mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-03 23:09:35 +03:00
2083 lines
52 KiB
C
2083 lines
52 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#pragma ident "@(#)zio.c 1.32 08/03/20 SMI"
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fm/fs/zfs.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio_impl.h>
|
|
#include <sys/zio_compress.h>
|
|
#include <sys/zio_checksum.h>
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O priority table
|
|
* ==========================================================================
|
|
*/
|
|
uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
|
|
0, /* ZIO_PRIORITY_NOW */
|
|
0, /* ZIO_PRIORITY_SYNC_READ */
|
|
0, /* ZIO_PRIORITY_SYNC_WRITE */
|
|
6, /* ZIO_PRIORITY_ASYNC_READ */
|
|
4, /* ZIO_PRIORITY_ASYNC_WRITE */
|
|
4, /* ZIO_PRIORITY_FREE */
|
|
0, /* ZIO_PRIORITY_CACHE_FILL */
|
|
0, /* ZIO_PRIORITY_LOG_WRITE */
|
|
10, /* ZIO_PRIORITY_RESILVER */
|
|
20, /* ZIO_PRIORITY_SCRUB */
|
|
};
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O type descriptions
|
|
* ==========================================================================
|
|
*/
|
|
char *zio_type_name[ZIO_TYPES] = {
|
|
"null", "read", "write", "free", "claim", "ioctl" };
|
|
|
|
/* Force an allocation failure when non-zero */
|
|
uint16_t zio_zil_fail_shift = 0;
|
|
uint16_t zio_io_fail_shift = 0;
|
|
|
|
/* Enable/disable the write-retry logic */
|
|
int zio_write_retry = 1;
|
|
|
|
/* Taskq to handle reissuing of I/Os */
|
|
taskq_t *zio_taskq;
|
|
int zio_resume_threads = 4;
|
|
|
|
typedef struct zio_sync_pass {
|
|
int zp_defer_free; /* defer frees after this pass */
|
|
int zp_dontcompress; /* don't compress after this pass */
|
|
int zp_rewrite; /* rewrite new bps after this pass */
|
|
} zio_sync_pass_t;
|
|
|
|
zio_sync_pass_t zio_sync_pass = {
|
|
1, /* zp_defer_free */
|
|
4, /* zp_dontcompress */
|
|
1, /* zp_rewrite */
|
|
};
|
|
|
|
static boolean_t zio_io_should_fail(uint16_t);
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O kmem caches
|
|
* ==========================================================================
|
|
*/
|
|
kmem_cache_t *zio_cache;
|
|
kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
|
|
kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
|
|
|
|
#ifdef _KERNEL
|
|
extern vmem_t *zio_alloc_arena;
|
|
#endif
|
|
|
|
/*
|
|
* Determine if we are allowed to issue the IO based on the
|
|
* pool state. If we must wait then block until we are told
|
|
* that we may continue.
|
|
*/
|
|
#define ZIO_ENTER(spa) { \
|
|
if (spa->spa_state == POOL_STATE_IO_FAILURE) { \
|
|
mutex_enter(&spa->spa_zio_lock); \
|
|
while (spa->spa_state == POOL_STATE_IO_FAILURE) \
|
|
cv_wait(&spa->spa_zio_cv, &spa->spa_zio_lock); \
|
|
mutex_exit(&spa->spa_zio_lock); \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* An allocation zio is one that either currently has the DVA allocate
|
|
* stage set or will have it later in it's lifetime.
|
|
*/
|
|
#define IO_IS_ALLOCATING(zio) \
|
|
((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE))
|
|
|
|
void
|
|
zio_init(void)
|
|
{
|
|
size_t c;
|
|
vmem_t *data_alloc_arena = NULL;
|
|
|
|
#ifdef _KERNEL
|
|
data_alloc_arena = zio_alloc_arena;
|
|
#endif
|
|
|
|
zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0,
|
|
NULL, NULL, NULL, NULL, NULL, 0);
|
|
|
|
/*
|
|
* For small buffers, we want a cache for each multiple of
|
|
* SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache
|
|
* for each quarter-power of 2. For large buffers, we want
|
|
* a cache for each multiple of PAGESIZE.
|
|
*/
|
|
for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
|
|
size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
|
|
size_t p2 = size;
|
|
size_t align = 0;
|
|
|
|
while (p2 & (p2 - 1))
|
|
p2 &= p2 - 1;
|
|
|
|
if (size <= 4 * SPA_MINBLOCKSIZE) {
|
|
align = SPA_MINBLOCKSIZE;
|
|
} else if (P2PHASE(size, PAGESIZE) == 0) {
|
|
align = PAGESIZE;
|
|
} else if (P2PHASE(size, p2 >> 2) == 0) {
|
|
align = p2 >> 2;
|
|
}
|
|
|
|
if (align != 0) {
|
|
char name[36];
|
|
(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
|
|
zio_buf_cache[c] = kmem_cache_create(name, size,
|
|
align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
|
|
|
|
(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
|
|
zio_data_buf_cache[c] = kmem_cache_create(name, size,
|
|
align, NULL, NULL, NULL, NULL, data_alloc_arena,
|
|
KMC_NODEBUG);
|
|
|
|
}
|
|
}
|
|
|
|
while (--c != 0) {
|
|
ASSERT(zio_buf_cache[c] != NULL);
|
|
if (zio_buf_cache[c - 1] == NULL)
|
|
zio_buf_cache[c - 1] = zio_buf_cache[c];
|
|
|
|
ASSERT(zio_data_buf_cache[c] != NULL);
|
|
if (zio_data_buf_cache[c - 1] == NULL)
|
|
zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
|
|
}
|
|
|
|
zio_taskq = taskq_create("zio_taskq", zio_resume_threads,
|
|
maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE);
|
|
|
|
zio_inject_init();
|
|
}
|
|
|
|
void
|
|
zio_fini(void)
|
|
{
|
|
size_t c;
|
|
kmem_cache_t *last_cache = NULL;
|
|
kmem_cache_t *last_data_cache = NULL;
|
|
|
|
for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
|
|
if (zio_buf_cache[c] != last_cache) {
|
|
last_cache = zio_buf_cache[c];
|
|
kmem_cache_destroy(zio_buf_cache[c]);
|
|
}
|
|
zio_buf_cache[c] = NULL;
|
|
|
|
if (zio_data_buf_cache[c] != last_data_cache) {
|
|
last_data_cache = zio_data_buf_cache[c];
|
|
kmem_cache_destroy(zio_data_buf_cache[c]);
|
|
}
|
|
zio_data_buf_cache[c] = NULL;
|
|
}
|
|
|
|
taskq_destroy(zio_taskq);
|
|
|
|
kmem_cache_destroy(zio_cache);
|
|
|
|
zio_inject_fini();
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Allocate and free I/O buffers
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
|
|
* crashdump if the kernel panics, so use it judiciously. Obviously, it's
|
|
* useful to inspect ZFS metadata, but if possible, we should avoid keeping
|
|
* excess / transient data in-core during a crashdump.
|
|
*/
|
|
void *
|
|
zio_buf_alloc(size_t size)
|
|
{
|
|
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
|
|
|
|
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
|
|
|
|
return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
|
|
}
|
|
|
|
/*
|
|
* Use zio_data_buf_alloc to allocate data. The data will not appear in a
|
|
* crashdump if the kernel panics. This exists so that we will limit the amount
|
|
* of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
|
|
* of kernel heap dumped to disk when the kernel panics)
|
|
*/
|
|
void *
|
|
zio_data_buf_alloc(size_t size)
|
|
{
|
|
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
|
|
|
|
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
|
|
|
|
return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
|
|
}
|
|
|
|
void
|
|
zio_buf_free(void *buf, size_t size)
|
|
{
|
|
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
|
|
|
|
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
|
|
|
|
kmem_cache_free(zio_buf_cache[c], buf);
|
|
}
|
|
|
|
void
|
|
zio_data_buf_free(void *buf, size_t size)
|
|
{
|
|
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
|
|
|
|
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
|
|
|
|
kmem_cache_free(zio_data_buf_cache[c], buf);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Push and pop I/O transform buffers
|
|
* ==========================================================================
|
|
*/
|
|
static void
|
|
zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize)
|
|
{
|
|
zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
|
|
|
|
zt->zt_data = data;
|
|
zt->zt_size = size;
|
|
zt->zt_bufsize = bufsize;
|
|
|
|
zt->zt_next = zio->io_transform_stack;
|
|
zio->io_transform_stack = zt;
|
|
|
|
zio->io_data = data;
|
|
zio->io_size = size;
|
|
}
|
|
|
|
static void
|
|
zio_pop_transform(zio_t *zio, void **data, uint64_t *size, uint64_t *bufsize)
|
|
{
|
|
zio_transform_t *zt = zio->io_transform_stack;
|
|
|
|
*data = zt->zt_data;
|
|
*size = zt->zt_size;
|
|
*bufsize = zt->zt_bufsize;
|
|
|
|
zio->io_transform_stack = zt->zt_next;
|
|
kmem_free(zt, sizeof (zio_transform_t));
|
|
|
|
if ((zt = zio->io_transform_stack) != NULL) {
|
|
zio->io_data = zt->zt_data;
|
|
zio->io_size = zt->zt_size;
|
|
}
|
|
}
|
|
|
|
static void
|
|
zio_clear_transform_stack(zio_t *zio)
|
|
{
|
|
void *data;
|
|
uint64_t size, bufsize;
|
|
|
|
ASSERT(zio->io_transform_stack != NULL);
|
|
|
|
zio_pop_transform(zio, &data, &size, &bufsize);
|
|
while (zio->io_transform_stack != NULL) {
|
|
zio_buf_free(data, bufsize);
|
|
zio_pop_transform(zio, &data, &size, &bufsize);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Create the various types of I/O (read, write, free)
|
|
* ==========================================================================
|
|
*/
|
|
static zio_t *
|
|
zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
|
|
void *data, uint64_t size, zio_done_func_t *done, void *private,
|
|
zio_type_t type, int priority, int flags, uint8_t stage, uint32_t pipeline)
|
|
{
|
|
zio_t *zio;
|
|
|
|
ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
|
|
|
|
zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
|
|
bzero(zio, sizeof (zio_t));
|
|
zio->io_parent = pio;
|
|
zio->io_spa = spa;
|
|
zio->io_txg = txg;
|
|
zio->io_flags = flags;
|
|
if (bp != NULL) {
|
|
zio->io_bp = bp;
|
|
zio->io_bp_copy = *bp;
|
|
zio->io_bp_orig = *bp;
|
|
}
|
|
zio->io_done = done;
|
|
zio->io_private = private;
|
|
zio->io_type = type;
|
|
zio->io_priority = priority;
|
|
zio->io_stage = stage;
|
|
zio->io_pipeline = pipeline;
|
|
zio->io_timestamp = lbolt64;
|
|
mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
|
|
zio_push_transform(zio, data, size, size);
|
|
|
|
/*
|
|
* Note on config lock:
|
|
*
|
|
* If CONFIG_HELD is set, then the caller already has the config
|
|
* lock, so we don't need it for this io.
|
|
*
|
|
* We set CONFIG_GRABBED to indicate that we have grabbed the
|
|
* config lock on behalf of this io, so it should be released
|
|
* in zio_done.
|
|
*
|
|
* Unless CONFIG_HELD is set, we will grab the config lock for
|
|
* any top-level (parent-less) io, *except* NULL top-level ios.
|
|
* The NULL top-level ios rarely have any children, so we delay
|
|
* grabbing the lock until the first child is added (but it is
|
|
* still grabbed on behalf of the top-level i/o, so additional
|
|
* children don't need to also grab it). This greatly reduces
|
|
* contention on the config lock.
|
|
*/
|
|
if (pio == NULL) {
|
|
if (type != ZIO_TYPE_NULL &&
|
|
!(flags & ZIO_FLAG_CONFIG_HELD)) {
|
|
spa_config_enter(spa, RW_READER, zio);
|
|
zio->io_flags |= ZIO_FLAG_CONFIG_GRABBED;
|
|
}
|
|
zio->io_root = zio;
|
|
} else {
|
|
zio->io_root = pio->io_root;
|
|
if (!(flags & ZIO_FLAG_NOBOOKMARK))
|
|
zio->io_logical = pio->io_logical;
|
|
mutex_enter(&pio->io_lock);
|
|
if (pio->io_parent == NULL &&
|
|
pio->io_type == ZIO_TYPE_NULL &&
|
|
!(pio->io_flags & ZIO_FLAG_CONFIG_GRABBED) &&
|
|
!(pio->io_flags & ZIO_FLAG_CONFIG_HELD)) {
|
|
pio->io_flags |= ZIO_FLAG_CONFIG_GRABBED;
|
|
spa_config_enter(spa, RW_READER, pio);
|
|
}
|
|
if (stage < ZIO_STAGE_READY)
|
|
pio->io_children_notready++;
|
|
pio->io_children_notdone++;
|
|
zio->io_sibling_next = pio->io_child;
|
|
zio->io_sibling_prev = NULL;
|
|
if (pio->io_child != NULL)
|
|
pio->io_child->io_sibling_prev = zio;
|
|
pio->io_child = zio;
|
|
zio->io_ndvas = pio->io_ndvas;
|
|
mutex_exit(&pio->io_lock);
|
|
}
|
|
|
|
/*
|
|
* Save off the original state incase we need to retry later.
|
|
*/
|
|
zio->io_orig_stage = zio->io_stage;
|
|
zio->io_orig_pipeline = zio->io_pipeline;
|
|
zio->io_orig_flags = zio->io_flags;
|
|
|
|
return (zio);
|
|
}
|
|
|
|
static void
|
|
zio_reset(zio_t *zio)
|
|
{
|
|
zio_clear_transform_stack(zio);
|
|
|
|
zio->io_flags = zio->io_orig_flags;
|
|
zio->io_stage = zio->io_orig_stage;
|
|
zio->io_pipeline = zio->io_orig_pipeline;
|
|
zio_push_transform(zio, zio->io_data, zio->io_size, zio->io_size);
|
|
}
|
|
|
|
zio_t *
|
|
zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private,
|
|
int flags)
|
|
{
|
|
zio_t *zio;
|
|
|
|
zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
|
|
ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, ZIO_STAGE_OPEN,
|
|
ZIO_WAIT_FOR_CHILDREN_PIPELINE);
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags)
|
|
{
|
|
return (zio_null(NULL, spa, done, private, flags));
|
|
}
|
|
|
|
zio_t *
|
|
zio_read(zio_t *pio, spa_t *spa, blkptr_t *bp, void *data,
|
|
uint64_t size, zio_done_func_t *done, void *private,
|
|
int priority, int flags, zbookmark_t *zb)
|
|
{
|
|
zio_t *zio;
|
|
|
|
ASSERT3U(size, ==, BP_GET_LSIZE(bp));
|
|
|
|
/*
|
|
* If the user has specified that we allow I/Os to continue
|
|
* then attempt to satisfy the read.
|
|
*/
|
|
if (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
|
|
ZIO_ENTER(spa);
|
|
|
|
zio = zio_create(pio, spa, bp->blk_birth, bp, data, size, done, private,
|
|
ZIO_TYPE_READ, priority, flags | ZIO_FLAG_USER,
|
|
ZIO_STAGE_OPEN, ZIO_READ_PIPELINE);
|
|
zio->io_bookmark = *zb;
|
|
|
|
zio->io_logical = zio;
|
|
|
|
/*
|
|
* Work off our copy of the bp so the caller can free it.
|
|
*/
|
|
zio->io_bp = &zio->io_bp_copy;
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
|
|
uint64_t txg, blkptr_t *bp, void *data, uint64_t size,
|
|
zio_done_func_t *ready, zio_done_func_t *done, void *private, int priority,
|
|
int flags, zbookmark_t *zb)
|
|
{
|
|
zio_t *zio;
|
|
|
|
ASSERT(checksum >= ZIO_CHECKSUM_OFF &&
|
|
checksum < ZIO_CHECKSUM_FUNCTIONS);
|
|
|
|
ASSERT(compress >= ZIO_COMPRESS_OFF &&
|
|
compress < ZIO_COMPRESS_FUNCTIONS);
|
|
|
|
ZIO_ENTER(spa);
|
|
|
|
zio = zio_create(pio, spa, txg, bp, data, size, done, private,
|
|
ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER,
|
|
ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE);
|
|
|
|
zio->io_ready = ready;
|
|
|
|
zio->io_bookmark = *zb;
|
|
|
|
zio->io_logical = zio;
|
|
|
|
zio->io_checksum = checksum;
|
|
zio->io_compress = compress;
|
|
zio->io_ndvas = ncopies;
|
|
|
|
if (bp->blk_birth != txg) {
|
|
/* XXX the bp usually (always?) gets re-zeroed later */
|
|
BP_ZERO(bp);
|
|
BP_SET_LSIZE(bp, size);
|
|
BP_SET_PSIZE(bp, size);
|
|
} else {
|
|
/* Make sure someone doesn't change their mind on overwrites */
|
|
ASSERT(MIN(zio->io_ndvas + BP_IS_GANG(bp),
|
|
spa_max_replication(spa)) == BP_GET_NDVAS(bp));
|
|
}
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_rewrite(zio_t *pio, spa_t *spa, int checksum,
|
|
uint64_t txg, blkptr_t *bp, void *data, uint64_t size,
|
|
zio_done_func_t *done, void *private, int priority, int flags,
|
|
zbookmark_t *zb)
|
|
{
|
|
zio_t *zio;
|
|
|
|
zio = zio_create(pio, spa, txg, bp, data, size, done, private,
|
|
ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER,
|
|
ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE(bp));
|
|
|
|
zio->io_bookmark = *zb;
|
|
zio->io_checksum = checksum;
|
|
zio->io_compress = ZIO_COMPRESS_OFF;
|
|
|
|
if (pio != NULL)
|
|
ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp));
|
|
|
|
return (zio);
|
|
}
|
|
|
|
static void
|
|
zio_write_allocate_ready(zio_t *zio)
|
|
{
|
|
/* Free up the previous block */
|
|
if (!BP_IS_HOLE(&zio->io_bp_orig)) {
|
|
zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg,
|
|
&zio->io_bp_orig, NULL, NULL));
|
|
}
|
|
}
|
|
|
|
static zio_t *
|
|
zio_write_allocate(zio_t *pio, spa_t *spa, int checksum,
|
|
uint64_t txg, blkptr_t *bp, void *data, uint64_t size,
|
|
zio_done_func_t *done, void *private, int priority, int flags)
|
|
{
|
|
zio_t *zio;
|
|
|
|
BP_ZERO(bp);
|
|
BP_SET_LSIZE(bp, size);
|
|
BP_SET_PSIZE(bp, size);
|
|
BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
|
|
|
|
zio = zio_create(pio, spa, txg, bp, data, size, done, private,
|
|
ZIO_TYPE_WRITE, priority, flags,
|
|
ZIO_STAGE_OPEN, ZIO_WRITE_ALLOCATE_PIPELINE);
|
|
|
|
zio->io_checksum = checksum;
|
|
zio->io_compress = ZIO_COMPRESS_OFF;
|
|
zio->io_ready = zio_write_allocate_ready;
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
|
|
zio_done_func_t *done, void *private)
|
|
{
|
|
zio_t *zio;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
|
|
if (txg == spa->spa_syncing_txg &&
|
|
spa->spa_sync_pass > zio_sync_pass.zp_defer_free) {
|
|
bplist_enqueue_deferred(&spa->spa_sync_bplist, bp);
|
|
return (zio_null(pio, spa, NULL, NULL, 0));
|
|
}
|
|
|
|
zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private,
|
|
ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, ZIO_FLAG_USER,
|
|
ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE(bp));
|
|
|
|
zio->io_bp = &zio->io_bp_copy;
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
|
|
zio_done_func_t *done, void *private)
|
|
{
|
|
zio_t *zio;
|
|
|
|
/*
|
|
* A claim is an allocation of a specific block. Claims are needed
|
|
* to support immediate writes in the intent log. The issue is that
|
|
* immediate writes contain committed data, but in a txg that was
|
|
* *not* committed. Upon opening the pool after an unclean shutdown,
|
|
* the intent log claims all blocks that contain immediate write data
|
|
* so that the SPA knows they're in use.
|
|
*
|
|
* All claims *must* be resolved in the first txg -- before the SPA
|
|
* starts allocating blocks -- so that nothing is allocated twice.
|
|
*/
|
|
ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
|
|
ASSERT3U(spa_first_txg(spa), <=, txg);
|
|
|
|
zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private,
|
|
ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 0,
|
|
ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE(bp));
|
|
|
|
zio->io_bp = &zio->io_bp_copy;
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
|
|
zio_done_func_t *done, void *private, int priority, int flags)
|
|
{
|
|
zio_t *zio;
|
|
int c;
|
|
|
|
if (vd->vdev_children == 0) {
|
|
zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
|
|
ZIO_TYPE_IOCTL, priority, flags,
|
|
ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
|
|
|
|
zio->io_vd = vd;
|
|
zio->io_cmd = cmd;
|
|
} else {
|
|
zio = zio_null(pio, spa, NULL, NULL, flags);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
|
|
done, private, priority, flags));
|
|
}
|
|
|
|
return (zio);
|
|
}
|
|
|
|
static void
|
|
zio_phys_bp_init(vdev_t *vd, blkptr_t *bp, uint64_t offset, uint64_t size,
|
|
int checksum, boolean_t labels)
|
|
{
|
|
ASSERT(vd->vdev_children == 0);
|
|
|
|
ASSERT(size <= SPA_MAXBLOCKSIZE);
|
|
ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
|
|
ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
|
|
|
|
#ifdef ZFS_DEBUG
|
|
if (labels) {
|
|
ASSERT(offset + size <= VDEV_LABEL_START_SIZE ||
|
|
offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
|
|
}
|
|
#endif
|
|
ASSERT3U(offset + size, <=, vd->vdev_psize);
|
|
|
|
BP_ZERO(bp);
|
|
|
|
BP_SET_LSIZE(bp, size);
|
|
BP_SET_PSIZE(bp, size);
|
|
|
|
BP_SET_CHECKSUM(bp, checksum);
|
|
BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
|
|
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
|
|
|
|
if (checksum != ZIO_CHECKSUM_OFF)
|
|
ZIO_SET_CHECKSUM(&bp->blk_cksum, offset, 0, 0, 0);
|
|
}
|
|
|
|
zio_t *
|
|
zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
|
|
void *data, int checksum, zio_done_func_t *done, void *private,
|
|
int priority, int flags, boolean_t labels)
|
|
{
|
|
zio_t *zio;
|
|
blkptr_t blk;
|
|
|
|
ZIO_ENTER(vd->vdev_spa);
|
|
|
|
zio_phys_bp_init(vd, &blk, offset, size, checksum, labels);
|
|
|
|
zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private,
|
|
ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL,
|
|
ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
|
|
|
|
zio->io_vd = vd;
|
|
zio->io_offset = offset;
|
|
|
|
/*
|
|
* Work off our copy of the bp so the caller can free it.
|
|
*/
|
|
zio->io_bp = &zio->io_bp_copy;
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
|
|
void *data, int checksum, zio_done_func_t *done, void *private,
|
|
int priority, int flags, boolean_t labels)
|
|
{
|
|
zio_block_tail_t *zbt;
|
|
void *wbuf;
|
|
zio_t *zio;
|
|
blkptr_t blk;
|
|
|
|
ZIO_ENTER(vd->vdev_spa);
|
|
|
|
zio_phys_bp_init(vd, &blk, offset, size, checksum, labels);
|
|
|
|
zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private,
|
|
ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL,
|
|
ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
|
|
|
|
zio->io_vd = vd;
|
|
zio->io_offset = offset;
|
|
|
|
zio->io_bp = &zio->io_bp_copy;
|
|
zio->io_checksum = checksum;
|
|
|
|
if (zio_checksum_table[checksum].ci_zbt) {
|
|
/*
|
|
* zbt checksums are necessarily destructive -- they modify
|
|
* one word of the write buffer to hold the verifier/checksum.
|
|
* Therefore, we must make a local copy in case the data is
|
|
* being written to multiple places.
|
|
*/
|
|
wbuf = zio_buf_alloc(size);
|
|
bcopy(data, wbuf, size);
|
|
zio_push_transform(zio, wbuf, size, size);
|
|
|
|
zbt = (zio_block_tail_t *)((char *)wbuf + size) - 1;
|
|
zbt->zbt_cksum = blk.blk_cksum;
|
|
}
|
|
|
|
return (zio);
|
|
}
|
|
|
|
/*
|
|
* Create a child I/O to do some work for us. It has no associated bp.
|
|
*/
|
|
zio_t *
|
|
zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
|
|
void *data, uint64_t size, int type, int priority, int flags,
|
|
zio_done_func_t *done, void *private)
|
|
{
|
|
uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE;
|
|
zio_t *cio;
|
|
|
|
if (type == ZIO_TYPE_READ && bp != NULL) {
|
|
/*
|
|
* If we have the bp, then the child should perform the
|
|
* checksum and the parent need not. This pushes error
|
|
* detection as close to the leaves as possible and
|
|
* eliminates redundant checksums in the interior nodes.
|
|
*/
|
|
pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY;
|
|
zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY);
|
|
}
|
|
|
|
cio = zio_create(zio, zio->io_spa, zio->io_txg, bp, data, size,
|
|
done, private, type, priority,
|
|
(zio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | flags,
|
|
ZIO_STAGE_VDEV_IO_START - 1, pipeline);
|
|
|
|
cio->io_vd = vd;
|
|
cio->io_offset = offset;
|
|
|
|
return (cio);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Initiate I/O, either sync or async
|
|
* ==========================================================================
|
|
*/
|
|
int
|
|
zio_wait(zio_t *zio)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
|
|
|
|
zio->io_waiter = curthread;
|
|
|
|
zio_execute(zio);
|
|
|
|
mutex_enter(&zio->io_lock);
|
|
while (zio->io_stalled != ZIO_STAGE_DONE)
|
|
cv_wait(&zio->io_cv, &zio->io_lock);
|
|
mutex_exit(&zio->io_lock);
|
|
|
|
error = zio->io_error;
|
|
mutex_destroy(&zio->io_lock);
|
|
cv_destroy(&zio->io_cv);
|
|
kmem_cache_free(zio_cache, zio);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
zio_nowait(zio_t *zio)
|
|
{
|
|
zio_execute(zio);
|
|
}
|
|
|
|
void
|
|
zio_interrupt(zio_t *zio)
|
|
{
|
|
(void) taskq_dispatch(zio->io_spa->spa_zio_intr_taskq[zio->io_type],
|
|
(task_func_t *)zio_execute, zio, TQ_SLEEP);
|
|
}
|
|
|
|
static int
|
|
zio_issue_async(zio_t *zio)
|
|
{
|
|
(void) taskq_dispatch(zio->io_spa->spa_zio_issue_taskq[zio->io_type],
|
|
(task_func_t *)zio_execute, zio, TQ_SLEEP);
|
|
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O pipeline interlocks: parent/child dependency scoreboarding
|
|
* ==========================================================================
|
|
*/
|
|
static int
|
|
zio_wait_for_children(zio_t *zio, uint32_t stage, uint64_t *countp)
|
|
{
|
|
int rv = ZIO_PIPELINE_CONTINUE;
|
|
|
|
mutex_enter(&zio->io_lock);
|
|
ASSERT(zio->io_stalled == 0);
|
|
if (*countp != 0) {
|
|
zio->io_stalled = stage;
|
|
rv = ZIO_PIPELINE_STOP;
|
|
}
|
|
mutex_exit(&zio->io_lock);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
static void
|
|
zio_notify_parent(zio_t *zio, uint32_t stage, uint64_t *countp)
|
|
{
|
|
zio_t *pio = zio->io_parent;
|
|
|
|
mutex_enter(&pio->io_lock);
|
|
if (pio->io_error == 0 && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
|
|
pio->io_error = zio->io_error;
|
|
ASSERT3U(*countp, >, 0);
|
|
if (--*countp == 0 && pio->io_stalled == stage) {
|
|
pio->io_stalled = 0;
|
|
mutex_exit(&pio->io_lock);
|
|
zio_execute(pio);
|
|
} else {
|
|
mutex_exit(&pio->io_lock);
|
|
}
|
|
}
|
|
|
|
int
|
|
zio_wait_for_children_ready(zio_t *zio)
|
|
{
|
|
return (zio_wait_for_children(zio, ZIO_STAGE_WAIT_FOR_CHILDREN_READY,
|
|
&zio->io_children_notready));
|
|
}
|
|
|
|
int
|
|
zio_wait_for_children_done(zio_t *zio)
|
|
{
|
|
return (zio_wait_for_children(zio, ZIO_STAGE_WAIT_FOR_CHILDREN_DONE,
|
|
&zio->io_children_notdone));
|
|
}
|
|
|
|
static int
|
|
zio_read_init(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
|
|
uint64_t csize = BP_GET_PSIZE(bp);
|
|
void *cbuf = zio_buf_alloc(csize);
|
|
|
|
zio_push_transform(zio, cbuf, csize, csize);
|
|
zio->io_pipeline |= 1U << ZIO_STAGE_READ_DECOMPRESS;
|
|
}
|
|
|
|
if (BP_IS_GANG(bp)) {
|
|
uint64_t gsize = SPA_GANGBLOCKSIZE;
|
|
void *gbuf = zio_buf_alloc(gsize);
|
|
|
|
zio_push_transform(zio, gbuf, gsize, gsize);
|
|
zio->io_pipeline |= 1U << ZIO_STAGE_READ_GANG_MEMBERS;
|
|
}
|
|
|
|
if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0)
|
|
zio->io_flags |= ZIO_FLAG_DONT_CACHE;
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_ready(zio_t *zio)
|
|
{
|
|
zio_t *pio = zio->io_parent;
|
|
|
|
if (zio->io_ready)
|
|
zio->io_ready(zio);
|
|
|
|
if (pio != NULL)
|
|
zio_notify_parent(zio, ZIO_STAGE_WAIT_FOR_CHILDREN_READY,
|
|
&pio->io_children_notready);
|
|
|
|
if (zio->io_bp)
|
|
zio->io_bp_copy = *zio->io_bp;
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_vdev_retry_io(zio_t *zio)
|
|
{
|
|
zio_t *pio = zio->io_parent;
|
|
|
|
/*
|
|
* Preserve the failed bp so that the io_ready() callback can
|
|
* update the accounting accordingly. The callback will also be
|
|
* responsible for freeing the previously allocated block, if one
|
|
* exists.
|
|
*/
|
|
zio->io_bp_orig = *zio->io_bp;
|
|
|
|
/*
|
|
* We must zero out the old DVA and blk_birth before reallocating
|
|
* the bp.
|
|
*/
|
|
BP_ZERO_DVAS(zio->io_bp);
|
|
zio_reset(zio);
|
|
|
|
if (pio) {
|
|
/*
|
|
* Let the parent know that we will
|
|
* re-alloc the write (=> new bp info).
|
|
*/
|
|
mutex_enter(&pio->io_lock);
|
|
pio->io_children_notready++;
|
|
|
|
/*
|
|
* If the parent I/O is still in the open stage, then
|
|
* don't bother telling it to retry since it hasn't
|
|
* progressed far enough for it to care.
|
|
*/
|
|
if (pio->io_stage > ZIO_STAGE_OPEN && IO_IS_ALLOCATING(pio))
|
|
pio->io_flags |= ZIO_FLAG_WRITE_RETRY;
|
|
|
|
ASSERT(pio->io_stage <= ZIO_STAGE_WAIT_FOR_CHILDREN_DONE);
|
|
mutex_exit(&pio->io_lock);
|
|
}
|
|
|
|
/*
|
|
* We are getting ready to process the retry request so clear
|
|
* the flag and the zio's current error status.
|
|
*/
|
|
zio->io_flags &= ~ZIO_FLAG_WRITE_RETRY;
|
|
zio->io_error = 0;
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
int
|
|
zio_vdev_resume_io(spa_t *spa)
|
|
{
|
|
zio_t *zio;
|
|
|
|
mutex_enter(&spa->spa_zio_lock);
|
|
|
|
/*
|
|
* Probe all of vdevs that have experienced an I/O error.
|
|
* If we are still unable to verify the integrity of the vdev
|
|
* then we prevent the resume from proceeeding.
|
|
*/
|
|
for (zio = list_head(&spa->spa_zio_list); zio != NULL;
|
|
zio = list_next(&spa->spa_zio_list, zio)) {
|
|
int error = 0;
|
|
|
|
/* We only care about I/Os that must succeed */
|
|
if (zio->io_vd == NULL || zio->io_flags & ZIO_FLAG_CANFAIL)
|
|
continue;
|
|
error = vdev_probe(zio->io_vd);
|
|
if (error) {
|
|
mutex_exit(&spa->spa_zio_lock);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear the vdev stats so that I/O can flow.
|
|
*/
|
|
vdev_clear(spa, NULL, B_FALSE);
|
|
|
|
spa->spa_state = POOL_STATE_ACTIVE;
|
|
while ((zio = list_head(&spa->spa_zio_list)) != NULL) {
|
|
list_remove(&spa->spa_zio_list, zio);
|
|
zio->io_error = 0;
|
|
|
|
/*
|
|
* If we are resuming an allocating I/O then we force it
|
|
* to retry and let it resume operation where it left off.
|
|
* Otherwise, go back to the ready stage and pick up from
|
|
* there.
|
|
*/
|
|
if (zio_write_retry && IO_IS_ALLOCATING(zio)) {
|
|
zio->io_flags |= ZIO_FLAG_WRITE_RETRY;
|
|
zio->io_stage--;
|
|
} else {
|
|
zio->io_stage = ZIO_STAGE_READY;
|
|
}
|
|
|
|
(void) taskq_dispatch(zio_taskq, (task_func_t *)zio_execute,
|
|
zio, TQ_SLEEP);
|
|
}
|
|
mutex_exit(&spa->spa_zio_lock);
|
|
|
|
/*
|
|
* Wait for the taskqs to finish and recheck the pool state since
|
|
* it's possible that a resumed I/O has failed again.
|
|
*/
|
|
taskq_wait(zio_taskq);
|
|
if (spa_state(spa) == POOL_STATE_IO_FAILURE)
|
|
return (EIO);
|
|
|
|
mutex_enter(&spa->spa_zio_lock);
|
|
cv_broadcast(&spa->spa_zio_cv);
|
|
mutex_exit(&spa->spa_zio_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zio_vdev_suspend_io(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
/*
|
|
* We've experienced an unrecoverable failure so
|
|
* set the pool state accordingly and queue all
|
|
* failed IOs.
|
|
*/
|
|
spa->spa_state = POOL_STATE_IO_FAILURE;
|
|
|
|
mutex_enter(&spa->spa_zio_lock);
|
|
list_insert_tail(&spa->spa_zio_list, zio);
|
|
|
|
#ifndef _KERNEL
|
|
/* Used to notify ztest that the pool has suspended */
|
|
cv_broadcast(&spa->spa_zio_cv);
|
|
#endif
|
|
mutex_exit(&spa->spa_zio_lock);
|
|
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
static int
|
|
zio_assess(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
blkptr_t *bp = zio->io_bp;
|
|
vdev_t *vd = zio->io_vd;
|
|
|
|
ASSERT(zio->io_children_notready == 0);
|
|
ASSERT(zio->io_children_notdone == 0);
|
|
|
|
if (bp != NULL) {
|
|
ASSERT(bp->blk_pad[0] == 0);
|
|
ASSERT(bp->blk_pad[1] == 0);
|
|
ASSERT(bp->blk_pad[2] == 0);
|
|
ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0);
|
|
if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
|
|
!(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
|
|
ASSERT(!BP_SHOULD_BYTESWAP(bp));
|
|
if (zio->io_ndvas != 0)
|
|
ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp));
|
|
ASSERT(BP_COUNT_GANG(bp) == 0 ||
|
|
(BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some child I/O has indicated that a retry is necessary, so
|
|
* we set an error on the I/O and let the logic below do the
|
|
* rest.
|
|
*/
|
|
if (zio->io_flags & ZIO_FLAG_WRITE_RETRY)
|
|
zio->io_error = ERESTART;
|
|
|
|
if (vd != NULL)
|
|
vdev_stat_update(zio);
|
|
|
|
if (zio->io_error) {
|
|
/*
|
|
* If this I/O is attached to a particular vdev,
|
|
* generate an error message describing the I/O failure
|
|
* at the block level. We ignore these errors if the
|
|
* device is currently unavailable.
|
|
*/
|
|
if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
|
|
zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
|
|
|
|
if ((zio->io_error == EIO ||
|
|
!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) &&
|
|
zio->io_logical == zio) {
|
|
/*
|
|
* For root I/O requests, tell the SPA to log the error
|
|
* appropriately. Also, generate a logical data
|
|
* ereport.
|
|
*/
|
|
spa_log_error(spa, zio);
|
|
|
|
zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
|
|
0, 0);
|
|
}
|
|
|
|
/*
|
|
* If we are an allocating I/O then we attempt to reissue
|
|
* the I/O on another vdev unless the pool is out of space.
|
|
* We handle this condition based on the spa's failmode
|
|
* property.
|
|
*/
|
|
if (zio_write_retry && zio->io_error != ENOSPC &&
|
|
IO_IS_ALLOCATING(zio))
|
|
return (zio_vdev_retry_io(zio));
|
|
|
|
ASSERT(!(zio->io_flags & ZIO_FLAG_WRITE_RETRY));
|
|
|
|
/*
|
|
* For I/O requests that cannot fail, we carry out
|
|
* the requested behavior based on the failmode pool
|
|
* property.
|
|
*
|
|
* XXX - Need to differentiate between an ENOSPC as
|
|
* a result of vdev failures vs. a full pool.
|
|
*/
|
|
if (!(zio->io_flags & ZIO_FLAG_CANFAIL)) {
|
|
char *blkbuf;
|
|
|
|
#ifdef ZFS_DEBUG
|
|
blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_NOSLEEP);
|
|
if (blkbuf) {
|
|
sprintf_blkptr(blkbuf, BP_SPRINTF_LEN,
|
|
bp ? bp : &zio->io_bp_copy);
|
|
}
|
|
cmn_err(CE_WARN, "ZFS: %s (%s on %s off %llx: zio %p "
|
|
"%s): error %d", zio->io_error == ECKSUM ?
|
|
"bad checksum" : "I/O failure",
|
|
zio_type_name[zio->io_type],
|
|
vdev_description(vd),
|
|
(u_longlong_t)zio->io_offset,
|
|
(void *)zio, blkbuf ? blkbuf : "", zio->io_error);
|
|
#endif
|
|
|
|
if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) {
|
|
fm_panic("Pool '%s' has encountered an "
|
|
"uncorrectable I/O failure and the "
|
|
"failure mode property for this pool "
|
|
"is set to panic.", spa_name(spa));
|
|
}
|
|
cmn_err(CE_WARN, "Pool '%s' has encountered "
|
|
"an uncorrectable I/O error. "
|
|
"Manual intervention is required.", spa_name(spa));
|
|
return (zio_vdev_suspend_io(zio));
|
|
}
|
|
}
|
|
ASSERT(!(zio->io_flags & ZIO_FLAG_WRITE_RETRY));
|
|
ASSERT(zio->io_children_notready == 0);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_done(zio_t *zio)
|
|
{
|
|
zio_t *pio = zio->io_parent;
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
ASSERT(zio->io_children_notready == 0);
|
|
ASSERT(zio->io_children_notdone == 0);
|
|
|
|
zio_clear_transform_stack(zio);
|
|
|
|
if (zio->io_done)
|
|
zio->io_done(zio);
|
|
|
|
ASSERT(zio->io_delegate_list == NULL);
|
|
ASSERT(zio->io_delegate_next == NULL);
|
|
|
|
if (pio != NULL) {
|
|
zio_t *next, *prev;
|
|
|
|
mutex_enter(&pio->io_lock);
|
|
next = zio->io_sibling_next;
|
|
prev = zio->io_sibling_prev;
|
|
if (next != NULL)
|
|
next->io_sibling_prev = prev;
|
|
if (prev != NULL)
|
|
prev->io_sibling_next = next;
|
|
if (pio->io_child == zio)
|
|
pio->io_child = next;
|
|
mutex_exit(&pio->io_lock);
|
|
|
|
zio_notify_parent(zio, ZIO_STAGE_WAIT_FOR_CHILDREN_DONE,
|
|
&pio->io_children_notdone);
|
|
}
|
|
|
|
/*
|
|
* Note: this I/O is now done, and will shortly be freed, so there is no
|
|
* need to clear this (or any other) flag.
|
|
*/
|
|
if (zio->io_flags & ZIO_FLAG_CONFIG_GRABBED)
|
|
spa_config_exit(spa, zio);
|
|
|
|
if (zio->io_waiter != NULL) {
|
|
mutex_enter(&zio->io_lock);
|
|
ASSERT(zio->io_stage == ZIO_STAGE_DONE);
|
|
zio->io_stalled = zio->io_stage;
|
|
cv_broadcast(&zio->io_cv);
|
|
mutex_exit(&zio->io_lock);
|
|
} else {
|
|
mutex_destroy(&zio->io_lock);
|
|
cv_destroy(&zio->io_cv);
|
|
kmem_cache_free(zio_cache, zio);
|
|
}
|
|
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Compression support
|
|
* ==========================================================================
|
|
*/
|
|
static int
|
|
zio_write_compress(zio_t *zio)
|
|
{
|
|
int compress = zio->io_compress;
|
|
blkptr_t *bp = zio->io_bp;
|
|
void *cbuf;
|
|
uint64_t lsize = zio->io_size;
|
|
uint64_t csize = lsize;
|
|
uint64_t cbufsize = 0;
|
|
int pass;
|
|
|
|
if (bp->blk_birth == zio->io_txg) {
|
|
/*
|
|
* We're rewriting an existing block, which means we're
|
|
* working on behalf of spa_sync(). For spa_sync() to
|
|
* converge, it must eventually be the case that we don't
|
|
* have to allocate new blocks. But compression changes
|
|
* the blocksize, which forces a reallocate, and makes
|
|
* convergence take longer. Therefore, after the first
|
|
* few passes, stop compressing to ensure convergence.
|
|
*/
|
|
pass = spa_sync_pass(zio->io_spa);
|
|
if (pass > zio_sync_pass.zp_dontcompress)
|
|
compress = ZIO_COMPRESS_OFF;
|
|
} else {
|
|
ASSERT(BP_IS_HOLE(bp));
|
|
pass = 1;
|
|
}
|
|
|
|
if (compress != ZIO_COMPRESS_OFF)
|
|
if (!zio_compress_data(compress, zio->io_data, zio->io_size,
|
|
&cbuf, &csize, &cbufsize))
|
|
compress = ZIO_COMPRESS_OFF;
|
|
|
|
if (compress != ZIO_COMPRESS_OFF && csize != 0)
|
|
zio_push_transform(zio, cbuf, csize, cbufsize);
|
|
|
|
/*
|
|
* The final pass of spa_sync() must be all rewrites, but the first
|
|
* few passes offer a trade-off: allocating blocks defers convergence,
|
|
* but newly allocated blocks are sequential, so they can be written
|
|
* to disk faster. Therefore, we allow the first few passes of
|
|
* spa_sync() to reallocate new blocks, but force rewrites after that.
|
|
* There should only be a handful of blocks after pass 1 in any case.
|
|
*/
|
|
if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize &&
|
|
pass > zio_sync_pass.zp_rewrite) {
|
|
ASSERT(csize != 0);
|
|
BP_SET_LSIZE(bp, lsize);
|
|
BP_SET_COMPRESS(bp, compress);
|
|
zio->io_pipeline = ZIO_REWRITE_PIPELINE(bp);
|
|
} else {
|
|
if (bp->blk_birth == zio->io_txg)
|
|
BP_ZERO(bp);
|
|
if (csize == 0) {
|
|
BP_ZERO(bp);
|
|
zio->io_pipeline = ZIO_WAIT_FOR_CHILDREN_PIPELINE;
|
|
} else {
|
|
ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
|
|
BP_SET_LSIZE(bp, lsize);
|
|
BP_SET_PSIZE(bp, csize);
|
|
BP_SET_COMPRESS(bp, compress);
|
|
}
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_read_decompress(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
void *data;
|
|
uint64_t size;
|
|
uint64_t bufsize;
|
|
int compress = BP_GET_COMPRESS(bp);
|
|
|
|
ASSERT(compress != ZIO_COMPRESS_OFF);
|
|
|
|
zio_pop_transform(zio, &data, &size, &bufsize);
|
|
|
|
if (zio_decompress_data(compress, data, size,
|
|
zio->io_data, zio->io_size))
|
|
zio->io_error = EIO;
|
|
|
|
zio_buf_free(data, bufsize);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Gang block support
|
|
* ==========================================================================
|
|
*/
|
|
static void
|
|
zio_gang_byteswap(zio_t *zio)
|
|
{
|
|
ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
|
|
|
|
if (BP_SHOULD_BYTESWAP(zio->io_bp))
|
|
byteswap_uint64_array(zio->io_data, zio->io_size);
|
|
}
|
|
|
|
static int
|
|
zio_get_gang_header(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
uint64_t gsize = SPA_GANGBLOCKSIZE;
|
|
void *gbuf = zio_buf_alloc(gsize);
|
|
|
|
ASSERT(BP_IS_GANG(bp));
|
|
|
|
zio_push_transform(zio, gbuf, gsize, gsize);
|
|
|
|
zio_nowait(zio_create(zio, zio->io_spa, bp->blk_birth, bp, gbuf, gsize,
|
|
NULL, NULL, ZIO_TYPE_READ, zio->io_priority,
|
|
zio->io_flags & ZIO_FLAG_GANG_INHERIT,
|
|
ZIO_STAGE_OPEN, ZIO_READ_GANG_PIPELINE));
|
|
|
|
return (zio_wait_for_children_done(zio));
|
|
}
|
|
|
|
static int
|
|
zio_read_gang_members(zio_t *zio)
|
|
{
|
|
zio_gbh_phys_t *gbh;
|
|
uint64_t gsize, gbufsize, loff, lsize;
|
|
int i;
|
|
|
|
ASSERT(BP_IS_GANG(zio->io_bp));
|
|
|
|
zio_gang_byteswap(zio);
|
|
zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize);
|
|
|
|
for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) {
|
|
blkptr_t *gbp = &gbh->zg_blkptr[i];
|
|
lsize = BP_GET_PSIZE(gbp);
|
|
|
|
ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF);
|
|
ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp));
|
|
ASSERT3U(loff + lsize, <=, zio->io_size);
|
|
ASSERT(i < SPA_GBH_NBLKPTRS);
|
|
ASSERT(!BP_IS_HOLE(gbp));
|
|
|
|
zio_nowait(zio_read(zio, zio->io_spa, gbp,
|
|
(char *)zio->io_data + loff, lsize,
|
|
NULL, NULL, zio->io_priority,
|
|
zio->io_flags & ZIO_FLAG_GANG_INHERIT, &zio->io_bookmark));
|
|
}
|
|
|
|
zio_buf_free(gbh, gbufsize);
|
|
|
|
return (zio_wait_for_children_done(zio));
|
|
}
|
|
|
|
static int
|
|
zio_rewrite_gang_members(zio_t *zio)
|
|
{
|
|
zio_gbh_phys_t *gbh;
|
|
uint64_t gsize, gbufsize, loff, lsize;
|
|
int i;
|
|
|
|
ASSERT(BP_IS_GANG(zio->io_bp));
|
|
ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE);
|
|
|
|
zio_gang_byteswap(zio);
|
|
zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize);
|
|
|
|
ASSERT(gsize == gbufsize);
|
|
|
|
for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) {
|
|
blkptr_t *gbp = &gbh->zg_blkptr[i];
|
|
lsize = BP_GET_PSIZE(gbp);
|
|
|
|
ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF);
|
|
ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp));
|
|
ASSERT3U(loff + lsize, <=, zio->io_size);
|
|
ASSERT(i < SPA_GBH_NBLKPTRS);
|
|
ASSERT(!BP_IS_HOLE(gbp));
|
|
|
|
zio_nowait(zio_rewrite(zio, zio->io_spa, zio->io_checksum,
|
|
zio->io_txg, gbp, (char *)zio->io_data + loff, lsize,
|
|
NULL, NULL, zio->io_priority,
|
|
zio->io_flags & ZIO_FLAG_GANG_INHERIT, &zio->io_bookmark));
|
|
}
|
|
|
|
zio_push_transform(zio, gbh, gsize, gbufsize);
|
|
|
|
return (zio_wait_for_children_ready(zio));
|
|
}
|
|
|
|
static int
|
|
zio_free_gang_members(zio_t *zio)
|
|
{
|
|
zio_gbh_phys_t *gbh;
|
|
uint64_t gsize, gbufsize;
|
|
int i;
|
|
|
|
ASSERT(BP_IS_GANG(zio->io_bp));
|
|
|
|
zio_gang_byteswap(zio);
|
|
zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize);
|
|
|
|
for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
|
|
blkptr_t *gbp = &gbh->zg_blkptr[i];
|
|
|
|
if (BP_IS_HOLE(gbp))
|
|
continue;
|
|
zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg,
|
|
gbp, NULL, NULL));
|
|
}
|
|
|
|
zio_buf_free(gbh, gbufsize);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_claim_gang_members(zio_t *zio)
|
|
{
|
|
zio_gbh_phys_t *gbh;
|
|
uint64_t gsize, gbufsize;
|
|
int i;
|
|
|
|
ASSERT(BP_IS_GANG(zio->io_bp));
|
|
|
|
zio_gang_byteswap(zio);
|
|
zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize);
|
|
|
|
for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
|
|
blkptr_t *gbp = &gbh->zg_blkptr[i];
|
|
if (BP_IS_HOLE(gbp))
|
|
continue;
|
|
zio_nowait(zio_claim(zio, zio->io_spa, zio->io_txg,
|
|
gbp, NULL, NULL));
|
|
}
|
|
|
|
zio_buf_free(gbh, gbufsize);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static void
|
|
zio_write_allocate_gang_member_done(zio_t *zio)
|
|
{
|
|
zio_t *pio = zio->io_parent;
|
|
dva_t *cdva = zio->io_bp->blk_dva;
|
|
dva_t *pdva = pio->io_bp->blk_dva;
|
|
uint64_t asize;
|
|
int d;
|
|
|
|
ASSERT3U(pio->io_ndvas, ==, zio->io_ndvas);
|
|
ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
|
|
ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(zio->io_bp));
|
|
ASSERT3U(pio->io_ndvas, <=, BP_GET_NDVAS(pio->io_bp));
|
|
|
|
mutex_enter(&pio->io_lock);
|
|
for (d = 0; d < BP_GET_NDVAS(pio->io_bp); d++) {
|
|
ASSERT(DVA_GET_GANG(&pdva[d]));
|
|
asize = DVA_GET_ASIZE(&pdva[d]);
|
|
asize += DVA_GET_ASIZE(&cdva[d]);
|
|
DVA_SET_ASIZE(&pdva[d], asize);
|
|
}
|
|
mutex_exit(&pio->io_lock);
|
|
}
|
|
|
|
static int
|
|
zio_write_allocate_gang_members(zio_t *zio, metaslab_class_t *mc)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
dva_t *dva = bp->blk_dva;
|
|
spa_t *spa = zio->io_spa;
|
|
zio_gbh_phys_t *gbh;
|
|
uint64_t txg = zio->io_txg;
|
|
uint64_t resid = zio->io_size;
|
|
uint64_t maxalloc = P2ROUNDUP(zio->io_size >> 1, SPA_MINBLOCKSIZE);
|
|
uint64_t gsize, loff, lsize;
|
|
uint32_t gbps_left;
|
|
int ndvas = zio->io_ndvas;
|
|
int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa));
|
|
int error;
|
|
int i, d;
|
|
|
|
gsize = SPA_GANGBLOCKSIZE;
|
|
gbps_left = SPA_GBH_NBLKPTRS;
|
|
|
|
error = metaslab_alloc(spa, mc, gsize, bp, gbh_ndvas, txg, NULL,
|
|
B_FALSE);
|
|
if (error) {
|
|
zio->io_error = error;
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
for (d = 0; d < gbh_ndvas; d++)
|
|
DVA_SET_GANG(&dva[d], 1);
|
|
|
|
bp->blk_birth = txg;
|
|
|
|
gbh = zio_buf_alloc(gsize);
|
|
bzero(gbh, gsize);
|
|
|
|
for (loff = 0, i = 0; loff != zio->io_size;
|
|
loff += lsize, resid -= lsize, gbps_left--, i++) {
|
|
blkptr_t *gbp = &gbh->zg_blkptr[i];
|
|
dva = gbp->blk_dva;
|
|
|
|
ASSERT(gbps_left != 0);
|
|
maxalloc = MIN(maxalloc, resid);
|
|
|
|
while (resid <= maxalloc * gbps_left) {
|
|
error = metaslab_alloc(spa, mc, maxalloc, gbp, ndvas,
|
|
txg, bp, B_FALSE);
|
|
if (error == 0)
|
|
break;
|
|
ASSERT3U(error, ==, ENOSPC);
|
|
/* XXX - free up previous allocations? */
|
|
if (maxalloc == SPA_MINBLOCKSIZE) {
|
|
zio->io_error = error;
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
maxalloc = P2ROUNDUP(maxalloc >> 1, SPA_MINBLOCKSIZE);
|
|
}
|
|
|
|
if (resid <= maxalloc * gbps_left) {
|
|
lsize = maxalloc;
|
|
BP_SET_LSIZE(gbp, lsize);
|
|
BP_SET_PSIZE(gbp, lsize);
|
|
BP_SET_COMPRESS(gbp, ZIO_COMPRESS_OFF);
|
|
gbp->blk_birth = txg;
|
|
zio_nowait(zio_rewrite(zio, spa,
|
|
zio->io_checksum, txg, gbp,
|
|
(char *)zio->io_data + loff, lsize,
|
|
zio_write_allocate_gang_member_done, NULL,
|
|
zio->io_priority,
|
|
zio->io_flags & ZIO_FLAG_GANG_INHERIT,
|
|
&zio->io_bookmark));
|
|
} else {
|
|
lsize = P2ROUNDUP(resid / gbps_left, SPA_MINBLOCKSIZE);
|
|
ASSERT(lsize != SPA_MINBLOCKSIZE);
|
|
zio_nowait(zio_write_allocate(zio, spa,
|
|
zio->io_checksum, txg, gbp,
|
|
(char *)zio->io_data + loff, lsize,
|
|
zio_write_allocate_gang_member_done, NULL,
|
|
zio->io_priority,
|
|
zio->io_flags & ZIO_FLAG_GANG_INHERIT));
|
|
}
|
|
}
|
|
|
|
ASSERT(resid == 0 && loff == zio->io_size);
|
|
|
|
zio->io_pipeline |= 1U << ZIO_STAGE_GANG_CHECKSUM_GENERATE;
|
|
|
|
zio_push_transform(zio, gbh, gsize, gsize);
|
|
|
|
/*
|
|
* As much as we'd like this to be 'ready' instead of 'done',
|
|
* updating our ASIZE doesn't happen until the io_done callback,
|
|
* so we have to wait for that to finish in order for our BP
|
|
* to be stable.
|
|
*/
|
|
return (zio_wait_for_children_done(zio));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Allocate and free blocks
|
|
* ==========================================================================
|
|
*/
|
|
static int
|
|
zio_dva_allocate(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
metaslab_class_t *mc = spa->spa_normal_class;
|
|
blkptr_t *bp = zio->io_bp;
|
|
int error;
|
|
|
|
ASSERT(BP_IS_HOLE(bp));
|
|
ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
|
|
ASSERT3U(zio->io_ndvas, >, 0);
|
|
ASSERT3U(zio->io_ndvas, <=, spa_max_replication(spa));
|
|
|
|
/*
|
|
* For testing purposes, we force I/Os to retry. We don't allow
|
|
* retries beyond the first pass since those I/Os are non-allocating
|
|
* writes.
|
|
*/
|
|
if (zio_io_fail_shift &&
|
|
spa_sync_pass(zio->io_spa) <= zio_sync_pass.zp_rewrite &&
|
|
zio_io_should_fail(zio_io_fail_shift))
|
|
zio->io_flags |= ZIO_FLAG_WRITE_RETRY;
|
|
|
|
ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
|
|
|
|
error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_ndvas,
|
|
zio->io_txg, NULL, B_FALSE);
|
|
|
|
if (error == 0) {
|
|
bp->blk_birth = zio->io_txg;
|
|
} else if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
|
|
return (zio_write_allocate_gang_members(zio, mc));
|
|
} else {
|
|
zio->io_error = error;
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_dva_free(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
metaslab_free(zio->io_spa, bp, zio->io_txg, B_FALSE);
|
|
|
|
BP_ZERO(bp);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_dva_claim(zio_t *zio)
|
|
{
|
|
zio->io_error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Read and write to physical devices
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static int
|
|
zio_vdev_io_start(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
vdev_t *tvd = vd ? vd->vdev_top : NULL;
|
|
blkptr_t *bp = zio->io_bp;
|
|
uint64_t align;
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
/*
|
|
* If the pool is already in a failure state then just suspend
|
|
* this IO until the problem is resolved. We will reissue them
|
|
* at that time.
|
|
*/
|
|
if (spa_state(spa) == POOL_STATE_IO_FAILURE &&
|
|
zio->io_type == ZIO_TYPE_WRITE)
|
|
return (zio_vdev_suspend_io(zio));
|
|
|
|
/*
|
|
* The mirror_ops handle multiple DVAs in a single BP
|
|
*/
|
|
if (vd == NULL)
|
|
return (vdev_mirror_ops.vdev_op_io_start(zio));
|
|
|
|
align = 1ULL << tvd->vdev_ashift;
|
|
|
|
if (zio->io_retries == 0 && vd == tvd)
|
|
zio->io_flags |= ZIO_FLAG_FAILFAST;
|
|
|
|
if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && vd->vdev_children == 0) {
|
|
zio->io_flags |= ZIO_FLAG_PHYSICAL;
|
|
zio->io_offset += VDEV_LABEL_START_SIZE;
|
|
}
|
|
|
|
if (P2PHASE(zio->io_size, align) != 0) {
|
|
uint64_t asize = P2ROUNDUP(zio->io_size, align);
|
|
char *abuf = zio_buf_alloc(asize);
|
|
ASSERT(vd == tvd);
|
|
if (zio->io_type == ZIO_TYPE_WRITE) {
|
|
bcopy(zio->io_data, abuf, zio->io_size);
|
|
bzero(abuf + zio->io_size, asize - zio->io_size);
|
|
}
|
|
zio_push_transform(zio, abuf, asize, asize);
|
|
ASSERT(!(zio->io_flags & ZIO_FLAG_SUBBLOCK));
|
|
zio->io_flags |= ZIO_FLAG_SUBBLOCK;
|
|
}
|
|
|
|
ASSERT(P2PHASE(zio->io_offset, align) == 0);
|
|
ASSERT(P2PHASE(zio->io_size, align) == 0);
|
|
ASSERT(bp == NULL ||
|
|
P2ROUNDUP(ZIO_GET_IOSIZE(zio), align) == zio->io_size);
|
|
ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE));
|
|
|
|
return (vd->vdev_ops->vdev_op_io_start(zio));
|
|
}
|
|
|
|
static int
|
|
zio_vdev_io_done(zio_t *zio)
|
|
{
|
|
if (zio->io_vd == NULL)
|
|
return (vdev_mirror_ops.vdev_op_io_done(zio));
|
|
|
|
return (zio->io_vd->vdev_ops->vdev_op_io_done(zio));
|
|
}
|
|
|
|
/* XXPOLICY */
|
|
boolean_t
|
|
zio_should_retry(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
|
|
if (zio->io_error == 0)
|
|
return (B_FALSE);
|
|
if (zio->io_delegate_list != NULL)
|
|
return (B_FALSE);
|
|
if (vd && vd != vd->vdev_top)
|
|
return (B_FALSE);
|
|
if (zio->io_flags & ZIO_FLAG_DONT_RETRY)
|
|
return (B_FALSE);
|
|
if (zio->io_retries > 0)
|
|
return (B_FALSE);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
static int
|
|
zio_vdev_io_assess(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
vdev_t *tvd = vd ? vd->vdev_top : NULL;
|
|
|
|
ASSERT(zio->io_vsd == NULL);
|
|
|
|
if (zio->io_flags & ZIO_FLAG_SUBBLOCK) {
|
|
void *abuf;
|
|
uint64_t asize;
|
|
ASSERT(vd == tvd);
|
|
zio_pop_transform(zio, &abuf, &asize, &asize);
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
bcopy(abuf, zio->io_data, zio->io_size);
|
|
zio_buf_free(abuf, asize);
|
|
zio->io_flags &= ~ZIO_FLAG_SUBBLOCK;
|
|
}
|
|
|
|
if (zio_injection_enabled && !zio->io_error)
|
|
zio->io_error = zio_handle_fault_injection(zio, EIO);
|
|
|
|
/*
|
|
* If the I/O failed, determine whether we should attempt to retry it.
|
|
*/
|
|
/* XXPOLICY */
|
|
if (zio_should_retry(zio)) {
|
|
ASSERT(tvd == vd);
|
|
|
|
zio->io_retries++;
|
|
zio->io_error = 0;
|
|
zio->io_flags &= ZIO_FLAG_RETRY_INHERIT;
|
|
/* XXPOLICY */
|
|
zio->io_flags &= ~ZIO_FLAG_FAILFAST;
|
|
zio->io_flags |= ZIO_FLAG_DONT_CACHE;
|
|
zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1;
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
void
|
|
zio_vdev_io_reissue(zio_t *zio)
|
|
{
|
|
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
|
|
ASSERT(zio->io_error == 0);
|
|
|
|
zio->io_stage--;
|
|
}
|
|
|
|
void
|
|
zio_vdev_io_redone(zio_t *zio)
|
|
{
|
|
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
|
|
|
|
zio->io_stage--;
|
|
}
|
|
|
|
void
|
|
zio_vdev_io_bypass(zio_t *zio)
|
|
{
|
|
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
|
|
ASSERT(zio->io_error == 0);
|
|
|
|
zio->io_flags |= ZIO_FLAG_IO_BYPASS;
|
|
zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1;
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Generate and verify checksums
|
|
* ==========================================================================
|
|
*/
|
|
static int
|
|
zio_checksum_generate(zio_t *zio)
|
|
{
|
|
int checksum = zio->io_checksum;
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
|
|
|
|
BP_SET_CHECKSUM(bp, checksum);
|
|
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
|
|
|
|
zio_checksum(checksum, &bp->blk_cksum, zio->io_data, zio->io_size);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_gang_checksum_generate(zio_t *zio)
|
|
{
|
|
zio_cksum_t zc;
|
|
zio_gbh_phys_t *gbh = zio->io_data;
|
|
|
|
ASSERT(BP_IS_GANG(zio->io_bp));
|
|
ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE);
|
|
|
|
zio_set_gang_verifier(zio, &gbh->zg_tail.zbt_cksum);
|
|
|
|
zio_checksum(ZIO_CHECKSUM_GANG_HEADER, &zc, zio->io_data, zio->io_size);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_checksum_verify(zio_t *zio)
|
|
{
|
|
if (zio->io_bp != NULL) {
|
|
zio->io_error = zio_checksum_error(zio);
|
|
if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE))
|
|
zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM,
|
|
zio->io_spa, zio->io_vd, zio, 0, 0);
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
/*
|
|
* Called by RAID-Z to ensure we don't compute the checksum twice.
|
|
*/
|
|
void
|
|
zio_checksum_verified(zio_t *zio)
|
|
{
|
|
zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY);
|
|
}
|
|
|
|
/*
|
|
* Set the external verifier for a gang block based on stuff in the bp
|
|
*/
|
|
void
|
|
zio_set_gang_verifier(zio_t *zio, zio_cksum_t *zcp)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
zcp->zc_word[0] = DVA_GET_VDEV(BP_IDENTITY(bp));
|
|
zcp->zc_word[1] = DVA_GET_OFFSET(BP_IDENTITY(bp));
|
|
zcp->zc_word[2] = bp->blk_birth;
|
|
zcp->zc_word[3] = 0;
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Define the pipeline
|
|
* ==========================================================================
|
|
*/
|
|
typedef int zio_pipe_stage_t(zio_t *zio);
|
|
|
|
zio_pipe_stage_t *zio_pipeline[ZIO_STAGE_DONE + 2] = {
|
|
NULL,
|
|
zio_wait_for_children_ready,
|
|
zio_read_init,
|
|
zio_issue_async,
|
|
zio_write_compress,
|
|
zio_checksum_generate,
|
|
zio_get_gang_header,
|
|
zio_rewrite_gang_members,
|
|
zio_free_gang_members,
|
|
zio_claim_gang_members,
|
|
zio_dva_allocate,
|
|
zio_dva_free,
|
|
zio_dva_claim,
|
|
zio_gang_checksum_generate,
|
|
zio_ready,
|
|
zio_vdev_io_start,
|
|
zio_vdev_io_done,
|
|
zio_vdev_io_assess,
|
|
zio_wait_for_children_done,
|
|
zio_checksum_verify,
|
|
zio_read_gang_members,
|
|
zio_read_decompress,
|
|
zio_assess,
|
|
zio_done,
|
|
NULL
|
|
};
|
|
|
|
/*
|
|
* Execute the I/O pipeline until one of the following occurs:
|
|
* (1) the I/O completes; (2) the pipeline stalls waiting for
|
|
* dependent child I/Os; (3) the I/O issues, so we're waiting
|
|
* for an I/O completion interrupt; (4) the I/O is delegated by
|
|
* vdev-level caching or aggregation; (5) the I/O is deferred
|
|
* due to vdev-level queueing; (6) the I/O is handed off to
|
|
* another thread. In all cases, the pipeline stops whenever
|
|
* there's no CPU work; it never burns a thread in cv_wait().
|
|
*
|
|
* There's no locking on io_stage because there's no legitimate way
|
|
* for multiple threads to be attempting to process the same I/O.
|
|
*/
|
|
void
|
|
zio_execute(zio_t *zio)
|
|
{
|
|
while (zio->io_stage < ZIO_STAGE_DONE) {
|
|
uint32_t pipeline = zio->io_pipeline;
|
|
int rv;
|
|
|
|
ASSERT(!MUTEX_HELD(&zio->io_lock));
|
|
|
|
/*
|
|
* If an error occurred outside the vdev stack,
|
|
* just execute the interlock stages to clean up.
|
|
*/
|
|
if (zio->io_error &&
|
|
((1U << zio->io_stage) & ZIO_VDEV_IO_STAGES) == 0)
|
|
pipeline &= ZIO_ERROR_PIPELINE_MASK;
|
|
|
|
while (((1U << ++zio->io_stage) & pipeline) == 0)
|
|
continue;
|
|
|
|
ASSERT(zio->io_stage <= ZIO_STAGE_DONE);
|
|
ASSERT(zio->io_stalled == 0);
|
|
|
|
rv = zio_pipeline[zio->io_stage](zio);
|
|
|
|
if (rv == ZIO_PIPELINE_STOP)
|
|
return;
|
|
|
|
ASSERT(rv == ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
}
|
|
|
|
static boolean_t
|
|
zio_io_should_fail(uint16_t range)
|
|
{
|
|
static uint16_t allocs = 0;
|
|
|
|
return (P2PHASE(allocs++, 1U<<range) == 0);
|
|
}
|
|
|
|
/*
|
|
* Try to allocate an intent log block. Return 0 on success, errno on failure.
|
|
*/
|
|
int
|
|
zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp,
|
|
uint64_t txg)
|
|
{
|
|
int error;
|
|
|
|
spa_config_enter(spa, RW_READER, FTAG);
|
|
|
|
if (zio_zil_fail_shift && zio_io_should_fail(zio_zil_fail_shift)) {
|
|
spa_config_exit(spa, FTAG);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
/*
|
|
* We were passed the previous log block's DVA in bp->blk_dva[0].
|
|
* We use that as a hint for which vdev to allocate from next.
|
|
*/
|
|
error = metaslab_alloc(spa, spa->spa_log_class, size,
|
|
new_bp, 1, txg, old_bp, B_TRUE);
|
|
|
|
if (error)
|
|
error = metaslab_alloc(spa, spa->spa_normal_class, size,
|
|
new_bp, 1, txg, old_bp, B_TRUE);
|
|
|
|
if (error == 0) {
|
|
BP_SET_LSIZE(new_bp, size);
|
|
BP_SET_PSIZE(new_bp, size);
|
|
BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
|
|
BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG);
|
|
BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
|
|
BP_SET_LEVEL(new_bp, 0);
|
|
BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
|
|
new_bp->blk_birth = txg;
|
|
}
|
|
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Free an intent log block. We know it can't be a gang block, so there's
|
|
* nothing to do except metaslab_free() it.
|
|
*/
|
|
void
|
|
zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg)
|
|
{
|
|
ASSERT(!BP_IS_GANG(bp));
|
|
|
|
spa_config_enter(spa, RW_READER, FTAG);
|
|
|
|
metaslab_free(spa, bp, txg, B_FALSE);
|
|
|
|
spa_config_exit(spa, FTAG);
|
|
}
|
|
|
|
/*
|
|
* start an async flush of the write cache for this vdev
|
|
*/
|
|
void
|
|
zio_flush(zio_t *zio, vdev_t *vd)
|
|
{
|
|
zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
|
|
NULL, NULL, ZIO_PRIORITY_NOW,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
|
|
}
|