
|
|
(void) printf("DDT histogram (aggregated over all DDTs):\n");
|
|
ddt_get_dedup_histogram(spa, &ddh_total);
|
|
zpool_dump_ddt(&dds_total, &ddh_total);
|
|
}
|
|
|
|
dump_dedup_ratio(&dds_total);
|
|
}
|
|
|
|
static void
|
|
dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
char *prefix = arg;
|
|
|
|
(void) printf("%s [%llu,%llu) length %llu\n",
|
|
prefix,
|
|
(u_longlong_t)start,
|
|
(u_longlong_t)(start + size),
|
|
(u_longlong_t)(size));
|
|
}
|
|
|
|
static void
|
|
dump_dtl(vdev_t *vd, int indent)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
boolean_t required;
|
|
const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
|
|
"outage" };
|
|
char prefix[256];
|
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
required = vdev_dtl_required(vd);
|
|
(void) spa_vdev_state_exit(spa, NULL, 0);
|
|
|
|
if (indent == 0)
|
|
(void) printf("\nDirty time logs:\n\n");
|
|
|
|
(void) printf("\t%*s%s [%s]\n", indent, "",
|
|
vd->vdev_path ? vd->vdev_path :
|
|
vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
|
|
required ? "DTL-required" : "DTL-expendable");
|
|
|
|
for (int t = 0; t < DTL_TYPES; t++) {
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
|
if (range_tree_space(rt) == 0)
|
|
continue;
|
|
(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
|
|
indent + 2, "", name[t]);
|
|
range_tree_walk(rt, dump_dtl_seg, prefix);
|
|
if (dump_opt['d'] > 5 && vd->vdev_children == 0)
|
|
dump_spacemap(spa->spa_meta_objset,
|
|
vd->vdev_dtl_sm);
|
|
}
|
|
|
|
for (unsigned c = 0; c < vd->vdev_children; c++)
|
|
dump_dtl(vd->vdev_child[c], indent + 4);
|
|
}
|
|
|
|
static void
|
|
dump_history(spa_t *spa)
|
|
{
|
|
nvlist_t **events = NULL;
|
|
char *buf;
|
|
uint64_t resid, len, off = 0;
|
|
uint_t num = 0;
|
|
int error;
|
|
time_t tsec;
|
|
struct tm t;
|
|
char tbuf[30];
|
|
char internalstr[MAXPATHLEN];
|
|
|
|
if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
|
|
(void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
do {
|
|
len = SPA_OLD_MAXBLOCKSIZE;
|
|
|
|
if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
|
|
(void) fprintf(stderr, "Unable to read history: "
|
|
"error %d\n", error);
|
|
free(buf);
|
|
return;
|
|
}
|
|
|
|
if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
|
|
break;
|
|
|
|
off -= resid;
|
|
} while (len != 0);
|
|
|
|
(void) printf("\nHistory:\n");
|
|
for (unsigned i = 0; i < num; i++) {
|
|
uint64_t time, txg, ievent;
|
|
char *cmd, *intstr;
|
|
boolean_t printed = B_FALSE;
|
|
|
|
if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME,
|
|
&time) != 0)
|
|
goto next;
|
|
if (nvlist_lookup_string(events[i], ZPOOL_HIST_CMD,
|
|
&cmd) != 0) {
|
|
if (nvlist_lookup_uint64(events[i],
|
|
ZPOOL_HIST_INT_EVENT, &ievent) != 0)
|
|
goto next;
|
|
verify(nvlist_lookup_uint64(events[i],
|
|
ZPOOL_HIST_TXG, &txg) == 0);
|
|
verify(nvlist_lookup_string(events[i],
|
|
ZPOOL_HIST_INT_STR, &intstr) == 0);
|
|
if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
|
|
goto next;
|
|
|
|
(void) snprintf(internalstr,
|
|
sizeof (internalstr),
|
|
"[internal %s txg:%lld] %s",
|
|
zfs_history_event_names[ievent],
|
|
(longlong_t)txg, intstr);
|
|
cmd = internalstr;
|
|
}
|
|
tsec = time;
|
|
(void) localtime_r(&tsec, &t);
|
|
(void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
|
|
(void) printf("%s %s\n", tbuf, cmd);
|
|
printed = B_TRUE;
|
|
|
|
next:
|
|
if (dump_opt['h'] > 1) {
|
|
if (!printed)
|
|
(void) printf("unrecognized record:\n");
|
|
dump_nvlist(events[i], 2);
|
|
}
|
|
}
|
|
free(buf);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
}
|
|
|
|
static uint64_t
|
|
blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
|
|
const zbookmark_phys_t *zb)
|
|
{
|
|
if (dnp == NULL) {
|
|
ASSERT(zb->zb_level < 0);
|
|
if (zb->zb_object == 0)
|
|
return (zb->zb_blkid);
|
|
return (zb->zb_blkid * BP_GET_LSIZE(bp));
|
|
}
|
|
|
|
ASSERT(zb->zb_level >= 0);
|
|
|
|
return ((zb->zb_blkid <<
|
|
(zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
|
|
dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
|
|
}
|
|
|
|
static void
|
|
snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
|
|
int i;
|
|
|
|
if (dump_opt['b'] >= 6) {
|
|
snprintf_blkptr(blkbuf, buflen, bp);
|
|
return;
|
|
}
|
|
|
|
if (BP_IS_EMBEDDED(bp)) {
|
|
(void) sprintf(blkbuf,
|
|
"EMBEDDED et=%u %llxL/%llxP B=%llu",
|
|
(int)BPE_GET_ETYPE(bp),
|
|
(u_longlong_t)BPE_GET_LSIZE(bp),
|
|
(u_longlong_t)BPE_GET_PSIZE(bp),
|
|
(u_longlong_t)bp->blk_birth);
|
|
return;
|
|
}
|
|
|
|
blkbuf[0] = '\0';
|
|
|
|
for (i = 0; i < ndvas; i++)
|
|
(void) snprintf(blkbuf + strlen(blkbuf),
|
|
buflen - strlen(blkbuf), "%llu:%llx:%llx ",
|
|
(u_longlong_t)DVA_GET_VDEV(&dva[i]),
|
|
(u_longlong_t)DVA_GET_OFFSET(&dva[i]),
|
|
(u_longlong_t)DVA_GET_ASIZE(&dva[i]));
|
|
|
|
if (BP_IS_HOLE(bp)) {
|
|
(void) snprintf(blkbuf + strlen(blkbuf),
|
|
buflen - strlen(blkbuf),
|
|
"%llxL B=%llu",
|
|
(u_longlong_t)BP_GET_LSIZE(bp),
|
|
(u_longlong_t)bp->blk_birth);
|
|
} else {
|
|
(void) snprintf(blkbuf + strlen(blkbuf),
|
|
buflen - strlen(blkbuf),
|
|
"%llxL/%llxP F=%llu B=%llu/%llu",
|
|
(u_longlong_t)BP_GET_LSIZE(bp),
|
|
(u_longlong_t)BP_GET_PSIZE(bp),
|
|
(u_longlong_t)BP_GET_FILL(bp),
|
|
(u_longlong_t)bp->blk_birth,
|
|
(u_longlong_t)BP_PHYSICAL_BIRTH(bp));
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_indirect(blkptr_t *bp, const zbookmark_phys_t *zb,
|
|
const dnode_phys_t *dnp)
|
|
{
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
int l;
|
|
|
|
if (!BP_IS_EMBEDDED(bp)) {
|
|
ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
|
|
ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
|
|
}
|
|
|
|
(void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
|
|
|
|
ASSERT(zb->zb_level >= 0);
|
|
|
|
for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
|
|
if (l == zb->zb_level) {
|
|
(void) printf("L%llx", (u_longlong_t)zb->zb_level);
|
|
} else {
|
|
(void) printf(" ");
|
|
}
|
|
}
|
|
|
|
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp);
|
|
(void) printf("%s\n", blkbuf);
|
|
}
|
|
|
|
static int
|
|
visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
|
|
blkptr_t *bp, const zbookmark_phys_t *zb)
|
|
{
|
|
int err = 0;
|
|
|
|
if (bp->blk_birth == 0)
|
|
return (0);
|
|
|
|
print_indirect(bp, zb, dnp);
|
|
|
|
if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
|
|
arc_flags_t flags = ARC_FLAG_WAIT;
|
|
int i;
|
|
blkptr_t *cbp;
|
|
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
|
|
arc_buf_t *buf;
|
|
uint64_t fill = 0;
|
|
|
|
err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
|
|
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
|
|
if (err)
|
|
return (err);
|
|
ASSERT(buf->b_data);
|
|
|
|
/* recursively visit blocks below this */
|
|
cbp = buf->b_data;
|
|
for (i = 0; i < epb; i++, cbp++) {
|
|
zbookmark_phys_t czb;
|
|
|
|
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
|
|
zb->zb_level - 1,
|
|
zb->zb_blkid * epb + i);
|
|
err = visit_indirect(spa, dnp, cbp, &czb);
|
|
if (err)
|
|
break;
|
|
fill += BP_GET_FILL(cbp);
|
|
}
|
|
if (!err)
|
|
ASSERT3U(fill, ==, BP_GET_FILL(bp));
|
|
arc_buf_destroy(buf, &buf);
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_indirect(dnode_t *dn)
|
|
{
|
|
dnode_phys_t *dnp = dn->dn_phys;
|
|
int j;
|
|
zbookmark_phys_t czb;
|
|
|
|
(void) printf("Indirect blocks:\n");
|
|
|
|
SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
|
|
dn->dn_object, dnp->dn_nlevels - 1, 0);
|
|
for (j = 0; j < dnp->dn_nblkptr; j++) {
|
|
czb.zb_blkid = j;
|
|
(void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
|
|
&dnp->dn_blkptr[j], &czb);
|
|
}
|
|
|
|
(void) printf("\n");
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
dsl_dir_phys_t *dd = data;
|
|
time_t crtime;
|
|
char nice[32];
|
|
|
|
/* make sure nicenum has enough space */
|
|
CTASSERT(sizeof (nice) >= NN_NUMBUF_SZ);
|
|
|
|
if (dd == NULL)
|
|
return;
|
|
|
|
ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
|
|
|
|
crtime = dd->dd_creation_time;
|
|
(void) printf("\t\tcreation_time = %s", ctime(&crtime));
|
|
(void) printf("\t\thead_dataset_obj = %llu\n",
|
|
(u_longlong_t)dd->dd_head_dataset_obj);
|
|
(void) printf("\t\tparent_dir_obj = %llu\n",
|
|
(u_longlong_t)dd->dd_parent_obj);
|
|
(void) printf("\t\torigin_obj = %llu\n",
|
|
(u_longlong_t)dd->dd_origin_obj);
|
|
(void) printf("\t\tchild_dir_zapobj = %llu\n",
|
|
(u_longlong_t)dd->dd_child_dir_zapobj);
|
|
zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
|
|
(void) printf("\t\tused_bytes = %s\n", nice);
|
|
zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
|
|
(void) printf("\t\tcompressed_bytes = %s\n", nice);
|
|
zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
|
|
(void) printf("\t\tuncompressed_bytes = %s\n", nice);
|
|
zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
|
|
(void) printf("\t\tquota = %s\n", nice);
|
|
zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
|
|
(void) printf("\t\treserved = %s\n", nice);
|
|
(void) printf("\t\tprops_zapobj = %llu\n",
|
|
(u_longlong_t)dd->dd_props_zapobj);
|
|
(void) printf("\t\tdeleg_zapobj = %llu\n",
|
|
(u_longlong_t)dd->dd_deleg_zapobj);
|
|
(void) printf("\t\tflags = %llx\n",
|
|
(u_longlong_t)dd->dd_flags);
|
|
|
|
#define DO(which) \
|
|
zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
|
|
sizeof (nice)); \
|
|
(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
|
|
DO(HEAD);
|
|
DO(SNAP);
|
|
DO(CHILD);
|
|
DO(CHILD_RSRV);
|
|
DO(REFRSRV);
|
|
#undef DO
|
|
(void) printf("\t\tclones = %llu\n",
|
|
(u_longlong_t)dd->dd_clones);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
dsl_dataset_phys_t *ds = data;
|
|
time_t crtime;
|
|
char used[32], compressed[32], uncompressed[32], unique[32];
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
/* make sure nicenum has enough space */
|
|
CTASSERT(sizeof (used) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (compressed) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (uncompressed) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (unique) >= NN_NUMBUF_SZ);
|
|
|
|
if (ds == NULL)
|
|
return;
|
|
|
|
ASSERT(size == sizeof (*ds));
|
|
crtime = ds->ds_creation_time;
|
|
zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
|
|
zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
|
|
zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
|
|
sizeof (uncompressed));
|
|
zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
|
|
|
|
(void) printf("\t\tdir_obj = %llu\n",
|
|
(u_longlong_t)ds->ds_dir_obj);
|
|
(void) printf("\t\tprev_snap_obj = %llu\n",
|
|
(u_longlong_t)ds->ds_prev_snap_obj);
|
|
(void) printf("\t\tprev_snap_txg = %llu\n",
|
|
(u_longlong_t)ds->ds_prev_snap_txg);
|
|
(void) printf("\t\tnext_snap_obj = %llu\n",
|
|
(u_longlong_t)ds->ds_next_snap_obj);
|
|
(void) printf("\t\tsnapnames_zapobj = %llu\n",
|
|
(u_longlong_t)ds->ds_snapnames_zapobj);
|
|
(void) printf("\t\tnum_children = %llu\n",
|
|
(u_longlong_t)ds->ds_num_children);
|
|
(void) printf("\t\tuserrefs_obj = %llu\n",
|
|
(u_longlong_t)ds->ds_userrefs_obj);
|
|
(void) printf("\t\tcreation_time = %s", ctime(&crtime));
|
|
(void) printf("\t\tcreation_txg = %llu\n",
|
|
(u_longlong_t)ds->ds_creation_txg);
|
|
(void) printf("\t\tdeadlist_obj = %llu\n",
|
|
(u_longlong_t)ds->ds_deadlist_obj);
|
|
(void) printf("\t\tused_bytes = %s\n", used);
|
|
(void) printf("\t\tcompressed_bytes = %s\n", compressed);
|
|
(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
|
|
(void) printf("\t\tunique = %s\n", unique);
|
|
(void) printf("\t\tfsid_guid = %llu\n",
|
|
(u_longlong_t)ds->ds_fsid_guid);
|
|
(void) printf("\t\tguid = %llu\n",
|
|
(u_longlong_t)ds->ds_guid);
|
|
(void) printf("\t\tflags = %llx\n",
|
|
(u_longlong_t)ds->ds_flags);
|
|
(void) printf("\t\tnext_clones_obj = %llu\n",
|
|
(u_longlong_t)ds->ds_next_clones_obj);
|
|
(void) printf("\t\tprops_obj = %llu\n",
|
|
(u_longlong_t)ds->ds_props_obj);
|
|
(void) printf("\t\tbp = %s\n", blkbuf);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
if (bp->blk_birth != 0) {
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
|
|
(void) printf("\t%s\n", blkbuf);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dump_bptree(objset_t *os, uint64_t obj, const char *name)
|
|
{
|
|
char bytes[32];
|
|
bptree_phys_t *bt;
|
|
dmu_buf_t *db;
|
|
|
|
/* make sure nicenum has enough space */
|
|
CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ);
|
|
|
|
if (dump_opt['d'] < 3)
|
|
return;
|
|
|
|
VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
|
|
bt = db->db_data;
|
|
zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
|
|
(void) printf("\n %s: %llu datasets, %s\n",
|
|
name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
if (dump_opt['d'] < 5)
|
|
return;
|
|
|
|
(void) printf("\n");
|
|
|
|
(void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
dump_bpobj_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
ASSERT(bp->blk_birth != 0);
|
|
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp);
|
|
(void) printf("\t%s\n", blkbuf);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
|
|
{
|
|
char bytes[32];
|
|
char comp[32];
|
|
char uncomp[32];
|
|
uint64_t i;
|
|
|
|
/* make sure nicenum has enough space */
|
|
CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ);
|
|
|
|
if (dump_opt['d'] < 3)
|
|
return;
|
|
|
|
zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
|
|
if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
|
|
zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
|
|
zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
|
|
(void) printf(" %*s: object %llu, %llu local blkptrs, "
|
|
"%llu subobjs in object, %llu, %s (%s/%s comp)\n",
|
|
indent * 8, name,
|
|
(u_longlong_t)bpo->bpo_object,
|
|
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
|
|
(u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
|
|
(u_longlong_t)bpo->bpo_phys->bpo_subobjs,
|
|
bytes, comp, uncomp);
|
|
|
|
for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
|
|
uint64_t subobj;
|
|
bpobj_t subbpo;
|
|
int error;
|
|
VERIFY0(dmu_read(bpo->bpo_os,
|
|
bpo->bpo_phys->bpo_subobjs,
|
|
i * sizeof (subobj), sizeof (subobj), &subobj, 0));
|
|
error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
|
|
if (error != 0) {
|
|
(void) printf("ERROR %u while trying to open "
|
|
"subobj id %llu\n",
|
|
error, (u_longlong_t)subobj);
|
|
continue;
|
|
}
|
|
dump_full_bpobj(&subbpo, "subobj", indent + 1);
|
|
bpobj_close(&subbpo);
|
|
}
|
|
} else {
|
|
(void) printf(" %*s: object %llu, %llu blkptrs, %s\n",
|
|
indent * 8, name,
|
|
(u_longlong_t)bpo->bpo_object,
|
|
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
|
|
bytes);
|
|
}
|
|
|
|
if (dump_opt['d'] < 5)
|
|
return;
|
|
|
|
|
|
if (indent == 0) {
|
|
(void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
|
|
(void) printf("\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
bpobj_count_refd(bpobj_t *bpo)
|
|
{
|
|
mos_obj_refd(bpo->bpo_object);
|
|
|
|
if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
|
|
mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
|
|
for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
|
|
uint64_t subobj;
|
|
bpobj_t subbpo;
|
|
int error;
|
|
VERIFY0(dmu_read(bpo->bpo_os,
|
|
bpo->bpo_phys->bpo_subobjs,
|
|
i * sizeof (subobj), sizeof (subobj), &subobj, 0));
|
|
error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
|
|
if (error != 0) {
|
|
(void) printf("ERROR %u while trying to open "
|
|
"subobj id %llu\n",
|
|
error, (u_longlong_t)subobj);
|
|
continue;
|
|
}
|
|
bpobj_count_refd(&subbpo);
|
|
bpobj_close(&subbpo);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_deadlist(dsl_deadlist_t *dl)
|
|
{
|
|
dsl_deadlist_entry_t *dle;
|
|
uint64_t unused;
|
|
char bytes[32];
|
|
char comp[32];
|
|
char uncomp[32];
|
|
uint64_t empty_bpobj =
|
|
dmu_objset_spa(dl->dl_os)->spa_dsl_pool->dp_empty_bpobj;
|
|
|
|
/* force the tree to be loaded */
|
|
dsl_deadlist_space_range(dl, 0, UINT64_MAX, &unused, &unused, &unused);
|
|
|
|
if (dl->dl_oldfmt) {
|
|
if (dl->dl_bpobj.bpo_object != empty_bpobj)
|
|
bpobj_count_refd(&dl->dl_bpobj);
|
|
} else {
|
|
mos_obj_refd(dl->dl_object);
|
|
for (dle = avl_first(&dl->dl_tree); dle;
|
|
dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
if (dle->dle_bpobj.bpo_object != empty_bpobj)
|
|
bpobj_count_refd(&dle->dle_bpobj);
|
|
}
|
|
}
|
|
|
|
/* make sure nicenum has enough space */
|
|
CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ);
|
|
|
|
if (dump_opt['d'] < 3)
|
|
return;
|
|
|
|
if (dl->dl_oldfmt) {
|
|
dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
|
|
return;
|
|
}
|
|
|
|
zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
|
|
zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
|
|
zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
|
|
(void) printf("\n Deadlist: %s (%s/%s comp)\n",
|
|
bytes, comp, uncomp);
|
|
|
|
if (dump_opt['d'] < 4)
|
|
return;
|
|
|
|
(void) printf("\n");
|
|
|
|
for (dle = avl_first(&dl->dl_tree); dle;
|
|
dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
if (dump_opt['d'] >= 5) {
|
|
char buf[128];
|
|
(void) snprintf(buf, sizeof (buf),
|
|
"mintxg %llu -> obj %llu",
|
|
(longlong_t)dle->dle_mintxg,
|
|
(longlong_t)dle->dle_bpobj.bpo_object);
|
|
|
|
dump_full_bpobj(&dle->dle_bpobj, buf, 0);
|
|
} else {
|
|
(void) printf("mintxg %llu -> obj %llu\n",
|
|
(longlong_t)dle->dle_mintxg,
|
|
(longlong_t)dle->dle_bpobj.bpo_object);
|
|
}
|
|
}
|
|
}
|
|
|
|
static avl_tree_t idx_tree;
|
|
static avl_tree_t domain_tree;
|
|
static boolean_t fuid_table_loaded;
|
|
static objset_t *sa_os = NULL;
|
|
static sa_attr_type_t *sa_attr_table = NULL;
|
|
|
|
static int
|
|
open_objset(const char *path, dmu_objset_type_t type, void *tag, objset_t **osp)
|
|
{
|
|
int err;
|
|
uint64_t sa_attrs = 0;
|
|
uint64_t version = 0;
|
|
|
|
VERIFY3P(sa_os, ==, NULL);
|
|
err = dmu_objset_own(path, type, B_TRUE, B_FALSE, tag, osp);
|
|
if (err != 0) {
|
|
(void) fprintf(stderr, "failed to own dataset '%s': %s\n", path,
|
|
strerror(err));
|
|
return (err);
|
|
}
|
|
|
|
if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) {
|
|
(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
|
|
8, 1, &version);
|
|
if (version >= ZPL_VERSION_SA) {
|
|
(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
|
|
8, 1, &sa_attrs);
|
|
}
|
|
err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
|
|
&sa_attr_table);
|
|
if (err != 0) {
|
|
(void) fprintf(stderr, "sa_setup failed: %s\n",
|
|
strerror(err));
|
|
dmu_objset_disown(*osp, B_FALSE, tag);
|
|
*osp = NULL;
|
|
}
|
|
}
|
|
sa_os = *osp;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
close_objset(objset_t *os, void *tag)
|
|
{
|
|
VERIFY3P(os, ==, sa_os);
|
|
if (os->os_sa != NULL)
|
|
sa_tear_down(os);
|
|
dmu_objset_disown(os, B_FALSE, tag);
|
|
sa_attr_table = NULL;
|
|
sa_os = NULL;
|
|
}
|
|
|
|
static void
|
|
fuid_table_destroy(void)
|
|
{
|
|
if (fuid_table_loaded) {
|
|
zfs_fuid_table_destroy(&idx_tree, &domain_tree);
|
|
fuid_table_loaded = B_FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* print uid or gid information.
|
|
* For normal POSIX id just the id is printed in decimal format.
|
|
* For CIFS files with FUID the fuid is printed in hex followed by
|
|
* the domain-rid string.
|
|
*/
|
|
static void
|
|
print_idstr(uint64_t id, const char *id_type)
|
|
{
|
|
if (FUID_INDEX(id)) {
|
|
char *domain;
|
|
|
|
domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
|
|
(void) printf("\t%s %llx [%s-%d]\n", id_type,
|
|
(u_longlong_t)id, domain, (int)FUID_RID(id));
|
|
} else {
|
|
(void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
|
|
{
|
|
uint32_t uid_idx, gid_idx;
|
|
|
|
uid_idx = FUID_INDEX(uid);
|
|
gid_idx = FUID_INDEX(gid);
|
|
|
|
/* Load domain table, if not already loaded */
|
|
if (!fuid_table_loaded && (uid_idx || gid_idx)) {
|
|
uint64_t fuid_obj;
|
|
|
|
/* first find the fuid object. It lives in the master node */
|
|
VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
|
|
8, 1, &fuid_obj) == 0);
|
|
zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
|
|
(void) zfs_fuid_table_load(os, fuid_obj,
|
|
&idx_tree, &domain_tree);
|
|
fuid_table_loaded = B_TRUE;
|
|
}
|
|
|
|
print_idstr(uid, "uid");
|
|
print_idstr(gid, "gid");
|
|
}
|
|
|
|
static void
|
|
dump_znode_sa_xattr(sa_handle_t *hdl)
|
|
{
|
|
nvlist_t *sa_xattr;
|
|
nvpair_t *elem = NULL;
|
|
int sa_xattr_size = 0;
|
|
int sa_xattr_entries = 0;
|
|
int error;
|
|
char *sa_xattr_packed;
|
|
|
|
error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
|
|
if (error || sa_xattr_size == 0)
|
|
return;
|
|
|
|
sa_xattr_packed = malloc(sa_xattr_size);
|
|
if (sa_xattr_packed == NULL)
|
|
return;
|
|
|
|
error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
|
|
sa_xattr_packed, sa_xattr_size);
|
|
if (error) {
|
|
free(sa_xattr_packed);
|
|
return;
|
|
}
|
|
|
|
error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
|
|
if (error) {
|
|
free(sa_xattr_packed);
|
|
return;
|
|
}
|
|
|
|
while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
|
|
sa_xattr_entries++;
|
|
|
|
(void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
|
|
sa_xattr_size, sa_xattr_entries);
|
|
while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
|
|
uchar_t *value;
|
|
uint_t cnt, idx;
|
|
|
|
(void) printf("\t\t%s = ", nvpair_name(elem));
|
|
nvpair_value_byte_array(elem, &value, &cnt);
|
|
for (idx = 0; idx < cnt; ++idx) {
|
|
if (isprint(value[idx]))
|
|
(void) putchar(value[idx]);
|
|
else
|
|
(void) printf("\\%3.3o", value[idx]);
|
|
}
|
|
(void) putchar('\n');
|
|
}
|
|
|
|
nvlist_free(sa_xattr);
|
|
free(sa_xattr_packed);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
|
|
sa_handle_t *hdl;
|
|
uint64_t xattr, rdev, gen;
|
|
uint64_t uid, gid, mode, fsize, parent, links;
|
|
uint64_t pflags;
|
|
uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
|
|
time_t z_crtime, z_atime, z_mtime, z_ctime;
|
|
sa_bulk_attr_t bulk[12];
|
|
int idx = 0;
|
|
int error;
|
|
|
|
VERIFY3P(os, ==, sa_os);
|
|
if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
|
|
(void) printf("Failed to get handle for SA znode\n");
|
|
return;
|
|
}
|
|
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
|
|
&links, 8);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
|
|
&mode, 8);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
|
|
NULL, &parent, 8);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
|
|
&fsize, 8);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
|
|
acctm, 16);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
|
|
modtm, 16);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
|
|
crtm, 16);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
|
|
chgtm, 16);
|
|
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
|
|
&pflags, 8);
|
|
|
|
if (sa_bulk_lookup(hdl, bulk, idx)) {
|
|
(void) sa_handle_destroy(hdl);
|
|
return;
|
|
}
|
|
|
|
z_crtime = (time_t)crtm[0];
|
|
z_atime = (time_t)acctm[0];
|
|
z_mtime = (time_t)modtm[0];
|
|
z_ctime = (time_t)chgtm[0];
|
|
|
|
if (dump_opt['d'] > 4) {
|
|
error = zfs_obj_to_path(os, object, path, sizeof (path));
|
|
if (error == ESTALE) {
|
|
(void) snprintf(path, sizeof (path), "on delete queue");
|
|
} else if (error != 0) {
|
|
leaked_objects++;
|
|
(void) snprintf(path, sizeof (path),
|
|
"path not found, possibly leaked");
|
|
}
|
|
(void) printf("\tpath %s\n", path);
|
|
}
|
|
dump_uidgid(os, uid, gid);
|
|
(void) printf("\tatime %s", ctime(&z_atime));
|
|
(void) printf("\tmtime %s", ctime(&z_mtime));
|
|
(void) printf("\tctime %s", ctime(&z_ctime));
|
|
(void) printf("\tcrtime %s", ctime(&z_crtime));
|
|
(void) printf("\tgen %llu\n", (u_longlong_t)gen);
|
|
(void) printf("\tmode %llo\n", (u_longlong_t)mode);
|
|
(void) printf("\tsize %llu\n", (u_longlong_t)fsize);
|
|
(void) printf("\tparent %llu\n", (u_longlong_t)parent);
|
|
(void) printf("\tlinks %llu\n", (u_longlong_t)links);
|
|
(void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
|
|
if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
|
|
uint64_t projid;
|
|
|
|
if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
|
|
sizeof (uint64_t)) == 0)
|
|
(void) printf("\tprojid %llu\n", (u_longlong_t)projid);
|
|
}
|
|
if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
|
|
sizeof (uint64_t)) == 0)
|
|
(void) printf("\txattr %llu\n", (u_longlong_t)xattr);
|
|
if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
|
|
sizeof (uint64_t)) == 0)
|
|
(void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
|
|
dump_znode_sa_xattr(hdl);
|
|
sa_handle_destroy(hdl);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
|
|
{
|
|
}
|
|
|
|
static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
|
|
dump_none, /* unallocated */
|
|
dump_zap, /* object directory */
|
|
dump_uint64, /* object array */
|
|
dump_none, /* packed nvlist */
|
|
dump_packed_nvlist, /* packed nvlist size */
|
|
dump_none, /* bpobj */
|
|
dump_bpobj, /* bpobj header */
|
|
dump_none, /* SPA space map header */
|
|
dump_none, /* SPA space map */
|
|
dump_none, /* ZIL intent log */
|
|
dump_dnode, /* DMU dnode */
|
|
dump_dmu_objset, /* DMU objset */
|
|
dump_dsl_dir, /* DSL directory */
|
|
dump_zap, /* DSL directory child map */
|
|
dump_zap, /* DSL dataset snap map */
|
|
dump_zap, /* DSL props */
|
|
dump_dsl_dataset, /* DSL dataset */
|
|
dump_znode, /* ZFS znode */
|
|
dump_acl, /* ZFS V0 ACL */
|
|
dump_uint8, /* ZFS plain file */
|
|
dump_zpldir, /* ZFS directory */
|
|
dump_zap, /* ZFS master node */
|
|
dump_zap, /* ZFS delete queue */
|
|
dump_uint8, /* zvol object */
|
|
dump_zap, /* zvol prop */
|
|
dump_uint8, /* other uint8[] */
|
|
dump_uint64, /* other uint64[] */
|
|
dump_zap, /* other ZAP */
|
|
dump_zap, /* persistent error log */
|
|
dump_uint8, /* SPA history */
|
|
dump_history_offsets, /* SPA history offsets */
|
|
dump_zap, /* Pool properties */
|
|
dump_zap, /* DSL permissions */
|
|
dump_acl, /* ZFS ACL */
|
|
dump_uint8, /* ZFS SYSACL */
|
|
dump_none, /* FUID nvlist */
|
|
dump_packed_nvlist, /* FUID nvlist size */
|
|
dump_zap, /* DSL dataset next clones */
|
|
dump_zap, /* DSL scrub queue */
|
|
dump_zap, /* ZFS user/group/project used */
|
|
dump_zap, /* ZFS user/group/project quota */
|
|
dump_zap, /* snapshot refcount tags */
|
|
dump_ddt_zap, /* DDT ZAP object */
|
|
dump_zap, /* DDT statistics */
|
|
dump_znode, /* SA object */
|
|
dump_zap, /* SA Master Node */
|
|
dump_sa_attrs, /* SA attribute registration */
|
|
dump_sa_layouts, /* SA attribute layouts */
|
|
dump_zap, /* DSL scrub translations */
|
|
dump_none, /* fake dedup BP */
|
|
dump_zap, /* deadlist */
|
|
dump_none, /* deadlist hdr */
|
|
dump_zap, /* dsl clones */
|
|
dump_bpobj_subobjs, /* bpobj subobjs */
|
|
dump_unknown, /* Unknown type, must be last */
|
|
};
|
|
|
|
static void
|
|
dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header,
|
|
uint64_t *dnode_slots_used)
|
|
{
|
|
dmu_buf_t *db = NULL;
|
|
dmu_object_info_t doi;
|
|
dnode_t *dn;
|
|
boolean_t dnode_held = B_FALSE;
|
|
void *bonus = NULL;
|
|
size_t bsize = 0;
|
|
char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
|
|
char bonus_size[32];
|
|
char aux[50];
|
|
int error;
|
|
|
|
/* make sure nicenum has enough space */
|
|
CTASSERT(sizeof (iblk) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (dblk) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (bonus_size) >= NN_NUMBUF_SZ);
|
|
|
|
if (*print_header) {
|
|
(void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
|
|
"Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
|
|
"lsize", "%full", "type");
|
|
*print_header = 0;
|
|
}
|
|
|
|
if (object == 0) {
|
|
dn = DMU_META_DNODE(os);
|
|
dmu_object_info_from_dnode(dn, &doi);
|
|
} else {
|
|
/*
|
|
* Encrypted datasets will have sensitive bonus buffers
|
|
* encrypted. Therefore we cannot hold the bonus buffer and
|
|
* must hold the dnode itself instead.
|
|
*/
|
|
error = dmu_object_info(os, object, &doi);
|
|
if (error)
|
|
fatal("dmu_object_info() failed, errno %u", error);
|
|
|
|
if (os->os_encrypted &&
|
|
DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
|
|
error = dnode_hold(os, object, FTAG, &dn);
|
|
if (error)
|
|
fatal("dnode_hold() failed, errno %u", error);
|
|
dnode_held = B_TRUE;
|
|
} else {
|
|
error = dmu_bonus_hold(os, object, FTAG, &db);
|
|
if (error)
|
|
fatal("dmu_bonus_hold(%llu) failed, errno %u",
|
|
object, error);
|
|
bonus = db->db_data;
|
|
bsize = db->db_size;
|
|
dn = DB_DNODE((dmu_buf_impl_t *)db);
|
|
}
|
|
}
|
|
|
|
if (dnode_slots_used)
|
|
*dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
|
|
|
|
zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
|
|
zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
|
|
zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
|
|
zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
|
|
zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
|
|
zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
|
|
(void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count *
|
|
doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) /
|
|
doi.doi_max_offset);
|
|
|
|
aux[0] = '\0';
|
|
|
|
if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
|
|
(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
|
|
" (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
|
|
}
|
|
|
|
if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
|
|
(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
|
|
" (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
|
|
}
|
|
|
|
(void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
|
|
(u_longlong_t)object, doi.doi_indirection, iblk, dblk,
|
|
asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
|
|
|
|
if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
|
|
(void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
|
|
"", "", "", "", "", "", bonus_size, "bonus",
|
|
zdb_ot_name(doi.doi_bonus_type));
|
|
}
|
|
|
|
if (verbosity >= 4) {
|
|
(void) printf("\tdnode flags: %s%s%s%s\n",
|
|
(dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
|
|
"USED_BYTES " : "",
|
|
(dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
|
|
"USERUSED_ACCOUNTED " : "",
|
|
(dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
|
|
"USEROBJUSED_ACCOUNTED " : "",
|
|
(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
|
|
"SPILL_BLKPTR" : "");
|
|
(void) printf("\tdnode maxblkid: %llu\n",
|
|
(longlong_t)dn->dn_phys->dn_maxblkid);
|
|
|
|
if (!dnode_held) {
|
|
object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
|
|
object, bonus, bsize);
|
|
} else {
|
|
(void) printf("\t\t(bonus encrypted)\n");
|
|
}
|
|
|
|
if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) {
|
|
object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
|
|
NULL, 0);
|
|
} else {
|
|
(void) printf("\t\t(object encrypted)\n");
|
|
}
|
|
|
|
*print_header = 1;
|
|
}
|
|
|
|
if (verbosity >= 5)
|
|
dump_indirect(dn);
|
|
|
|
if (verbosity >= 5) {
|
|
/*
|
|
* Report the list of segments that comprise the object.
|
|
*/
|
|
uint64_t start = 0;
|
|
uint64_t end;
|
|
uint64_t blkfill = 1;
|
|
int minlvl = 1;
|
|
|
|
if (dn->dn_type == DMU_OT_DNODE) {
|
|
minlvl = 0;
|
|
blkfill = DNODES_PER_BLOCK;
|
|
}
|
|
|
|
for (;;) {
|
|
char segsize[32];
|
|
/* make sure nicenum has enough space */
|
|
CTASSERT(sizeof (segsize) >= NN_NUMBUF_SZ);
|
|
error = dnode_next_offset(dn,
|
|
0, &start, minlvl, blkfill, 0);
|
|
if (error)
|
|
break;
|
|
end = start;
|
|
error = dnode_next_offset(dn,
|
|
DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
|
|
zdb_nicenum(end - start, segsize, sizeof (segsize));
|
|
(void) printf("\t\tsegment [%016llx, %016llx)"
|
|
" size %5s\n", (u_longlong_t)start,
|
|
(u_longlong_t)end, segsize);
|
|
if (error)
|
|
break;
|
|
start = end;
|
|
}
|
|
}
|
|
|
|
if (db != NULL)
|
|
dmu_buf_rele(db, FTAG);
|
|
if (dnode_held)
|
|
dnode_rele(dn, FTAG);
|
|
}
|
|
|
|
static void
|
|
count_dir_mos_objects(dsl_dir_t *dd)
|
|
{
|
|
mos_obj_refd(dd->dd_object);
|
|
mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
|
|
mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
|
|
mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
|
|
mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
|
|
|
|
/*
|
|
* The dd_crypto_obj can be referenced by multiple dsl_dir's.
|
|
* Ignore the references after the first one.
|
|
*/
|
|
mos_obj_refd_multiple(dd->dd_crypto_obj);
|
|
}
|
|
|
|
static void
|
|
count_ds_mos_objects(dsl_dataset_t *ds)
|
|
{
|
|
mos_obj_refd(ds->ds_object);
|
|
mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
|
|
mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
|
|
mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
|
|
mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
|
|
|
|
if (!dsl_dataset_is_snapshot(ds)) {
|
|
count_dir_mos_objects(ds->ds_dir);
|
|
}
|
|
}
|
|
|
|
static const char *objset_types[DMU_OST_NUMTYPES] = {
|
|
"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
|
|
|
|
static void
|
|
dump_dir(objset_t *os)
|
|
{
|
|
dmu_objset_stats_t dds;
|
|
uint64_t object, object_count;
|
|
uint64_t refdbytes, usedobjs, scratch;
|
|
char numbuf[32];
|
|
char blkbuf[BP_SPRINTF_LEN + 20];
|
|
char osname[ZFS_MAX_DATASET_NAME_LEN];
|
|
const char *type = "UNKNOWN";
|
|
int verbosity = dump_opt['d'];
|
|
int print_header = 1;
|
|
unsigned i;
|
|
int error;
|
|
uint64_t total_slots_used = 0;
|
|
uint64_t max_slot_used = 0;
|
|
uint64_t dnode_slots;
|
|
|
|
/* make sure nicenum has enough space */
|
|
CTASSERT(sizeof (numbuf) >= NN_NUMBUF_SZ);
|
|
|
|
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
|
|
dmu_objset_fast_stat(os, &dds);
|
|
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
|
|
|
|
if (dds.dds_type < DMU_OST_NUMTYPES)
|
|
type = objset_types[dds.dds_type];
|
|
|
|
if (dds.dds_type == DMU_OST_META) {
|
|
dds.dds_creation_txg = TXG_INITIAL;
|
|
usedobjs = BP_GET_FILL(os->os_rootbp);
|
|
refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
|
|
dd_used_bytes;
|
|
} else {
|
|
dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
|
|
}
|
|
|
|
ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
|
|
|
|
zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
|
|
|
|
if (verbosity >= 4) {
|
|
(void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
|
|
(void) snprintf_blkptr(blkbuf + strlen(blkbuf),
|
|
sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
|
|
} else {
|
|
blkbuf[0] = '\0';
|
|
}
|
|
|
|
dmu_objset_name(os, osname);
|
|
|
|
(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
|
|
"%s, %llu objects%s%s\n",
|
|
osname, type, (u_longlong_t)dmu_objset_id(os),
|
|
(u_longlong_t)dds.dds_creation_txg,
|
|
numbuf, (u_longlong_t)usedobjs, blkbuf,
|
|
(dds.dds_inconsistent) ? " (inconsistent)" : "");
|
|
|
|
if (zopt_objects != 0) {
|
|
for (i = 0; i < zopt_objects; i++)
|
|
dump_object(os, zopt_object[i], verbosity,
|
|
&print_header, NULL);
|
|
(void) printf("\n");
|
|
return;
|
|
}
|
|
|
|
if (dump_opt['i'] != 0 || verbosity >= 2)
|
|
dump_intent_log(dmu_objset_zil(os));
|
|
|
|
if (dmu_objset_ds(os) != NULL) {
|
|
dsl_dataset_t *ds = dmu_objset_ds(os);
|
|
dump_deadlist(&ds->ds_deadlist);
|
|
|
|
if (dsl_dataset_remap_deadlist_exists(ds)) {
|
|
(void) printf("ds_remap_deadlist:\n");
|
|
dump_deadlist(&ds->ds_remap_deadlist);
|
|
}
|
|
count_ds_mos_objects(ds);
|
|
}
|
|
|
|
if (verbosity < 2)
|
|
return;
|
|
|
|
if (BP_IS_HOLE(os->os_rootbp))
|
|
return;
|
|
|
|
dump_object(os, 0, verbosity, &print_header, NULL);
|
|
object_count = 0;
|
|
if (DMU_USERUSED_DNODE(os) != NULL &&
|
|
DMU_USERUSED_DNODE(os)->dn_type != 0) {
|
|
dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
|
|
NULL);
|
|
dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
|
|
NULL);
|
|
}
|
|
|
|
if (DMU_PROJECTUSED_DNODE(os) != NULL &&
|
|
DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
|
|
dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
|
|
&print_header, NULL);
|
|
|
|
object = 0;
|
|
while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
|
|
dump_object(os, object, verbosity, &print_header, &dnode_slots);
|
|
object_count++;
|
|
total_slots_used += dnode_slots;
|
|
max_slot_used = object + dnode_slots - 1;
|
|
}
|
|
|
|
(void) printf("\n");
|
|
|
|
(void) printf(" Dnode slots:\n");
|
|
(void) printf("\tTotal used: %10llu\n",
|
|
(u_longlong_t)total_slots_used);
|
|
(void) printf("\tMax used: %10llu\n",
|
|
(u_longlong_t)max_slot_used);
|
|
(void) printf("\tPercent empty: %10lf\n",
|
|
(double)(max_slot_used - total_slots_used)*100 /
|
|
(double)max_slot_used);
|
|
(void) printf("\n");
|
|
|
|
if (error != ESRCH) {
|
|
(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
|
|
abort();
|
|
}
|
|
|
|
ASSERT3U(object_count, ==, usedobjs);
|
|
|
|
if (leaked_objects != 0) {
|
|
(void) printf("%d potentially leaked objects detected\n",
|
|
leaked_objects);
|
|
leaked_objects = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
|
|
{
|
|
time_t timestamp = ub->ub_timestamp;
|
|
|
|
(void) printf("%s", header ? header : "");
|
|
(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
|
|
(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
|
|
(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
|
|
(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
|
|
(void) printf("\ttimestamp = %llu UTC = %s",
|
|
(u_longlong_t)ub->ub_timestamp, asctime(localtime(×tamp)));
|
|
|
|
(void) printf("\tmmp_magic = %016llx\n",
|
|
(u_longlong_t)ub->ub_mmp_magic);
|
|
if (MMP_VALID(ub)) {
|
|
(void) printf("\tmmp_delay = %0llu\n",
|
|
(u_longlong_t)ub->ub_mmp_delay);
|
|
if (MMP_SEQ_VALID(ub))
|
|
(void) printf("\tmmp_seq = %u\n",
|
|
(unsigned int) MMP_SEQ(ub));
|
|
if (MMP_FAIL_INT_VALID(ub))
|
|
(void) printf("\tmmp_fail = %u\n",
|
|
(unsigned int) MMP_FAIL_INT(ub));
|
|
if (MMP_INTERVAL_VALID(ub))
|
|
(void) printf("\tmmp_write = %u\n",
|
|
(unsigned int) MMP_INTERVAL(ub));
|
|
/* After MMP_* to make summarize_uberblock_mmp cleaner */
|
|
(void) printf("\tmmp_valid = %x\n",
|
|
(unsigned int) ub->ub_mmp_config & 0xFF);
|
|
}
|
|
|
|
if (dump_opt['u'] >= 4) {
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
|
|
(void) printf("\trootbp = %s\n", blkbuf);
|
|
}
|
|
(void) printf("\tcheckpoint_txg = %llu\n",
|
|
(u_longlong_t)ub->ub_checkpoint_txg);
|
|
(void) printf("%s", footer ? footer : "");
|
|
}
|
|
|
|
static void
|
|
dump_config(spa_t *spa)
|
|
{
|
|
dmu_buf_t *db;
|
|
size_t nvsize = 0;
|
|
int error = 0;
|
|
|
|
|
|
error = dmu_bonus_hold(spa->spa_meta_objset,
|
|
spa->spa_config_object, FTAG, &db);
|
|
|
|
if (error == 0) {
|
|
nvsize = *(uint64_t *)db->db_data;
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
(void) printf("\nMOS Configuration:\n");
|
|
dump_packed_nvlist(spa->spa_meta_objset,
|
|
spa->spa_config_object, (void *)&nvsize, 1);
|
|
} else {
|
|
(void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
|
|
(u_longlong_t)spa->spa_config_object, error);
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_cachefile(const char *cachefile)
|
|
{
|
|
int fd;
|
|
struct stat64 statbuf;
|
|
char *buf;
|
|
nvlist_t *config;
|
|
|
|
if ((fd = open64(cachefile, O_RDONLY)) < 0) {
|
|
(void) printf("cannot open '%s': %s\n", cachefile,
|
|
strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
if (fstat64(fd, &statbuf) != 0) {
|
|
(void) printf("failed to stat '%s': %s\n", cachefile,
|
|
strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
if ((buf = malloc(statbuf.st_size)) == NULL) {
|
|
(void) fprintf(stderr, "failed to allocate %llu bytes\n",
|
|
(u_longlong_t)statbuf.st_size);
|
|
exit(1);
|
|
}
|
|
|
|
if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
|
|
(void) fprintf(stderr, "failed to read %llu bytes\n",
|
|
(u_longlong_t)statbuf.st_size);
|
|
exit(1);
|
|
}
|
|
|
|
(void) close(fd);
|
|
|
|
if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
|
|
(void) fprintf(stderr, "failed to unpack nvlist\n");
|
|
exit(1);
|
|
}
|
|
|
|
free(buf);
|
|
|
|
dump_nvlist(config, 0);
|
|
|
|
nvlist_free(config);
|
|
}
|
|
|
|
/*
|
|
* ZFS label nvlist stats
|
|
*/
|
|
typedef struct zdb_nvl_stats {
|
|
int zns_list_count;
|
|
int zns_leaf_count;
|
|
size_t zns_leaf_largest;
|
|
size_t zns_leaf_total;
|
|
nvlist_t *zns_string;
|
|
nvlist_t *zns_uint64;
|
|
nvlist_t *zns_boolean;
|
|
} zdb_nvl_stats_t;
|
|
|
|
static void
|
|
collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
|
|
{
|
|
nvlist_t *list, **array;
|
|
nvpair_t *nvp = NULL;
|
|
char *name;
|
|
uint_t i, items;
|
|
|
|
stats->zns_list_count++;
|
|
|
|
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
|
|
name = nvpair_name(nvp);
|
|
|
|
switch (nvpair_type(nvp)) {
|
|
case DATA_TYPE_STRING:
|
|
fnvlist_add_string(stats->zns_string, name,
|
|
fnvpair_value_string(nvp));
|
|
break;
|
|
case DATA_TYPE_UINT64:
|
|
fnvlist_add_uint64(stats->zns_uint64, name,
|
|
fnvpair_value_uint64(nvp));
|
|
break;
|
|
case DATA_TYPE_BOOLEAN:
|
|
fnvlist_add_boolean(stats->zns_boolean, name);
|
|
break;
|
|
case DATA_TYPE_NVLIST:
|
|
if (nvpair_value_nvlist(nvp, &list) == 0)
|
|
collect_nvlist_stats(list, stats);
|
|
break;
|
|
case DATA_TYPE_NVLIST_ARRAY:
|
|
if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
|
|
break;
|
|
|
|
for (i = 0; i < items; i++) {
|
|
collect_nvlist_stats(array[i], stats);
|
|
|
|
/* collect stats on leaf vdev */
|
|
if (strcmp(name, "children") == 0) {
|
|
size_t size;
|
|
|
|
(void) nvlist_size(array[i], &size,
|
|
NV_ENCODE_XDR);
|
|
stats->zns_leaf_total += size;
|
|
if (size > stats->zns_leaf_largest)
|
|
stats->zns_leaf_largest = size;
|
|
stats->zns_leaf_count++;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
(void) printf("skip type %d!\n", (int)nvpair_type(nvp));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_nvlist_stats(nvlist_t *nvl, size_t cap)
|
|
{
|
|
zdb_nvl_stats_t stats = { 0 };
|
|
size_t size, sum = 0, total;
|
|
size_t noise;
|
|
|
|
/* requires nvlist with non-unique names for stat collection */
|
|
VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
|
|
VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
|
|
VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
|
|
VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
|
|
|
|
(void) printf("\n\nZFS Label NVList Config Stats:\n");
|
|
|
|
VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
|
|
(void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
|
|
(int)total, (int)(cap - total), 100.0 * total / cap);
|
|
|
|
collect_nvlist_stats(nvl, &stats);
|
|
|
|
VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
|
|
size -= noise;
|
|
sum += size;
|
|
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
|
|
(int)fnvlist_num_pairs(stats.zns_uint64),
|
|
(int)size, 100.0 * size / total);
|
|
|
|
VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
|
|
size -= noise;
|
|
sum += size;
|
|
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
|
|
(int)fnvlist_num_pairs(stats.zns_string),
|
|
(int)size, 100.0 * size / total);
|
|
|
|
VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
|
|
size -= noise;
|
|
sum += size;
|
|
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
|
|
(int)fnvlist_num_pairs(stats.zns_boolean),
|
|
(int)size, 100.0 * size / total);
|
|
|
|
size = total - sum; /* treat remainder as nvlist overhead */
|
|
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
|
|
stats.zns_list_count, (int)size, 100.0 * size / total);
|
|
|
|
if (stats.zns_leaf_count > 0) {
|
|
size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
|
|
|
|
(void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
|
|
stats.zns_leaf_count, (int)average);
|
|
(void) printf("%24d bytes largest\n",
|
|
(int)stats.zns_leaf_largest);
|
|
|
|
if (dump_opt['l'] >= 3 && average > 0)
|
|
(void) printf(" space for %d additional leaf vdevs\n",
|
|
(int)((cap - total) / average));
|
|
}
|
|
(void) printf("\n");
|
|
|
|
nvlist_free(stats.zns_string);
|
|
nvlist_free(stats.zns_uint64);
|
|
nvlist_free(stats.zns_boolean);
|
|
}
|
|
|
|
typedef struct cksum_record {
|
|
zio_cksum_t cksum;
|
|
boolean_t labels[VDEV_LABELS];
|
|
avl_node_t link;
|
|
} cksum_record_t;
|
|
|
|
static int
|
|
cksum_record_compare(const void *x1, const void *x2)
|
|
{
|
|
const cksum_record_t *l = (cksum_record_t *)x1;
|
|
const cksum_record_t *r = (cksum_record_t *)x2;
|
|
int arraysize = ARRAY_SIZE(l->cksum.zc_word);
|
|
int difference;
|
|
|
|
for (int i = 0; i < arraysize; i++) {
|
|
difference = AVL_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
|
|
if (difference)
|
|
break;
|
|
}
|
|
|
|
return (difference);
|
|
}
|
|
|
|
static cksum_record_t *
|
|
cksum_record_alloc(zio_cksum_t *cksum, int l)
|
|
{
|
|
cksum_record_t *rec;
|
|
|
|
rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
|
|
rec->cksum = *cksum;
|
|
rec->labels[l] = B_TRUE;
|
|
|
|
return (rec);
|
|
}
|
|
|
|
static cksum_record_t *
|
|
cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
|
|
{
|
|
cksum_record_t lookup = { .cksum = *cksum };
|
|
avl_index_t where;
|
|
|
|
return (avl_find(tree, &lookup, &where));
|
|
}
|
|
|
|
static cksum_record_t *
|
|
cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
|
|
{
|
|
cksum_record_t *rec;
|
|
|
|
rec = cksum_record_lookup(tree, cksum);
|
|
if (rec) {
|
|
rec->labels[l] = B_TRUE;
|
|
} else {
|
|
rec = cksum_record_alloc(cksum, l);
|
|
avl_add(tree, rec);
|
|
}
|
|
|
|
return (rec);
|
|
}
|
|
|
|
static int
|
|
first_label(cksum_record_t *rec)
|
|
{
|
|
for (int i = 0; i < VDEV_LABELS; i++)
|
|
if (rec->labels[i])
|
|
return (i);
|
|
|
|
return (-1);
|
|
}
|
|
|
|
static void
|
|
print_label_numbers(char *prefix, cksum_record_t *rec)
|
|
{
|
|
printf("%s", prefix);
|
|
for (int i = 0; i < VDEV_LABELS; i++)
|
|
if (rec->labels[i] == B_TRUE)
|
|
printf("%d ", i);
|
|
printf("\n");
|
|
}
|
|
|
|
#define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
|
|
|
|
typedef struct zdb_label {
|
|
vdev_label_t label;
|
|
nvlist_t *config_nv;
|
|
cksum_record_t *config;
|
|
cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
|
|
boolean_t header_printed;
|
|
boolean_t read_failed;
|
|
} zdb_label_t;
|
|
|
|
static void
|
|
print_label_header(zdb_label_t *label, int l)
|
|
{
|
|
|
|
if (dump_opt['q'])
|
|
return;
|
|
|
|
if (label->header_printed == B_TRUE)
|
|
return;
|
|
|
|
(void) printf("------------------------------------\n");
|
|
(void) printf("LABEL %d\n", l);
|
|
(void) printf("------------------------------------\n");
|
|
|
|
label->header_printed = B_TRUE;
|
|
}
|
|
|
|
static void
|
|
dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
|
|
{
|
|
if (dump_opt['q'])
|
|
return;
|
|
|
|
if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
|
|
return;
|
|
|
|
print_label_header(label, l);
|
|
dump_nvlist(label->config_nv, 4);
|
|
print_label_numbers(" labels = ", label->config);
|
|
|
|
if (dump_opt['l'] >= 2)
|
|
dump_nvlist_stats(label->config_nv, buflen);
|
|
}
|
|
|
|
#define ZDB_MAX_UB_HEADER_SIZE 32
|
|
|
|
static void
|
|
dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
|
|
{
|
|
|
|
vdev_t vd;
|
|
char header[ZDB_MAX_UB_HEADER_SIZE];
|
|
|
|
vd.vdev_ashift = ashift;
|
|
vd.vdev_top = &vd;
|
|
|
|
for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
|
|
uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
|
|
uberblock_t *ub = (void *)((char *)&label->label + uoff);
|
|
cksum_record_t *rec = label->uberblocks[i];
|
|
|
|
if (rec == NULL) {
|
|
if (dump_opt['u'] >= 2) {
|
|
print_label_header(label, label_num);
|
|
(void) printf(" Uberblock[%d] invalid\n", i);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
|
|
continue;
|
|
|
|
if ((dump_opt['u'] < 4) &&
|
|
(ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
|
|
(i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
|
|
continue;
|
|
|
|
print_label_header(label, label_num);
|
|
(void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
|
|
" Uberblock[%d]\n", i);
|
|
dump_uberblock(ub, header, "");
|
|
print_label_numbers(" labels = ", rec);
|
|
}
|
|
}
|
|
|
|
static char curpath[PATH_MAX];
|
|
|
|
/*
|
|
* Iterate through the path components, recursively passing
|
|
* current one's obj and remaining path until we find the obj
|
|
* for the last one.
|
|
*/
|
|
static int
|
|
dump_path_impl(objset_t *os, uint64_t obj, char *name)
|
|
{
|
|
int err;
|
|
int header = 1;
|
|
uint64_t child_obj;
|
|
char *s;
|
|
dmu_buf_t *db;
|
|
dmu_object_info_t doi;
|
|
|
|
if ((s = strchr(name, '/')) != NULL)
|
|
*s = '\0';
|
|
err = zap_lookup(os, obj, name, 8, 1, &child_obj);
|
|
|
|
(void) strlcat(curpath, name, sizeof (curpath));
|
|
|
|
if (err != 0) {
|
|
(void) fprintf(stderr, "failed to lookup %s: %s\n",
|
|
curpath, strerror(err));
|
|
return (err);
|
|
}
|
|
|
|
child_obj = ZFS_DIRENT_OBJ(child_obj);
|
|
err = sa_buf_hold(os, child_obj, FTAG, &db);
|
|
if (err != 0) {
|
|
(void) fprintf(stderr,
|
|
"failed to get SA dbuf for obj %llu: %s\n",
|
|
(u_longlong_t)child_obj, strerror(err));
|
|
return (EINVAL);
|
|
}
|
|
dmu_object_info_from_db(db, &doi);
|
|
sa_buf_rele(db, FTAG);
|
|
|
|
if (doi.doi_bonus_type != DMU_OT_SA &&
|
|
doi.doi_bonus_type != DMU_OT_ZNODE) {
|
|
(void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
|
|
doi.doi_bonus_type, (u_longlong_t)child_obj);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (dump_opt['v'] > 6) {
|
|
(void) printf("obj=%llu %s type=%d bonustype=%d\n",
|
|
(u_longlong_t)child_obj, curpath, doi.doi_type,
|
|
doi.doi_bonus_type);
|
|
}
|
|
|
|
(void) strlcat(curpath, "/", sizeof (curpath));
|
|
|
|
switch (doi.doi_type) {
|
|
case DMU_OT_DIRECTORY_CONTENTS:
|
|
if (s != NULL && *(s + 1) != '\0')
|
|
return (dump_path_impl(os, child_obj, s + 1));
|
|
/*FALLTHROUGH*/
|
|
case DMU_OT_PLAIN_FILE_CONTENTS:
|
|
dump_object(os, child_obj, dump_opt['v'], &header, NULL);
|
|
return (0);
|
|
default:
|
|
(void) fprintf(stderr, "object %llu has non-file/directory "
|
|
"type %d\n", (u_longlong_t)obj, doi.doi_type);
|
|
break;
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Dump the blocks for the object specified by path inside the dataset.
|
|
*/
|
|
static int
|
|
dump_path(char *ds, char *path)
|
|
{
|
|
int err;
|
|
objset_t *os;
|
|
uint64_t root_obj;
|
|
|
|
err = open_objset(ds, DMU_OST_ZFS, FTAG, &os);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
|
|
if (err != 0) {
|
|
(void) fprintf(stderr, "can't lookup root znode: %s\n",
|
|
strerror(err));
|
|
dmu_objset_disown(os, B_FALSE, FTAG);
|
|
return (EINVAL);
|
|
}
|
|
|
|
(void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
|
|
|
|
err = dump_path_impl(os, root_obj, path);
|
|
|
|
close_objset(os, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
dump_label(const char *dev)
|
|
{
|
|
char path[MAXPATHLEN];
|
|
zdb_label_t labels[VDEV_LABELS];
|
|
uint64_t psize, ashift;
|
|
struct stat64 statbuf;
|
|
boolean_t config_found = B_FALSE;
|
|
boolean_t error = B_FALSE;
|
|
avl_tree_t config_tree;
|
|
avl_tree_t uberblock_tree;
|
|
void *node, *cookie;
|
|
int fd;
|
|
|
|
bzero(labels, sizeof (labels));
|
|
|
|
/*
|
|
* Check if we were given absolute path and use it as is.
|
|
* Otherwise if the provided vdev name doesn't point to a file,
|
|
* try prepending expected disk paths and partition numbers.
|
|
*/
|
|
(void) strlcpy(path, dev, sizeof (path));
|
|
if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
|
|
int error;
|
|
|
|
error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
|
|
if (error == 0 && zfs_dev_is_whole_disk(path)) {
|
|
if (zfs_append_partition(path, MAXPATHLEN) == -1)
|
|
error = ENOENT;
|
|
}
|
|
|
|
if (error || (stat64(path, &statbuf) != 0)) {
|
|
(void) printf("failed to find device %s, try "
|
|
"specifying absolute path instead\n", dev);
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
if ((fd = open64(path, O_RDONLY)) < 0) {
|
|
(void) printf("cannot open '%s': %s\n", path, strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
if (fstat64_blk(fd, &statbuf) != 0) {
|
|
(void) printf("failed to stat '%s': %s\n", path,
|
|
strerror(errno));
|
|
(void) close(fd);
|
|
exit(1);
|
|
}
|
|
|
|
if (S_ISBLK(statbuf.st_mode) && ioctl(fd, BLKFLSBUF) != 0)
|
|
(void) printf("failed to invalidate cache '%s' : %s\n", path,
|
|
strerror(errno));
|
|
|
|
avl_create(&config_tree, cksum_record_compare,
|
|
sizeof (cksum_record_t), offsetof(cksum_record_t, link));
|
|
avl_create(&uberblock_tree, cksum_record_compare,
|
|
sizeof (cksum_record_t), offsetof(cksum_record_t, link));
|
|
|
|
psize = statbuf.st_size;
|
|
psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
|
|
ashift = SPA_MINBLOCKSHIFT;
|
|
|
|
/*
|
|
* 1. Read the label from disk
|
|
* 2. Unpack the configuration and insert in config tree.
|
|
* 3. Traverse all uberblocks and insert in uberblock tree.
|
|
*/
|
|
for (int l = 0; l < VDEV_LABELS; l++) {
|
|
zdb_label_t *label = &labels[l];
|
|
char *buf = label->label.vl_vdev_phys.vp_nvlist;
|
|
size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
|
|
nvlist_t *config;
|
|
cksum_record_t *rec;
|
|
zio_cksum_t cksum;
|
|
vdev_t vd;
|
|
|
|
if (pread64(fd, &label->label, sizeof (label->label),
|
|
vdev_label_offset(psize, l, 0)) != sizeof (label->label)) {
|
|
if (!dump_opt['q'])
|
|
(void) printf("failed to read label %d\n", l);
|
|
label->read_failed = B_TRUE;
|
|
error = B_TRUE;
|
|
continue;
|
|
}
|
|
|
|
label->read_failed = B_FALSE;
|
|
|
|
if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
|
|
nvlist_t *vdev_tree = NULL;
|
|
size_t size;
|
|
|
|
if ((nvlist_lookup_nvlist(config,
|
|
ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
|
|
(nvlist_lookup_uint64(vdev_tree,
|
|
ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
|
|
ashift = SPA_MINBLOCKSHIFT;
|
|
|
|
if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
|
|
size = buflen;
|
|
|
|
fletcher_4_native_varsize(buf, size, &cksum);
|
|
rec = cksum_record_insert(&config_tree, &cksum, l);
|
|
|
|
label->config = rec;
|
|
label->config_nv = config;
|
|
config_found = B_TRUE;
|
|
} else {
|
|
error = B_TRUE;
|
|
}
|
|
|
|
vd.vdev_ashift = ashift;
|
|
vd.vdev_top = &vd;
|
|
|
|
for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
|
|
uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
|
|
uberblock_t *ub = (void *)((char *)label + uoff);
|
|
|
|
if (uberblock_verify(ub))
|
|
continue;
|
|
|
|
fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
|
|
rec = cksum_record_insert(&uberblock_tree, &cksum, l);
|
|
|
|
label->uberblocks[i] = rec;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Dump the label and uberblocks.
|
|
*/
|
|
for (int l = 0; l < VDEV_LABELS; l++) {
|
|
zdb_label_t *label = &labels[l];
|
|
size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
|
|
|
|
if (label->read_failed == B_TRUE)
|
|
continue;
|
|
|
|
if (label->config_nv) {
|
|
dump_config_from_label(label, buflen, l);
|
|
} else {
|
|
if (!dump_opt['q'])
|
|
(void) printf("failed to unpack label %d\n", l);
|
|
}
|
|
|
|
if (dump_opt['u'])
|
|
dump_label_uberblocks(label, ashift, l);
|
|
|
|
nvlist_free(label->config_nv);
|
|
}
|
|
|
|
cookie = NULL;
|
|
while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
|
|
umem_free(node, sizeof (cksum_record_t));
|
|
|
|
cookie = NULL;
|
|
while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
|
|
umem_free(node, sizeof (cksum_record_t));
|
|
|
|
avl_destroy(&config_tree);
|
|
avl_destroy(&uberblock_tree);
|
|
|
|
(void) close(fd);
|
|
|
|
return (config_found == B_FALSE ? 2 :
|
|
(error == B_TRUE ? 1 : 0));
|
|
}
|
|
|
|
static uint64_t dataset_feature_count[SPA_FEATURES];
|
|
static uint64_t remap_deadlist_count = 0;
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
dump_one_dir(const char *dsname, void *arg)
|
|
{
|
|
int error;
|
|
objset_t *os;
|
|
spa_feature_t f;
|
|
|
|
error = open_objset(dsname, DMU_OST_ANY, FTAG, &os);
|
|
if (error != 0)
|
|
return (0);
|
|
|
|
for (f = 0; f < SPA_FEATURES; f++) {
|
|
if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
|
|
continue;
|
|
ASSERT(spa_feature_table[f].fi_flags &
|
|
ZFEATURE_FLAG_PER_DATASET);
|
|
dataset_feature_count[f]++;
|
|
}
|
|
|
|
if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
|
|
remap_deadlist_count++;
|
|
}
|
|
|
|
dump_dir(os);
|
|
close_objset(os, FTAG);
|
|
fuid_table_destroy();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Block statistics.
|
|
*/
|
|
#define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
|
|
typedef struct zdb_blkstats {
|
|
uint64_t zb_asize;
|
|
uint64_t zb_lsize;
|
|
uint64_t zb_psize;
|
|
uint64_t zb_count;
|
|
uint64_t zb_gangs;
|
|
uint64_t zb_ditto_samevdev;
|
|
uint64_t zb_ditto_same_ms;
|
|
uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
|
|
} zdb_blkstats_t;
|
|
|
|
/*
|
|
* Extended object types to report deferred frees and dedup auto-ditto blocks.
|
|
*/
|
|
#define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
|
|
#define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
|
|
#define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
|
|
#define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
|
|
|
|
static const char *zdb_ot_extname[] = {
|
|
"deferred free",
|
|
"dedup ditto",
|
|
"other",
|
|
"Total",
|
|
};
|
|
|
|
#define ZB_TOTAL DN_MAX_LEVELS
|
|
|
|
typedef struct zdb_cb {
|
|
zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
|
|
uint64_t zcb_removing_size;
|
|
uint64_t zcb_checkpoint_size;
|
|
uint64_t zcb_dedup_asize;
|
|
uint64_t zcb_dedup_blocks;
|
|
uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
|
|
uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
|
|
[BPE_PAYLOAD_SIZE + 1];
|
|
uint64_t zcb_start;
|
|
hrtime_t zcb_lastprint;
|
|
uint64_t zcb_totalasize;
|
|
uint64_t zcb_errors[256];
|
|
int zcb_readfails;
|
|
int zcb_haderrors;
|
|
spa_t *zcb_spa;
|
|
uint32_t **zcb_vd_obsolete_counts;
|
|
} zdb_cb_t;
|
|
|
|
/* test if two DVA offsets from same vdev are within the same metaslab */
|
|
static boolean_t
|
|
same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
|
|
{
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev);
|
|
uint64_t ms_shift = vd->vdev_ms_shift;
|
|
|
|
return ((off1 >> ms_shift) == (off2 >> ms_shift));
|
|
}
|
|
|
|
static void
|
|
zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
|
|
dmu_object_type_t type)
|
|
{
|
|
uint64_t refcnt = 0;
|
|
int i;
|
|
|
|
ASSERT(type < ZDB_OT_TOTAL);
|
|
|
|
if (zilog && zil_bp_tree_add(zilog, bp) != 0)
|
|
return;
|
|
|
|
spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
|
|
int t = (i & 1) ? type : ZDB_OT_TOTAL;
|
|
int equal;
|
|
zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
|
|
|
|
zb->zb_asize += BP_GET_ASIZE(bp);
|
|
zb->zb_lsize += BP_GET_LSIZE(bp);
|
|
zb->zb_psize += BP_GET_PSIZE(bp);
|
|
zb->zb_count++;
|
|
|
|
/*
|
|
* The histogram is only big enough to record blocks up to
|
|
* SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
|
|
* "other", bucket.
|
|
*/
|
|
unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
|
|
idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
|
|
zb->zb_psize_histogram[idx]++;
|
|
|
|
zb->zb_gangs += BP_COUNT_GANG(bp);
|
|
|
|
switch (BP_GET_NDVAS(bp)) {
|
|
case 2:
|
|
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[1])) {
|
|
zb->zb_ditto_samevdev++;
|
|
|
|
if (same_metaslab(zcb->zcb_spa,
|
|
DVA_GET_VDEV(&bp->blk_dva[0]),
|
|
DVA_GET_OFFSET(&bp->blk_dva[0]),
|
|
DVA_GET_OFFSET(&bp->blk_dva[1])))
|
|
zb->zb_ditto_same_ms++;
|
|
}
|
|
break;
|
|
case 3:
|
|
equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[1])) +
|
|
(DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[2])) +
|
|
(DVA_GET_VDEV(&bp->blk_dva[1]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[2]));
|
|
if (equal != 0) {
|
|
zb->zb_ditto_samevdev++;
|
|
|
|
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[1]) &&
|
|
same_metaslab(zcb->zcb_spa,
|
|
DVA_GET_VDEV(&bp->blk_dva[0]),
|
|
DVA_GET_OFFSET(&bp->blk_dva[0]),
|
|
DVA_GET_OFFSET(&bp->blk_dva[1])))
|
|
zb->zb_ditto_same_ms++;
|
|
else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[2]) &&
|
|
same_metaslab(zcb->zcb_spa,
|
|
DVA_GET_VDEV(&bp->blk_dva[0]),
|
|
DVA_GET_OFFSET(&bp->blk_dva[0]),
|
|
DVA_GET_OFFSET(&bp->blk_dva[2])))
|
|
zb->zb_ditto_same_ms++;
|
|
else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[2]) &&
|
|
same_metaslab(zcb->zcb_spa,
|
|
DVA_GET_VDEV(&bp->blk_dva[1]),
|
|
DVA_GET_OFFSET(&bp->blk_dva[1]),
|
|
DVA_GET_OFFSET(&bp->blk_dva[2])))
|
|
zb->zb_ditto_same_ms++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
|
|
|
|
if (BP_IS_EMBEDDED(bp)) {
|
|
zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
|
|
zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
|
|
[BPE_GET_PSIZE(bp)]++;
|
|
return;
|
|
}
|
|
|
|
if (dump_opt['L'])
|
|
return;
|
|
|
|
if (BP_GET_DEDUP(bp)) {
|
|
ddt_t *ddt;
|
|
ddt_entry_t *dde;
|
|
|
|
ddt = ddt_select(zcb->zcb_spa, bp);
|
|
ddt_enter(ddt);
|
|
dde = ddt_lookup(ddt, bp, B_FALSE);
|
|
|
|
if (dde == NULL) {
|
|
refcnt = 0;
|
|
} else {
|
|
ddt_phys_t *ddp = ddt_phys_select(dde, bp);
|
|
ddt_phys_decref(ddp);
|
|
refcnt = ddp->ddp_refcnt;
|
|
if (ddt_phys_total_refcnt(dde) == 0)
|
|
ddt_remove(ddt, dde);
|
|
}
|
|
ddt_exit(ddt);
|
|
}
|
|
|
|
VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
|
|
refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa),
|
|
bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
|
|
}
|
|
|
|
static void
|
|
zdb_blkptr_done(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
blkptr_t *bp = zio->io_bp;
|
|
int ioerr = zio->io_error;
|
|
zdb_cb_t *zcb = zio->io_private;
|
|
zbookmark_phys_t *zb = &zio->io_bookmark;
|
|
|
|
abd_free(zio->io_abd);
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
spa->spa_load_verify_ios--;
|
|
cv_broadcast(&spa->spa_scrub_io_cv);
|
|
|
|
if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
zcb->zcb_haderrors = 1;
|
|
zcb->zcb_errors[ioerr]++;
|
|
|
|
if (dump_opt['b'] >= 2)
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
|
|
else
|
|
blkbuf[0] = '\0';
|
|
|
|
(void) printf("zdb_blkptr_cb: "
|
|
"Got error %d reading "
|
|
"<%llu, %llu, %lld, %llx> %s -- skipping\n",
|
|
ioerr,
|
|
(u_longlong_t)zb->zb_objset,
|
|
(u_longlong_t)zb->zb_object,
|
|
(u_longlong_t)zb->zb_level,
|
|
(u_longlong_t)zb->zb_blkid,
|
|
blkbuf);
|
|
}
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
}
|
|
|
|
static int
|
|
zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
|
|
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
|
|
{
|
|
zdb_cb_t *zcb = arg;
|
|
dmu_object_type_t type;
|
|
boolean_t is_metadata;
|
|
|
|
if (bp == NULL)
|
|
return (0);
|
|
|
|
if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
|
|
(void) printf("objset %llu object %llu "
|
|
"level %lld offset 0x%llx %s\n",
|
|
(u_longlong_t)zb->zb_objset,
|
|
(u_longlong_t)zb->zb_object,
|
|
(longlong_t)zb->zb_level,
|
|
(u_longlong_t)blkid2offset(dnp, bp, zb),
|
|
blkbuf);
|
|
}
|
|
|
|
if (BP_IS_HOLE(bp))
|
|
return (0);
|
|
|
|
type = BP_GET_TYPE(bp);
|
|
|
|
zdb_count_block(zcb, zilog, bp,
|
|
(type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
|
|
|
|
is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
|
|
|
|
if (!BP_IS_EMBEDDED(bp) &&
|
|
(dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
|
|
size_t size = BP_GET_PSIZE(bp);
|
|
abd_t *abd = abd_alloc(size, B_FALSE);
|
|
int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
|
|
|
|
/* If it's an intent log block, failure is expected. */
|
|
if (zb->zb_level == ZB_ZIL_LEVEL)
|
|
flags |= ZIO_FLAG_SPECULATIVE;
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
while (spa->spa_load_verify_ios > max_inflight)
|
|
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
|
|
spa->spa_load_verify_ios++;
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
zio_nowait(zio_read(NULL, spa, bp, abd, size,
|
|
zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
|
|
}
|
|
|
|
zcb->zcb_readfails = 0;
|
|
|
|
/* only call gethrtime() every 100 blocks */
|
|
static int iters;
|
|
if (++iters > 100)
|
|
iters = 0;
|
|
else
|
|
return (0);
|
|
|
|
if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
|
|
uint64_t now = gethrtime();
|
|
char buf[10];
|
|
uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
|
|
int kb_per_sec =
|
|
1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
|
|
int sec_remaining =
|
|
(zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
|
|
|
|
/* make sure nicenum has enough space */
|
|
CTASSERT(sizeof (buf) >= NN_NUMBUF_SZ);
|
|
|
|
zfs_nicebytes(bytes, buf, sizeof (buf));
|
|
(void) fprintf(stderr,
|
|
"\r%5s completed (%4dMB/s) "
|
|
"estimated time remaining: %uhr %02umin %02usec ",
|
|
buf, kb_per_sec / 1024,
|
|
sec_remaining / 60 / 60,
|
|
sec_remaining / 60 % 60,
|
|
sec_remaining % 60);
|
|
|
|
zcb->zcb_lastprint = now;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zdb_leak(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
vdev_t *vd = arg;
|
|
|
|
(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
|
|
(u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
|
|
}
|
|
|
|
static metaslab_ops_t zdb_metaslab_ops = {
|
|
NULL /* alloc */
|
|
};
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
|
|
uint64_t size, void *arg)
|
|
{
|
|
/*
|
|
* This callback was called through a remap from
|
|
* a device being removed. Therefore, the vdev that
|
|
* this callback is applied to is a concrete
|
|
* vdev.
|
|
*/
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
VERIFY0(metaslab_claim_impl(vd, offset, size,
|
|
spa_min_claim_txg(vd->vdev_spa)));
|
|
}
|
|
|
|
static void
|
|
claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
|
|
{
|
|
vdev_t *vd = arg;
|
|
|
|
vdev_indirect_ops.vdev_op_remap(vd, offset, size,
|
|
claim_segment_impl_cb, NULL);
|
|
}
|
|
|
|
/*
|
|
* After accounting for all allocated blocks that are directly referenced,
|
|
* we might have missed a reference to a block from a partially complete
|
|
* (and thus unused) indirect mapping object. We perform a secondary pass
|
|
* through the metaslabs we have already mapped and claim the destination
|
|
* blocks.
|
|
*/
|
|
static void
|
|
zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
|
|
{
|
|
if (dump_opt['L'])
|
|
return;
|
|
|
|
if (spa->spa_vdev_removal == NULL)
|
|
return;
|
|
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
spa_vdev_removal_t *svr = spa->spa_vdev_removal;
|
|
vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
|
|
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
|
|
|
|
for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
|
|
metaslab_t *msp = vd->vdev_ms[msi];
|
|
|
|
if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
|
|
break;
|
|
|
|
ASSERT0(range_tree_space(svr->svr_allocd_segs));
|
|
|
|
if (msp->ms_sm != NULL) {
|
|
VERIFY0(space_map_load(msp->ms_sm,
|
|
svr->svr_allocd_segs, SM_ALLOC));
|
|
|
|
/*
|
|
* Clear everything past what has been synced unless
|
|
* it's past the spacemap, because we have not allocated
|
|
* mappings for it yet.
|
|
*/
|
|
uint64_t vim_max_offset =
|
|
vdev_indirect_mapping_max_offset(vim);
|
|
uint64_t sm_end = msp->ms_sm->sm_start +
|
|
msp->ms_sm->sm_size;
|
|
if (sm_end > vim_max_offset)
|
|
range_tree_clear(svr->svr_allocd_segs,
|
|
vim_max_offset, sm_end - vim_max_offset);
|
|
}
|
|
|
|
zcb->zcb_removing_size +=
|
|
range_tree_space(svr->svr_allocd_segs);
|
|
range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
zdb_cb_t *zcb = arg;
|
|
spa_t *spa = zcb->zcb_spa;
|
|
vdev_t *vd;
|
|
const dva_t *dva = &bp->blk_dva[0];
|
|
|
|
ASSERT(!dump_opt['L']);
|
|
ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
|
|
ASSERT3P(vd, !=, NULL);
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
|
|
ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
|
|
|
|
vdev_indirect_mapping_increment_obsolete_count(
|
|
vd->vdev_indirect_mapping,
|
|
DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
|
|
zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static uint32_t *
|
|
zdb_load_obsolete_counts(vdev_t *vd)
|
|
{
|
|
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
|
|
spa_t *spa = vd->vdev_spa;
|
|
spa_condensing_indirect_phys_t *scip =
|
|
&spa->spa_condensing_indirect_phys;
|
|
uint64_t obsolete_sm_object;
|
|
uint32_t *counts;
|
|
|
|
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
|
|
EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
|
|
counts = vdev_indirect_mapping_load_obsolete_counts(vim);
|
|
if (vd->vdev_obsolete_sm != NULL) {
|
|
vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
|
|
vd->vdev_obsolete_sm);
|
|
}
|
|
if (scip->scip_vdev == vd->vdev_id &&
|
|
scip->scip_prev_obsolete_sm_object != 0) {
|
|
space_map_t *prev_obsolete_sm = NULL;
|
|
VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
|
|
scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
|
|
vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
|
|
prev_obsolete_sm);
|
|
space_map_close(prev_obsolete_sm);
|
|
}
|
|
return (counts);
|
|
}
|
|
|
|
static void
|
|
zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
|
|
{
|
|
ddt_bookmark_t ddb;
|
|
ddt_entry_t dde;
|
|
int error;
|
|
int p;
|
|
|
|
ASSERT(!dump_opt['L']);
|
|
|
|
bzero(&ddb, sizeof (ddb));
|
|
while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
|
|
blkptr_t blk;
|
|
ddt_phys_t *ddp = dde.dde_phys;
|
|
|
|
if (ddb.ddb_class == DDT_CLASS_UNIQUE)
|
|
return;
|
|
|
|
ASSERT(ddt_phys_total_refcnt(&dde) > 1);
|
|
|
|
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
|
|
if (ddp->ddp_phys_birth == 0)
|
|
continue;
|
|
ddt_bp_create(ddb.ddb_checksum,
|
|
&dde.dde_key, ddp, &blk);
|
|
if (p == DDT_PHYS_DITTO) {
|
|
zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
|
|
} else {
|
|
zcb->zcb_dedup_asize +=
|
|
BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
|
|
zcb->zcb_dedup_blocks++;
|
|
}
|
|
}
|
|
ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
|
|
ddt_enter(ddt);
|
|
VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
|
|
ddt_exit(ddt);
|
|
}
|
|
|
|
ASSERT(error == ENOENT);
|
|
}
|
|
|
|
typedef struct checkpoint_sm_exclude_entry_arg {
|
|
vdev_t *cseea_vd;
|
|
uint64_t cseea_checkpoint_size;
|
|
} checkpoint_sm_exclude_entry_arg_t;
|
|
|
|
static int
|
|
checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
|
|
{
|
|
checkpoint_sm_exclude_entry_arg_t *cseea = arg;
|
|
vdev_t *vd = cseea->cseea_vd;
|
|
metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
|
|
uint64_t end = sme->sme_offset + sme->sme_run;
|
|
|
|
ASSERT(sme->sme_type == SM_FREE);
|
|
|
|
/*
|
|
* Since the vdev_checkpoint_sm exists in the vdev level
|
|
* and the ms_sm space maps exist in the metaslab level,
|
|
* an entry in the checkpoint space map could theoretically
|
|
* cross the boundaries of the metaslab that it belongs.
|
|
*
|
|
* In reality, because of the way that we populate and
|
|
* manipulate the checkpoint's space maps currently,
|
|
* there shouldn't be any entries that cross metaslabs.
|
|
* Hence the assertion below.
|
|
*
|
|
* That said, there is no fundamental requirement that
|
|
* the checkpoint's space map entries should not cross
|
|
* metaslab boundaries. So if needed we could add code
|
|
* that handles metaslab-crossing segments in the future.
|
|
*/
|
|
VERIFY3U(sme->sme_offset, >=, ms->ms_start);
|
|
VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
|
|
|
|
/*
|
|
* By removing the entry from the allocated segments we
|
|
* also verify that the entry is there to begin with.
|
|
*/
|
|
mutex_enter(&ms->ms_lock);
|
|
range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
|
|
mutex_exit(&ms->ms_lock);
|
|
|
|
cseea->cseea_checkpoint_size += sme->sme_run;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
space_map_t *checkpoint_sm = NULL;
|
|
uint64_t checkpoint_sm_obj;
|
|
|
|
/*
|
|
* If there is no vdev_top_zap, we are in a pool whose
|
|
* version predates the pool checkpoint feature.
|
|
*/
|
|
if (vd->vdev_top_zap == 0)
|
|
return;
|
|
|
|
/*
|
|
* If there is no reference of the vdev_checkpoint_sm in
|
|
* the vdev_top_zap, then one of the following scenarios
|
|
* is true:
|
|
*
|
|
* 1] There is no checkpoint
|
|
* 2] There is a checkpoint, but no checkpointed blocks
|
|
* have been freed yet
|
|
* 3] The current vdev is indirect
|
|
*
|
|
* In these cases we return immediately.
|
|
*/
|
|
if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
|
|
return;
|
|
|
|
VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
|
|
&checkpoint_sm_obj));
|
|
|
|
checkpoint_sm_exclude_entry_arg_t cseea;
|
|
cseea.cseea_vd = vd;
|
|
cseea.cseea_checkpoint_size = 0;
|
|
|
|
VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
|
|
checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
|
|
|
|
VERIFY0(space_map_iterate(checkpoint_sm,
|
|
space_map_length(checkpoint_sm),
|
|
checkpoint_sm_exclude_entry_cb, &cseea));
|
|
space_map_close(checkpoint_sm);
|
|
|
|
zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
|
|
}
|
|
|
|
static void
|
|
zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
|
|
{
|
|
ASSERT(!dump_opt['L']);
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
|
|
ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
|
|
zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
|
|
}
|
|
}
|
|
|
|
static void
|
|
load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
|
|
vdev_t *vd = rvd->vdev_child[i];
|
|
|
|
ASSERT3U(i, ==, vd->vdev_id);
|
|
|
|
if (vd->vdev_ops == &vdev_indirect_ops)
|
|
continue;
|
|
|
|
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
(void) fprintf(stderr,
|
|
"\rloading concrete vdev %llu, "
|
|
"metaslab %llu of %llu ...",
|
|
(longlong_t)vd->vdev_id,
|
|
(longlong_t)msp->ms_id,
|
|
(longlong_t)vd->vdev_ms_count);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_unload(msp);
|
|
|
|
/*
|
|
* We don't want to spend the CPU manipulating the
|
|
* size-ordered tree, so clear the range_tree ops.
|
|
*/
|
|
msp->ms_allocatable->rt_ops = NULL;
|
|
|
|
if (msp->ms_sm != NULL) {
|
|
VERIFY0(space_map_load(msp->ms_sm,
|
|
msp->ms_allocatable, maptype));
|
|
}
|
|
if (!msp->ms_loaded)
|
|
msp->ms_loaded = B_TRUE;
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_idxp is an in-out parameter which (for indirect vdevs) is the
|
|
* index in vim_entries that has the first entry in this metaslab.
|
|
* On return, it will be set to the first entry after this metaslab.
|
|
*/
|
|
static void
|
|
load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
|
|
uint64_t *vim_idxp)
|
|
{
|
|
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_unload(msp);
|
|
|
|
/*
|
|
* We don't want to spend the CPU manipulating the
|
|
* size-ordered tree, so clear the range_tree ops.
|
|
*/
|
|
msp->ms_allocatable->rt_ops = NULL;
|
|
|
|
for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
|
|
(*vim_idxp)++) {
|
|
vdev_indirect_mapping_entry_phys_t *vimep =
|
|
&vim->vim_entries[*vim_idxp];
|
|
uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
|
|
uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
|
|
ASSERT3U(ent_offset, >=, msp->ms_start);
|
|
if (ent_offset >= msp->ms_start + msp->ms_size)
|
|
break;
|
|
|
|
/*
|
|
* Mappings do not cross metaslab boundaries,
|
|
* because we create them by walking the metaslabs.
|
|
*/
|
|
ASSERT3U(ent_offset + ent_len, <=,
|
|
msp->ms_start + msp->ms_size);
|
|
range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
|
|
}
|
|
|
|
if (!msp->ms_loaded)
|
|
msp->ms_loaded = B_TRUE;
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
static void
|
|
zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
|
|
{
|
|
ASSERT(!dump_opt['L']);
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *vd = rvd->vdev_child[c];
|
|
|
|
ASSERT3U(c, ==, vd->vdev_id);
|
|
|
|
if (vd->vdev_ops != &vdev_indirect_ops)
|
|
continue;
|
|
|
|
/*
|
|
* Note: we don't check for mapping leaks on
|
|
* removing vdevs because their ms_allocatable's
|
|
* are used to look for leaks in allocated space.
|
|
*/
|
|
zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
|
|
|
|
/*
|
|
* Normally, indirect vdevs don't have any
|
|
* metaslabs. We want to set them up for
|
|
* zio_claim().
|
|
*/
|
|
VERIFY0(vdev_metaslab_init(vd, 0));
|
|
|
|
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
|
|
uint64_t vim_idx = 0;
|
|
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
|
|
|
|
(void) fprintf(stderr,
|
|
"\rloading indirect vdev %llu, "
|
|
"metaslab %llu of %llu ...",
|
|
(longlong_t)vd->vdev_id,
|
|
(longlong_t)vd->vdev_ms[m]->ms_id,
|
|
(longlong_t)vd->vdev_ms_count);
|
|
|
|
load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
|
|
&vim_idx);
|
|
}
|
|
ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
|
|
}
|
|
}
|
|
|
|
static void
|
|
zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
|
|
{
|
|
zcb->zcb_spa = spa;
|
|
|
|
if (dump_opt['L'])
|
|
return;
|
|
|
|
dsl_pool_t *dp = spa->spa_dsl_pool;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
/*
|
|
* We are going to be changing the meaning of the metaslab's
|
|
* ms_allocatable. Ensure that the allocator doesn't try to
|
|
* use the tree.
|
|
*/
|
|
spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
|
|
spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
|
|
|
|
zcb->zcb_vd_obsolete_counts =
|
|
umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
|
|
UMEM_NOFAIL);
|
|
|
|
/*
|
|
* For leak detection, we overload the ms_allocatable trees
|
|
* to contain allocated segments instead of free segments.
|
|
* As a result, we can't use the normal metaslab_load/unload
|
|
* interfaces.
|
|
*/
|
|
zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
|
|
load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
|
|
|
|
/*
|
|
* On load_concrete_ms_allocatable_trees() we loaded all the
|
|
* allocated entries from the ms_sm to the ms_allocatable for
|
|
* each metaslab. If the pool has a checkpoint or is in the
|
|
* middle of discarding a checkpoint, some of these blocks
|
|
* may have been freed but their ms_sm may not have been
|
|
* updated because they are referenced by the checkpoint. In
|
|
* order to avoid false-positives during leak-detection, we
|
|
* go through the vdev's checkpoint space map and exclude all
|
|
* its entries from their relevant ms_allocatable.
|
|
*
|
|
* We also aggregate the space held by the checkpoint and add
|
|
* it to zcb_checkpoint_size.
|
|
*
|
|
* Note that at this point we are also verifying that all the
|
|
* entries on the checkpoint_sm are marked as allocated in
|
|
* the ms_sm of their relevant metaslab.
|
|
* [see comment in checkpoint_sm_exclude_entry_cb()]
|
|
*/
|
|
zdb_leak_init_exclude_checkpoint(spa, zcb);
|
|
ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
|
|
|
|
/* for cleaner progress output */
|
|
(void) fprintf(stderr, "\n");
|
|
|
|
if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
|
|
ASSERT(spa_feature_is_enabled(spa,
|
|
SPA_FEATURE_DEVICE_REMOVAL));
|
|
(void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
|
|
increment_indirect_mapping_cb, zcb, NULL);
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
zdb_ddt_leak_init(spa, zcb);
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
}
|
|
|
|
static boolean_t
|
|
zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
|
|
{
|
|
boolean_t leaks = B_FALSE;
|
|
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
|
|
uint64_t total_leaked = 0;
|
|
boolean_t are_precise = B_FALSE;
|
|
|
|
ASSERT(vim != NULL);
|
|
|
|
for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
|
|
vdev_indirect_mapping_entry_phys_t *vimep =
|
|
&vim->vim_entries[i];
|
|
uint64_t obsolete_bytes = 0;
|
|
uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
|
|
metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
/*
|
|
* This is not very efficient but it's easy to
|
|
* verify correctness.
|
|
*/
|
|
for (uint64_t inner_offset = 0;
|
|
inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
|
|
inner_offset += 1 << vd->vdev_ashift) {
|
|
if (range_tree_contains(msp->ms_allocatable,
|
|
offset + inner_offset, 1 << vd->vdev_ashift)) {
|
|
obsolete_bytes += 1 << vd->vdev_ashift;
|
|
}
|
|
}
|
|
|
|
int64_t bytes_leaked = obsolete_bytes -
|
|
zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
|
|
ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
|
|
zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
|
|
|
|
VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
|
|
if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
|
|
(void) printf("obsolete indirect mapping count "
|
|
"mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
|
|
(u_longlong_t)vd->vdev_id,
|
|
(u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
|
|
(u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
|
|
(u_longlong_t)bytes_leaked);
|
|
}
|
|
total_leaked += ABS(bytes_leaked);
|
|
}
|
|
|
|
VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
|
|
if (!are_precise && total_leaked > 0) {
|
|
int pct_leaked = total_leaked * 100 /
|
|
vdev_indirect_mapping_bytes_mapped(vim);
|
|
(void) printf("cannot verify obsolete indirect mapping "
|
|
"counts of vdev %llu because precise feature was not "
|
|
"enabled when it was removed: %d%% (%llx bytes) of mapping"
|
|
"unreferenced\n",
|
|
(u_longlong_t)vd->vdev_id, pct_leaked,
|
|
(u_longlong_t)total_leaked);
|
|
} else if (total_leaked > 0) {
|
|
(void) printf("obsolete indirect mapping count mismatch "
|
|
"for vdev %llu -- %llx total bytes mismatched\n",
|
|
(u_longlong_t)vd->vdev_id,
|
|
(u_longlong_t)total_leaked);
|
|
leaks |= B_TRUE;
|
|
}
|
|
|
|
vdev_indirect_mapping_free_obsolete_counts(vim,
|
|
zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
|
|
zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
|
|
|
|
return (leaks);
|
|
}
|
|
|
|
static boolean_t
|
|
zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
|
|
{
|
|
if (dump_opt['L'])
|
|
return (B_FALSE);
|
|
|
|
boolean_t leaks = B_FALSE;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
for (unsigned c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *vd = rvd->vdev_child[c];
|
|
ASSERTV(metaslab_group_t *mg = vd->vdev_mg);
|
|
|
|
if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
|
|
leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
|
|
}
|
|
|
|
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
ASSERT3P(mg, ==, msp->ms_group);
|
|
|
|
/*
|
|
* ms_allocatable has been overloaded
|
|
* to contain allocated segments. Now that
|
|
* we finished traversing all blocks, any
|
|
* block that remains in the ms_allocatable
|
|
* represents an allocated block that we
|
|
* did not claim during the traversal.
|
|
* Claimed blocks would have been removed
|
|
* from the ms_allocatable. For indirect
|
|
* vdevs, space remaining in the tree
|
|
* represents parts of the mapping that are
|
|
* not referenced, which is not a bug.
|
|
*/
|
|
if (vd->vdev_ops == &vdev_indirect_ops) {
|
|
range_tree_vacate(msp->ms_allocatable,
|
|
NULL, NULL);
|
|
} else {
|
|
range_tree_vacate(msp->ms_allocatable,
|
|
zdb_leak, vd);
|
|
}
|
|
|
|
if (msp->ms_loaded) {
|
|
msp->ms_loaded = B_FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
umem_free(zcb->zcb_vd_obsolete_counts,
|
|
rvd->vdev_children * sizeof (uint32_t *));
|
|
zcb->zcb_vd_obsolete_counts = NULL;
|
|
|
|
return (leaks);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
zdb_cb_t *zcb = arg;
|
|
|
|
if (dump_opt['b'] >= 5) {
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
|
|
(void) printf("[%s] %s\n",
|
|
"deferred free", blkbuf);
|
|
}
|
|
zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_block_stats(spa_t *spa)
|
|
{
|
|
zdb_cb_t zcb;
|
|
zdb_blkstats_t *zb, *tzb;
|
|
uint64_t norm_alloc, norm_space, total_alloc, total_found;
|
|
int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
|
|
TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
|
|
boolean_t leaks = B_FALSE;
|
|
int e, c, err;
|
|
bp_embedded_type_t i;
|
|
|
|
bzero(&zcb, sizeof (zcb));
|
|
(void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
|
|
(dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
|
|
(dump_opt['c'] == 1) ? "metadata " : "",
|
|
dump_opt['c'] ? "checksums " : "",
|
|
(dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
|
|
!dump_opt['L'] ? "nothing leaked " : "");
|
|
|
|
/*
|
|
* When leak detection is enabled we load all space maps as SM_ALLOC
|
|
* maps, then traverse the pool claiming each block we discover. If
|
|
* the pool is perfectly consistent, the segment trees will be empty
|
|
* when we're done. Anything left over is a leak; any block we can't
|
|
* claim (because it's not part of any space map) is a double
|
|
* allocation, reference to a freed block, or an unclaimed log block.
|
|
*
|
|
* When leak detection is disabled (-L option) we still traverse the
|
|
* pool claiming each block we discover, but we skip opening any space
|
|
* maps.
|
|
*/
|
|
bzero(&zcb, sizeof (zdb_cb_t));
|
|
zdb_leak_init(spa, &zcb);
|
|
|
|
/*
|
|
* If there's a deferred-free bplist, process that first.
|
|
*/
|
|
(void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
|
|
count_block_cb, &zcb, NULL);
|
|
|
|
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
|
|
(void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
|
|
count_block_cb, &zcb, NULL);
|
|
}
|
|
|
|
zdb_claim_removing(spa, &zcb);
|
|
|
|
if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
|
|
VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
|
|
spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
|
|
&zcb, NULL));
|
|
}
|
|
|
|
if (dump_opt['c'] > 1)
|
|
flags |= TRAVERSE_PREFETCH_DATA;
|
|
|
|
zcb.zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
|
|
zcb.zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
|
|
zcb.zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
|
|
zcb.zcb_start = zcb.zcb_lastprint = gethrtime();
|
|
err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb);
|
|
|
|
/*
|
|
* If we've traversed the data blocks then we need to wait for those
|
|
* I/Os to complete. We leverage "The Godfather" zio to wait on
|
|
* all async I/Os to complete.
|
|
*/
|
|
if (dump_opt['c']) {
|
|
for (c = 0; c < max_ncpus; c++) {
|
|
(void) zio_wait(spa->spa_async_zio_root[c]);
|
|
spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
|
|
ZIO_FLAG_GODFATHER);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Done after zio_wait() since zcb_haderrors is modified in
|
|
* zdb_blkptr_done()
|
|
*/
|
|
zcb.zcb_haderrors |= err;
|
|
|
|
if (zcb.zcb_haderrors) {
|
|
(void) printf("\nError counts:\n\n");
|
|
(void) printf("\t%5s %s\n", "errno", "count");
|
|
for (e = 0; e < 256; e++) {
|
|
if (zcb.zcb_errors[e] != 0) {
|
|
(void) printf("\t%5d %llu\n",
|
|
e, (u_longlong_t)zcb.zcb_errors[e]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Report any leaked segments.
|
|
*/
|
|
leaks |= zdb_leak_fini(spa, &zcb);
|
|
|
|
tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
|
|
|
|
norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
|
|
norm_space = metaslab_class_get_space(spa_normal_class(spa));
|
|
|
|
total_alloc = norm_alloc +
|
|
metaslab_class_get_alloc(spa_log_class(spa)) +
|
|
metaslab_class_get_alloc(spa_special_class(spa)) +
|
|
metaslab_class_get_alloc(spa_dedup_class(spa));
|
|
total_found = tzb->zb_asize - zcb.zcb_dedup_asize +
|
|
zcb.zcb_removing_size + zcb.zcb_checkpoint_size;
|
|
|
|
if (total_found == total_alloc && !dump_opt['L']) {
|
|
(void) printf("\n\tNo leaks (block sum matches space"
|
|
" maps exactly)\n");
|
|
} else if (!dump_opt['L']) {
|
|
(void) printf("block traversal size %llu != alloc %llu "
|
|
"(%s %lld)\n",
|
|
(u_longlong_t)total_found,
|
|
(u_longlong_t)total_alloc,
|
|
(dump_opt['L']) ? "unreachable" : "leaked",
|
|
(longlong_t)(total_alloc - total_found));
|
|
leaks = B_TRUE;
|
|
}
|
|
|
|
if (tzb->zb_count == 0)
|
|
return (2);
|
|
|
|
(void) printf("\n");
|
|
(void) printf("\t%-16s %14llu\n", "bp count:",
|
|
(u_longlong_t)tzb->zb_count);
|
|
(void) printf("\t%-16s %14llu\n", "ganged count:",
|
|
(longlong_t)tzb->zb_gangs);
|
|
(void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
|
|
(u_longlong_t)tzb->zb_lsize,
|
|
(u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
|
|
(void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
|
|
"bp physical:", (u_longlong_t)tzb->zb_psize,
|
|
(u_longlong_t)(tzb->zb_psize / tzb->zb_count),
|
|
(double)tzb->zb_lsize / tzb->zb_psize);
|
|
(void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
|
|
"bp allocated:", (u_longlong_t)tzb->zb_asize,
|
|
(u_longlong_t)(tzb->zb_asize / tzb->zb_count),
|
|
(double)tzb->zb_lsize / tzb->zb_asize);
|
|
(void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
|
|
"bp deduped:", (u_longlong_t)zcb.zcb_dedup_asize,
|
|
(u_longlong_t)zcb.zcb_dedup_blocks,
|
|
(double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0);
|
|
(void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
|
|
(u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
|
|
|
|
if (spa_special_class(spa)->mc_rotor != NULL) {
|
|
uint64_t alloc = metaslab_class_get_alloc(
|
|
spa_special_class(spa));
|
|
uint64_t space = metaslab_class_get_space(
|
|
spa_special_class(spa));
|
|
|
|
(void) printf("\t%-16s %14llu used: %5.2f%%\n",
|
|
"Special class", (u_longlong_t)alloc,
|
|
100.0 * alloc / space);
|
|
}
|
|
|
|
if (spa_dedup_class(spa)->mc_rotor != NULL) {
|
|
uint64_t alloc = metaslab_class_get_alloc(
|
|
spa_dedup_class(spa));
|
|
uint64_t space = metaslab_class_get_space(
|
|
spa_dedup_class(spa));
|
|
|
|
(void) printf("\t%-16s %14llu used: %5.2f%%\n",
|
|
"Dedup class", (u_longlong_t)alloc,
|
|
100.0 * alloc / space);
|
|
}
|
|
|
|
for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
|
|
if (zcb.zcb_embedded_blocks[i] == 0)
|
|
continue;
|
|
(void) printf("\n");
|
|
(void) printf("\tadditional, non-pointer bps of type %u: "
|
|
"%10llu\n",
|
|
i, (u_longlong_t)zcb.zcb_embedded_blocks[i]);
|
|
|
|
if (dump_opt['b'] >= 3) {
|
|
(void) printf("\t number of (compressed) bytes: "
|
|
"number of bps\n");
|
|
dump_histogram(zcb.zcb_embedded_histogram[i],
|
|
sizeof (zcb.zcb_embedded_histogram[i]) /
|
|
sizeof (zcb.zcb_embedded_histogram[i][0]), 0);
|
|
}
|
|
}
|
|
|
|
if (tzb->zb_ditto_samevdev != 0) {
|
|
(void) printf("\tDittoed blocks on same vdev: %llu\n",
|
|
(longlong_t)tzb->zb_ditto_samevdev);
|
|
}
|
|
if (tzb->zb_ditto_same_ms != 0) {
|
|
(void) printf("\tDittoed blocks in same metaslab: %llu\n",
|
|
(longlong_t)tzb->zb_ditto_same_ms);
|
|
}
|
|
|
|
for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
|
|
vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
|
|
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
|
|
|
|
if (vim == NULL) {
|
|
continue;
|
|
}
|
|
|
|
char mem[32];
|
|
zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
|
|
mem, vdev_indirect_mapping_size(vim));
|
|
|
|
(void) printf("\tindirect vdev id %llu has %llu segments "
|
|
"(%s in memory)\n",
|
|
(longlong_t)vd->vdev_id,
|
|
(longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
|
|
}
|
|
|
|
if (dump_opt['b'] >= 2) {
|
|
int l, t, level;
|
|
(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
|
|
"\t avg\t comp\t%%Total\tType\n");
|
|
|
|
for (t = 0; t <= ZDB_OT_TOTAL; t++) {
|
|
char csize[32], lsize[32], psize[32], asize[32];
|
|
char avg[32], gang[32];
|
|
const char *typename;
|
|
|
|
/* make sure nicenum has enough space */
|
|
CTASSERT(sizeof (csize) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (psize) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (avg) >= NN_NUMBUF_SZ);
|
|
CTASSERT(sizeof (gang) >= NN_NUMBUF_SZ);
|
|
|
|
if (t < DMU_OT_NUMTYPES)
|
|
typename = dmu_ot[t].ot_name;
|
|
else
|
|
typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
|
|
|
|
if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) {
|
|
(void) printf("%6s\t%5s\t%5s\t%5s"
|
|
"\t%5s\t%5s\t%6s\t%s\n",
|
|
"-",
|
|
"-",
|
|
"-",
|
|
"-",
|
|
"-",
|
|
"-",
|
|
"-",
|
|
typename);
|
|
continue;
|
|
}
|
|
|
|
for (l = ZB_TOTAL - 1; l >= -1; l--) {
|
|
level = (l == -1 ? ZB_TOTAL : l);
|
|
zb = &zcb.zcb_type[level][t];
|
|
|
|
if (zb->zb_asize == 0)
|
|
continue;
|
|
|
|
if (dump_opt['b'] < 3 && level != ZB_TOTAL)
|
|
continue;
|
|
|
|
if (level == 0 && zb->zb_asize ==
|
|
zcb.zcb_type[ZB_TOTAL][t].zb_asize)
|
|
continue;
|
|
|
|
zdb_nicenum(zb->zb_count, csize,
|
|
sizeof (csize));
|
|
zdb_nicenum(zb->zb_lsize, lsize,
|
|
sizeof (lsize));
|
|
zdb_nicenum(zb->zb_psize, psize,
|
|
sizeof (psize));
|
|
zdb_nicenum(zb->zb_asize, asize,
|
|
sizeof (asize));
|
|
zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
|
|
sizeof (avg));
|
|
zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
|
|
|
|
(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
|
|
"\t%5.2f\t%6.2f\t",
|
|
csize, lsize, psize, asize, avg,
|
|
(double)zb->zb_lsize / zb->zb_psize,
|
|
100.0 * zb->zb_asize / tzb->zb_asize);
|
|
|
|
if (level == ZB_TOTAL)
|
|
(void) printf("%s\n", typename);
|
|
else
|
|
(void) printf(" L%d %s\n",
|
|
level, typename);
|
|
|
|
if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
|
|
(void) printf("\t number of ganged "
|
|
"blocks: %s\n", gang);
|
|
}
|
|
|
|
if (dump_opt['b'] >= 4) {
|
|
(void) printf("psize "
|
|
"(in 512-byte sectors): "
|
|
"number of blocks\n");
|
|
dump_histogram(zb->zb_psize_histogram,
|
|
PSIZE_HISTO_SIZE, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
(void) printf("\n");
|
|
|
|
if (leaks)
|
|
return (2);
|
|
|
|
if (zcb.zcb_haderrors)
|
|
return (3);
|
|
|
|
return (0);
|
|
}
|
|
|
|
typedef struct zdb_ddt_entry {
|
|
ddt_key_t zdde_key;
|
|
uint64_t zdde_ref_blocks;
|
|
uint64_t zdde_ref_lsize;
|
|
uint64_t zdde_ref_psize;
|
|
uint64_t zdde_ref_dsize;
|
|
avl_node_t zdde_node;
|
|
} zdb_ddt_entry_t;
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
|
|
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
|
|
{
|
|
avl_tree_t *t = arg;
|
|
avl_index_t where;
|
|
zdb_ddt_entry_t *zdde, zdde_search;
|
|
|
|
if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
|
|
return (0);
|
|
|
|
if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
|
|
(void) printf("traversing objset %llu, %llu objects, "
|
|
"%lu blocks so far\n",
|
|
(u_longlong_t)zb->zb_objset,
|
|
(u_longlong_t)BP_GET_FILL(bp),
|
|
avl_numnodes(t));
|
|
}
|
|
|
|
if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
|
|
BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
|
|
return (0);
|
|
|
|
ddt_key_fill(&zdde_search.zdde_key, bp);
|
|
|
|
zdde = avl_find(t, &zdde_search, &where);
|
|
|
|
if (zdde == NULL) {
|
|
zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
|
|
zdde->zdde_key = zdde_search.zdde_key;
|
|
avl_insert(t, zdde, where);
|
|
}
|
|
|
|
zdde->zdde_ref_blocks += 1;
|
|
zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
|
|
zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
|
|
zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dump_simulated_ddt(spa_t *spa)
|
|
{
|
|
avl_tree_t t;
|
|
void *cookie = NULL;
|
|
zdb_ddt_entry_t *zdde;
|
|
ddt_histogram_t ddh_total;
|
|
ddt_stat_t dds_total;
|
|
|
|
bzero(&ddh_total, sizeof (ddh_total));
|
|
bzero(&dds_total, sizeof (dds_total));
|
|
avl_create(&t, ddt_entry_compare,
|
|
sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
|
|
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
(void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
|
|
TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
|
|
while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
|
|
ddt_stat_t dds;
|
|
uint64_t refcnt = zdde->zdde_ref_blocks;
|
|
ASSERT(refcnt != 0);
|
|
|
|
dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
|
|
dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
|
|
dds.dds_psize = zdde->zdde_ref_psize / refcnt;
|
|
dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
|
|
|
|
dds.dds_ref_blocks = zdde->zdde_ref_blocks;
|
|
dds.dds_ref_lsize = zdde->zdde_ref_lsize;
|
|
dds.dds_ref_psize = zdde->zdde_ref_psize;
|
|
dds.dds_ref_dsize = zdde->zdde_ref_dsize;
|
|
|
|
ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
|
|
&dds, 0);
|
|
|
|
umem_free(zdde, sizeof (*zdde));
|
|
}
|
|
|
|
avl_destroy(&t);
|
|
|
|
ddt_histogram_stat(&dds_total, &ddh_total);
|
|
|
|
(void) printf("Simulated DDT histogram:\n");
|
|
|
|
zpool_dump_ddt(&dds_total, &ddh_total);
|
|
|
|
dump_dedup_ratio(&dds_total);
|
|
}
|
|
|
|
static int
|
|
verify_device_removal_feature_counts(spa_t *spa)
|
|
{
|
|
uint64_t dr_feature_refcount = 0;
|
|
uint64_t oc_feature_refcount = 0;
|
|
uint64_t indirect_vdev_count = 0;
|
|
uint64_t precise_vdev_count = 0;
|
|
uint64_t obsolete_counts_object_count = 0;
|
|
uint64_t obsolete_sm_count = 0;
|
|
uint64_t obsolete_counts_count = 0;
|
|
uint64_t scip_count = 0;
|
|
uint64_t obsolete_bpobj_count = 0;
|
|
int ret = 0;
|
|
|
|
spa_condensing_indirect_phys_t *scip =
|
|
&spa->spa_condensing_indirect_phys;
|
|
if (scip->scip_next_mapping_object != 0) {
|
|
vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
|
|
ASSERT(scip->scip_prev_obsolete_sm_object != 0);
|
|
ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
|
|
|
|
(void) printf("Condensing indirect vdev %llu: new mapping "
|
|
"object %llu, prev obsolete sm %llu\n",
|
|
(u_longlong_t)scip->scip_vdev,
|
|
(u_longlong_t)scip->scip_next_mapping_object,
|
|
(u_longlong_t)scip->scip_prev_obsolete_sm_object);
|
|
if (scip->scip_prev_obsolete_sm_object != 0) {
|
|
space_map_t *prev_obsolete_sm = NULL;
|
|
VERIFY0(space_map_open(&prev_obsolete_sm,
|
|
spa->spa_meta_objset,
|
|
scip->scip_prev_obsolete_sm_object,
|
|
0, vd->vdev_asize, 0));
|
|
dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
|
|
(void) printf("\n");
|
|
space_map_close(prev_obsolete_sm);
|
|
}
|
|
|
|
scip_count += 2;
|
|
}
|
|
|
|
for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
|
|
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
|
|
vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
|
|
|
|
if (vic->vic_mapping_object != 0) {
|
|
ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
|
|
vd->vdev_removing);
|
|
indirect_vdev_count++;
|
|
|
|
if (vd->vdev_indirect_mapping->vim_havecounts) {
|
|
obsolete_counts_count++;
|
|
}
|
|
}
|
|
|
|
boolean_t are_precise;
|
|
VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
|
|
if (are_precise) {
|
|
ASSERT(vic->vic_mapping_object != 0);
|
|
precise_vdev_count++;
|
|
}
|
|
|
|
uint64_t obsolete_sm_object;
|
|
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
|
|
if (obsolete_sm_object != 0) {
|
|
ASSERT(vic->vic_mapping_object != 0);
|
|
obsolete_sm_count++;
|
|
}
|
|
}
|
|
|
|
(void) feature_get_refcount(spa,
|
|
&spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
|
|
&dr_feature_refcount);
|
|
(void) feature_get_refcount(spa,
|
|
&spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
|
|
&oc_feature_refcount);
|
|
|
|
if (dr_feature_refcount != indirect_vdev_count) {
|
|
ret = 1;
|
|
(void) printf("Number of indirect vdevs (%llu) " \
|
|
"does not match feature count (%llu)\n",
|
|
(u_longlong_t)indirect_vdev_count,
|
|
(u_longlong_t)dr_feature_refcount);
|
|
} else {
|
|
(void) printf("Verified device_removal feature refcount " \
|
|
"of %llu is correct\n",
|
|
(u_longlong_t)dr_feature_refcount);
|
|
}
|
|
|
|
if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_OBSOLETE_BPOBJ) == 0) {
|
|
obsolete_bpobj_count++;
|
|
}
|
|
|
|
|
|
obsolete_counts_object_count = precise_vdev_count;
|
|
obsolete_counts_object_count += obsolete_sm_count;
|
|
obsolete_counts_object_count += obsolete_counts_count;
|
|
obsolete_counts_object_count += scip_count;
|
|
obsolete_counts_object_count += obsolete_bpobj_count;
|
|
obsolete_counts_object_count += remap_deadlist_count;
|
|
|
|
if (oc_feature_refcount != obsolete_counts_object_count) {
|
|
ret = 1;
|
|
(void) printf("Number of obsolete counts objects (%llu) " \
|
|
"does not match feature count (%llu)\n",
|
|
(u_longlong_t)obsolete_counts_object_count,
|
|
(u_longlong_t)oc_feature_refcount);
|
|
(void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
|
|
"ob:%llu rd:%llu\n",
|
|
(u_longlong_t)precise_vdev_count,
|
|
(u_longlong_t)obsolete_sm_count,
|
|
(u_longlong_t)obsolete_counts_count,
|
|
(u_longlong_t)scip_count,
|
|
(u_longlong_t)obsolete_bpobj_count,
|
|
(u_longlong_t)remap_deadlist_count);
|
|
} else {
|
|
(void) printf("Verified indirect_refcount feature refcount " \
|
|
"of %llu is correct\n",
|
|
(u_longlong_t)oc_feature_refcount);
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
zdb_set_skip_mmp(char *target)
|
|
{
|
|
spa_t *spa;
|
|
|
|
/*
|
|
* Disable the activity check to allow examination of
|
|
* active pools.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
if ((spa = spa_lookup(target)) != NULL) {
|
|
spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
#define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
|
|
/*
|
|
* Import the checkpointed state of the pool specified by the target
|
|
* parameter as readonly. The function also accepts a pool config
|
|
* as an optional parameter, else it attempts to infer the config by
|
|
* the name of the target pool.
|
|
*
|
|
* Note that the checkpointed state's pool name will be the name of
|
|
* the original pool with the above suffix appened to it. In addition,
|
|
* if the target is not a pool name (e.g. a path to a dataset) then
|
|
* the new_path parameter is populated with the updated path to
|
|
* reflect the fact that we are looking into the checkpointed state.
|
|
*
|
|
* The function returns a newly-allocated copy of the name of the
|
|
* pool containing the checkpointed state. When this copy is no
|
|
* longer needed it should be freed with free(3C). Same thing
|
|
* applies to the new_path parameter if allocated.
|
|
*/
|
|
static char *
|
|
import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
|
|
{
|
|
int error = 0;
|
|
char *poolname, *bogus_name = NULL;
|
|
|
|
/* If the target is not a pool, the extract the pool name */
|
|
char *path_start = strchr(target, '/');
|
|
if (path_start != NULL) {
|
|
size_t poolname_len = path_start - target;
|
|
poolname = strndup(target, poolname_len);
|
|
} else {
|
|
poolname = target;
|
|
}
|
|
|
|
if (cfg == NULL) {
|
|
zdb_set_skip_mmp(poolname);
|
|
error = spa_get_stats(poolname, &cfg, NULL, 0);
|
|
if (error != 0) {
|
|
fatal("Tried to read config of pool \"%s\" but "
|
|
"spa_get_stats() failed with error %d\n",
|
|
poolname, error);
|
|
}
|
|
}
|
|
|
|
if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1)
|
|
return (NULL);
|
|
fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
|
|
|
|
error = spa_import(bogus_name, cfg, NULL,
|
|
ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
|
|
ZFS_IMPORT_SKIP_MMP);
|
|
if (error != 0) {
|
|
fatal("Tried to import pool \"%s\" but spa_import() failed "
|
|
"with error %d\n", bogus_name, error);
|
|
}
|
|
|
|
if (new_path != NULL && path_start != NULL) {
|
|
if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
|
|
if (path_start != NULL)
|
|
free(poolname);
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
if (target != poolname)
|
|
free(poolname);
|
|
|
|
return (bogus_name);
|
|
}
|
|
|
|
typedef struct verify_checkpoint_sm_entry_cb_arg {
|
|
vdev_t *vcsec_vd;
|
|
|
|
/* the following fields are only used for printing progress */
|
|
uint64_t vcsec_entryid;
|
|
uint64_t vcsec_num_entries;
|
|
} verify_checkpoint_sm_entry_cb_arg_t;
|
|
|
|
#define ENTRIES_PER_PROGRESS_UPDATE 10000
|
|
|
|
static int
|
|
verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
|
|
{
|
|
verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
|
|
vdev_t *vd = vcsec->vcsec_vd;
|
|
metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
|
|
uint64_t end = sme->sme_offset + sme->sme_run;
|
|
|
|
ASSERT(sme->sme_type == SM_FREE);
|
|
|
|
if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
|
|
(void) fprintf(stderr,
|
|
"\rverifying vdev %llu, space map entry %llu of %llu ...",
|
|
(longlong_t)vd->vdev_id,
|
|
(longlong_t)vcsec->vcsec_entryid,
|
|
(longlong_t)vcsec->vcsec_num_entries);
|
|
}
|
|
vcsec->vcsec_entryid++;
|
|
|
|
/*
|
|
* See comment in checkpoint_sm_exclude_entry_cb()
|
|
*/
|
|
VERIFY3U(sme->sme_offset, >=, ms->ms_start);
|
|
VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
|
|
|
|
/*
|
|
* The entries in the vdev_checkpoint_sm should be marked as
|
|
* allocated in the checkpointed state of the pool, therefore
|
|
* their respective ms_allocateable trees should not contain them.
|
|
*/
|
|
mutex_enter(&ms->ms_lock);
|
|
range_tree_verify_not_present(ms->ms_allocatable,
|
|
sme->sme_offset, sme->sme_run);
|
|
mutex_exit(&ms->ms_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Verify that all segments in the vdev_checkpoint_sm are allocated
|
|
* according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
|
|
* ms_allocatable).
|
|
*
|
|
* Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
|
|
* each vdev in the current state of the pool to the metaslab space maps
|
|
* (ms_sm) of the checkpointed state of the pool.
|
|
*
|
|
* Note that the function changes the state of the ms_allocatable
|
|
* trees of the current spa_t. The entries of these ms_allocatable
|
|
* trees are cleared out and then repopulated from with the free
|
|
* entries of their respective ms_sm space maps.
|
|
*/
|
|
static void
|
|
verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
|
|
{
|
|
vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
|
|
vdev_t *current_rvd = current->spa_root_vdev;
|
|
|
|
load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
|
|
|
|
for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
|
|
vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
|
|
vdev_t *current_vd = current_rvd->vdev_child[c];
|
|
|
|
space_map_t *checkpoint_sm = NULL;
|
|
uint64_t checkpoint_sm_obj;
|
|
|
|
if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
|
|
/*
|
|
* Since we don't allow device removal in a pool
|
|
* that has a checkpoint, we expect that all removed
|
|
* vdevs were removed from the pool before the
|
|
* checkpoint.
|
|
*/
|
|
ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the checkpoint space map doesn't exist, then nothing
|
|
* here is checkpointed so there's nothing to verify.
|
|
*/
|
|
if (current_vd->vdev_top_zap == 0 ||
|
|
zap_contains(spa_meta_objset(current),
|
|
current_vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
|
|
continue;
|
|
|
|
VERIFY0(zap_lookup(spa_meta_objset(current),
|
|
current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
|
|
sizeof (uint64_t), 1, &checkpoint_sm_obj));
|
|
|
|
VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
|
|
checkpoint_sm_obj, 0, current_vd->vdev_asize,
|
|
current_vd->vdev_ashift));
|
|
|
|
verify_checkpoint_sm_entry_cb_arg_t vcsec;
|
|
vcsec.vcsec_vd = ckpoint_vd;
|
|
vcsec.vcsec_entryid = 0;
|
|
vcsec.vcsec_num_entries =
|
|
space_map_length(checkpoint_sm) / sizeof (uint64_t);
|
|
VERIFY0(space_map_iterate(checkpoint_sm,
|
|
space_map_length(checkpoint_sm),
|
|
verify_checkpoint_sm_entry_cb, &vcsec));
|
|
if (dump_opt['m'] > 3)
|
|
dump_spacemap(current->spa_meta_objset, checkpoint_sm);
|
|
space_map_close(checkpoint_sm);
|
|
}
|
|
|
|
/*
|
|
* If we've added vdevs since we took the checkpoint, ensure
|
|
* that their checkpoint space maps are empty.
|
|
*/
|
|
if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
|
|
for (uint64_t c = ckpoint_rvd->vdev_children;
|
|
c < current_rvd->vdev_children; c++) {
|
|
vdev_t *current_vd = current_rvd->vdev_child[c];
|
|
ASSERT3P(current_vd->vdev_checkpoint_sm, ==, NULL);
|
|
}
|
|
}
|
|
|
|
/* for cleaner progress output */
|
|
(void) fprintf(stderr, "\n");
|
|
}
|
|
|
|
/*
|
|
* Verifies that all space that's allocated in the checkpoint is
|
|
* still allocated in the current version, by checking that everything
|
|
* in checkpoint's ms_allocatable (which is actually allocated, not
|
|
* allocatable/free) is not present in current's ms_allocatable.
|
|
*
|
|
* Note that the function changes the state of the ms_allocatable
|
|
* trees of both spas when called. The entries of all ms_allocatable
|
|
* trees are cleared out and then repopulated from their respective
|
|
* ms_sm space maps. In the checkpointed state we load the allocated
|
|
* entries, and in the current state we load the free entries.
|
|
*/
|
|
static void
|
|
verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
|
|
{
|
|
vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
|
|
vdev_t *current_rvd = current->spa_root_vdev;
|
|
|
|
load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
|
|
load_concrete_ms_allocatable_trees(current, SM_FREE);
|
|
|
|
for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
|
|
vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
|
|
vdev_t *current_vd = current_rvd->vdev_child[i];
|
|
|
|
if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
|
|
/*
|
|
* See comment in verify_checkpoint_vdev_spacemaps()
|
|
*/
|
|
ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
|
|
continue;
|
|
}
|
|
|
|
for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
|
|
metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
|
|
metaslab_t *current_msp = current_vd->vdev_ms[m];
|
|
|
|
(void) fprintf(stderr,
|
|
"\rverifying vdev %llu of %llu, "
|
|
"metaslab %llu of %llu ...",
|
|
(longlong_t)current_vd->vdev_id,
|
|
(longlong_t)current_rvd->vdev_children,
|
|
(longlong_t)current_vd->vdev_ms[m]->ms_id,
|
|
(longlong_t)current_vd->vdev_ms_count);
|
|
|
|
/*
|
|
* We walk through the ms_allocatable trees that
|
|
* are loaded with the allocated blocks from the
|
|
* ms_sm spacemaps of the checkpoint. For each
|
|
* one of these ranges we ensure that none of them
|
|
* exists in the ms_allocatable trees of the
|
|
* current state which are loaded with the ranges
|
|
* that are currently free.
|
|
*
|
|
* This way we ensure that none of the blocks that
|
|
* are part of the checkpoint were freed by mistake.
|
|
*/
|
|
range_tree_walk(ckpoint_msp->ms_allocatable,
|
|
(range_tree_func_t *)range_tree_verify_not_present,
|
|
current_msp->ms_allocatable);
|
|
}
|
|
}
|
|
|
|
/* for cleaner progress output */
|
|
(void) fprintf(stderr, "\n");
|
|
}
|
|
|
|
static void
|
|
verify_checkpoint_blocks(spa_t *spa)
|
|
{
|
|
ASSERT(!dump_opt['L']);
|
|
|
|
spa_t *checkpoint_spa;
|
|
char *checkpoint_pool;
|
|
nvlist_t *config = NULL;
|
|
int error = 0;
|
|
|
|
/*
|
|
* We import the checkpointed state of the pool (under a different
|
|
* name) so we can do verification on it against the current state
|
|
* of the pool.
|
|
*/
|
|
checkpoint_pool = import_checkpointed_state(spa->spa_name, config,
|
|
NULL);
|
|
ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
|
|
|
|
error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
|
|
if (error != 0) {
|
|
fatal("Tried to open pool \"%s\" but spa_open() failed with "
|
|
"error %d\n", checkpoint_pool, error);
|
|
}
|
|
|
|
/*
|
|
* Ensure that ranges in the checkpoint space maps of each vdev
|
|
* are allocated according to the checkpointed state's metaslab
|
|
* space maps.
|
|
*/
|
|
verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
|
|
|
|
/*
|
|
* Ensure that allocated ranges in the checkpoint's metaslab
|
|
* space maps remain allocated in the metaslab space maps of
|
|
* the current state.
|
|
*/
|
|
verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
|
|
|
|
/*
|
|
* Once we are done, we get rid of the checkpointed state.
|
|
*/
|
|
spa_close(checkpoint_spa, FTAG);
|
|
free(checkpoint_pool);
|
|
}
|
|
|
|
static void
|
|
dump_leftover_checkpoint_blocks(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
|
|
vdev_t *vd = rvd->vdev_child[i];
|
|
|
|
space_map_t *checkpoint_sm = NULL;
|
|
uint64_t checkpoint_sm_obj;
|
|
|
|
if (vd->vdev_top_zap == 0)
|
|
continue;
|
|
|
|
if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
|
|
continue;
|
|
|
|
VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
|
|
sizeof (uint64_t), 1, &checkpoint_sm_obj));
|
|
|
|
VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
|
|
checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
|
|
dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
|
|
space_map_close(checkpoint_sm);
|
|
}
|
|
}
|
|
|
|
static int
|
|
verify_checkpoint(spa_t *spa)
|
|
{
|
|
uberblock_t checkpoint;
|
|
int error;
|
|
|
|
if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
|
|
return (0);
|
|
|
|
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
|
|
sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
|
|
|
|
if (error == ENOENT && !dump_opt['L']) {
|
|
/*
|
|
* If the feature is active but the uberblock is missing
|
|
* then we must be in the middle of discarding the
|
|
* checkpoint.
|
|
*/
|
|
(void) printf("\nPartially discarded checkpoint "
|
|
"state found:\n");
|
|
if (dump_opt['m'] > 3)
|
|
dump_leftover_checkpoint_blocks(spa);
|
|
return (0);
|
|
} else if (error != 0) {
|
|
(void) printf("lookup error %d when looking for "
|
|
"checkpointed uberblock in MOS\n", error);
|
|
return (error);
|
|
}
|
|
dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
|
|
|
|
if (checkpoint.ub_checkpoint_txg == 0) {
|
|
(void) printf("\nub_checkpoint_txg not set in checkpointed "
|
|
"uberblock\n");
|
|
error = 3;
|
|
}
|
|
|
|
if (error == 0 && !dump_opt['L'])
|
|
verify_checkpoint_blocks(spa);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
for (uint64_t i = start; i < size; i++) {
|
|
(void) printf("MOS object %llu referenced but not allocated\n",
|
|
(u_longlong_t)i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mos_obj_refd(uint64_t obj)
|
|
{
|
|
if (obj != 0 && mos_refd_objs != NULL)
|
|
range_tree_add(mos_refd_objs, obj, 1);
|
|
}
|
|
|
|
/*
|
|
* Call on a MOS object that may already have been referenced.
|
|
*/
|
|
static void
|
|
mos_obj_refd_multiple(uint64_t obj)
|
|
{
|
|
if (obj != 0 && mos_refd_objs != NULL &&
|
|
!range_tree_contains(mos_refd_objs, obj, 1))
|
|
range_tree_add(mos_refd_objs, obj, 1);
|
|
}
|
|
|
|
static void
|
|
mos_leak_vdev(vdev_t *vd)
|
|
{
|
|
mos_obj_refd(vd->vdev_dtl_object);
|
|
mos_obj_refd(vd->vdev_ms_array);
|
|
mos_obj_refd(vd->vdev_top_zap);
|
|
mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
|
|
mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
|
|
mos_obj_refd(vd->vdev_leaf_zap);
|
|
if (vd->vdev_checkpoint_sm != NULL)
|
|
mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
|
|
if (vd->vdev_indirect_mapping != NULL) {
|
|
mos_obj_refd(vd->vdev_indirect_mapping->
|
|
vim_phys->vimp_counts_object);
|
|
}
|
|
if (vd->vdev_obsolete_sm != NULL)
|
|
mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
|
|
|
|
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
|
|
metaslab_t *ms = vd->vdev_ms[m];
|
|
mos_obj_refd(space_map_object(ms->ms_sm));
|
|
}
|
|
|
|
for (uint64_t c = 0; c < vd->vdev_children; c++) {
|
|
mos_leak_vdev(vd->vdev_child[c]);
|
|
}
|
|
}
|
|
|
|
static int
|
|
dump_mos_leaks(spa_t *spa)
|
|
{
|
|
int rv = 0;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
dsl_pool_t *dp = spa->spa_dsl_pool;
|
|
|
|
/* Visit and mark all referenced objects in the MOS */
|
|
|
|
mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
|
|
mos_obj_refd(spa->spa_pool_props_object);
|
|
mos_obj_refd(spa->spa_config_object);
|
|
mos_obj_refd(spa->spa_ddt_stat_object);
|
|
mos_obj_refd(spa->spa_feat_desc_obj);
|
|
mos_obj_refd(spa->spa_feat_enabled_txg_obj);
|
|
mos_obj_refd(spa->spa_feat_for_read_obj);
|
|
mos_obj_refd(spa->spa_feat_for_write_obj);
|
|
mos_obj_refd(spa->spa_history);
|
|
mos_obj_refd(spa->spa_errlog_last);
|
|
mos_obj_refd(spa->spa_errlog_scrub);
|
|
mos_obj_refd(spa->spa_all_vdev_zaps);
|
|
mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
|
|
mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
|
|
mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
|
|
bpobj_count_refd(&spa->spa_deferred_bpobj);
|
|
mos_obj_refd(dp->dp_empty_bpobj);
|
|
bpobj_count_refd(&dp->dp_obsolete_bpobj);
|
|
bpobj_count_refd(&dp->dp_free_bpobj);
|
|
mos_obj_refd(spa->spa_l2cache.sav_object);
|
|
mos_obj_refd(spa->spa_spares.sav_object);
|
|
|
|
mos_obj_refd(spa->spa_condensing_indirect_phys.
|
|
scip_next_mapping_object);
|
|
mos_obj_refd(spa->spa_condensing_indirect_phys.
|
|
scip_prev_obsolete_sm_object);
|
|
if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
|
|
vdev_indirect_mapping_t *vim =
|
|
vdev_indirect_mapping_open(mos,
|
|
spa->spa_condensing_indirect_phys.scip_next_mapping_object);
|
|
mos_obj_refd(vim->vim_phys->vimp_counts_object);
|
|
vdev_indirect_mapping_close(vim);
|
|
}
|
|
|
|
if (dp->dp_origin_snap != NULL) {
|
|
dsl_dataset_t *ds;
|
|
|
|
dsl_pool_config_enter(dp, FTAG);
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
|
dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
|
|
FTAG, &ds));
|
|
count_ds_mos_objects(ds);
|
|
dump_deadlist(&ds->ds_deadlist);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
dsl_pool_config_exit(dp, FTAG);
|
|
|
|
count_ds_mos_objects(dp->dp_origin_snap);
|
|
dump_deadlist(&dp->dp_origin_snap->ds_deadlist);
|
|
}
|
|
count_dir_mos_objects(dp->dp_mos_dir);
|
|
if (dp->dp_free_dir != NULL)
|
|
count_dir_mos_objects(dp->dp_free_dir);
|
|
if (dp->dp_leak_dir != NULL)
|
|
count_dir_mos_objects(dp->dp_leak_dir);
|
|
|
|
mos_leak_vdev(spa->spa_root_vdev);
|
|
|
|
for (uint64_t class = 0; class < DDT_CLASSES; class++) {
|
|
for (uint64_t type = 0; type < DDT_TYPES; type++) {
|
|
for (uint64_t cksum = 0;
|
|
cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) {
|
|
ddt_t *ddt = spa->spa_ddt[cksum];
|
|
mos_obj_refd(ddt->ddt_object[type][class]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Visit all allocated objects and make sure they are referenced.
|
|
*/
|
|
uint64_t object = 0;
|
|
while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
|
|
if (range_tree_contains(mos_refd_objs, object, 1)) {
|
|
range_tree_remove(mos_refd_objs, object, 1);
|
|
} else {
|
|
dmu_object_info_t doi;
|
|
const char *name;
|
|
dmu_object_info(mos, object, &doi);
|
|
if (doi.doi_type & DMU_OT_NEWTYPE) {
|
|
dmu_object_byteswap_t bswap =
|
|
DMU_OT_BYTESWAP(doi.doi_type);
|
|
name = dmu_ot_byteswap[bswap].ob_name;
|
|
} else {
|
|
name = dmu_ot[doi.doi_type].ot_name;
|
|
}
|
|
|
|
(void) printf("MOS object %llu (%s) leaked\n",
|
|
(u_longlong_t)object, name);
|
|
rv = 2;
|
|
}
|
|
}
|
|
(void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
|
|
if (!range_tree_is_empty(mos_refd_objs))
|
|
rv = 2;
|
|
range_tree_vacate(mos_refd_objs, NULL, NULL);
|
|
range_tree_destroy(mos_refd_objs);
|
|
return (rv);
|
|
}
|
|
|
|
static void
|
|
dump_zpool(spa_t *spa)
|
|
{
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
int rc = 0;
|
|
|
|
if (dump_opt['S']) {
|
|
dump_simulated_ddt(spa);
|
|
return;
|
|
}
|
|
|
|
if (!dump_opt['e'] && dump_opt['C'] > 1) {
|
|
(void) printf("\nCached configuration:\n");
|
|
dump_nvlist(spa->spa_config, 8);
|
|
}
|
|
|
|
if (dump_opt['C'])
|
|
dump_config(spa);
|
|
|
|
if (dump_opt['u'])
|
|
dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
|
|
|
|
if (dump_opt['D'])
|
|
dump_all_ddts(spa);
|
|
|
|
if (dump_opt['d'] > 2 || dump_opt['m'])
|
|
dump_metaslabs(spa);
|
|
if (dump_opt['M'])
|
|
dump_metaslab_groups(spa);
|
|
|
|
if (dump_opt['d'] || dump_opt['i']) {
|
|
spa_feature_t f;
|
|
mos_refd_objs = range_tree_create(NULL, NULL);
|
|
dump_dir(dp->dp_meta_objset);
|
|
|
|
if (dump_opt['d'] >= 3) {
|
|
dsl_pool_t *dp = spa->spa_dsl_pool;
|
|
dump_full_bpobj(&spa->spa_deferred_bpobj,
|
|
"Deferred frees", 0);
|
|
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
|
|
dump_full_bpobj(&dp->dp_free_bpobj,
|
|
"Pool snapshot frees", 0);
|
|
}
|
|
if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
|
|
ASSERT(spa_feature_is_enabled(spa,
|
|
SPA_FEATURE_DEVICE_REMOVAL));
|
|
dump_full_bpobj(&dp->dp_obsolete_bpobj,
|
|
"Pool obsolete blocks", 0);
|
|
}
|
|
|
|
if (spa_feature_is_active(spa,
|
|
SPA_FEATURE_ASYNC_DESTROY)) {
|
|
dump_bptree(spa->spa_meta_objset,
|
|
dp->dp_bptree_obj,
|
|
"Pool dataset frees");
|
|
}
|
|
dump_dtl(spa->spa_root_vdev, 0);
|
|
}
|
|
(void) dmu_objset_find(spa_name(spa), dump_one_dir,
|
|
NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
|
|
|
|
if (rc == 0 && !dump_opt['L'])
|
|
rc = dump_mos_leaks(spa);
|
|
|
|
for (f = 0; f < SPA_FEATURES; f++) {
|
|
uint64_t refcount;
|
|
|
|
if (!(spa_feature_table[f].fi_flags &
|
|
ZFEATURE_FLAG_PER_DATASET) ||
|
|
!spa_feature_is_enabled(spa, f)) {
|
|
ASSERT0(dataset_feature_count[f]);
|
|
continue;
|
|
}
|
|
if (feature_get_refcount(spa, &spa_feature_table[f],
|
|
&refcount) == ENOTSUP)
|
|
continue;
|
|
if (dataset_feature_count[f] != refcount) {
|
|
(void) printf("%s feature refcount mismatch: "
|
|
"%lld datasets != %lld refcount\n",
|
|
spa_feature_table[f].fi_uname,
|
|
(longlong_t)dataset_feature_count[f],
|
|
(longlong_t)refcount);
|
|
rc = 2;
|
|
} else {
|
|
(void) printf("Verified %s feature refcount "
|
|
"of %llu is correct\n",
|
|
spa_feature_table[f].fi_uname,
|
|
(longlong_t)refcount);
|
|
}
|
|
}
|
|
|
|
if (rc == 0) {
|
|
rc = verify_device_removal_feature_counts(spa);
|
|
}
|
|
}
|
|
|
|
if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
|
|
rc = dump_block_stats(spa);
|
|
|
|
if (rc == 0)
|
|
rc = verify_spacemap_refcounts(spa);
|
|
|
|
if (dump_opt['s'])
|
|
show_pool_stats(spa);
|
|
|
|
if (dump_opt['h'])
|
|
dump_history(spa);
|
|
|
|
if (rc == 0)
|
|
rc = verify_checkpoint(spa);
|
|
|
|
if (rc != 0) {
|
|
dump_debug_buffer();
|
|
exit(rc);
|
|
}
|
|
}
|
|
|
|
#define ZDB_FLAG_CHECKSUM 0x0001
|
|
#define ZDB_FLAG_DECOMPRESS 0x0002
|
|
#define ZDB_FLAG_BSWAP 0x0004
|
|
#define ZDB_FLAG_GBH 0x0008
|
|
#define ZDB_FLAG_INDIRECT 0x0010
|
|
#define ZDB_FLAG_PHYS 0x0020
|
|
#define ZDB_FLAG_RAW 0x0040
|
|
#define ZDB_FLAG_PRINT_BLKPTR 0x0080
|
|
|
|
static int flagbits[256];
|
|
|
|
static void
|
|
zdb_print_blkptr(blkptr_t *bp, int flags)
|
|
{
|
|
char blkbuf[BP_SPRINTF_LEN];
|
|
|
|
if (flags & ZDB_FLAG_BSWAP)
|
|
byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
|
|
|
|
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
|
|
(void) printf("%s\n", blkbuf);
|
|
}
|
|
|
|
static void
|
|
zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nbps; i++)
|
|
zdb_print_blkptr(&bp[i], flags);
|
|
}
|
|
|
|
static void
|
|
zdb_dump_gbh(void *buf, int flags)
|
|
{
|
|
zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
|
|
}
|
|
|
|
static void
|
|
zdb_dump_block_raw(void *buf, uint64_t size, int flags)
|
|
{
|
|
if (flags & ZDB_FLAG_BSWAP)
|
|
byteswap_uint64_array(buf, size);
|
|
VERIFY(write(fileno(stdout), buf, size) == size);
|
|
}
|
|
|
|
static void
|
|
zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
|
|
{
|
|
uint64_t *d = (uint64_t *)buf;
|
|
unsigned nwords = size / sizeof (uint64_t);
|
|
int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
|
|
unsigned i, j;
|
|
const char *hdr;
|
|
char *c;
|
|
|
|
|
|
if (do_bswap)
|
|
hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
|
|
else
|
|
hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
|
|
|
|
(void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
|
|
|
|
#ifdef _LITTLE_ENDIAN
|
|
/* correct the endianness */
|
|
do_bswap = !do_bswap;
|
|
#endif
|
|
for (i = 0; i < nwords; i += 2) {
|
|
(void) printf("%06llx: %016llx %016llx ",
|
|
(u_longlong_t)(i * sizeof (uint64_t)),
|
|
(u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
|
|
(u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
|
|
|
|
c = (char *)&d[i];
|
|
for (j = 0; j < 2 * sizeof (uint64_t); j++)
|
|
(void) printf("%c", isprint(c[j]) ? c[j] : '.');
|
|
(void) printf("\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There are two acceptable formats:
|
|
* leaf_name - For example: c1t0d0 or /tmp/ztest.0a
|
|
* child[.child]* - For example: 0.1.1
|
|
*
|
|
* The second form can be used to specify arbitrary vdevs anywhere
|
|
* in the hierarchy. For example, in a pool with a mirror of
|
|
* RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
|
|
*/
|
|
static vdev_t *
|
|
zdb_vdev_lookup(vdev_t *vdev, const char *path)
|
|
{
|
|
char *s, *p, *q;
|
|
unsigned i;
|
|
|
|
if (vdev == NULL)
|
|
return (NULL);
|
|
|
|
/* First, assume the x.x.x.x format */
|
|
i = strtoul(path, &s, 10);
|
|
if (s == path || (s && *s != '.' && *s != '\0'))
|
|
goto name;
|
|
if (i >= vdev->vdev_children)
|
|
return (NULL);
|
|
|
|
vdev = vdev->vdev_child[i];
|
|
if (s && *s == '\0')
|
|
return (vdev);
|
|
return (zdb_vdev_lookup(vdev, s+1));
|
|
|
|
name:
|
|
for (i = 0; i < vdev->vdev_children; i++) {
|
|
vdev_t *vc = vdev->vdev_child[i];
|
|
|
|
if (vc->vdev_path == NULL) {
|
|
vc = zdb_vdev_lookup(vc, path);
|
|
if (vc == NULL)
|
|
continue;
|
|
else
|
|
return (vc);
|
|
}
|
|
|
|
p = strrchr(vc->vdev_path, '/');
|
|
p = p ? p + 1 : vc->vdev_path;
|
|
q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
|
|
|
|
if (strcmp(vc->vdev_path, path) == 0)
|
|
return (vc);
|
|
if (strcmp(p, path) == 0)
|
|
return (vc);
|
|
if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
|
|
return (vc);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Read a block from a pool and print it out. The syntax of the
|
|
* block descriptor is:
|
|
*
|
|
* pool:vdev_specifier:offset:size[:flags]
|
|
*
|
|
* pool - The name of the pool you wish to read from
|
|
* vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
|
|
* offset - offset, in hex, in bytes
|
|
* size - Amount of data to read, in hex, in bytes
|
|
* flags - A string of characters specifying options
|
|
* b: Decode a blkptr at given offset within block
|
|
* *c: Calculate and display checksums
|
|
* d: Decompress data before dumping
|
|
* e: Byteswap data before dumping
|
|
* g: Display data as a gang block header
|
|
* i: Display as an indirect block
|
|
* p: Do I/O to physical offset
|
|
* r: Dump raw data to stdout
|
|
*
|
|
* * = not yet implemented
|
|
*/
|
|
static void
|
|
zdb_read_block(char *thing, spa_t *spa)
|
|
{
|
|
blkptr_t blk, *bp = &blk;
|
|
dva_t *dva = bp->blk_dva;
|
|
int flags = 0;
|
|
uint64_t offset = 0, size = 0, psize = 0, lsize = 0, blkptr_offset = 0;
|
|
zio_t *zio;
|
|
vdev_t *vd;
|
|
abd_t *pabd;
|
|
void *lbuf, *buf;
|
|
const char *s, *vdev;
|
|
char *p, *dup, *flagstr;
|
|
int i, error;
|
|
boolean_t borrowed = B_FALSE;
|
|
|
|
dup = strdup(thing);
|
|
s = strtok(dup, ":");
|
|
vdev = s ? s : "";
|
|
s = strtok(NULL, ":");
|
|
offset = strtoull(s ? s : "", NULL, 16);
|
|
s = strtok(NULL, ":");
|
|
size = strtoull(s ? s : "", NULL, 16);
|
|
s = strtok(NULL, ":");
|
|
if (s)
|
|
flagstr = strdup(s);
|
|
else
|
|
flagstr = strdup("");
|
|
|
|
s = NULL;
|
|
if (size == 0)
|
|
s = "size must not be zero";
|
|
if (!IS_P2ALIGNED(size, DEV_BSIZE))
|
|
s = "size must be a multiple of sector size";
|
|
if (!IS_P2ALIGNED(offset, DEV_BSIZE))
|
|
s = "offset must be a multiple of sector size";
|
|
if (s) {
|
|
(void) printf("Invalid block specifier: %s - %s\n", thing, s);
|
|
free(flagstr);
|
|
free(dup);
|
|
return;
|
|
}
|
|
|
|
for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) {
|
|
for (i = 0; flagstr[i]; i++) {
|
|
int bit = flagbits[(uchar_t)flagstr[i]];
|
|
|
|
if (bit == 0) {
|
|
(void) printf("***Invalid flag: %c\n",
|
|
flagstr[i]);
|
|
continue;
|
|
}
|
|
flags |= bit;
|
|
|
|
/* If it's not something with an argument, keep going */
|
|
if ((bit & (ZDB_FLAG_CHECKSUM |
|
|
ZDB_FLAG_PRINT_BLKPTR)) == 0)
|
|
continue;
|
|
|
|
p = &flagstr[i + 1];
|
|
if (bit == ZDB_FLAG_PRINT_BLKPTR) {
|
|
blkptr_offset = strtoull(p, &p, 16);
|
|
i = p - &flagstr[i + 1];
|
|
}
|
|
if (*p != ':' && *p != '\0') {
|
|
(void) printf("***Invalid flag arg: '%s'\n", s);
|
|
free(flagstr);
|
|
free(dup);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
free(flagstr);
|
|
|
|
vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
|
|
if (vd == NULL) {
|
|
(void) printf("***Invalid vdev: %s\n", vdev);
|
|
free(dup);
|
|
return;
|
|
} else {
|
|
if (vd->vdev_path)
|
|
(void) fprintf(stderr, "Found vdev: %s\n",
|
|
vd->vdev_path);
|
|
else
|
|
(void) fprintf(stderr, "Found vdev type: %s\n",
|
|
vd->vdev_ops->vdev_op_type);
|
|
}
|
|
|
|
psize = size;
|
|
lsize = size;
|
|
|
|
pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
|
|
lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
|
|
|
|
BP_ZERO(bp);
|
|
|
|
DVA_SET_VDEV(&dva[0], vd->vdev_id);
|
|
DVA_SET_OFFSET(&dva[0], offset);
|
|
DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
|
|
DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
|
|
|
|
BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
|
|
|
|
BP_SET_LSIZE(bp, lsize);
|
|
BP_SET_PSIZE(bp, psize);
|
|
BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
|
|
BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
|
|
BP_SET_TYPE(bp, DMU_OT_NONE);
|
|
BP_SET_LEVEL(bp, 0);
|
|
BP_SET_DEDUP(bp, 0);
|
|
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
|
|
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
zio = zio_root(spa, NULL, NULL, 0);
|
|
|
|
if (vd == vd->vdev_top) {
|
|
/*
|
|
* Treat this as a normal block read.
|
|
*/
|
|
zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
|
|
ZIO_PRIORITY_SYNC_READ,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
|
|
} else {
|
|
/*
|
|
* Treat this as a vdev child I/O.
|
|
*/
|
|
zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
|
|
psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
|
|
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE |
|
|
ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
|
|
NULL, NULL));
|
|
}
|
|
|
|
error = zio_wait(zio);
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
if (error) {
|
|
(void) printf("Read of %s failed, error: %d\n", thing, error);
|
|
goto out;
|
|
}
|
|
|
|
if (flags & ZDB_FLAG_DECOMPRESS) {
|
|
/*
|
|
* We don't know how the data was compressed, so just try
|
|
* every decompress function at every inflated blocksize.
|
|
*/
|
|
enum zio_compress c;
|
|
void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
|
|
|
|
/*
|
|
* XXX - On the one hand, with SPA_MAXBLOCKSIZE at 16MB,
|
|
* this could take a while and we should let the user know
|
|
* we are not stuck. On the other hand, printing progress
|
|
* info gets old after a while. What to do?
|
|
*/
|
|
for (lsize = psize + SPA_MINBLOCKSIZE;
|
|
lsize <= SPA_MAXBLOCKSIZE; lsize += SPA_MINBLOCKSIZE) {
|
|
for (c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) {
|
|
/*
|
|
* ZLE can easily decompress non zle stream.
|
|
* So have an option to disable it.
|
|
*/
|
|
if (c == ZIO_COMPRESS_ZLE &&
|
|
getenv("ZDB_NO_ZLE"))
|
|
continue;
|
|
|
|
(void) fprintf(stderr,
|
|
"Trying %05llx -> %05llx (%s)\n",
|
|
(u_longlong_t)psize, (u_longlong_t)lsize,
|
|
zio_compress_table[c].ci_name);
|
|
|
|
/*
|
|
* We randomize lbuf2, and decompress to both
|
|
* lbuf and lbuf2. This way, we will know if
|
|
* decompression fill exactly to lsize.
|
|
*/
|
|
VERIFY0(random_get_pseudo_bytes(lbuf2, lsize));
|
|
|
|
if (zio_decompress_data(c, pabd,
|
|
lbuf, psize, lsize) == 0 &&
|
|
zio_decompress_data(c, pabd,
|
|
lbuf2, psize, lsize) == 0 &&
|
|
bcmp(lbuf, lbuf2, lsize) == 0)
|
|
break;
|
|
}
|
|
if (c != ZIO_COMPRESS_FUNCTIONS)
|
|
break;
|
|
}
|
|
umem_free(lbuf2, SPA_MAXBLOCKSIZE);
|
|
|
|
if (lsize > SPA_MAXBLOCKSIZE) {
|
|
(void) printf("Decompress of %s failed\n", thing);
|
|
goto out;
|
|
}
|
|
buf = lbuf;
|
|
size = lsize;
|
|
} else {
|
|
size = psize;
|
|
buf = abd_borrow_buf_copy(pabd, size);
|
|
borrowed = B_TRUE;
|
|
}
|
|
|
|
if (flags & ZDB_FLAG_PRINT_BLKPTR)
|
|
zdb_print_blkptr((blkptr_t *)(void *)
|
|
((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
|
|
else if (flags & ZDB_FLAG_RAW)
|
|
zdb_dump_block_raw(buf, size, flags);
|
|
else if (flags & ZDB_FLAG_INDIRECT)
|
|
zdb_dump_indirect((blkptr_t *)buf, size / sizeof (blkptr_t),
|
|
flags);
|
|
else if (flags & ZDB_FLAG_GBH)
|
|
zdb_dump_gbh(buf, flags);
|
|
else
|
|
zdb_dump_block(thing, buf, size, flags);
|
|
|
|
if (borrowed)
|
|
abd_return_buf_copy(pabd, buf, size);
|
|
|
|
out:
|
|
abd_free(pabd);
|
|
umem_free(lbuf, SPA_MAXBLOCKSIZE);
|
|
free(dup);
|
|
}
|
|
|
|
static void
|
|
zdb_embedded_block(char *thing)
|
|
{
|
|
blkptr_t bp;
|
|
unsigned long long *words = (void *)&bp;
|
|
char *buf;
|
|
int err;
|
|
|
|
bzero(&bp, sizeof (bp));
|
|
err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
|
|
"%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
|
|
words + 0, words + 1, words + 2, words + 3,
|
|
words + 4, words + 5, words + 6, words + 7,
|
|
words + 8, words + 9, words + 10, words + 11,
|
|
words + 12, words + 13, words + 14, words + 15);
|
|
if (err != 16) {
|
|
(void) fprintf(stderr, "invalid input format\n");
|
|
exit(1);
|
|
}
|
|
ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
|
|
buf = malloc(SPA_MAXBLOCKSIZE);
|
|
if (buf == NULL) {
|
|
(void) fprintf(stderr, "out of memory\n");
|
|
exit(1);
|
|
}
|
|
err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
|
|
if (err != 0) {
|
|
(void) fprintf(stderr, "decode failed: %u\n", err);
|
|
exit(1);
|
|
}
|
|
zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
|
|
free(buf);
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
int c;
|
|
struct rlimit rl = { 1024, 1024 };
|
|
spa_t *spa = NULL;
|
|
objset_t *os = NULL;
|
|
int dump_all = 1;
|
|
int verbose = 0;
|
|
int error = 0;
|
|
char **searchdirs = NULL;
|
|
int nsearch = 0;
|
|
char *target, *target_pool;
|
|
nvlist_t *policy = NULL;
|
|
uint64_t max_txg = UINT64_MAX;
|
|
int flags = ZFS_IMPORT_MISSING_LOG;
|
|
int rewind = ZPOOL_NEVER_REWIND;
|
|
char *spa_config_path_env;
|
|
boolean_t target_is_spa = B_TRUE;
|
|
nvlist_t *cfg = NULL;
|
|
|
|
(void) setrlimit(RLIMIT_NOFILE, &rl);
|
|
(void) enable_extended_FILE_stdio(-1, -1);
|
|
|
|
dprintf_setup(&argc, argv);
|
|
|
|
/*
|
|
* If there is an environment variable SPA_CONFIG_PATH it overrides
|
|
* default spa_config_path setting. If -U flag is specified it will
|
|
* override this environment variable settings once again.
|
|
*/
|
|
spa_config_path_env = getenv("SPA_CONFIG_PATH");
|
|
if (spa_config_path_env != NULL)
|
|
spa_config_path = spa_config_path_env;
|
|
|
|
while ((c = getopt(argc, argv,
|
|
"AbcCdDeEFGhiI:klLmMo:Op:PqRsSt:uU:vVx:XY")) != -1) {
|
|
switch (c) {
|
|
case 'b':
|
|
case 'c':
|
|
case 'C':
|
|
case 'd':
|
|
case 'D':
|
|
case 'E':
|
|
case 'G':
|
|
case 'h':
|
|
case 'i':
|
|
case 'l':
|
|
case 'm':
|
|
case 'M':
|
|
case 'O':
|
|
case 'R':
|
|
case 's':
|
|
case 'S':
|
|
case 'u':
|
|
dump_opt[c]++;
|
|
dump_all = 0;
|
|
break;
|
|
case 'A':
|
|
case 'e':
|
|
case 'F':
|
|
case 'k':
|
|
case 'L':
|
|
case 'P':
|
|
case 'q':
|
|
case 'X':
|
|
dump_opt[c]++;
|
|
break;
|
|
case 'Y':
|
|
zfs_reconstruct_indirect_combinations_max = INT_MAX;
|
|
zfs_deadman_enabled = 0;
|
|
break;
|
|
/* NB: Sort single match options below. */
|
|
case 'I':
|
|
max_inflight = strtoull(optarg, NULL, 0);
|
|
if (max_inflight == 0) {
|
|
(void) fprintf(stderr, "maximum number "
|
|
"of inflight I/Os must be greater "
|
|
"than 0\n");
|
|
usage();
|
|
}
|
|
break;
|
|
case 'o':
|
|
error = set_global_var(optarg);
|
|
if (error != 0)
|
|
usage();
|
|
break;
|
|
case 'p':
|
|
if (searchdirs == NULL) {
|
|
searchdirs = umem_alloc(sizeof (char *),
|
|
UMEM_NOFAIL);
|
|
} else {
|
|
char **tmp = umem_alloc((nsearch + 1) *
|
|
sizeof (char *), UMEM_NOFAIL);
|
|
bcopy(searchdirs, tmp, nsearch *
|
|
sizeof (char *));
|
|
umem_free(searchdirs,
|
|
nsearch * sizeof (char *));
|
|
searchdirs = tmp;
|
|
}
|
|
searchdirs[nsearch++] = optarg;
|
|
break;
|
|
case 't':
|
|
max_txg = strtoull(optarg, NULL, 0);
|
|
if (max_txg < TXG_INITIAL) {
|
|
(void) fprintf(stderr, "incorrect txg "
|
|
"specified: %s\n", optarg);
|
|
usage();
|
|
}
|
|
break;
|
|
case 'U':
|
|
spa_config_path = optarg;
|
|
if (spa_config_path[0] != '/') {
|
|
(void) fprintf(stderr,
|
|
"cachefile must be an absolute path "
|
|
"(i.e. start with a slash)\n");
|
|
usage();
|
|
}
|
|
break;
|
|
case 'v':
|
|
verbose++;
|
|
break;
|
|
case 'V':
|
|
flags = ZFS_IMPORT_VERBATIM;
|
|
break;
|
|
case 'x':
|
|
vn_dumpdir = optarg;
|
|
break;
|
|
default:
|
|
usage();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!dump_opt['e'] && searchdirs != NULL) {
|
|
(void) fprintf(stderr, "-p option requires use of -e\n");
|
|
usage();
|
|
}
|
|
|
|
#if defined(_LP64)
|
|
/*
|
|
* ZDB does not typically re-read blocks; therefore limit the ARC
|
|
* to 256 MB, which can be used entirely for metadata.
|
|
*/
|
|
zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024;
|
|
#endif
|
|
|
|
/*
|
|
* "zdb -c" uses checksum-verifying scrub i/os which are async reads.
|
|
* "zdb -b" uses traversal prefetch which uses async reads.
|
|
* For good performance, let several of them be active at once.
|
|
*/
|
|
zfs_vdev_async_read_max_active = 10;
|
|
|
|
/*
|
|
* Disable reference tracking for better performance.
|
|
*/
|
|
reference_tracking_enable = B_FALSE;
|
|
|
|
/*
|
|
* Do not fail spa_load when spa_load_verify fails. This is needed
|
|
* to load non-idle pools.
|
|
*/
|
|
spa_load_verify_dryrun = B_TRUE;
|
|
|
|
kernel_init(FREAD);
|
|
|
|
if (dump_all)
|
|
verbose = MAX(verbose, 1);
|
|
|
|
for (c = 0; c < 256; c++) {
|
|
if (dump_all && strchr("AeEFklLOPRSX", c) == NULL)
|
|
dump_opt[c] = 1;
|
|
if (dump_opt[c])
|
|
dump_opt[c] += verbose;
|
|
}
|
|
|
|
aok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2);
|
|
zfs_recover = (dump_opt['A'] > 1);
|
|
|
|
argc -= optind;
|
|
argv += optind;
|
|
|
|
if (argc < 2 && dump_opt['R'])
|
|
usage();
|
|
|
|
if (dump_opt['E']) {
|
|
if (argc != 1)
|
|
usage();
|
|
zdb_embedded_block(argv[0]);
|
|
return (0);
|
|
}
|
|
|
|
if (argc < 1) {
|
|
if (!dump_opt['e'] && dump_opt['C']) {
|
|
dump_cachefile(spa_config_path);
|
|
return (0);
|
|
}
|
|
usage();
|
|
}
|
|
|
|
if (dump_opt['l'])
|
|
return (dump_label(argv[0]));
|
|
|
|
if (dump_opt['O']) {
|
|
if (argc != 2)
|
|
usage();
|
|
dump_opt['v'] = verbose + 3;
|
|
return (dump_path(argv[0], argv[1]));
|
|
}
|
|
|
|
if (dump_opt['X'] || dump_opt['F'])
|
|
rewind = ZPOOL_DO_REWIND |
|
|
(dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
|
|
|
|
if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
|
|
nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
|
|
nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
|
|
fatal("internal error: %s", strerror(ENOMEM));
|
|
|
|
error = 0;
|
|
target = argv[0];
|
|
|
|
if (strpbrk(target, "/@") != NULL) {
|
|
size_t targetlen;
|
|
|
|
target_pool = strdup(target);
|
|
*strpbrk(target_pool, "/@") = '\0';
|
|
|
|
target_is_spa = B_FALSE;
|
|
targetlen = strlen(target);
|
|
if (targetlen && target[targetlen - 1] == '/')
|
|
target[targetlen - 1] = '\0';
|
|
} else {
|
|
target_pool = target;
|
|
}
|
|
|
|
if (dump_opt['e']) {
|
|
importargs_t args = { 0 };
|
|
|
|
args.paths = nsearch;
|
|
args.path = searchdirs;
|
|
args.can_be_active = B_TRUE;
|
|
|
|
error = zpool_find_config(NULL, target_pool, &cfg, &args,
|
|
&libzpool_config_ops);
|
|
|
|
if (error == 0) {
|
|
|
|
if (nvlist_add_nvlist(cfg,
|
|
ZPOOL_LOAD_POLICY, policy) != 0) {
|
|
fatal("can't open '%s': %s",
|
|
target, strerror(ENOMEM));
|
|
}
|
|
|
|
if (dump_opt['C'] > 1) {
|
|
(void) printf("\nConfiguration for import:\n");
|
|
dump_nvlist(cfg, 8);
|
|
}
|
|
|
|
/*
|
|
* Disable the activity check to allow examination of
|
|
* active pools.
|
|
*/
|
|
error = spa_import(target_pool, cfg, NULL,
|
|
flags | ZFS_IMPORT_SKIP_MMP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* import_checkpointed_state makes the assumption that the
|
|
* target pool that we pass it is already part of the spa
|
|
* namespace. Because of that we need to make sure to call
|
|
* it always after the -e option has been processed, which
|
|
* imports the pool to the namespace if it's not in the
|
|
* cachefile.
|
|
*/
|
|
char *checkpoint_pool = NULL;
|
|
char *checkpoint_target = NULL;
|
|
if (dump_opt['k']) {
|
|
checkpoint_pool = import_checkpointed_state(target, cfg,
|
|
&checkpoint_target);
|
|
|
|
if (checkpoint_target != NULL)
|
|
target = checkpoint_target;
|
|
}
|
|
|
|
if (target_pool != target)
|
|
free(target_pool);
|
|
|
|
if (error == 0) {
|
|
if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
|
|
ASSERT(checkpoint_pool != NULL);
|
|
ASSERT(checkpoint_target == NULL);
|
|
|
|
error = spa_open(checkpoint_pool, &spa, FTAG);
|
|
if (error != 0) {
|
|
fatal("Tried to open pool \"%s\" but "
|
|
"spa_open() failed with error %d\n",
|
|
checkpoint_pool, error);
|
|
}
|
|
|
|
} else if (target_is_spa || dump_opt['R']) {
|
|
zdb_set_skip_mmp(target);
|
|
error = spa_open_rewind(target, &spa, FTAG, policy,
|
|
NULL);
|
|
if (error) {
|
|
/*
|
|
* If we're missing the log device then
|
|
* try opening the pool after clearing the
|
|
* log state.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
if ((spa = spa_lookup(target)) != NULL &&
|
|
spa->spa_log_state == SPA_LOG_MISSING) {
|
|
spa->spa_log_state = SPA_LOG_CLEAR;
|
|
error = 0;
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
if (!error) {
|
|
error = spa_open_rewind(target, &spa,
|
|
FTAG, policy, NULL);
|
|
}
|
|
}
|
|
} else {
|
|
zdb_set_skip_mmp(target);
|
|
error = open_objset(target, DMU_OST_ANY, FTAG, &os);
|
|
if (error == 0)
|
|
spa = dmu_objset_spa(os);
|
|
}
|
|
}
|
|
nvlist_free(policy);
|
|
|
|
if (error)
|
|
fatal("can't open '%s': %s", target, strerror(error));
|
|
|
|
/*
|
|
* Set the pool failure mode to panic in order to prevent the pool
|
|
* from suspending. A suspended I/O will have no way to resume and
|
|
* can prevent the zdb(8) command from terminating as expected.
|
|
*/
|
|
if (spa != NULL)
|
|
spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
|
|
|
|
argv++;
|
|
argc--;
|
|
if (!dump_opt['R']) {
|
|
if (argc > 0) {
|
|
zopt_objects = argc;
|
|
zopt_object = calloc(zopt_objects, sizeof (uint64_t));
|
|
for (unsigned i = 0; i < zopt_objects; i++) {
|
|
errno = 0;
|
|
zopt_object[i] = strtoull(argv[i], NULL, 0);
|
|
if (zopt_object[i] == 0 && errno != 0)
|
|
fatal("bad number %s: %s",
|
|
argv[i], strerror(errno));
|
|
}
|
|
}
|
|
if (os != NULL) {
|
|
dump_dir(os);
|
|
} else if (zopt_objects > 0 && !dump_opt['m']) {
|
|
dump_dir(spa->spa_meta_objset);
|
|
} else {
|
|
dump_zpool(spa);
|
|
}
|
|
} else {
|
|
flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
|
|
flagbits['c'] = ZDB_FLAG_CHECKSUM;
|
|
flagbits['d'] = ZDB_FLAG_DECOMPRESS;
|
|
flagbits['e'] = ZDB_FLAG_BSWAP;
|
|
flagbits['g'] = ZDB_FLAG_GBH;
|
|
flagbits['i'] = ZDB_FLAG_INDIRECT;
|
|
flagbits['p'] = ZDB_FLAG_PHYS;
|
|
flagbits['r'] = ZDB_FLAG_RAW;
|
|
|
|
for (int i = 0; i < argc; i++)
|
|
zdb_read_block(argv[i], spa);
|
|
}
|
|
|
|
if (dump_opt['k']) {
|
|
free(checkpoint_pool);
|
|
if (!target_is_spa)
|
|
free(checkpoint_target);
|
|
}
|
|
|
|
if (os != NULL)
|
|
close_objset(os, FTAG);
|
|
else
|
|
spa_close(spa, FTAG);
|
|
|
|
fuid_table_destroy();
|
|
|
|
dump_debug_buffer();
|
|
|
|
kernel_fini();
|
|
|
|
return (error);
|
|
}
|