mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-03 23:09:35 +03:00
ef7a79488a
PROBLEM ======= When `dmu_tx_assign` is called from `zil_lwb_write_issue`, it's possible for either `ERESTART` or `EIO` to be returned. If `ERESTART` is returned, this will cause an assertion to fail directly in `zil_lwb_write_issue`, where the code assumes the return value is `EIO` if `dmu_tx_assign` returns a non-zero value. This can occur if the SPA is suspended when `dmu_tx_assign` is called, and most often occurs when running `zloop`. If `EIO` is returned, this can cause assertions to fail elsewhere in the ZIL code. For example, `zil_commit_waiter_timeout` contains the following logic: lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); In this case, if `dmu_tx_assign` returned `EIO` from within `zil_lwb_write_issue`, the `lwb` variable passed in will not be issued to disk. Thus, it's `lwb_state` field will remain `LWB_STATE_OPENED` and this assertion will fail. `zil_commit_waiter_timeout` assumes that after it calls `zil_lwb_write_issue`, the `lwb` will be issued to disk, and doesn't handle the case where this is not true; i.e. it doesn't handle the case where `dmu_tx_assign` returns `EIO`. SOLUTION ======== This change modifies the `dmu_tx_assign` function such that `txg_how` is a bitmask, rather than of the `txg_how_t` enum type. Now, the previous `TXG_WAITED` semantics can be used via `TXG_NOTHROTTLE`, along with specifying either `TXG_NOWAIT` or `TXG_WAIT` semantics. Previously, when `TXG_WAITED` was specified, `TXG_NOWAIT` semantics was automatically invoked. This was not ideal when using `TXG_WAITED` within `zil_lwb_write_issued`, leading the problem described above. Rather, we want to achieve the semantics of `TXG_WAIT`, while also preventing the `tx` from being penalized via the dirty delay throttling. With this change, `zil_lwb_write_issued` can acheive the semtantics that it requires by passing in the value `TXG_WAIT | TXG_NOTHROTTLE` to `dmu_tx_assign`. Further, consumers of `dmu_tx_assign` wishing to achieve the old `TXG_WAITED` semantics can pass in the value `TXG_NOWAIT | TXG_NOTHROTTLE`. Authored by: Prakash Surya <prakash.surya@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Andriy Gapon <avg@FreeBSD.org> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting Notes: - Additionally updated `zfs_tmpfile` to use `TXG_NOTHROTTLE` OpenZFS-issue: https://www.illumos.org/issues/8997 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/19ea6cb0f9 Closes #7084
2337 lines
63 KiB
C
2337 lines
63 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2017 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014 Integros [integros.com]
|
|
*/
|
|
|
|
/* Portions Copyright 2010 Robert Milkowski */
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/trace_zil.h>
|
|
#include <sys/abd.h>
|
|
|
|
/*
|
|
* The zfs intent log (ZIL) saves transaction records of system calls
|
|
* that change the file system in memory with enough information
|
|
* to be able to replay them. These are stored in memory until
|
|
* either the DMU transaction group (txg) commits them to the stable pool
|
|
* and they can be discarded, or they are flushed to the stable log
|
|
* (also in the pool) due to a fsync, O_DSYNC or other synchronous
|
|
* requirement. In the event of a panic or power fail then those log
|
|
* records (transactions) are replayed.
|
|
*
|
|
* There is one ZIL per file system. Its on-disk (pool) format consists
|
|
* of 3 parts:
|
|
*
|
|
* - ZIL header
|
|
* - ZIL blocks
|
|
* - ZIL records
|
|
*
|
|
* A log record holds a system call transaction. Log blocks can
|
|
* hold many log records and the blocks are chained together.
|
|
* Each ZIL block contains a block pointer (blkptr_t) to the next
|
|
* ZIL block in the chain. The ZIL header points to the first
|
|
* block in the chain. Note there is not a fixed place in the pool
|
|
* to hold blocks. They are dynamically allocated and freed as
|
|
* needed from the blocks available. Figure X shows the ZIL structure:
|
|
*/
|
|
|
|
/*
|
|
* See zil.h for more information about these fields.
|
|
*/
|
|
zil_stats_t zil_stats = {
|
|
{ "zil_commit_count", KSTAT_DATA_UINT64 },
|
|
{ "zil_commit_writer_count", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_count", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_copied_count", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
|
|
{ "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
|
|
};
|
|
|
|
static kstat_t *zil_ksp;
|
|
|
|
/*
|
|
* Disable intent logging replay. This global ZIL switch affects all pools.
|
|
*/
|
|
int zil_replay_disable = 0;
|
|
|
|
/*
|
|
* Tunable parameter for debugging or performance analysis. Setting
|
|
* zfs_nocacheflush will cause corruption on power loss if a volatile
|
|
* out-of-order write cache is enabled.
|
|
*/
|
|
int zfs_nocacheflush = 0;
|
|
|
|
/*
|
|
* Limit SLOG write size per commit executed with synchronous priority.
|
|
* Any writes above that will be executed with lower (asynchronous) priority
|
|
* to limit potential SLOG device abuse by single active ZIL writer.
|
|
*/
|
|
unsigned long zil_slog_bulk = 768 * 1024;
|
|
|
|
static kmem_cache_t *zil_lwb_cache;
|
|
|
|
static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
|
|
|
|
#define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
|
|
sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
|
|
|
|
static int
|
|
zil_bp_compare(const void *x1, const void *x2)
|
|
{
|
|
const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
|
|
const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
|
|
|
|
int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
|
|
}
|
|
|
|
static void
|
|
zil_bp_tree_init(zilog_t *zilog)
|
|
{
|
|
avl_create(&zilog->zl_bp_tree, zil_bp_compare,
|
|
sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
|
|
}
|
|
|
|
static void
|
|
zil_bp_tree_fini(zilog_t *zilog)
|
|
{
|
|
avl_tree_t *t = &zilog->zl_bp_tree;
|
|
zil_bp_node_t *zn;
|
|
void *cookie = NULL;
|
|
|
|
while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
|
|
kmem_free(zn, sizeof (zil_bp_node_t));
|
|
|
|
avl_destroy(t);
|
|
}
|
|
|
|
int
|
|
zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
|
|
{
|
|
avl_tree_t *t = &zilog->zl_bp_tree;
|
|
const dva_t *dva;
|
|
zil_bp_node_t *zn;
|
|
avl_index_t where;
|
|
|
|
if (BP_IS_EMBEDDED(bp))
|
|
return (0);
|
|
|
|
dva = BP_IDENTITY(bp);
|
|
|
|
if (avl_find(t, dva, &where) != NULL)
|
|
return (SET_ERROR(EEXIST));
|
|
|
|
zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
|
|
zn->zn_dva = *dva;
|
|
avl_insert(t, zn, where);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static zil_header_t *
|
|
zil_header_in_syncing_context(zilog_t *zilog)
|
|
{
|
|
return ((zil_header_t *)zilog->zl_header);
|
|
}
|
|
|
|
static void
|
|
zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
|
|
{
|
|
zio_cksum_t *zc = &bp->blk_cksum;
|
|
|
|
zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
|
|
zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
|
|
zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
|
|
zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
|
|
}
|
|
|
|
/*
|
|
* Read a log block and make sure it's valid.
|
|
*/
|
|
static int
|
|
zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
|
|
char **end)
|
|
{
|
|
enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
|
|
arc_flags_t aflags = ARC_FLAG_WAIT;
|
|
arc_buf_t *abuf = NULL;
|
|
zbookmark_phys_t zb;
|
|
int error;
|
|
|
|
if (zilog->zl_header->zh_claim_txg == 0)
|
|
zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
|
|
|
|
if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
|
|
zio_flags |= ZIO_FLAG_SPECULATIVE;
|
|
|
|
SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
|
|
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
|
|
|
|
error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
|
|
ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
|
|
|
|
if (error == 0) {
|
|
zio_cksum_t cksum = bp->blk_cksum;
|
|
|
|
/*
|
|
* Validate the checksummed log block.
|
|
*
|
|
* Sequence numbers should be... sequential. The checksum
|
|
* verifier for the next block should be bp's checksum plus 1.
|
|
*
|
|
* Also check the log chain linkage and size used.
|
|
*/
|
|
cksum.zc_word[ZIL_ZC_SEQ]++;
|
|
|
|
if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
|
|
zil_chain_t *zilc = abuf->b_data;
|
|
char *lr = (char *)(zilc + 1);
|
|
uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
|
|
|
|
if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
|
|
sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
|
|
error = SET_ERROR(ECKSUM);
|
|
} else {
|
|
ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
|
|
bcopy(lr, dst, len);
|
|
*end = (char *)dst + len;
|
|
*nbp = zilc->zc_next_blk;
|
|
}
|
|
} else {
|
|
char *lr = abuf->b_data;
|
|
uint64_t size = BP_GET_LSIZE(bp);
|
|
zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
|
|
|
|
if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
|
|
sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
|
|
(zilc->zc_nused > (size - sizeof (*zilc)))) {
|
|
error = SET_ERROR(ECKSUM);
|
|
} else {
|
|
ASSERT3U(zilc->zc_nused, <=,
|
|
SPA_OLD_MAXBLOCKSIZE);
|
|
bcopy(lr, dst, zilc->zc_nused);
|
|
*end = (char *)dst + zilc->zc_nused;
|
|
*nbp = zilc->zc_next_blk;
|
|
}
|
|
}
|
|
|
|
arc_buf_destroy(abuf, &abuf);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Read a TX_WRITE log data block.
|
|
*/
|
|
static int
|
|
zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
|
|
{
|
|
enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
|
|
const blkptr_t *bp = &lr->lr_blkptr;
|
|
arc_flags_t aflags = ARC_FLAG_WAIT;
|
|
arc_buf_t *abuf = NULL;
|
|
zbookmark_phys_t zb;
|
|
int error;
|
|
|
|
if (BP_IS_HOLE(bp)) {
|
|
if (wbuf != NULL)
|
|
bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
|
|
return (0);
|
|
}
|
|
|
|
if (zilog->zl_header->zh_claim_txg == 0)
|
|
zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
|
|
|
|
SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
|
|
ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
|
|
|
|
error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
|
|
ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
|
|
|
|
if (error == 0) {
|
|
if (wbuf != NULL)
|
|
bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
|
|
arc_buf_destroy(abuf, &abuf);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Parse the intent log, and call parse_func for each valid record within.
|
|
*/
|
|
int
|
|
zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
|
|
zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
|
|
{
|
|
const zil_header_t *zh = zilog->zl_header;
|
|
boolean_t claimed = !!zh->zh_claim_txg;
|
|
uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
|
|
uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
|
|
uint64_t max_blk_seq = 0;
|
|
uint64_t max_lr_seq = 0;
|
|
uint64_t blk_count = 0;
|
|
uint64_t lr_count = 0;
|
|
blkptr_t blk, next_blk;
|
|
char *lrbuf, *lrp;
|
|
int error = 0;
|
|
|
|
bzero(&next_blk, sizeof (blkptr_t));
|
|
|
|
/*
|
|
* Old logs didn't record the maximum zh_claim_lr_seq.
|
|
*/
|
|
if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
|
|
claim_lr_seq = UINT64_MAX;
|
|
|
|
/*
|
|
* Starting at the block pointed to by zh_log we read the log chain.
|
|
* For each block in the chain we strongly check that block to
|
|
* ensure its validity. We stop when an invalid block is found.
|
|
* For each block pointer in the chain we call parse_blk_func().
|
|
* For each record in each valid block we call parse_lr_func().
|
|
* If the log has been claimed, stop if we encounter a sequence
|
|
* number greater than the highest claimed sequence number.
|
|
*/
|
|
lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
|
|
zil_bp_tree_init(zilog);
|
|
|
|
for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
|
|
uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
|
|
int reclen;
|
|
char *end = NULL;
|
|
|
|
if (blk_seq > claim_blk_seq)
|
|
break;
|
|
if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
|
|
break;
|
|
ASSERT3U(max_blk_seq, <, blk_seq);
|
|
max_blk_seq = blk_seq;
|
|
blk_count++;
|
|
|
|
if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
|
|
break;
|
|
|
|
error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
|
|
if (error != 0)
|
|
break;
|
|
|
|
for (lrp = lrbuf; lrp < end; lrp += reclen) {
|
|
lr_t *lr = (lr_t *)lrp;
|
|
reclen = lr->lrc_reclen;
|
|
ASSERT3U(reclen, >=, sizeof (lr_t));
|
|
if (lr->lrc_seq > claim_lr_seq)
|
|
goto done;
|
|
if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
|
|
goto done;
|
|
ASSERT3U(max_lr_seq, <, lr->lrc_seq);
|
|
max_lr_seq = lr->lrc_seq;
|
|
lr_count++;
|
|
}
|
|
}
|
|
done:
|
|
zilog->zl_parse_error = error;
|
|
zilog->zl_parse_blk_seq = max_blk_seq;
|
|
zilog->zl_parse_lr_seq = max_lr_seq;
|
|
zilog->zl_parse_blk_count = blk_count;
|
|
zilog->zl_parse_lr_count = lr_count;
|
|
|
|
ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
|
|
(max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
|
|
|
|
zil_bp_tree_fini(zilog);
|
|
zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
|
|
{
|
|
/*
|
|
* Claim log block if not already committed and not already claimed.
|
|
* If tx == NULL, just verify that the block is claimable.
|
|
*/
|
|
if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
|
|
zil_bp_tree_add(zilog, bp) != 0)
|
|
return (0);
|
|
|
|
return (zio_wait(zio_claim(NULL, zilog->zl_spa,
|
|
tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
|
|
}
|
|
|
|
static int
|
|
zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
|
|
{
|
|
lr_write_t *lr = (lr_write_t *)lrc;
|
|
int error;
|
|
|
|
if (lrc->lrc_txtype != TX_WRITE)
|
|
return (0);
|
|
|
|
/*
|
|
* If the block is not readable, don't claim it. This can happen
|
|
* in normal operation when a log block is written to disk before
|
|
* some of the dmu_sync() blocks it points to. In this case, the
|
|
* transaction cannot have been committed to anyone (we would have
|
|
* waited for all writes to be stable first), so it is semantically
|
|
* correct to declare this the end of the log.
|
|
*/
|
|
if (lr->lr_blkptr.blk_birth >= first_txg &&
|
|
(error = zil_read_log_data(zilog, lr, NULL)) != 0)
|
|
return (error);
|
|
return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
|
|
{
|
|
zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
|
|
{
|
|
lr_write_t *lr = (lr_write_t *)lrc;
|
|
blkptr_t *bp = &lr->lr_blkptr;
|
|
|
|
/*
|
|
* If we previously claimed it, we need to free it.
|
|
*/
|
|
if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
|
|
bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
|
|
!BP_IS_HOLE(bp))
|
|
zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static lwb_t *
|
|
zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
|
|
boolean_t fastwrite)
|
|
{
|
|
lwb_t *lwb;
|
|
|
|
lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
|
|
lwb->lwb_zilog = zilog;
|
|
lwb->lwb_blk = *bp;
|
|
lwb->lwb_fastwrite = fastwrite;
|
|
lwb->lwb_slog = slog;
|
|
lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
|
|
lwb->lwb_max_txg = txg;
|
|
lwb->lwb_zio = NULL;
|
|
lwb->lwb_tx = NULL;
|
|
if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
|
|
lwb->lwb_nused = sizeof (zil_chain_t);
|
|
lwb->lwb_sz = BP_GET_LSIZE(bp);
|
|
} else {
|
|
lwb->lwb_nused = 0;
|
|
lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
|
|
}
|
|
|
|
mutex_enter(&zilog->zl_lock);
|
|
list_insert_tail(&zilog->zl_lwb_list, lwb);
|
|
mutex_exit(&zilog->zl_lock);
|
|
|
|
return (lwb);
|
|
}
|
|
|
|
/*
|
|
* Called when we create in-memory log transactions so that we know
|
|
* to cleanup the itxs at the end of spa_sync().
|
|
*/
|
|
void
|
|
zilog_dirty(zilog_t *zilog, uint64_t txg)
|
|
{
|
|
dsl_pool_t *dp = zilog->zl_dmu_pool;
|
|
dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
|
|
|
|
if (ds->ds_is_snapshot)
|
|
panic("dirtying snapshot!");
|
|
|
|
if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
|
|
/* up the hold count until we can be written out */
|
|
dmu_buf_add_ref(ds->ds_dbuf, zilog);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine if the zil is dirty in the specified txg. Callers wanting to
|
|
* ensure that the dirty state does not change must hold the itxg_lock for
|
|
* the specified txg. Holding the lock will ensure that the zil cannot be
|
|
* dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
|
|
* state.
|
|
*/
|
|
boolean_t
|
|
zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
|
|
{
|
|
dsl_pool_t *dp = zilog->zl_dmu_pool;
|
|
|
|
if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
|
|
return (B_TRUE);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Determine if the zil is dirty. The zil is considered dirty if it has
|
|
* any pending itx records that have not been cleaned by zil_clean().
|
|
*/
|
|
boolean_t
|
|
zilog_is_dirty(zilog_t *zilog)
|
|
{
|
|
dsl_pool_t *dp = zilog->zl_dmu_pool;
|
|
int t;
|
|
|
|
for (t = 0; t < TXG_SIZE; t++) {
|
|
if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Create an on-disk intent log.
|
|
*/
|
|
static lwb_t *
|
|
zil_create(zilog_t *zilog)
|
|
{
|
|
const zil_header_t *zh = zilog->zl_header;
|
|
lwb_t *lwb = NULL;
|
|
uint64_t txg = 0;
|
|
dmu_tx_t *tx = NULL;
|
|
blkptr_t blk;
|
|
int error = 0;
|
|
boolean_t fastwrite = FALSE;
|
|
boolean_t slog = FALSE;
|
|
|
|
/*
|
|
* Wait for any previous destroy to complete.
|
|
*/
|
|
txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
|
|
|
|
ASSERT(zh->zh_claim_txg == 0);
|
|
ASSERT(zh->zh_replay_seq == 0);
|
|
|
|
blk = zh->zh_log;
|
|
|
|
/*
|
|
* Allocate an initial log block if:
|
|
* - there isn't one already
|
|
* - the existing block is the wrong endianness
|
|
*/
|
|
if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
|
|
tx = dmu_tx_create(zilog->zl_os);
|
|
VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
|
|
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
|
|
txg = dmu_tx_get_txg(tx);
|
|
|
|
if (!BP_IS_HOLE(&blk)) {
|
|
zio_free_zil(zilog->zl_spa, txg, &blk);
|
|
BP_ZERO(&blk);
|
|
}
|
|
|
|
error = zio_alloc_zil(zilog->zl_spa, txg, &blk,
|
|
ZIL_MIN_BLKSZ, &slog);
|
|
fastwrite = TRUE;
|
|
|
|
if (error == 0)
|
|
zil_init_log_chain(zilog, &blk);
|
|
}
|
|
|
|
/*
|
|
* Allocate a log write buffer (lwb) for the first log block.
|
|
*/
|
|
if (error == 0)
|
|
lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
|
|
|
|
/*
|
|
* If we just allocated the first log block, commit our transaction
|
|
* and wait for zil_sync() to stuff the block poiner into zh_log.
|
|
* (zh is part of the MOS, so we cannot modify it in open context.)
|
|
*/
|
|
if (tx != NULL) {
|
|
dmu_tx_commit(tx);
|
|
txg_wait_synced(zilog->zl_dmu_pool, txg);
|
|
}
|
|
|
|
ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
|
|
|
|
return (lwb);
|
|
}
|
|
|
|
/*
|
|
* In one tx, free all log blocks and clear the log header.
|
|
* If keep_first is set, then we're replaying a log with no content.
|
|
* We want to keep the first block, however, so that the first
|
|
* synchronous transaction doesn't require a txg_wait_synced()
|
|
* in zil_create(). We don't need to txg_wait_synced() here either
|
|
* when keep_first is set, because both zil_create() and zil_destroy()
|
|
* will wait for any in-progress destroys to complete.
|
|
*/
|
|
void
|
|
zil_destroy(zilog_t *zilog, boolean_t keep_first)
|
|
{
|
|
const zil_header_t *zh = zilog->zl_header;
|
|
lwb_t *lwb;
|
|
dmu_tx_t *tx;
|
|
uint64_t txg;
|
|
|
|
/*
|
|
* Wait for any previous destroy to complete.
|
|
*/
|
|
txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
|
|
|
|
zilog->zl_old_header = *zh; /* debugging aid */
|
|
|
|
if (BP_IS_HOLE(&zh->zh_log))
|
|
return;
|
|
|
|
tx = dmu_tx_create(zilog->zl_os);
|
|
VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
|
|
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
|
|
txg = dmu_tx_get_txg(tx);
|
|
|
|
mutex_enter(&zilog->zl_lock);
|
|
|
|
ASSERT3U(zilog->zl_destroy_txg, <, txg);
|
|
zilog->zl_destroy_txg = txg;
|
|
zilog->zl_keep_first = keep_first;
|
|
|
|
if (!list_is_empty(&zilog->zl_lwb_list)) {
|
|
ASSERT(zh->zh_claim_txg == 0);
|
|
VERIFY(!keep_first);
|
|
while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
|
|
ASSERT(lwb->lwb_zio == NULL);
|
|
if (lwb->lwb_fastwrite)
|
|
metaslab_fastwrite_unmark(zilog->zl_spa,
|
|
&lwb->lwb_blk);
|
|
list_remove(&zilog->zl_lwb_list, lwb);
|
|
if (lwb->lwb_buf != NULL)
|
|
zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
|
|
zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
|
|
kmem_cache_free(zil_lwb_cache, lwb);
|
|
}
|
|
} else if (!keep_first) {
|
|
zil_destroy_sync(zilog, tx);
|
|
}
|
|
mutex_exit(&zilog->zl_lock);
|
|
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
void
|
|
zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
|
|
{
|
|
ASSERT(list_is_empty(&zilog->zl_lwb_list));
|
|
(void) zil_parse(zilog, zil_free_log_block,
|
|
zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
|
|
}
|
|
|
|
int
|
|
zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
|
|
{
|
|
dmu_tx_t *tx = txarg;
|
|
uint64_t first_txg = dmu_tx_get_txg(tx);
|
|
zilog_t *zilog;
|
|
zil_header_t *zh;
|
|
objset_t *os;
|
|
int error;
|
|
|
|
error = dmu_objset_own_obj(dp, ds->ds_object,
|
|
DMU_OST_ANY, B_FALSE, FTAG, &os);
|
|
if (error != 0) {
|
|
/*
|
|
* EBUSY indicates that the objset is inconsistent, in which
|
|
* case it can not have a ZIL.
|
|
*/
|
|
if (error != EBUSY) {
|
|
cmn_err(CE_WARN, "can't open objset for %llu, error %u",
|
|
(unsigned long long)ds->ds_object, error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
zilog = dmu_objset_zil(os);
|
|
zh = zil_header_in_syncing_context(zilog);
|
|
|
|
if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
|
|
if (!BP_IS_HOLE(&zh->zh_log))
|
|
zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
|
|
BP_ZERO(&zh->zh_log);
|
|
dsl_dataset_dirty(dmu_objset_ds(os), tx);
|
|
dmu_objset_disown(os, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Claim all log blocks if we haven't already done so, and remember
|
|
* the highest claimed sequence number. This ensures that if we can
|
|
* read only part of the log now (e.g. due to a missing device),
|
|
* but we can read the entire log later, we will not try to replay
|
|
* or destroy beyond the last block we successfully claimed.
|
|
*/
|
|
ASSERT3U(zh->zh_claim_txg, <=, first_txg);
|
|
if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
|
|
(void) zil_parse(zilog, zil_claim_log_block,
|
|
zil_claim_log_record, tx, first_txg);
|
|
zh->zh_claim_txg = first_txg;
|
|
zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
|
|
zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
|
|
if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
|
|
zh->zh_flags |= ZIL_REPLAY_NEEDED;
|
|
zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
|
|
dsl_dataset_dirty(dmu_objset_ds(os), tx);
|
|
}
|
|
|
|
ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
|
|
dmu_objset_disown(os, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check the log by walking the log chain.
|
|
* Checksum errors are ok as they indicate the end of the chain.
|
|
* Any other error (no device or read failure) returns an error.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
|
|
{
|
|
zilog_t *zilog;
|
|
objset_t *os;
|
|
blkptr_t *bp;
|
|
int error;
|
|
|
|
ASSERT(tx == NULL);
|
|
|
|
error = dmu_objset_from_ds(ds, &os);
|
|
if (error != 0) {
|
|
cmn_err(CE_WARN, "can't open objset %llu, error %d",
|
|
(unsigned long long)ds->ds_object, error);
|
|
return (0);
|
|
}
|
|
|
|
zilog = dmu_objset_zil(os);
|
|
bp = (blkptr_t *)&zilog->zl_header->zh_log;
|
|
|
|
/*
|
|
* Check the first block and determine if it's on a log device
|
|
* which may have been removed or faulted prior to loading this
|
|
* pool. If so, there's no point in checking the rest of the log
|
|
* as its content should have already been synced to the pool.
|
|
*/
|
|
if (!BP_IS_HOLE(bp)) {
|
|
vdev_t *vd;
|
|
boolean_t valid = B_TRUE;
|
|
|
|
spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
|
|
vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
|
|
if (vd->vdev_islog && vdev_is_dead(vd))
|
|
valid = vdev_log_state_valid(vd);
|
|
spa_config_exit(os->os_spa, SCL_STATE, FTAG);
|
|
|
|
if (!valid)
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Because tx == NULL, zil_claim_log_block() will not actually claim
|
|
* any blocks, but just determine whether it is possible to do so.
|
|
* In addition to checking the log chain, zil_claim_log_block()
|
|
* will invoke zio_claim() with a done func of spa_claim_notify(),
|
|
* which will update spa_max_claim_txg. See spa_load() for details.
|
|
*/
|
|
error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
|
|
zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
|
|
|
|
return ((error == ECKSUM || error == ENOENT) ? 0 : error);
|
|
}
|
|
|
|
static int
|
|
zil_vdev_compare(const void *x1, const void *x2)
|
|
{
|
|
const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
|
|
const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
|
|
|
|
return (AVL_CMP(v1, v2));
|
|
}
|
|
|
|
void
|
|
zil_add_block(zilog_t *zilog, const blkptr_t *bp)
|
|
{
|
|
avl_tree_t *t = &zilog->zl_vdev_tree;
|
|
avl_index_t where;
|
|
zil_vdev_node_t *zv, zvsearch;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
int i;
|
|
|
|
if (zfs_nocacheflush)
|
|
return;
|
|
|
|
ASSERT(zilog->zl_writer);
|
|
|
|
/*
|
|
* Even though we're zl_writer, we still need a lock because the
|
|
* zl_get_data() callbacks may have dmu_sync() done callbacks
|
|
* that will run concurrently.
|
|
*/
|
|
mutex_enter(&zilog->zl_vdev_lock);
|
|
for (i = 0; i < ndvas; i++) {
|
|
zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
|
|
if (avl_find(t, &zvsearch, &where) == NULL) {
|
|
zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
|
|
zv->zv_vdev = zvsearch.zv_vdev;
|
|
avl_insert(t, zv, where);
|
|
}
|
|
}
|
|
mutex_exit(&zilog->zl_vdev_lock);
|
|
}
|
|
|
|
static void
|
|
zil_flush_vdevs(zilog_t *zilog)
|
|
{
|
|
spa_t *spa = zilog->zl_spa;
|
|
avl_tree_t *t = &zilog->zl_vdev_tree;
|
|
void *cookie = NULL;
|
|
zil_vdev_node_t *zv;
|
|
zio_t *zio;
|
|
|
|
ASSERT(zilog->zl_writer);
|
|
|
|
/*
|
|
* We don't need zl_vdev_lock here because we're the zl_writer,
|
|
* and all zl_get_data() callbacks are done.
|
|
*/
|
|
if (avl_numnodes(t) == 0)
|
|
return;
|
|
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
|
|
zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
|
|
|
|
while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
|
|
vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
|
|
if (vd != NULL)
|
|
zio_flush(zio, vd);
|
|
kmem_free(zv, sizeof (*zv));
|
|
}
|
|
|
|
/*
|
|
* Wait for all the flushes to complete. Not all devices actually
|
|
* support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
|
|
*/
|
|
(void) zio_wait(zio);
|
|
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Function called when a log block write completes
|
|
*/
|
|
static void
|
|
zil_lwb_write_done(zio_t *zio)
|
|
{
|
|
lwb_t *lwb = zio->io_private;
|
|
zilog_t *zilog = lwb->lwb_zilog;
|
|
dmu_tx_t *tx = lwb->lwb_tx;
|
|
|
|
ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
|
|
ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
|
|
ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
|
|
ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
|
|
ASSERT(!BP_IS_GANG(zio->io_bp));
|
|
ASSERT(!BP_IS_HOLE(zio->io_bp));
|
|
ASSERT(BP_GET_FILL(zio->io_bp) == 0);
|
|
|
|
/*
|
|
* Ensure the lwb buffer pointer is cleared before releasing
|
|
* the txg. If we have had an allocation failure and
|
|
* the txg is waiting to sync then we want want zil_sync()
|
|
* to remove the lwb so that it's not picked up as the next new
|
|
* one in zil_commit_writer(). zil_sync() will only remove
|
|
* the lwb if lwb_buf is null.
|
|
*/
|
|
abd_put(zio->io_abd);
|
|
zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
|
|
mutex_enter(&zilog->zl_lock);
|
|
lwb->lwb_zio = NULL;
|
|
lwb->lwb_fastwrite = FALSE;
|
|
lwb->lwb_buf = NULL;
|
|
lwb->lwb_tx = NULL;
|
|
mutex_exit(&zilog->zl_lock);
|
|
|
|
/*
|
|
* Now that we've written this log block, we have a stable pointer
|
|
* to the next block in the chain, so it's OK to let the txg in
|
|
* which we allocated the next block sync.
|
|
*/
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
/*
|
|
* Initialize the io for a log block.
|
|
*/
|
|
static void
|
|
zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
|
|
{
|
|
zbookmark_phys_t zb;
|
|
zio_priority_t prio;
|
|
|
|
SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
|
|
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
|
|
lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
|
|
|
|
if (zilog->zl_root_zio == NULL) {
|
|
zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
|
|
ZIO_FLAG_CANFAIL);
|
|
}
|
|
|
|
/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
|
|
mutex_enter(&zilog->zl_lock);
|
|
if (lwb->lwb_zio == NULL) {
|
|
abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
|
|
BP_GET_LSIZE(&lwb->lwb_blk));
|
|
if (!lwb->lwb_fastwrite) {
|
|
metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
|
|
lwb->lwb_fastwrite = 1;
|
|
}
|
|
if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
|
|
prio = ZIO_PRIORITY_SYNC_WRITE;
|
|
else
|
|
prio = ZIO_PRIORITY_ASYNC_WRITE;
|
|
lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
|
|
0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk),
|
|
zil_lwb_write_done, lwb, prio,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
|
|
ZIO_FLAG_FASTWRITE, &zb);
|
|
}
|
|
mutex_exit(&zilog->zl_lock);
|
|
}
|
|
|
|
/*
|
|
* Define a limited set of intent log block sizes.
|
|
*
|
|
* These must be a multiple of 4KB. Note only the amount used (again
|
|
* aligned to 4KB) actually gets written. However, we can't always just
|
|
* allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
|
|
*/
|
|
uint64_t zil_block_buckets[] = {
|
|
4096, /* non TX_WRITE */
|
|
8192+4096, /* data base */
|
|
32*1024 + 4096, /* NFS writes */
|
|
UINT64_MAX
|
|
};
|
|
|
|
/*
|
|
* Start a log block write and advance to the next log block.
|
|
* Calls are serialized.
|
|
*/
|
|
static lwb_t *
|
|
zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
|
|
{
|
|
lwb_t *nlwb = NULL;
|
|
zil_chain_t *zilc;
|
|
spa_t *spa = zilog->zl_spa;
|
|
blkptr_t *bp;
|
|
dmu_tx_t *tx;
|
|
uint64_t txg;
|
|
uint64_t zil_blksz, wsz;
|
|
int i, error;
|
|
boolean_t slog;
|
|
|
|
if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
|
|
zilc = (zil_chain_t *)lwb->lwb_buf;
|
|
bp = &zilc->zc_next_blk;
|
|
} else {
|
|
zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
|
|
bp = &zilc->zc_next_blk;
|
|
}
|
|
|
|
ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
|
|
|
|
/*
|
|
* Allocate the next block and save its address in this block
|
|
* before writing it in order to establish the log chain.
|
|
* Note that if the allocation of nlwb synced before we wrote
|
|
* the block that points at it (lwb), we'd leak it if we crashed.
|
|
* Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
|
|
* We dirty the dataset to ensure that zil_sync() will be called
|
|
* to clean up in the event of allocation failure or I/O failure.
|
|
*/
|
|
tx = dmu_tx_create(zilog->zl_os);
|
|
|
|
/*
|
|
* Since we are not going to create any new dirty data, and we
|
|
* can even help with clearing the existing dirty data, we
|
|
* should not be subject to the dirty data based delays. We
|
|
* use TXG_NOTHROTTLE to bypass the delay mechanism.
|
|
*/
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
|
|
|
|
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
|
|
txg = dmu_tx_get_txg(tx);
|
|
|
|
lwb->lwb_tx = tx;
|
|
|
|
/*
|
|
* Log blocks are pre-allocated. Here we select the size of the next
|
|
* block, based on size used in the last block.
|
|
* - first find the smallest bucket that will fit the block from a
|
|
* limited set of block sizes. This is because it's faster to write
|
|
* blocks allocated from the same metaslab as they are adjacent or
|
|
* close.
|
|
* - next find the maximum from the new suggested size and an array of
|
|
* previous sizes. This lessens a picket fence effect of wrongly
|
|
* guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
|
|
* requests.
|
|
*
|
|
* Note we only write what is used, but we can't just allocate
|
|
* the maximum block size because we can exhaust the available
|
|
* pool log space.
|
|
*/
|
|
zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
|
|
for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
|
|
continue;
|
|
zil_blksz = zil_block_buckets[i];
|
|
if (zil_blksz == UINT64_MAX)
|
|
zil_blksz = SPA_OLD_MAXBLOCKSIZE;
|
|
zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
|
|
for (i = 0; i < ZIL_PREV_BLKS; i++)
|
|
zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
|
|
zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
|
|
|
|
BP_ZERO(bp);
|
|
error = zio_alloc_zil(spa, txg, bp, zil_blksz, &slog);
|
|
if (slog) {
|
|
ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
|
|
ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
|
|
} else {
|
|
ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
|
|
ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
|
|
}
|
|
if (error == 0) {
|
|
ASSERT3U(bp->blk_birth, ==, txg);
|
|
bp->blk_cksum = lwb->lwb_blk.blk_cksum;
|
|
bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
|
|
|
|
/*
|
|
* Allocate a new log write buffer (lwb).
|
|
*/
|
|
nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
|
|
|
|
/* Record the block for later vdev flushing */
|
|
zil_add_block(zilog, &lwb->lwb_blk);
|
|
}
|
|
|
|
if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
|
|
/* For Slim ZIL only write what is used. */
|
|
wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
|
|
ASSERT3U(wsz, <=, lwb->lwb_sz);
|
|
zio_shrink(lwb->lwb_zio, wsz);
|
|
|
|
} else {
|
|
wsz = lwb->lwb_sz;
|
|
}
|
|
|
|
zilc->zc_pad = 0;
|
|
zilc->zc_nused = lwb->lwb_nused;
|
|
zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
|
|
|
|
/*
|
|
* clear unused data for security
|
|
*/
|
|
bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
|
|
|
|
zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
|
|
|
|
/*
|
|
* If there was an allocation failure then nlwb will be null which
|
|
* forces a txg_wait_synced().
|
|
*/
|
|
return (nlwb);
|
|
}
|
|
|
|
static lwb_t *
|
|
zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
|
|
{
|
|
lr_t *lrcb, *lrc;
|
|
lr_write_t *lrwb, *lrw;
|
|
char *lr_buf;
|
|
uint64_t dlen, dnow, lwb_sp, reclen, txg;
|
|
|
|
if (lwb == NULL)
|
|
return (NULL);
|
|
|
|
ASSERT(lwb->lwb_buf != NULL);
|
|
|
|
lrc = &itx->itx_lr; /* Common log record inside itx. */
|
|
lrw = (lr_write_t *)lrc; /* Write log record inside itx. */
|
|
if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
|
|
dlen = P2ROUNDUP_TYPED(
|
|
lrw->lr_length, sizeof (uint64_t), uint64_t);
|
|
} else {
|
|
dlen = 0;
|
|
}
|
|
reclen = lrc->lrc_reclen;
|
|
zilog->zl_cur_used += (reclen + dlen);
|
|
txg = lrc->lrc_txg;
|
|
|
|
zil_lwb_write_init(zilog, lwb);
|
|
|
|
cont:
|
|
/*
|
|
* If this record won't fit in the current log block, start a new one.
|
|
* For WR_NEED_COPY optimize layout for minimal number of chunks.
|
|
*/
|
|
lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
|
|
if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
|
|
lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
|
|
lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
|
|
lwb = zil_lwb_write_start(zilog, lwb);
|
|
if (lwb == NULL)
|
|
return (NULL);
|
|
zil_lwb_write_init(zilog, lwb);
|
|
ASSERT(LWB_EMPTY(lwb));
|
|
lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
|
|
ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
|
|
}
|
|
|
|
dnow = MIN(dlen, lwb_sp - reclen);
|
|
lr_buf = lwb->lwb_buf + lwb->lwb_nused;
|
|
bcopy(lrc, lr_buf, reclen);
|
|
lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
|
|
lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
|
|
|
|
ZIL_STAT_BUMP(zil_itx_count);
|
|
|
|
/*
|
|
* If it's a write, fetch the data or get its blkptr as appropriate.
|
|
*/
|
|
if (lrc->lrc_txtype == TX_WRITE) {
|
|
if (txg > spa_freeze_txg(zilog->zl_spa))
|
|
txg_wait_synced(zilog->zl_dmu_pool, txg);
|
|
if (itx->itx_wr_state == WR_COPIED) {
|
|
ZIL_STAT_BUMP(zil_itx_copied_count);
|
|
ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
|
|
} else {
|
|
char *dbuf;
|
|
int error;
|
|
|
|
if (itx->itx_wr_state == WR_NEED_COPY) {
|
|
dbuf = lr_buf + reclen;
|
|
lrcb->lrc_reclen += dnow;
|
|
if (lrwb->lr_length > dnow)
|
|
lrwb->lr_length = dnow;
|
|
lrw->lr_offset += dnow;
|
|
lrw->lr_length -= dnow;
|
|
ZIL_STAT_BUMP(zil_itx_needcopy_count);
|
|
ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
|
|
} else {
|
|
ASSERT(itx->itx_wr_state == WR_INDIRECT);
|
|
dbuf = NULL;
|
|
ZIL_STAT_BUMP(zil_itx_indirect_count);
|
|
ZIL_STAT_INCR(zil_itx_indirect_bytes,
|
|
lrw->lr_length);
|
|
}
|
|
error = zilog->zl_get_data(
|
|
itx->itx_private, lrwb, dbuf, lwb->lwb_zio);
|
|
if (error == EIO) {
|
|
txg_wait_synced(zilog->zl_dmu_pool, txg);
|
|
return (lwb);
|
|
}
|
|
if (error != 0) {
|
|
ASSERT(error == ENOENT || error == EEXIST ||
|
|
error == EALREADY);
|
|
return (lwb);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We're actually making an entry, so update lrc_seq to be the
|
|
* log record sequence number. Note that this is generally not
|
|
* equal to the itx sequence number because not all transactions
|
|
* are synchronous, and sometimes spa_sync() gets there first.
|
|
*/
|
|
lrcb->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
|
|
lwb->lwb_nused += reclen + dnow;
|
|
lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
|
|
ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
|
|
ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
|
|
|
|
dlen -= dnow;
|
|
if (dlen > 0) {
|
|
zilog->zl_cur_used += reclen;
|
|
goto cont;
|
|
}
|
|
|
|
return (lwb);
|
|
}
|
|
|
|
itx_t *
|
|
zil_itx_create(uint64_t txtype, size_t lrsize)
|
|
{
|
|
size_t itxsize;
|
|
itx_t *itx;
|
|
|
|
lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
|
|
itxsize = offsetof(itx_t, itx_lr) + lrsize;
|
|
|
|
itx = zio_data_buf_alloc(itxsize);
|
|
itx->itx_lr.lrc_txtype = txtype;
|
|
itx->itx_lr.lrc_reclen = lrsize;
|
|
itx->itx_lr.lrc_seq = 0; /* defensive */
|
|
itx->itx_sync = B_TRUE; /* default is synchronous */
|
|
itx->itx_callback = NULL;
|
|
itx->itx_callback_data = NULL;
|
|
itx->itx_size = itxsize;
|
|
|
|
return (itx);
|
|
}
|
|
|
|
void
|
|
zil_itx_destroy(itx_t *itx)
|
|
{
|
|
zio_data_buf_free(itx, itx->itx_size);
|
|
}
|
|
|
|
/*
|
|
* Free up the sync and async itxs. The itxs_t has already been detached
|
|
* so no locks are needed.
|
|
*/
|
|
static void
|
|
zil_itxg_clean(itxs_t *itxs)
|
|
{
|
|
itx_t *itx;
|
|
list_t *list;
|
|
avl_tree_t *t;
|
|
void *cookie;
|
|
itx_async_node_t *ian;
|
|
|
|
list = &itxs->i_sync_list;
|
|
while ((itx = list_head(list)) != NULL) {
|
|
if (itx->itx_callback != NULL)
|
|
itx->itx_callback(itx->itx_callback_data);
|
|
list_remove(list, itx);
|
|
zil_itx_destroy(itx);
|
|
}
|
|
|
|
cookie = NULL;
|
|
t = &itxs->i_async_tree;
|
|
while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
|
|
list = &ian->ia_list;
|
|
while ((itx = list_head(list)) != NULL) {
|
|
if (itx->itx_callback != NULL)
|
|
itx->itx_callback(itx->itx_callback_data);
|
|
list_remove(list, itx);
|
|
zil_itx_destroy(itx);
|
|
}
|
|
list_destroy(list);
|
|
kmem_free(ian, sizeof (itx_async_node_t));
|
|
}
|
|
avl_destroy(t);
|
|
|
|
kmem_free(itxs, sizeof (itxs_t));
|
|
}
|
|
|
|
static int
|
|
zil_aitx_compare(const void *x1, const void *x2)
|
|
{
|
|
const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
|
|
const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
|
|
|
|
return (AVL_CMP(o1, o2));
|
|
}
|
|
|
|
/*
|
|
* Remove all async itx with the given oid.
|
|
*/
|
|
static void
|
|
zil_remove_async(zilog_t *zilog, uint64_t oid)
|
|
{
|
|
uint64_t otxg, txg;
|
|
itx_async_node_t *ian;
|
|
avl_tree_t *t;
|
|
avl_index_t where;
|
|
list_t clean_list;
|
|
itx_t *itx;
|
|
|
|
ASSERT(oid != 0);
|
|
list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
|
|
|
|
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
|
|
otxg = ZILTEST_TXG;
|
|
else
|
|
otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
|
|
|
|
for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
|
|
itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
|
|
|
|
mutex_enter(&itxg->itxg_lock);
|
|
if (itxg->itxg_txg != txg) {
|
|
mutex_exit(&itxg->itxg_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Locate the object node and append its list.
|
|
*/
|
|
t = &itxg->itxg_itxs->i_async_tree;
|
|
ian = avl_find(t, &oid, &where);
|
|
if (ian != NULL)
|
|
list_move_tail(&clean_list, &ian->ia_list);
|
|
mutex_exit(&itxg->itxg_lock);
|
|
}
|
|
while ((itx = list_head(&clean_list)) != NULL) {
|
|
if (itx->itx_callback != NULL)
|
|
itx->itx_callback(itx->itx_callback_data);
|
|
list_remove(&clean_list, itx);
|
|
zil_itx_destroy(itx);
|
|
}
|
|
list_destroy(&clean_list);
|
|
}
|
|
|
|
void
|
|
zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
|
|
{
|
|
uint64_t txg;
|
|
itxg_t *itxg;
|
|
itxs_t *itxs, *clean = NULL;
|
|
|
|
/*
|
|
* Object ids can be re-instantiated in the next txg so
|
|
* remove any async transactions to avoid future leaks.
|
|
* This can happen if a fsync occurs on the re-instantiated
|
|
* object for a WR_INDIRECT or WR_NEED_COPY write, which gets
|
|
* the new file data and flushes a write record for the old object.
|
|
*/
|
|
if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
|
|
zil_remove_async(zilog, itx->itx_oid);
|
|
|
|
/*
|
|
* Ensure the data of a renamed file is committed before the rename.
|
|
*/
|
|
if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
|
|
zil_async_to_sync(zilog, itx->itx_oid);
|
|
|
|
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
|
|
txg = ZILTEST_TXG;
|
|
else
|
|
txg = dmu_tx_get_txg(tx);
|
|
|
|
itxg = &zilog->zl_itxg[txg & TXG_MASK];
|
|
mutex_enter(&itxg->itxg_lock);
|
|
itxs = itxg->itxg_itxs;
|
|
if (itxg->itxg_txg != txg) {
|
|
if (itxs != NULL) {
|
|
/*
|
|
* The zil_clean callback hasn't got around to cleaning
|
|
* this itxg. Save the itxs for release below.
|
|
* This should be rare.
|
|
*/
|
|
zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
|
|
"txg %llu", itxg->itxg_txg);
|
|
clean = itxg->itxg_itxs;
|
|
}
|
|
itxg->itxg_txg = txg;
|
|
itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
|
|
KM_SLEEP);
|
|
|
|
list_create(&itxs->i_sync_list, sizeof (itx_t),
|
|
offsetof(itx_t, itx_node));
|
|
avl_create(&itxs->i_async_tree, zil_aitx_compare,
|
|
sizeof (itx_async_node_t),
|
|
offsetof(itx_async_node_t, ia_node));
|
|
}
|
|
if (itx->itx_sync) {
|
|
list_insert_tail(&itxs->i_sync_list, itx);
|
|
} else {
|
|
avl_tree_t *t = &itxs->i_async_tree;
|
|
uint64_t foid =
|
|
LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
|
|
itx_async_node_t *ian;
|
|
avl_index_t where;
|
|
|
|
ian = avl_find(t, &foid, &where);
|
|
if (ian == NULL) {
|
|
ian = kmem_alloc(sizeof (itx_async_node_t),
|
|
KM_SLEEP);
|
|
list_create(&ian->ia_list, sizeof (itx_t),
|
|
offsetof(itx_t, itx_node));
|
|
ian->ia_foid = foid;
|
|
avl_insert(t, ian, where);
|
|
}
|
|
list_insert_tail(&ian->ia_list, itx);
|
|
}
|
|
|
|
itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
|
|
zilog_dirty(zilog, txg);
|
|
mutex_exit(&itxg->itxg_lock);
|
|
|
|
/* Release the old itxs now we've dropped the lock */
|
|
if (clean != NULL)
|
|
zil_itxg_clean(clean);
|
|
}
|
|
|
|
/*
|
|
* If there are any in-memory intent log transactions which have now been
|
|
* synced then start up a taskq to free them. We should only do this after we
|
|
* have written out the uberblocks (i.e. txg has been comitted) so that
|
|
* don't inadvertently clean out in-memory log records that would be required
|
|
* by zil_commit().
|
|
*/
|
|
void
|
|
zil_clean(zilog_t *zilog, uint64_t synced_txg)
|
|
{
|
|
itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
|
|
itxs_t *clean_me;
|
|
|
|
mutex_enter(&itxg->itxg_lock);
|
|
if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
|
|
mutex_exit(&itxg->itxg_lock);
|
|
return;
|
|
}
|
|
ASSERT3U(itxg->itxg_txg, <=, synced_txg);
|
|
ASSERT(itxg->itxg_txg != 0);
|
|
ASSERT(zilog->zl_clean_taskq != NULL);
|
|
clean_me = itxg->itxg_itxs;
|
|
itxg->itxg_itxs = NULL;
|
|
itxg->itxg_txg = 0;
|
|
mutex_exit(&itxg->itxg_lock);
|
|
/*
|
|
* Preferably start a task queue to free up the old itxs but
|
|
* if taskq_dispatch can't allocate resources to do that then
|
|
* free it in-line. This should be rare. Note, using TQ_SLEEP
|
|
* created a bad performance problem.
|
|
*/
|
|
if (taskq_dispatch(zilog->zl_clean_taskq,
|
|
(void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
|
|
zil_itxg_clean(clean_me);
|
|
}
|
|
|
|
/*
|
|
* Get the list of itxs to commit into zl_itx_commit_list.
|
|
*/
|
|
static void
|
|
zil_get_commit_list(zilog_t *zilog)
|
|
{
|
|
uint64_t otxg, txg;
|
|
list_t *commit_list = &zilog->zl_itx_commit_list;
|
|
|
|
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
|
|
otxg = ZILTEST_TXG;
|
|
else
|
|
otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
|
|
|
|
/*
|
|
* This is inherently racy, since there is nothing to prevent
|
|
* the last synced txg from changing. That's okay since we'll
|
|
* only commit things in the future.
|
|
*/
|
|
for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
|
|
itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
|
|
|
|
mutex_enter(&itxg->itxg_lock);
|
|
if (itxg->itxg_txg != txg) {
|
|
mutex_exit(&itxg->itxg_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we're adding itx records to the zl_itx_commit_list,
|
|
* then the zil better be dirty in this "txg". We can assert
|
|
* that here since we're holding the itxg_lock which will
|
|
* prevent spa_sync from cleaning it. Once we add the itxs
|
|
* to the zl_itx_commit_list we must commit it to disk even
|
|
* if it's unnecessary (i.e. the txg was synced).
|
|
*/
|
|
ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
|
|
spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
|
|
list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
|
|
|
|
mutex_exit(&itxg->itxg_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move the async itxs for a specified object to commit into sync lists.
|
|
*/
|
|
static void
|
|
zil_async_to_sync(zilog_t *zilog, uint64_t foid)
|
|
{
|
|
uint64_t otxg, txg;
|
|
itx_async_node_t *ian;
|
|
avl_tree_t *t;
|
|
avl_index_t where;
|
|
|
|
if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
|
|
otxg = ZILTEST_TXG;
|
|
else
|
|
otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
|
|
|
|
/*
|
|
* This is inherently racy, since there is nothing to prevent
|
|
* the last synced txg from changing.
|
|
*/
|
|
for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
|
|
itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
|
|
|
|
mutex_enter(&itxg->itxg_lock);
|
|
if (itxg->itxg_txg != txg) {
|
|
mutex_exit(&itxg->itxg_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If a foid is specified then find that node and append its
|
|
* list. Otherwise walk the tree appending all the lists
|
|
* to the sync list. We add to the end rather than the
|
|
* beginning to ensure the create has happened.
|
|
*/
|
|
t = &itxg->itxg_itxs->i_async_tree;
|
|
if (foid != 0) {
|
|
ian = avl_find(t, &foid, &where);
|
|
if (ian != NULL) {
|
|
list_move_tail(&itxg->itxg_itxs->i_sync_list,
|
|
&ian->ia_list);
|
|
}
|
|
} else {
|
|
void *cookie = NULL;
|
|
|
|
while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
|
|
list_move_tail(&itxg->itxg_itxs->i_sync_list,
|
|
&ian->ia_list);
|
|
list_destroy(&ian->ia_list);
|
|
kmem_free(ian, sizeof (itx_async_node_t));
|
|
}
|
|
}
|
|
mutex_exit(&itxg->itxg_lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
zil_commit_writer(zilog_t *zilog)
|
|
{
|
|
uint64_t txg;
|
|
itx_t *itx;
|
|
lwb_t *lwb;
|
|
spa_t *spa = zilog->zl_spa;
|
|
int error = 0;
|
|
|
|
ASSERT(zilog->zl_root_zio == NULL);
|
|
|
|
mutex_exit(&zilog->zl_lock);
|
|
|
|
zil_get_commit_list(zilog);
|
|
|
|
/*
|
|
* Return if there's nothing to commit before we dirty the fs by
|
|
* calling zil_create().
|
|
*/
|
|
if (list_head(&zilog->zl_itx_commit_list) == NULL) {
|
|
mutex_enter(&zilog->zl_lock);
|
|
return;
|
|
}
|
|
|
|
if (zilog->zl_suspend) {
|
|
lwb = NULL;
|
|
} else {
|
|
lwb = list_tail(&zilog->zl_lwb_list);
|
|
if (lwb == NULL)
|
|
lwb = zil_create(zilog);
|
|
}
|
|
|
|
DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
|
|
for (itx = list_head(&zilog->zl_itx_commit_list); itx != NULL;
|
|
itx = list_next(&zilog->zl_itx_commit_list, itx)) {
|
|
txg = itx->itx_lr.lrc_txg;
|
|
ASSERT3U(txg, !=, 0);
|
|
|
|
/*
|
|
* This is inherently racy and may result in us writing
|
|
* out a log block for a txg that was just synced. This is
|
|
* ok since we'll end cleaning up that log block the next
|
|
* time we call zil_sync().
|
|
*/
|
|
if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
|
|
lwb = zil_lwb_commit(zilog, itx, lwb);
|
|
}
|
|
DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
|
|
|
|
/* write the last block out */
|
|
if (lwb != NULL && lwb->lwb_zio != NULL)
|
|
lwb = zil_lwb_write_start(zilog, lwb);
|
|
|
|
zilog->zl_cur_used = 0;
|
|
|
|
/*
|
|
* Wait if necessary for the log blocks to be on stable storage.
|
|
*/
|
|
if (zilog->zl_root_zio) {
|
|
error = zio_wait(zilog->zl_root_zio);
|
|
zilog->zl_root_zio = NULL;
|
|
zil_flush_vdevs(zilog);
|
|
}
|
|
|
|
if (error || lwb == NULL)
|
|
txg_wait_synced(zilog->zl_dmu_pool, 0);
|
|
|
|
while ((itx = list_head(&zilog->zl_itx_commit_list))) {
|
|
txg = itx->itx_lr.lrc_txg;
|
|
ASSERT(txg);
|
|
|
|
if (itx->itx_callback != NULL)
|
|
itx->itx_callback(itx->itx_callback_data);
|
|
list_remove(&zilog->zl_itx_commit_list, itx);
|
|
zil_itx_destroy(itx);
|
|
}
|
|
|
|
mutex_enter(&zilog->zl_lock);
|
|
|
|
/*
|
|
* Remember the highest committed log sequence number for ztest.
|
|
* We only update this value when all the log writes succeeded,
|
|
* because ztest wants to ASSERT that it got the whole log chain.
|
|
*/
|
|
if (error == 0 && lwb != NULL)
|
|
zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
|
|
}
|
|
|
|
/*
|
|
* Commit zfs transactions to stable storage.
|
|
* If foid is 0 push out all transactions, otherwise push only those
|
|
* for that object or might reference that object.
|
|
*
|
|
* itxs are committed in batches. In a heavily stressed zil there will be
|
|
* a commit writer thread who is writing out a bunch of itxs to the log
|
|
* for a set of committing threads (cthreads) in the same batch as the writer.
|
|
* Those cthreads are all waiting on the same cv for that batch.
|
|
*
|
|
* There will also be a different and growing batch of threads that are
|
|
* waiting to commit (qthreads). When the committing batch completes
|
|
* a transition occurs such that the cthreads exit and the qthreads become
|
|
* cthreads. One of the new cthreads becomes the writer thread for the
|
|
* batch. Any new threads arriving become new qthreads.
|
|
*
|
|
* Only 2 condition variables are needed and there's no transition
|
|
* between the two cvs needed. They just flip-flop between qthreads
|
|
* and cthreads.
|
|
*
|
|
* Using this scheme we can efficiently wakeup up only those threads
|
|
* that have been committed.
|
|
*/
|
|
void
|
|
zil_commit(zilog_t *zilog, uint64_t foid)
|
|
{
|
|
uint64_t mybatch;
|
|
|
|
if (zilog->zl_sync == ZFS_SYNC_DISABLED)
|
|
return;
|
|
|
|
ZIL_STAT_BUMP(zil_commit_count);
|
|
|
|
/* move the async itxs for the foid to the sync queues */
|
|
zil_async_to_sync(zilog, foid);
|
|
|
|
mutex_enter(&zilog->zl_lock);
|
|
mybatch = zilog->zl_next_batch;
|
|
while (zilog->zl_writer) {
|
|
cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
|
|
if (mybatch <= zilog->zl_com_batch) {
|
|
mutex_exit(&zilog->zl_lock);
|
|
return;
|
|
}
|
|
}
|
|
|
|
zilog->zl_next_batch++;
|
|
zilog->zl_writer = B_TRUE;
|
|
ZIL_STAT_BUMP(zil_commit_writer_count);
|
|
zil_commit_writer(zilog);
|
|
zilog->zl_com_batch = mybatch;
|
|
zilog->zl_writer = B_FALSE;
|
|
|
|
/* wake up one thread to become the next writer */
|
|
cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
|
|
|
|
/* wake up all threads waiting for this batch to be committed */
|
|
cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
|
|
|
|
mutex_exit(&zilog->zl_lock);
|
|
}
|
|
|
|
/*
|
|
* Called in syncing context to free committed log blocks and update log header.
|
|
*/
|
|
void
|
|
zil_sync(zilog_t *zilog, dmu_tx_t *tx)
|
|
{
|
|
zil_header_t *zh = zil_header_in_syncing_context(zilog);
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
spa_t *spa = zilog->zl_spa;
|
|
uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
|
|
lwb_t *lwb;
|
|
|
|
/*
|
|
* We don't zero out zl_destroy_txg, so make sure we don't try
|
|
* to destroy it twice.
|
|
*/
|
|
if (spa_sync_pass(spa) != 1)
|
|
return;
|
|
|
|
mutex_enter(&zilog->zl_lock);
|
|
|
|
ASSERT(zilog->zl_stop_sync == 0);
|
|
|
|
if (*replayed_seq != 0) {
|
|
ASSERT(zh->zh_replay_seq < *replayed_seq);
|
|
zh->zh_replay_seq = *replayed_seq;
|
|
*replayed_seq = 0;
|
|
}
|
|
|
|
if (zilog->zl_destroy_txg == txg) {
|
|
blkptr_t blk = zh->zh_log;
|
|
|
|
ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
|
|
|
|
bzero(zh, sizeof (zil_header_t));
|
|
bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
|
|
|
|
if (zilog->zl_keep_first) {
|
|
/*
|
|
* If this block was part of log chain that couldn't
|
|
* be claimed because a device was missing during
|
|
* zil_claim(), but that device later returns,
|
|
* then this block could erroneously appear valid.
|
|
* To guard against this, assign a new GUID to the new
|
|
* log chain so it doesn't matter what blk points to.
|
|
*/
|
|
zil_init_log_chain(zilog, &blk);
|
|
zh->zh_log = blk;
|
|
}
|
|
}
|
|
|
|
while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
|
|
zh->zh_log = lwb->lwb_blk;
|
|
if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
|
|
break;
|
|
|
|
ASSERT(lwb->lwb_zio == NULL);
|
|
|
|
list_remove(&zilog->zl_lwb_list, lwb);
|
|
zio_free_zil(spa, txg, &lwb->lwb_blk);
|
|
kmem_cache_free(zil_lwb_cache, lwb);
|
|
|
|
/*
|
|
* If we don't have anything left in the lwb list then
|
|
* we've had an allocation failure and we need to zero
|
|
* out the zil_header blkptr so that we don't end
|
|
* up freeing the same block twice.
|
|
*/
|
|
if (list_head(&zilog->zl_lwb_list) == NULL)
|
|
BP_ZERO(&zh->zh_log);
|
|
}
|
|
|
|
/*
|
|
* Remove fastwrite on any blocks that have been pre-allocated for
|
|
* the next commit. This prevents fastwrite counter pollution by
|
|
* unused, long-lived LWBs.
|
|
*/
|
|
for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
|
|
if (lwb->lwb_fastwrite && !lwb->lwb_zio) {
|
|
metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
|
|
lwb->lwb_fastwrite = 0;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&zilog->zl_lock);
|
|
}
|
|
|
|
void
|
|
zil_init(void)
|
|
{
|
|
zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
|
|
sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
|
|
zil_ksp = kstat_create("zfs", 0, "zil", "misc",
|
|
KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
|
|
if (zil_ksp != NULL) {
|
|
zil_ksp->ks_data = &zil_stats;
|
|
kstat_install(zil_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
zil_fini(void)
|
|
{
|
|
kmem_cache_destroy(zil_lwb_cache);
|
|
|
|
if (zil_ksp != NULL) {
|
|
kstat_delete(zil_ksp);
|
|
zil_ksp = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
zil_set_sync(zilog_t *zilog, uint64_t sync)
|
|
{
|
|
zilog->zl_sync = sync;
|
|
}
|
|
|
|
void
|
|
zil_set_logbias(zilog_t *zilog, uint64_t logbias)
|
|
{
|
|
zilog->zl_logbias = logbias;
|
|
}
|
|
|
|
zilog_t *
|
|
zil_alloc(objset_t *os, zil_header_t *zh_phys)
|
|
{
|
|
zilog_t *zilog;
|
|
int i;
|
|
|
|
zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
|
|
|
|
zilog->zl_header = zh_phys;
|
|
zilog->zl_os = os;
|
|
zilog->zl_spa = dmu_objset_spa(os);
|
|
zilog->zl_dmu_pool = dmu_objset_pool(os);
|
|
zilog->zl_destroy_txg = TXG_INITIAL - 1;
|
|
zilog->zl_logbias = dmu_objset_logbias(os);
|
|
zilog->zl_sync = dmu_objset_syncprop(os);
|
|
zilog->zl_next_batch = 1;
|
|
|
|
mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
|
|
MUTEX_DEFAULT, NULL);
|
|
}
|
|
|
|
list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
|
|
offsetof(lwb_t, lwb_node));
|
|
|
|
list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
|
|
offsetof(itx_t, itx_node));
|
|
|
|
mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
|
|
sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
|
|
|
|
cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
|
|
cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
|
|
|
|
return (zilog);
|
|
}
|
|
|
|
void
|
|
zil_free(zilog_t *zilog)
|
|
{
|
|
int i;
|
|
|
|
zilog->zl_stop_sync = 1;
|
|
|
|
ASSERT0(zilog->zl_suspend);
|
|
ASSERT0(zilog->zl_suspending);
|
|
|
|
ASSERT(list_is_empty(&zilog->zl_lwb_list));
|
|
list_destroy(&zilog->zl_lwb_list);
|
|
|
|
avl_destroy(&zilog->zl_vdev_tree);
|
|
mutex_destroy(&zilog->zl_vdev_lock);
|
|
|
|
ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
|
|
list_destroy(&zilog->zl_itx_commit_list);
|
|
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
/*
|
|
* It's possible for an itx to be generated that doesn't dirty
|
|
* a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
|
|
* callback to remove the entry. We remove those here.
|
|
*
|
|
* Also free up the ziltest itxs.
|
|
*/
|
|
if (zilog->zl_itxg[i].itxg_itxs)
|
|
zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
|
|
mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
|
|
}
|
|
|
|
mutex_destroy(&zilog->zl_lock);
|
|
|
|
cv_destroy(&zilog->zl_cv_writer);
|
|
cv_destroy(&zilog->zl_cv_suspend);
|
|
cv_destroy(&zilog->zl_cv_batch[0]);
|
|
cv_destroy(&zilog->zl_cv_batch[1]);
|
|
|
|
kmem_free(zilog, sizeof (zilog_t));
|
|
}
|
|
|
|
/*
|
|
* Open an intent log.
|
|
*/
|
|
zilog_t *
|
|
zil_open(objset_t *os, zil_get_data_t *get_data)
|
|
{
|
|
zilog_t *zilog = dmu_objset_zil(os);
|
|
|
|
ASSERT(zilog->zl_clean_taskq == NULL);
|
|
ASSERT(zilog->zl_get_data == NULL);
|
|
ASSERT(list_is_empty(&zilog->zl_lwb_list));
|
|
|
|
zilog->zl_get_data = get_data;
|
|
zilog->zl_clean_taskq = taskq_create("zil_clean", 1, defclsyspri,
|
|
2, 2, TASKQ_PREPOPULATE);
|
|
|
|
return (zilog);
|
|
}
|
|
|
|
/*
|
|
* Close an intent log.
|
|
*/
|
|
void
|
|
zil_close(zilog_t *zilog)
|
|
{
|
|
lwb_t *lwb;
|
|
uint64_t txg = 0;
|
|
|
|
zil_commit(zilog, 0); /* commit all itx */
|
|
|
|
/*
|
|
* The lwb_max_txg for the stubby lwb will reflect the last activity
|
|
* for the zil. After a txg_wait_synced() on the txg we know all the
|
|
* callbacks have occurred that may clean the zil. Only then can we
|
|
* destroy the zl_clean_taskq.
|
|
*/
|
|
mutex_enter(&zilog->zl_lock);
|
|
lwb = list_tail(&zilog->zl_lwb_list);
|
|
if (lwb != NULL)
|
|
txg = lwb->lwb_max_txg;
|
|
mutex_exit(&zilog->zl_lock);
|
|
if (txg)
|
|
txg_wait_synced(zilog->zl_dmu_pool, txg);
|
|
|
|
if (zilog_is_dirty(zilog))
|
|
zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
|
|
if (txg < spa_freeze_txg(zilog->zl_spa))
|
|
VERIFY(!zilog_is_dirty(zilog));
|
|
|
|
taskq_destroy(zilog->zl_clean_taskq);
|
|
zilog->zl_clean_taskq = NULL;
|
|
zilog->zl_get_data = NULL;
|
|
|
|
/*
|
|
* We should have only one LWB left on the list; remove it now.
|
|
*/
|
|
mutex_enter(&zilog->zl_lock);
|
|
lwb = list_head(&zilog->zl_lwb_list);
|
|
if (lwb != NULL) {
|
|
ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
|
|
ASSERT(lwb->lwb_zio == NULL);
|
|
if (lwb->lwb_fastwrite)
|
|
metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
|
|
list_remove(&zilog->zl_lwb_list, lwb);
|
|
zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
|
|
kmem_cache_free(zil_lwb_cache, lwb);
|
|
}
|
|
mutex_exit(&zilog->zl_lock);
|
|
}
|
|
|
|
static char *suspend_tag = "zil suspending";
|
|
|
|
/*
|
|
* Suspend an intent log. While in suspended mode, we still honor
|
|
* synchronous semantics, but we rely on txg_wait_synced() to do it.
|
|
* On old version pools, we suspend the log briefly when taking a
|
|
* snapshot so that it will have an empty intent log.
|
|
*
|
|
* Long holds are not really intended to be used the way we do here --
|
|
* held for such a short time. A concurrent caller of dsl_dataset_long_held()
|
|
* could fail. Therefore we take pains to only put a long hold if it is
|
|
* actually necessary. Fortunately, it will only be necessary if the
|
|
* objset is currently mounted (or the ZVOL equivalent). In that case it
|
|
* will already have a long hold, so we are not really making things any worse.
|
|
*
|
|
* Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
|
|
* zvol_state_t), and use their mechanism to prevent their hold from being
|
|
* dropped (e.g. VFS_HOLD()). However, that would be even more pain for
|
|
* very little gain.
|
|
*
|
|
* if cookiep == NULL, this does both the suspend & resume.
|
|
* Otherwise, it returns with the dataset "long held", and the cookie
|
|
* should be passed into zil_resume().
|
|
*/
|
|
int
|
|
zil_suspend(const char *osname, void **cookiep)
|
|
{
|
|
objset_t *os;
|
|
zilog_t *zilog;
|
|
const zil_header_t *zh;
|
|
int error;
|
|
|
|
error = dmu_objset_hold(osname, suspend_tag, &os);
|
|
if (error != 0)
|
|
return (error);
|
|
zilog = dmu_objset_zil(os);
|
|
|
|
mutex_enter(&zilog->zl_lock);
|
|
zh = zilog->zl_header;
|
|
|
|
if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
|
|
mutex_exit(&zilog->zl_lock);
|
|
dmu_objset_rele(os, suspend_tag);
|
|
return (SET_ERROR(EBUSY));
|
|
}
|
|
|
|
/*
|
|
* Don't put a long hold in the cases where we can avoid it. This
|
|
* is when there is no cookie so we are doing a suspend & resume
|
|
* (i.e. called from zil_vdev_offline()), and there's nothing to do
|
|
* for the suspend because it's already suspended, or there's no ZIL.
|
|
*/
|
|
if (cookiep == NULL && !zilog->zl_suspending &&
|
|
(zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
|
|
mutex_exit(&zilog->zl_lock);
|
|
dmu_objset_rele(os, suspend_tag);
|
|
return (0);
|
|
}
|
|
|
|
dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
|
|
dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
|
|
|
|
zilog->zl_suspend++;
|
|
|
|
if (zilog->zl_suspend > 1) {
|
|
/*
|
|
* Someone else is already suspending it.
|
|
* Just wait for them to finish.
|
|
*/
|
|
|
|
while (zilog->zl_suspending)
|
|
cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
|
|
mutex_exit(&zilog->zl_lock);
|
|
|
|
if (cookiep == NULL)
|
|
zil_resume(os);
|
|
else
|
|
*cookiep = os;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If there is no pointer to an on-disk block, this ZIL must not
|
|
* be active (e.g. filesystem not mounted), so there's nothing
|
|
* to clean up.
|
|
*/
|
|
if (BP_IS_HOLE(&zh->zh_log)) {
|
|
ASSERT(cookiep != NULL); /* fast path already handled */
|
|
|
|
*cookiep = os;
|
|
mutex_exit(&zilog->zl_lock);
|
|
return (0);
|
|
}
|
|
|
|
zilog->zl_suspending = B_TRUE;
|
|
mutex_exit(&zilog->zl_lock);
|
|
|
|
zil_commit(zilog, 0);
|
|
|
|
zil_destroy(zilog, B_FALSE);
|
|
|
|
mutex_enter(&zilog->zl_lock);
|
|
zilog->zl_suspending = B_FALSE;
|
|
cv_broadcast(&zilog->zl_cv_suspend);
|
|
mutex_exit(&zilog->zl_lock);
|
|
|
|
if (cookiep == NULL)
|
|
zil_resume(os);
|
|
else
|
|
*cookiep = os;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zil_resume(void *cookie)
|
|
{
|
|
objset_t *os = cookie;
|
|
zilog_t *zilog = dmu_objset_zil(os);
|
|
|
|
mutex_enter(&zilog->zl_lock);
|
|
ASSERT(zilog->zl_suspend != 0);
|
|
zilog->zl_suspend--;
|
|
mutex_exit(&zilog->zl_lock);
|
|
dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
|
|
dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
|
|
}
|
|
|
|
typedef struct zil_replay_arg {
|
|
zil_replay_func_t *zr_replay;
|
|
void *zr_arg;
|
|
boolean_t zr_byteswap;
|
|
char *zr_lr;
|
|
} zil_replay_arg_t;
|
|
|
|
static int
|
|
zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
|
|
{
|
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
|
|
|
zilog->zl_replaying_seq--; /* didn't actually replay this one */
|
|
|
|
dmu_objset_name(zilog->zl_os, name);
|
|
|
|
cmn_err(CE_WARN, "ZFS replay transaction error %d, "
|
|
"dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
|
|
(u_longlong_t)lr->lrc_seq,
|
|
(u_longlong_t)(lr->lrc_txtype & ~TX_CI),
|
|
(lr->lrc_txtype & TX_CI) ? "CI" : "");
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
|
|
{
|
|
zil_replay_arg_t *zr = zra;
|
|
const zil_header_t *zh = zilog->zl_header;
|
|
uint64_t reclen = lr->lrc_reclen;
|
|
uint64_t txtype = lr->lrc_txtype;
|
|
int error = 0;
|
|
|
|
zilog->zl_replaying_seq = lr->lrc_seq;
|
|
|
|
if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
|
|
return (0);
|
|
|
|
if (lr->lrc_txg < claim_txg) /* already committed */
|
|
return (0);
|
|
|
|
/* Strip case-insensitive bit, still present in log record */
|
|
txtype &= ~TX_CI;
|
|
|
|
if (txtype == 0 || txtype >= TX_MAX_TYPE)
|
|
return (zil_replay_error(zilog, lr, EINVAL));
|
|
|
|
/*
|
|
* If this record type can be logged out of order, the object
|
|
* (lr_foid) may no longer exist. That's legitimate, not an error.
|
|
*/
|
|
if (TX_OOO(txtype)) {
|
|
error = dmu_object_info(zilog->zl_os,
|
|
LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
|
|
if (error == ENOENT || error == EEXIST)
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Make a copy of the data so we can revise and extend it.
|
|
*/
|
|
bcopy(lr, zr->zr_lr, reclen);
|
|
|
|
/*
|
|
* If this is a TX_WRITE with a blkptr, suck in the data.
|
|
*/
|
|
if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
|
|
error = zil_read_log_data(zilog, (lr_write_t *)lr,
|
|
zr->zr_lr + reclen);
|
|
if (error != 0)
|
|
return (zil_replay_error(zilog, lr, error));
|
|
}
|
|
|
|
/*
|
|
* The log block containing this lr may have been byteswapped
|
|
* so that we can easily examine common fields like lrc_txtype.
|
|
* However, the log is a mix of different record types, and only the
|
|
* replay vectors know how to byteswap their records. Therefore, if
|
|
* the lr was byteswapped, undo it before invoking the replay vector.
|
|
*/
|
|
if (zr->zr_byteswap)
|
|
byteswap_uint64_array(zr->zr_lr, reclen);
|
|
|
|
/*
|
|
* We must now do two things atomically: replay this log record,
|
|
* and update the log header sequence number to reflect the fact that
|
|
* we did so. At the end of each replay function the sequence number
|
|
* is updated if we are in replay mode.
|
|
*/
|
|
error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
|
|
if (error != 0) {
|
|
/*
|
|
* The DMU's dnode layer doesn't see removes until the txg
|
|
* commits, so a subsequent claim can spuriously fail with
|
|
* EEXIST. So if we receive any error we try syncing out
|
|
* any removes then retry the transaction. Note that we
|
|
* specify B_FALSE for byteswap now, so we don't do it twice.
|
|
*/
|
|
txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
|
|
error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
|
|
if (error != 0)
|
|
return (zil_replay_error(zilog, lr, error));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
|
|
{
|
|
zilog->zl_replay_blks++;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If this dataset has a non-empty intent log, replay it and destroy it.
|
|
*/
|
|
void
|
|
zil_replay(objset_t *os, void *arg, zil_replay_func_t replay_func[TX_MAX_TYPE])
|
|
{
|
|
zilog_t *zilog = dmu_objset_zil(os);
|
|
const zil_header_t *zh = zilog->zl_header;
|
|
zil_replay_arg_t zr;
|
|
|
|
if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
|
|
zil_destroy(zilog, B_TRUE);
|
|
return;
|
|
}
|
|
|
|
zr.zr_replay = replay_func;
|
|
zr.zr_arg = arg;
|
|
zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
|
|
zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
|
|
|
|
/*
|
|
* Wait for in-progress removes to sync before starting replay.
|
|
*/
|
|
txg_wait_synced(zilog->zl_dmu_pool, 0);
|
|
|
|
zilog->zl_replay = B_TRUE;
|
|
zilog->zl_replay_time = ddi_get_lbolt();
|
|
ASSERT(zilog->zl_replay_blks == 0);
|
|
(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
|
|
zh->zh_claim_txg);
|
|
vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
|
|
|
|
zil_destroy(zilog, B_FALSE);
|
|
txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
|
|
zilog->zl_replay = B_FALSE;
|
|
}
|
|
|
|
boolean_t
|
|
zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
|
|
{
|
|
if (zilog->zl_sync == ZFS_SYNC_DISABLED)
|
|
return (B_TRUE);
|
|
|
|
if (zilog->zl_replay) {
|
|
dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
|
|
zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
|
|
zilog->zl_replaying_seq;
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
zil_vdev_offline(const char *osname, void *arg)
|
|
{
|
|
int error;
|
|
|
|
error = zil_suspend(osname, NULL);
|
|
if (error != 0)
|
|
return (SET_ERROR(EEXIST));
|
|
return (0);
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
EXPORT_SYMBOL(zil_alloc);
|
|
EXPORT_SYMBOL(zil_free);
|
|
EXPORT_SYMBOL(zil_open);
|
|
EXPORT_SYMBOL(zil_close);
|
|
EXPORT_SYMBOL(zil_replay);
|
|
EXPORT_SYMBOL(zil_replaying);
|
|
EXPORT_SYMBOL(zil_destroy);
|
|
EXPORT_SYMBOL(zil_destroy_sync);
|
|
EXPORT_SYMBOL(zil_itx_create);
|
|
EXPORT_SYMBOL(zil_itx_destroy);
|
|
EXPORT_SYMBOL(zil_itx_assign);
|
|
EXPORT_SYMBOL(zil_commit);
|
|
EXPORT_SYMBOL(zil_vdev_offline);
|
|
EXPORT_SYMBOL(zil_claim);
|
|
EXPORT_SYMBOL(zil_check_log_chain);
|
|
EXPORT_SYMBOL(zil_sync);
|
|
EXPORT_SYMBOL(zil_clean);
|
|
EXPORT_SYMBOL(zil_suspend);
|
|
EXPORT_SYMBOL(zil_resume);
|
|
EXPORT_SYMBOL(zil_add_block);
|
|
EXPORT_SYMBOL(zil_bp_tree_add);
|
|
EXPORT_SYMBOL(zil_set_sync);
|
|
EXPORT_SYMBOL(zil_set_logbias);
|
|
|
|
/* BEGIN CSTYLED */
|
|
module_param(zil_replay_disable, int, 0644);
|
|
MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
|
|
|
|
module_param(zfs_nocacheflush, int, 0644);
|
|
MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
|
|
|
|
module_param(zil_slog_bulk, ulong, 0644);
|
|
MODULE_PARM_DESC(zil_slog_bulk, "Limit in bytes slog sync writes per commit");
|
|
/* END CSTYLED */
|
|
#endif
|