mirror_zfs/cmd/zpool/zpool_vdev.c
Brian Behlendorf b2255edcc0
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID.  This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.

A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`.  No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.

    zpool create <pool> draid[1,2,3] <vdevs...>

Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons.  The supported options include:

    zpool create <pool> \
        draid[<parity>][:<data>d][:<children>c][:<spares>s] \
        <vdevs...>

    - draid[parity]       - Parity level (default 1)
    - draid[:<data>d]     - Data devices per group (default 8)
    - draid[:<children>c] - Expected number of child vdevs
    - draid[:<spares>s]   - Distributed hot spares (default 0)

Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.

```
  pool: tank
 state: ONLINE
config:

    NAME                  STATE     READ WRITE CKSUM
    slag7                 ONLINE       0     0     0
      draid2:8d:68c:2s-0  ONLINE       0     0     0
        L0                ONLINE       0     0     0
        L1                ONLINE       0     0     0
        ...
        U25               ONLINE       0     0     0
        U26               ONLINE       0     0     0
        spare-53          ONLINE       0     0     0
          U27             ONLINE       0     0     0
          draid2-0-0      ONLINE       0     0     0
        U28               ONLINE       0     0     0
        U29               ONLINE       0     0     0
        ...
        U42               ONLINE       0     0     0
        U43               ONLINE       0     0     0
    special
      mirror-1            ONLINE       0     0     0
        L5                ONLINE       0     0     0
        U5                ONLINE       0     0     0
      mirror-2            ONLINE       0     0     0
        L6                ONLINE       0     0     0
        U6                ONLINE       0     0     0
    spares
      draid2-0-0          INUSE     currently in use
      draid2-0-1          AVAIL
```

When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command.  These options are leverages
by zloop.sh to test a wide range of dRAID configurations.

    -K draid|raidz|random - kind of RAID to test
    -D <value>            - dRAID data drives per group
    -S <value>            - dRAID distributed hot spares
    -R <value>            - RAID parity (raidz or dRAID)

The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.

Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 13:51:51 -08:00

1871 lines
49 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2018 by Delphix. All rights reserved.
* Copyright (c) 2016, 2017 Intel Corporation.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
*/
/*
* Functions to convert between a list of vdevs and an nvlist representing the
* configuration. Each entry in the list can be one of:
*
* Device vdevs
* disk=(path=..., devid=...)
* file=(path=...)
*
* Group vdevs
* raidz[1|2]=(...)
* mirror=(...)
*
* Hot spares
*
* While the underlying implementation supports it, group vdevs cannot contain
* other group vdevs. All userland verification of devices is contained within
* this file. If successful, the nvlist returned can be passed directly to the
* kernel; we've done as much verification as possible in userland.
*
* Hot spares are a special case, and passed down as an array of disk vdevs, at
* the same level as the root of the vdev tree.
*
* The only function exported by this file is 'make_root_vdev'. The
* function performs several passes:
*
* 1. Construct the vdev specification. Performs syntax validation and
* makes sure each device is valid.
* 2. Check for devices in use. Using libblkid to make sure that no
* devices are also in use. Some can be overridden using the 'force'
* flag, others cannot.
* 3. Check for replication errors if the 'force' flag is not specified.
* validates that the replication level is consistent across the
* entire pool.
* 4. Call libzfs to label any whole disks with an EFI label.
*/
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <libintl.h>
#include <libnvpair.h>
#include <libzutil.h>
#include <limits.h>
#include <sys/spa.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "zpool_util.h"
#include <sys/zfs_context.h>
#include <sys/stat.h>
/*
* For any given vdev specification, we can have multiple errors. The
* vdev_error() function keeps track of whether we have seen an error yet, and
* prints out a header if its the first error we've seen.
*/
boolean_t error_seen;
boolean_t is_force;
/*PRINTFLIKE1*/
void
vdev_error(const char *fmt, ...)
{
va_list ap;
if (!error_seen) {
(void) fprintf(stderr, gettext("invalid vdev specification\n"));
if (!is_force)
(void) fprintf(stderr, gettext("use '-f' to override "
"the following errors:\n"));
else
(void) fprintf(stderr, gettext("the following errors "
"must be manually repaired:\n"));
error_seen = B_TRUE;
}
va_start(ap, fmt);
(void) vfprintf(stderr, fmt, ap);
va_end(ap);
}
/*
* Check that a file is valid. All we can do in this case is check that it's
* not in use by another pool, and not in use by swap.
*/
int
check_file(const char *file, boolean_t force, boolean_t isspare)
{
char *name;
int fd;
int ret = 0;
pool_state_t state;
boolean_t inuse;
if ((fd = open(file, O_RDONLY)) < 0)
return (0);
if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
const char *desc;
switch (state) {
case POOL_STATE_ACTIVE:
desc = gettext("active");
break;
case POOL_STATE_EXPORTED:
desc = gettext("exported");
break;
case POOL_STATE_POTENTIALLY_ACTIVE:
desc = gettext("potentially active");
break;
default:
desc = gettext("unknown");
break;
}
/*
* Allow hot spares to be shared between pools.
*/
if (state == POOL_STATE_SPARE && isspare) {
free(name);
(void) close(fd);
return (0);
}
if (state == POOL_STATE_ACTIVE ||
state == POOL_STATE_SPARE || !force) {
switch (state) {
case POOL_STATE_SPARE:
vdev_error(gettext("%s is reserved as a hot "
"spare for pool %s\n"), file, name);
break;
default:
vdev_error(gettext("%s is part of %s pool "
"'%s'\n"), file, desc, name);
break;
}
ret = -1;
}
free(name);
}
(void) close(fd);
return (ret);
}
/*
* This may be a shorthand device path or it could be total gibberish.
* Check to see if it is a known device available in zfs_vdev_paths.
* As part of this check, see if we've been given an entire disk
* (minus the slice number).
*/
static int
is_shorthand_path(const char *arg, char *path, size_t path_size,
struct stat64 *statbuf, boolean_t *wholedisk)
{
int error;
error = zfs_resolve_shortname(arg, path, path_size);
if (error == 0) {
*wholedisk = zfs_dev_is_whole_disk(path);
if (*wholedisk || (stat64(path, statbuf) == 0))
return (0);
}
strlcpy(path, arg, path_size);
memset(statbuf, 0, sizeof (*statbuf));
*wholedisk = B_FALSE;
return (error);
}
/*
* Determine if the given path is a hot spare within the given configuration.
* If no configuration is given we rely solely on the label.
*/
static boolean_t
is_spare(nvlist_t *config, const char *path)
{
int fd;
pool_state_t state;
char *name = NULL;
nvlist_t *label;
uint64_t guid, spareguid;
nvlist_t *nvroot;
nvlist_t **spares;
uint_t i, nspares;
boolean_t inuse;
if (zpool_is_draid_spare(path))
return (B_TRUE);
if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
return (B_FALSE);
if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
!inuse ||
state != POOL_STATE_SPARE ||
zpool_read_label(fd, &label, NULL) != 0) {
free(name);
(void) close(fd);
return (B_FALSE);
}
free(name);
(void) close(fd);
if (config == NULL) {
nvlist_free(label);
return (B_TRUE);
}
verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
nvlist_free(label);
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) == 0);
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
&spares, &nspares) == 0) {
for (i = 0; i < nspares; i++) {
verify(nvlist_lookup_uint64(spares[i],
ZPOOL_CONFIG_GUID, &spareguid) == 0);
if (spareguid == guid)
return (B_TRUE);
}
}
return (B_FALSE);
}
/*
* Create a leaf vdev. Determine if this is a file or a device. If it's a
* device, fill in the device id to make a complete nvlist. Valid forms for a
* leaf vdev are:
*
* /dev/xxx Complete disk path
* /xxx Full path to file
* xxx Shorthand for <zfs_vdev_paths>/xxx
* draid* Virtual dRAID spare
*/
static nvlist_t *
make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
{
char path[MAXPATHLEN];
struct stat64 statbuf;
nvlist_t *vdev = NULL;
char *type = NULL;
boolean_t wholedisk = B_FALSE;
uint64_t ashift = 0;
int err;
/*
* Determine what type of vdev this is, and put the full path into
* 'path'. We detect whether this is a device of file afterwards by
* checking the st_mode of the file.
*/
if (arg[0] == '/') {
/*
* Complete device or file path. Exact type is determined by
* examining the file descriptor afterwards. Symbolic links
* are resolved to their real paths to determine whole disk
* and S_ISBLK/S_ISREG type checks. However, we are careful
* to store the given path as ZPOOL_CONFIG_PATH to ensure we
* can leverage udev's persistent device labels.
*/
if (realpath(arg, path) == NULL) {
(void) fprintf(stderr,
gettext("cannot resolve path '%s'\n"), arg);
return (NULL);
}
wholedisk = zfs_dev_is_whole_disk(path);
if (!wholedisk && (stat64(path, &statbuf) != 0)) {
(void) fprintf(stderr,
gettext("cannot open '%s': %s\n"),
path, strerror(errno));
return (NULL);
}
/* After whole disk check restore original passed path */
strlcpy(path, arg, sizeof (path));
} else if (zpool_is_draid_spare(arg)) {
if (!is_primary) {
(void) fprintf(stderr,
gettext("cannot open '%s': dRAID spares can only "
"be used to replace primary vdevs\n"), arg);
return (NULL);
}
wholedisk = B_TRUE;
strlcpy(path, arg, sizeof (path));
type = VDEV_TYPE_DRAID_SPARE;
} else {
err = is_shorthand_path(arg, path, sizeof (path),
&statbuf, &wholedisk);
if (err != 0) {
/*
* If we got ENOENT, then the user gave us
* gibberish, so try to direct them with a
* reasonable error message. Otherwise,
* regurgitate strerror() since it's the best we
* can do.
*/
if (err == ENOENT) {
(void) fprintf(stderr,
gettext("cannot open '%s': no such "
"device in %s\n"), arg, DISK_ROOT);
(void) fprintf(stderr,
gettext("must be a full path or "
"shorthand device name\n"));
return (NULL);
} else {
(void) fprintf(stderr,
gettext("cannot open '%s': %s\n"),
path, strerror(errno));
return (NULL);
}
}
}
if (type == NULL) {
/*
* Determine whether this is a device or a file.
*/
if (wholedisk || S_ISBLK(statbuf.st_mode)) {
type = VDEV_TYPE_DISK;
} else if (S_ISREG(statbuf.st_mode)) {
type = VDEV_TYPE_FILE;
} else {
fprintf(stderr, gettext("cannot use '%s': must "
"be a block device or regular file\n"), path);
return (NULL);
}
}
/*
* Finally, we have the complete device or file, and we know that it is
* acceptable to use. Construct the nvlist to describe this vdev. All
* vdevs have a 'path' element, and devices also have a 'devid' element.
*/
verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
if (strcmp(type, VDEV_TYPE_DISK) == 0)
verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
(uint64_t)wholedisk) == 0);
/*
* Override defaults if custom properties are provided.
*/
if (props != NULL) {
char *value = NULL;
if (nvlist_lookup_string(props,
zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
(void) fprintf(stderr,
gettext("ashift must be a number.\n"));
return (NULL);
}
if (ashift != 0 &&
(ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
(void) fprintf(stderr,
gettext("invalid 'ashift=%" PRIu64 "' "
"property: only values between %" PRId32 " "
"and %" PRId32 " are allowed.\n"),
ashift, ASHIFT_MIN, ASHIFT_MAX);
return (NULL);
}
}
}
/*
* If the device is known to incorrectly report its physical sector
* size explicitly provide the known correct value.
*/
if (ashift == 0) {
int sector_size;
if (check_sector_size_database(path, &sector_size) == B_TRUE)
ashift = highbit64(sector_size) - 1;
}
if (ashift > 0)
(void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
return (vdev);
}
/*
* Go through and verify the replication level of the pool is consistent.
* Performs the following checks:
*
* For the new spec, verifies that devices in mirrors and raidz are the
* same size.
*
* If the current configuration already has inconsistent replication
* levels, ignore any other potential problems in the new spec.
*
* Otherwise, make sure that the current spec (if there is one) and the new
* spec have consistent replication levels.
*
* If there is no current spec (create), make sure new spec has at least
* one general purpose vdev.
*/
typedef struct replication_level {
char *zprl_type;
uint64_t zprl_children;
uint64_t zprl_parity;
} replication_level_t;
#define ZPOOL_FUZZ (16 * 1024 * 1024)
/*
* N.B. For the purposes of comparing replication levels dRAID can be
* considered functionally equivilant to raidz.
*/
static boolean_t
is_raidz_mirror(replication_level_t *a, replication_level_t *b,
replication_level_t **raidz, replication_level_t **mirror)
{
if ((strcmp(a->zprl_type, "raidz") == 0 ||
strcmp(a->zprl_type, "draid") == 0) &&
strcmp(b->zprl_type, "mirror") == 0) {
*raidz = a;
*mirror = b;
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Comparison for determining if dRAID and raidz where passed in either order.
*/
static boolean_t
is_raidz_draid(replication_level_t *a, replication_level_t *b)
{
if ((strcmp(a->zprl_type, "raidz") == 0 ||
strcmp(a->zprl_type, "draid") == 0) &&
(strcmp(b->zprl_type, "raidz") == 0 ||
strcmp(b->zprl_type, "draid") == 0)) {
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Given a list of toplevel vdevs, return the current replication level. If
* the config is inconsistent, then NULL is returned. If 'fatal' is set, then
* an error message will be displayed for each self-inconsistent vdev.
*/
static replication_level_t *
get_replication(nvlist_t *nvroot, boolean_t fatal)
{
nvlist_t **top;
uint_t t, toplevels;
nvlist_t **child;
uint_t c, children;
nvlist_t *nv;
char *type;
replication_level_t lastrep = {0};
replication_level_t rep;
replication_level_t *ret;
replication_level_t *raidz, *mirror;
boolean_t dontreport;
ret = safe_malloc(sizeof (replication_level_t));
verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
&top, &toplevels) == 0);
for (t = 0; t < toplevels; t++) {
uint64_t is_log = B_FALSE;
nv = top[t];
/*
* For separate logs we ignore the top level vdev replication
* constraints.
*/
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
if (is_log)
continue;
/* Ignore holes introduced by removing aux devices */
verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
if (strcmp(type, VDEV_TYPE_HOLE) == 0)
continue;
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) != 0) {
/*
* This is a 'file' or 'disk' vdev.
*/
rep.zprl_type = type;
rep.zprl_children = 1;
rep.zprl_parity = 0;
} else {
int64_t vdev_size;
/*
* This is a mirror or RAID-Z vdev. Go through and make
* sure the contents are all the same (files vs. disks),
* keeping track of the number of elements in the
* process.
*
* We also check that the size of each vdev (if it can
* be determined) is the same.
*/
rep.zprl_type = type;
rep.zprl_children = 0;
if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
strcmp(type, VDEV_TYPE_DRAID) == 0) {
verify(nvlist_lookup_uint64(nv,
ZPOOL_CONFIG_NPARITY,
&rep.zprl_parity) == 0);
assert(rep.zprl_parity != 0);
} else {
rep.zprl_parity = 0;
}
/*
* The 'dontreport' variable indicates that we've
* already reported an error for this spec, so don't
* bother doing it again.
*/
type = NULL;
dontreport = 0;
vdev_size = -1LL;
for (c = 0; c < children; c++) {
nvlist_t *cnv = child[c];
char *path;
struct stat64 statbuf;
int64_t size = -1LL;
char *childtype;
int fd, err;
rep.zprl_children++;
verify(nvlist_lookup_string(cnv,
ZPOOL_CONFIG_TYPE, &childtype) == 0);
/*
* If this is a replacing or spare vdev, then
* get the real first child of the vdev: do this
* in a loop because replacing and spare vdevs
* can be nested.
*/
while (strcmp(childtype,
VDEV_TYPE_REPLACING) == 0 ||
strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
nvlist_t **rchild;
uint_t rchildren;
verify(nvlist_lookup_nvlist_array(cnv,
ZPOOL_CONFIG_CHILDREN, &rchild,
&rchildren) == 0);
assert(rchildren == 2);
cnv = rchild[0];
verify(nvlist_lookup_string(cnv,
ZPOOL_CONFIG_TYPE,
&childtype) == 0);
}
verify(nvlist_lookup_string(cnv,
ZPOOL_CONFIG_PATH, &path) == 0);
/*
* If we have a raidz/mirror that combines disks
* with files, report it as an error.
*/
if (!dontreport && type != NULL &&
strcmp(type, childtype) != 0) {
if (ret != NULL)
free(ret);
ret = NULL;
if (fatal)
vdev_error(gettext(
"mismatched replication "
"level: %s contains both "
"files and devices\n"),
rep.zprl_type);
else
return (NULL);
dontreport = B_TRUE;
}
/*
* According to stat(2), the value of 'st_size'
* is undefined for block devices and character
* devices. But there is no effective way to
* determine the real size in userland.
*
* Instead, we'll take advantage of an
* implementation detail of spec_size(). If the
* device is currently open, then we (should)
* return a valid size.
*
* If we still don't get a valid size (indicated
* by a size of 0 or MAXOFFSET_T), then ignore
* this device altogether.
*/
if ((fd = open(path, O_RDONLY)) >= 0) {
err = fstat64_blk(fd, &statbuf);
(void) close(fd);
} else {
err = stat64(path, &statbuf);
}
if (err != 0 ||
statbuf.st_size == 0 ||
statbuf.st_size == MAXOFFSET_T)
continue;
size = statbuf.st_size;
/*
* Also make sure that devices and
* slices have a consistent size. If
* they differ by a significant amount
* (~16MB) then report an error.
*/
if (!dontreport &&
(vdev_size != -1LL &&
(llabs(size - vdev_size) >
ZPOOL_FUZZ))) {
if (ret != NULL)
free(ret);
ret = NULL;
if (fatal)
vdev_error(gettext(
"%s contains devices of "
"different sizes\n"),
rep.zprl_type);
else
return (NULL);
dontreport = B_TRUE;
}
type = childtype;
vdev_size = size;
}
}
/*
* At this point, we have the replication of the last toplevel
* vdev in 'rep'. Compare it to 'lastrep' to see if it is
* different.
*/
if (lastrep.zprl_type != NULL) {
if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
/*
* Accepted raidz and mirror when they can
* handle the same number of disk failures.
*/
if (raidz->zprl_parity !=
mirror->zprl_children - 1) {
if (ret != NULL)
free(ret);
ret = NULL;
if (fatal)
vdev_error(gettext(
"mismatched replication "
"level: "
"%s and %s vdevs with "
"different redundancy, "
"%llu vs. %llu (%llu-way) "
"are present\n"),
raidz->zprl_type,
mirror->zprl_type,
raidz->zprl_parity,
mirror->zprl_children - 1,
mirror->zprl_children);
else
return (NULL);
}
} else if (is_raidz_draid(&lastrep, &rep)) {
/*
* Accepted raidz and draid when they can
* handle the same number of disk failures.
*/
if (lastrep.zprl_parity != rep.zprl_parity) {
if (ret != NULL)
free(ret);
ret = NULL;
if (fatal)
vdev_error(gettext(
"mismatched replication "
"level: %s and %s vdevs "
"with different "
"redundancy, %llu vs. "
"%llu are present\n"),
lastrep.zprl_type,
rep.zprl_type,
lastrep.zprl_parity,
rep.zprl_parity);
else
return (NULL);
}
} else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
0) {
if (ret != NULL)
free(ret);
ret = NULL;
if (fatal)
vdev_error(gettext(
"mismatched replication level: "
"both %s and %s vdevs are "
"present\n"),
lastrep.zprl_type, rep.zprl_type);
else
return (NULL);
} else if (lastrep.zprl_parity != rep.zprl_parity) {
if (ret)
free(ret);
ret = NULL;
if (fatal)
vdev_error(gettext(
"mismatched replication level: "
"both %llu and %llu device parity "
"%s vdevs are present\n"),
lastrep.zprl_parity,
rep.zprl_parity,
rep.zprl_type);
else
return (NULL);
} else if (lastrep.zprl_children != rep.zprl_children) {
if (ret)
free(ret);
ret = NULL;
if (fatal)
vdev_error(gettext(
"mismatched replication level: "
"both %llu-way and %llu-way %s "
"vdevs are present\n"),
lastrep.zprl_children,
rep.zprl_children,
rep.zprl_type);
else
return (NULL);
}
}
lastrep = rep;
}
if (ret != NULL)
*ret = rep;
return (ret);
}
/*
* Check the replication level of the vdev spec against the current pool. Calls
* get_replication() to make sure the new spec is self-consistent. If the pool
* has a consistent replication level, then we ignore any errors. Otherwise,
* report any difference between the two.
*/
static int
check_replication(nvlist_t *config, nvlist_t *newroot)
{
nvlist_t **child;
uint_t children;
replication_level_t *current = NULL, *new;
replication_level_t *raidz, *mirror;
int ret;
/*
* If we have a current pool configuration, check to see if it's
* self-consistent. If not, simply return success.
*/
if (config != NULL) {
nvlist_t *nvroot;
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) == 0);
if ((current = get_replication(nvroot, B_FALSE)) == NULL)
return (0);
}
/*
* for spares there may be no children, and therefore no
* replication level to check
*/
if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
&child, &children) != 0) || (children == 0)) {
free(current);
return (0);
}
/*
* If all we have is logs then there's no replication level to check.
*/
if (num_logs(newroot) == children) {
free(current);
return (0);
}
/*
* Get the replication level of the new vdev spec, reporting any
* inconsistencies found.
*/
if ((new = get_replication(newroot, B_TRUE)) == NULL) {
free(current);
return (-1);
}
/*
* Check to see if the new vdev spec matches the replication level of
* the current pool.
*/
ret = 0;
if (current != NULL) {
if (is_raidz_mirror(current, new, &raidz, &mirror) ||
is_raidz_mirror(new, current, &raidz, &mirror)) {
if (raidz->zprl_parity != mirror->zprl_children - 1) {
vdev_error(gettext(
"mismatched replication level: pool and "
"new vdev with different redundancy, %s "
"and %s vdevs, %llu vs. %llu (%llu-way)\n"),
raidz->zprl_type,
mirror->zprl_type,
raidz->zprl_parity,
mirror->zprl_children - 1,
mirror->zprl_children);
ret = -1;
}
} else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
vdev_error(gettext(
"mismatched replication level: pool uses %s "
"and new vdev is %s\n"),
current->zprl_type, new->zprl_type);
ret = -1;
} else if (current->zprl_parity != new->zprl_parity) {
vdev_error(gettext(
"mismatched replication level: pool uses %llu "
"device parity and new vdev uses %llu\n"),
current->zprl_parity, new->zprl_parity);
ret = -1;
} else if (current->zprl_children != new->zprl_children) {
vdev_error(gettext(
"mismatched replication level: pool uses %llu-way "
"%s and new vdev uses %llu-way %s\n"),
current->zprl_children, current->zprl_type,
new->zprl_children, new->zprl_type);
ret = -1;
}
}
free(new);
if (current != NULL)
free(current);
return (ret);
}
static int
zero_label(char *path)
{
const int size = 4096;
char buf[size];
int err, fd;
if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
path, strerror(errno));
return (-1);
}
memset(buf, 0, size);
err = write(fd, buf, size);
(void) fdatasync(fd);
(void) close(fd);
if (err == -1) {
(void) fprintf(stderr, gettext("cannot zero first %d bytes "
"of '%s': %s\n"), size, path, strerror(errno));
return (-1);
}
if (err != size) {
(void) fprintf(stderr, gettext("could only zero %d/%d bytes "
"of '%s'\n"), err, size, path);
return (-1);
}
return (0);
}
/*
* Go through and find any whole disks in the vdev specification, labelling them
* as appropriate. When constructing the vdev spec, we were unable to open this
* device in order to provide a devid. Now that we have labelled the disk and
* know that slice 0 is valid, we can construct the devid now.
*
* If the disk was already labeled with an EFI label, we will have gotten the
* devid already (because we were able to open the whole disk). Otherwise, we
* need to get the devid after we label the disk.
*/
static int
make_disks(zpool_handle_t *zhp, nvlist_t *nv)
{
nvlist_t **child;
uint_t c, children;
char *type, *path;
char devpath[MAXPATHLEN];
char udevpath[MAXPATHLEN];
uint64_t wholedisk;
struct stat64 statbuf;
int is_exclusive = 0;
int fd;
int ret;
verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) != 0) {
if (strcmp(type, VDEV_TYPE_DISK) != 0)
return (0);
/*
* We have a disk device. If this is a whole disk write
* out the efi partition table, otherwise write zero's to
* the first 4k of the partition. This is to ensure that
* libblkid will not misidentify the partition due to a
* magic value left by the previous filesystem.
*/
verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
&wholedisk));
if (!wholedisk) {
/*
* Update device id string for mpath nodes (Linux only)
*/
if (is_mpath_whole_disk(path))
update_vdev_config_dev_strs(nv);
if (!is_spare(NULL, path))
(void) zero_label(path);
return (0);
}
if (realpath(path, devpath) == NULL) {
ret = errno;
(void) fprintf(stderr,
gettext("cannot resolve path '%s'\n"), path);
return (ret);
}
/*
* Remove any previously existing symlink from a udev path to
* the device before labeling the disk. This ensures that
* only newly created links are used. Otherwise there is a
* window between when udev deletes and recreates the link
* during which access attempts will fail with ENOENT.
*/
strlcpy(udevpath, path, MAXPATHLEN);
(void) zfs_append_partition(udevpath, MAXPATHLEN);
fd = open(devpath, O_RDWR|O_EXCL);
if (fd == -1) {
if (errno == EBUSY)
is_exclusive = 1;
#ifdef __FreeBSD__
if (errno == EPERM)
is_exclusive = 1;
#endif
} else {
(void) close(fd);
}
/*
* If the partition exists, contains a valid spare label,
* and is opened exclusively there is no need to partition
* it. Hot spares have already been partitioned and are
* held open exclusively by the kernel as a safety measure.
*
* If the provided path is for a /dev/disk/ device its
* symbolic link will be removed, partition table created,
* and then block until udev creates the new link.
*/
if (!is_exclusive && !is_spare(NULL, udevpath)) {
char *devnode = strrchr(devpath, '/') + 1;
ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
if (ret == 0) {
ret = lstat64(udevpath, &statbuf);
if (ret == 0 && S_ISLNK(statbuf.st_mode))
(void) unlink(udevpath);
}
/*
* When labeling a pool the raw device node name
* is provided as it appears under /dev/.
*/
if (zpool_label_disk(g_zfs, zhp, devnode) == -1)
return (-1);
/*
* Wait for udev to signal the device is available
* by the provided path.
*/
ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
if (ret) {
(void) fprintf(stderr,
gettext("missing link: %s was "
"partitioned but %s is missing\n"),
devnode, udevpath);
return (ret);
}
ret = zero_label(udevpath);
if (ret)
return (ret);
}
/*
* Update the path to refer to the partition. The presence of
* the 'whole_disk' field indicates to the CLI that we should
* chop off the partition number when displaying the device in
* future output.
*/
verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
/*
* Update device id strings for whole disks (Linux only)
*/
update_vdev_config_dev_strs(nv);
return (0);
}
for (c = 0; c < children; c++)
if ((ret = make_disks(zhp, child[c])) != 0)
return (ret);
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
&child, &children) == 0)
for (c = 0; c < children; c++)
if ((ret = make_disks(zhp, child[c])) != 0)
return (ret);
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
&child, &children) == 0)
for (c = 0; c < children; c++)
if ((ret = make_disks(zhp, child[c])) != 0)
return (ret);
return (0);
}
/*
* Go through and find any devices that are in use. We rely on libdiskmgt for
* the majority of this task.
*/
static boolean_t
is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
boolean_t replacing, boolean_t isspare)
{
nvlist_t **child;
uint_t c, children;
char *type, *path;
int ret = 0;
char buf[MAXPATHLEN];
uint64_t wholedisk = B_FALSE;
boolean_t anyinuse = B_FALSE;
verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) != 0) {
verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
if (strcmp(type, VDEV_TYPE_DISK) == 0)
verify(!nvlist_lookup_uint64(nv,
ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
/*
* As a generic check, we look to see if this is a replace of a
* hot spare within the same pool. If so, we allow it
* regardless of what libblkid or zpool_in_use() says.
*/
if (replacing) {
(void) strlcpy(buf, path, sizeof (buf));
if (wholedisk) {
ret = zfs_append_partition(buf, sizeof (buf));
if (ret == -1)
return (-1);
}
if (is_spare(config, buf))
return (B_FALSE);
}
if (strcmp(type, VDEV_TYPE_DISK) == 0)
ret = check_device(path, force, isspare, wholedisk);
else if (strcmp(type, VDEV_TYPE_FILE) == 0)
ret = check_file(path, force, isspare);
return (ret != 0);
}
for (c = 0; c < children; c++)
if (is_device_in_use(config, child[c], force, replacing,
B_FALSE))
anyinuse = B_TRUE;
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
&child, &children) == 0)
for (c = 0; c < children; c++)
if (is_device_in_use(config, child[c], force, replacing,
B_TRUE))
anyinuse = B_TRUE;
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
&child, &children) == 0)
for (c = 0; c < children; c++)
if (is_device_in_use(config, child[c], force, replacing,
B_FALSE))
anyinuse = B_TRUE;
return (anyinuse);
}
/*
* Returns the parity level extracted from a raidz or draid type.
* If the parity cannot be determined zero is returned.
*/
static int
get_parity(const char *type)
{
long parity = 0;
const char *p;
if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
p = type + strlen(VDEV_TYPE_RAIDZ);
if (*p == '\0') {
/* when unspecified default to single parity */
return (1);
} else if (*p == '0') {
/* no zero prefixes allowed */
return (0);
} else {
/* 0-3, no suffixes allowed */
char *end;
errno = 0;
parity = strtol(p, &end, 10);
if (errno != 0 || *end != '\0' ||
parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
return (0);
}
}
} else if (strncmp(type, VDEV_TYPE_DRAID,
strlen(VDEV_TYPE_DRAID)) == 0) {
p = type + strlen(VDEV_TYPE_DRAID);
if (*p == '\0' || *p == ':') {
/* when unspecified default to single parity */
return (1);
} else if (*p == '0') {
/* no zero prefixes allowed */
return (0);
} else {
/* 0-3, allowed suffixes: '\0' or ':' */
char *end;
errno = 0;
parity = strtol(p, &end, 10);
if (errno != 0 ||
parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
(*end != '\0' && *end != ':')) {
return (0);
}
}
}
return ((int)parity);
}
/*
* Assign the minimum and maximum number of devices allowed for
* the specified type. On error NULL is returned, otherwise the
* type prefix is returned (raidz, mirror, etc).
*/
static const char *
is_grouping(const char *type, int *mindev, int *maxdev)
{
int nparity;
if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
nparity = get_parity(type);
if (nparity == 0)
return (NULL);
if (mindev != NULL)
*mindev = nparity + 1;
if (maxdev != NULL)
*maxdev = 255;
if (strncmp(type, VDEV_TYPE_RAIDZ,
strlen(VDEV_TYPE_RAIDZ)) == 0) {
return (VDEV_TYPE_RAIDZ);
} else {
return (VDEV_TYPE_DRAID);
}
}
if (maxdev != NULL)
*maxdev = INT_MAX;
if (strcmp(type, "mirror") == 0) {
if (mindev != NULL)
*mindev = 2;
return (VDEV_TYPE_MIRROR);
}
if (strcmp(type, "spare") == 0) {
if (mindev != NULL)
*mindev = 1;
return (VDEV_TYPE_SPARE);
}
if (strcmp(type, "log") == 0) {
if (mindev != NULL)
*mindev = 1;
return (VDEV_TYPE_LOG);
}
if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
if (mindev != NULL)
*mindev = 1;
return (type);
}
if (strcmp(type, "cache") == 0) {
if (mindev != NULL)
*mindev = 1;
return (VDEV_TYPE_L2CACHE);
}
return (NULL);
}
/*
* Extract the configuration parameters encoded in the dRAID type and
* use them to generate a dRAID configuration. The expected format is:
*
* draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
*
* The intent is to be able to generate a good configuration when no
* additional information is provided. The only mandatory component
* of the 'type' is the 'draid' prefix. If a value is not provided
* then reasonable defaults are used. The optional components may
* appear in any order but the d/s/c suffix is required.
*
* Valid inputs:
* - data: number of data devices per group (1-255)
* - parity: number of parity blocks per group (1-3)
* - spares: number of distributed spare (0-100)
* - children: total number of devices (1-255)
*
* Examples:
* - zpool create tank draid <devices...>
* - zpool create tank draid2:8d:51c:2s <devices...>
*/
static int
draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
{
uint64_t nparity = 1;
uint64_t nspares = 0;
uint64_t ndata = UINT64_MAX;
uint64_t ngroups = 1;
long value;
if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
return (EINVAL);
nparity = (uint64_t)get_parity(type);
if (nparity == 0)
return (EINVAL);
char *p = (char *)type;
while ((p = strchr(p, ':')) != NULL) {
char *end;
p = p + 1;
errno = 0;
if (!isdigit(p[0])) {
(void) fprintf(stderr, gettext("invalid dRAID "
"syntax; expected [:<number><c|d|s>] not '%s'\n"),
type);
return (EINVAL);
}
/* Expected non-zero value with c/d/s suffix */
value = strtol(p, &end, 10);
char suffix = tolower(*end);
if (errno != 0 ||
(suffix != 'c' && suffix != 'd' && suffix != 's')) {
(void) fprintf(stderr, gettext("invalid dRAID "
"syntax; expected [:<number><c|d|s>] not '%s'\n"),
type);
return (EINVAL);
}
if (suffix == 'c') {
if ((uint64_t)value != children) {
fprintf(stderr,
gettext("invalid number of dRAID children; "
"%llu required but %llu provided\n"),
(u_longlong_t)value,
(u_longlong_t)children);
return (EINVAL);
}
} else if (suffix == 'd') {
ndata = (uint64_t)value;
} else if (suffix == 's') {
nspares = (uint64_t)value;
} else {
verify(0); /* Unreachable */
}
}
/*
* When a specific number of data disks is not provided limit a
* redundancy group to 8 data disks. This value was selected to
* provide a reasonable tradeoff between capacity and performance.
*/
if (ndata == UINT64_MAX) {
if (children > nspares + nparity) {
ndata = MIN(children - nspares - nparity, 8);
} else {
fprintf(stderr, gettext("request number of "
"distributed spares %llu and parity level %llu\n"
"leaves no disks available for data\n"),
(u_longlong_t)nspares, (u_longlong_t)nparity);
return (EINVAL);
}
}
/* Verify the maximum allowed group size is never exceeded. */
if (ndata == 0 || (ndata + nparity > children - nspares)) {
fprintf(stderr, gettext("requested number of dRAID data "
"disks per group %llu is too high,\nat most %llu disks "
"are available for data\n"), (u_longlong_t)ndata,
(u_longlong_t)(children - nspares - nparity));
return (EINVAL);
}
if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
fprintf(stderr,
gettext("invalid dRAID parity level %llu; must be "
"between 1 and %d\n"), (u_longlong_t)nparity,
VDEV_DRAID_MAXPARITY);
return (EINVAL);
}
/*
* Verify the requested number of spares can be satisfied.
* An arbitrary limit of 100 distributed spares is applied.
*/
if (nspares > 100 || nspares > (children - (ndata + nparity))) {
fprintf(stderr,
gettext("invalid number of dRAID spares %llu; additional "
"disks would be required\n"), (u_longlong_t)nspares);
return (EINVAL);
}
/* Verify the requested number children is sufficient. */
if (children < (ndata + nparity + nspares)) {
fprintf(stderr, gettext("%llu disks were provided, but at "
"least %llu disks are required for this config\n"),
(u_longlong_t)children,
(u_longlong_t)(ndata + nparity + nspares));
}
if (children > VDEV_DRAID_MAX_CHILDREN) {
fprintf(stderr, gettext("%llu disks were provided, but "
"dRAID only supports up to %u disks"),
(u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
}
/*
* Calculate the minimum number of groups required to fill a slice.
* This is the LCM of the stripe width (ndata + nparity) and the
* number of data drives (children - nspares).
*/
while (ngroups * (ndata + nparity) % (children - nspares) != 0)
ngroups++;
/* Store the basic dRAID configuration. */
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
return (0);
}
/*
* Construct a syntactically valid vdev specification,
* and ensure that all devices and files exist and can be opened.
* Note: we don't bother freeing anything in the error paths
* because the program is just going to exit anyway.
*/
static nvlist_t *
construct_spec(nvlist_t *props, int argc, char **argv)
{
nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
const char *type, *fulltype;
boolean_t is_log, is_special, is_dedup, is_spare;
boolean_t seen_logs;
top = NULL;
toplevels = 0;
spares = NULL;
l2cache = NULL;
nspares = 0;
nlogs = 0;
nl2cache = 0;
is_log = is_special = is_dedup = is_spare = B_FALSE;
seen_logs = B_FALSE;
nvroot = NULL;
while (argc > 0) {
fulltype = argv[0];
nv = NULL;
/*
* If it's a mirror, raidz, or draid the subsequent arguments
* are its leaves -- until we encounter the next mirror,
* raidz or draid.
*/
if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
nvlist_t **child = NULL;
int c, children = 0;
if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
if (spares != NULL) {
(void) fprintf(stderr,
gettext("invalid vdev "
"specification: 'spare' can be "
"specified only once\n"));
goto spec_out;
}
is_spare = B_TRUE;
is_log = is_special = is_dedup = B_FALSE;
}
if (strcmp(type, VDEV_TYPE_LOG) == 0) {
if (seen_logs) {
(void) fprintf(stderr,
gettext("invalid vdev "
"specification: 'log' can be "
"specified only once\n"));
goto spec_out;
}
seen_logs = B_TRUE;
is_log = B_TRUE;
is_special = is_dedup = is_spare = B_FALSE;
argc--;
argv++;
/*
* A log is not a real grouping device.
* We just set is_log and continue.
*/
continue;
}
if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
is_special = B_TRUE;
is_log = is_dedup = is_spare = B_FALSE;
argc--;
argv++;
continue;
}
if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
is_dedup = B_TRUE;
is_log = is_special = is_spare = B_FALSE;
argc--;
argv++;
continue;
}
if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
if (l2cache != NULL) {
(void) fprintf(stderr,
gettext("invalid vdev "
"specification: 'cache' can be "
"specified only once\n"));
goto spec_out;
}
is_log = is_special = B_FALSE;
is_dedup = is_spare = B_FALSE;
}
if (is_log || is_special || is_dedup) {
if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
(void) fprintf(stderr,
gettext("invalid vdev "
"specification: unsupported '%s' "
"device: %s\n"), is_log ? "log" :
"special", type);
goto spec_out;
}
nlogs++;
}
for (c = 1; c < argc; c++) {
if (is_grouping(argv[c], NULL, NULL) != NULL)
break;
children++;
child = realloc(child,
children * sizeof (nvlist_t *));
if (child == NULL)
zpool_no_memory();
if ((nv = make_leaf_vdev(props, argv[c],
!(is_log || is_special || is_dedup ||
is_spare))) == NULL) {
for (c = 0; c < children - 1; c++)
nvlist_free(child[c]);
free(child);
goto spec_out;
}
child[children - 1] = nv;
}
if (children < mindev) {
(void) fprintf(stderr, gettext("invalid vdev "
"specification: %s requires at least %d "
"devices\n"), argv[0], mindev);
for (c = 0; c < children; c++)
nvlist_free(child[c]);
free(child);
goto spec_out;
}
if (children > maxdev) {
(void) fprintf(stderr, gettext("invalid vdev "
"specification: %s supports no more than "
"%d devices\n"), argv[0], maxdev);
for (c = 0; c < children; c++)
nvlist_free(child[c]);
free(child);
goto spec_out;
}
argc -= c;
argv += c;
if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
spares = child;
nspares = children;
continue;
} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
l2cache = child;
nl2cache = children;
continue;
} else {
/* create a top-level vdev with children */
verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
0) == 0);
verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
type) == 0);
verify(nvlist_add_uint64(nv,
ZPOOL_CONFIG_IS_LOG, is_log) == 0);
if (is_log) {
verify(nvlist_add_string(nv,
ZPOOL_CONFIG_ALLOCATION_BIAS,
VDEV_ALLOC_BIAS_LOG) == 0);
}
if (is_special) {
verify(nvlist_add_string(nv,
ZPOOL_CONFIG_ALLOCATION_BIAS,
VDEV_ALLOC_BIAS_SPECIAL) == 0);
}
if (is_dedup) {
verify(nvlist_add_string(nv,
ZPOOL_CONFIG_ALLOCATION_BIAS,
VDEV_ALLOC_BIAS_DEDUP) == 0);
}
if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
verify(nvlist_add_uint64(nv,
ZPOOL_CONFIG_NPARITY,
mindev - 1) == 0);
}
if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
if (draid_config_by_type(nv,
fulltype, children) != 0) {
for (c = 0; c < children; c++)
nvlist_free(child[c]);
free(child);
goto spec_out;
}
}
verify(nvlist_add_nvlist_array(nv,
ZPOOL_CONFIG_CHILDREN, child,
children) == 0);
for (c = 0; c < children; c++)
nvlist_free(child[c]);
free(child);
}
} else {
/*
* We have a device. Pass off to make_leaf_vdev() to
* construct the appropriate nvlist describing the vdev.
*/
if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
is_special || is_dedup || is_spare))) == NULL)
goto spec_out;
verify(nvlist_add_uint64(nv,
ZPOOL_CONFIG_IS_LOG, is_log) == 0);
if (is_log) {
verify(nvlist_add_string(nv,
ZPOOL_CONFIG_ALLOCATION_BIAS,
VDEV_ALLOC_BIAS_LOG) == 0);
nlogs++;
}
if (is_special) {
verify(nvlist_add_string(nv,
ZPOOL_CONFIG_ALLOCATION_BIAS,
VDEV_ALLOC_BIAS_SPECIAL) == 0);
}
if (is_dedup) {
verify(nvlist_add_string(nv,
ZPOOL_CONFIG_ALLOCATION_BIAS,
VDEV_ALLOC_BIAS_DEDUP) == 0);
}
argc--;
argv++;
}
toplevels++;
top = realloc(top, toplevels * sizeof (nvlist_t *));
if (top == NULL)
zpool_no_memory();
top[toplevels - 1] = nv;
}
if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
(void) fprintf(stderr, gettext("invalid vdev "
"specification: at least one toplevel vdev must be "
"specified\n"));
goto spec_out;
}
if (seen_logs && nlogs == 0) {
(void) fprintf(stderr, gettext("invalid vdev specification: "
"log requires at least 1 device\n"));
goto spec_out;
}
/*
* Finally, create nvroot and add all top-level vdevs to it.
*/
verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
VDEV_TYPE_ROOT) == 0);
verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
top, toplevels) == 0);
if (nspares != 0)
verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
spares, nspares) == 0);
if (nl2cache != 0)
verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
l2cache, nl2cache) == 0);
spec_out:
for (t = 0; t < toplevels; t++)
nvlist_free(top[t]);
for (t = 0; t < nspares; t++)
nvlist_free(spares[t]);
for (t = 0; t < nl2cache; t++)
nvlist_free(l2cache[t]);
free(spares);
free(l2cache);
free(top);
return (nvroot);
}
nvlist_t *
split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
splitflags_t flags, int argc, char **argv)
{
nvlist_t *newroot = NULL, **child;
uint_t c, children;
if (argc > 0) {
if ((newroot = construct_spec(props, argc, argv)) == NULL) {
(void) fprintf(stderr, gettext("Unable to build a "
"pool from the specified devices\n"));
return (NULL);
}
if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
nvlist_free(newroot);
return (NULL);
}
/* avoid any tricks in the spec */
verify(nvlist_lookup_nvlist_array(newroot,
ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
for (c = 0; c < children; c++) {
char *path;
const char *type;
int min, max;
verify(nvlist_lookup_string(child[c],
ZPOOL_CONFIG_PATH, &path) == 0);
if ((type = is_grouping(path, &min, &max)) != NULL) {
(void) fprintf(stderr, gettext("Cannot use "
"'%s' as a device for splitting\n"), type);
nvlist_free(newroot);
return (NULL);
}
}
}
if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
nvlist_free(newroot);
return (NULL);
}
return (newroot);
}
static int
num_normal_vdevs(nvlist_t *nvroot)
{
nvlist_t **top;
uint_t t, toplevels, normal = 0;
verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
&top, &toplevels) == 0);
for (t = 0; t < toplevels; t++) {
uint64_t log = B_FALSE;
(void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
if (log)
continue;
if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
continue;
normal++;
}
return (normal);
}
/*
* Get and validate the contents of the given vdev specification. This ensures
* that the nvlist returned is well-formed, that all the devices exist, and that
* they are not currently in use by any other known consumer. The 'poolconfig'
* parameter is the current configuration of the pool when adding devices
* existing pool, and is used to perform additional checks, such as changing the
* replication level of the pool. It can be 'NULL' to indicate that this is a
* new pool. The 'force' flag controls whether devices should be forcefully
* added, even if they appear in use.
*/
nvlist_t *
make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
boolean_t replacing, boolean_t dryrun, int argc, char **argv)
{
nvlist_t *newroot;
nvlist_t *poolconfig = NULL;
is_force = force;
/*
* Construct the vdev specification. If this is successful, we know
* that we have a valid specification, and that all devices can be
* opened.
*/
if ((newroot = construct_spec(props, argc, argv)) == NULL)
return (NULL);
if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
nvlist_free(newroot);
return (NULL);
}
/*
* Validate each device to make sure that it's not shared with another
* subsystem. We do this even if 'force' is set, because there are some
* uses (such as a dedicated dump device) that even '-f' cannot
* override.
*/
if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
nvlist_free(newroot);
return (NULL);
}
/*
* Check the replication level of the given vdevs and report any errors
* found. We include the existing pool spec, if any, as we need to
* catch changes against the existing replication level.
*/
if (check_rep && check_replication(poolconfig, newroot) != 0) {
nvlist_free(newroot);
return (NULL);
}
/*
* On pool create the new vdev spec must have one normal vdev.
*/
if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
vdev_error(gettext("at least one general top-level vdev must "
"be specified\n"));
nvlist_free(newroot);
return (NULL);
}
/*
* Run through the vdev specification and label any whole disks found.
*/
if (!dryrun && make_disks(zhp, newroot) != 0) {
nvlist_free(newroot);
return (NULL);
}
return (newroot);
}