mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-14 12:10:26 +03:00
0df9673f01
The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
867 lines
22 KiB
C
867 lines
22 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
|
|
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
|
|
*/
|
|
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#include <linux/compat.h>
|
|
#endif
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/zfs_vfsops.h>
|
|
#include <sys/zfs_vnops.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/zpl.h>
|
|
|
|
|
|
static int
|
|
zpl_open(struct inode *ip, struct file *filp)
|
|
{
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
error = generic_file_open(ip, filp);
|
|
if (error)
|
|
return (error);
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zpl_release(struct inode *ip, struct file *filp)
|
|
{
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
if (ITOZ(ip)->z_atime_dirty)
|
|
zfs_mark_inode_dirty(ip);
|
|
|
|
crhold(cr);
|
|
error = -zfs_close(ip, filp->f_flags, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zpl_iterate(struct file *filp, struct dir_context *ctx)
|
|
{
|
|
struct dentry *dentry = filp->f_path.dentry;
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_readdir(dentry->d_inode, ctx, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
#if !defined(HAVE_VFS_ITERATE)
|
|
static int
|
|
zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
|
|
{
|
|
struct dir_context ctx = DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
|
|
int error;
|
|
|
|
error = zpl_iterate(filp, &ctx);
|
|
filp->f_pos = ctx.pos;
|
|
|
|
return (error);
|
|
}
|
|
#endif /* HAVE_VFS_ITERATE */
|
|
|
|
#if defined(HAVE_FSYNC_WITH_DENTRY)
|
|
/*
|
|
* Linux 2.6.x - 2.6.34 API,
|
|
* Through 2.6.34 the nfsd kernel server would pass a NULL 'file struct *'
|
|
* to the fops->fsync() hook. For this reason, we must be careful not to
|
|
* use filp unconditionally.
|
|
*/
|
|
static int
|
|
zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
|
|
{
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_fsync(dentry->d_inode, datasync, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
|
|
{
|
|
struct file *filp = kiocb->ki_filp;
|
|
return (zpl_fsync(filp, filp->f_path.dentry, datasync));
|
|
}
|
|
#elif defined(HAVE_FSYNC_WITHOUT_DENTRY)
|
|
/*
|
|
* Linux 2.6.35 - 3.0 API,
|
|
* As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
|
|
* redundant. The dentry is still accessible via filp->f_path.dentry,
|
|
* and we are guaranteed that filp will never be NULL.
|
|
*/
|
|
static int
|
|
zpl_fsync(struct file *filp, int datasync)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_fsync(inode, datasync, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
|
|
{
|
|
return (zpl_fsync(kiocb->ki_filp, datasync));
|
|
}
|
|
#elif defined(HAVE_FSYNC_RANGE)
|
|
/*
|
|
* Linux 3.1 - 3.x API,
|
|
* As of 3.1 the responsibility to call filemap_write_and_wait_range() has
|
|
* been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
|
|
* lock is no longer held by the caller, for zfs we don't require the lock
|
|
* to be held so we don't acquire it.
|
|
*/
|
|
static int
|
|
zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
error = filemap_write_and_wait_range(inode->i_mapping, start, end);
|
|
if (error)
|
|
return (error);
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_fsync(inode, datasync, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
|
|
{
|
|
return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
|
|
}
|
|
#else
|
|
#error "Unsupported fops->fsync() implementation"
|
|
#endif
|
|
|
|
static ssize_t
|
|
zpl_read_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
|
|
unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
|
|
cred_t *cr, size_t skip)
|
|
{
|
|
ssize_t read;
|
|
uio_t uio;
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
uio.uio_iov = iovp;
|
|
uio.uio_skip = skip;
|
|
uio.uio_resid = count;
|
|
uio.uio_iovcnt = nr_segs;
|
|
uio.uio_loffset = *ppos;
|
|
uio.uio_limit = MAXOFFSET_T;
|
|
uio.uio_segflg = segment;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_read(ip, &uio, flags, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
if (error < 0)
|
|
return (error);
|
|
|
|
read = count - uio.uio_resid;
|
|
*ppos += read;
|
|
task_io_account_read(read);
|
|
|
|
return (read);
|
|
}
|
|
|
|
inline ssize_t
|
|
zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
|
|
uio_seg_t segment, int flags, cred_t *cr)
|
|
{
|
|
struct iovec iov;
|
|
|
|
iov.iov_base = (void *)buf;
|
|
iov.iov_len = len;
|
|
|
|
return (zpl_read_common_iovec(ip, &iov, len, 1, ppos, segment,
|
|
flags, cr, 0));
|
|
}
|
|
|
|
static ssize_t
|
|
zpl_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
|
|
{
|
|
cred_t *cr = CRED();
|
|
ssize_t read;
|
|
|
|
crhold(cr);
|
|
read = zpl_read_common(filp->f_mapping->host, buf, len, ppos,
|
|
UIO_USERSPACE, filp->f_flags, cr);
|
|
crfree(cr);
|
|
|
|
file_accessed(filp);
|
|
return (read);
|
|
}
|
|
|
|
static ssize_t
|
|
zpl_iter_read_common(struct kiocb *kiocb, const struct iovec *iovp,
|
|
unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
|
|
{
|
|
cred_t *cr = CRED();
|
|
struct file *filp = kiocb->ki_filp;
|
|
ssize_t read;
|
|
|
|
crhold(cr);
|
|
read = zpl_read_common_iovec(filp->f_mapping->host, iovp, count,
|
|
nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
|
|
crfree(cr);
|
|
|
|
file_accessed(filp);
|
|
return (read);
|
|
}
|
|
|
|
#if defined(HAVE_VFS_RW_ITERATE)
|
|
static ssize_t
|
|
zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
|
|
{
|
|
ssize_t ret;
|
|
uio_seg_t seg = UIO_USERSPACE;
|
|
if (to->type & ITER_KVEC)
|
|
seg = UIO_SYSSPACE;
|
|
if (to->type & ITER_BVEC)
|
|
seg = UIO_BVEC;
|
|
ret = zpl_iter_read_common(kiocb, to->iov, to->nr_segs,
|
|
iov_iter_count(to), seg, to->iov_offset);
|
|
if (ret > 0)
|
|
iov_iter_advance(to, ret);
|
|
return (ret);
|
|
}
|
|
#else
|
|
static ssize_t
|
|
zpl_aio_read(struct kiocb *kiocb, const struct iovec *iovp,
|
|
unsigned long nr_segs, loff_t pos)
|
|
{
|
|
return (zpl_iter_read_common(kiocb, iovp, nr_segs, kiocb->ki_nbytes,
|
|
UIO_USERSPACE, 0));
|
|
}
|
|
#endif /* HAVE_VFS_RW_ITERATE */
|
|
|
|
static ssize_t
|
|
zpl_write_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
|
|
unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
|
|
cred_t *cr, size_t skip)
|
|
{
|
|
ssize_t wrote;
|
|
uio_t uio;
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
if (flags & O_APPEND)
|
|
*ppos = i_size_read(ip);
|
|
|
|
uio.uio_iov = iovp;
|
|
uio.uio_skip = skip;
|
|
uio.uio_resid = count;
|
|
uio.uio_iovcnt = nr_segs;
|
|
uio.uio_loffset = *ppos;
|
|
uio.uio_limit = MAXOFFSET_T;
|
|
uio.uio_segflg = segment;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_write(ip, &uio, flags, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
if (error < 0)
|
|
return (error);
|
|
|
|
wrote = count - uio.uio_resid;
|
|
*ppos += wrote;
|
|
task_io_account_write(wrote);
|
|
|
|
return (wrote);
|
|
}
|
|
inline ssize_t
|
|
zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
|
|
uio_seg_t segment, int flags, cred_t *cr)
|
|
{
|
|
struct iovec iov;
|
|
|
|
iov.iov_base = (void *)buf;
|
|
iov.iov_len = len;
|
|
|
|
return (zpl_write_common_iovec(ip, &iov, len, 1, ppos, segment,
|
|
flags, cr, 0));
|
|
}
|
|
|
|
static ssize_t
|
|
zpl_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
|
|
{
|
|
cred_t *cr = CRED();
|
|
ssize_t wrote;
|
|
|
|
crhold(cr);
|
|
wrote = zpl_write_common(filp->f_mapping->host, buf, len, ppos,
|
|
UIO_USERSPACE, filp->f_flags, cr);
|
|
crfree(cr);
|
|
|
|
return (wrote);
|
|
}
|
|
|
|
static ssize_t
|
|
zpl_iter_write_common(struct kiocb *kiocb, const struct iovec *iovp,
|
|
unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
|
|
{
|
|
cred_t *cr = CRED();
|
|
struct file *filp = kiocb->ki_filp;
|
|
ssize_t wrote;
|
|
|
|
crhold(cr);
|
|
wrote = zpl_write_common_iovec(filp->f_mapping->host, iovp, count,
|
|
nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
|
|
crfree(cr);
|
|
|
|
return (wrote);
|
|
}
|
|
|
|
#if defined(HAVE_VFS_RW_ITERATE)
|
|
static ssize_t
|
|
zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
|
|
{
|
|
ssize_t ret;
|
|
uio_seg_t seg = UIO_USERSPACE;
|
|
if (from->type & ITER_KVEC)
|
|
seg = UIO_SYSSPACE;
|
|
if (from->type & ITER_BVEC)
|
|
seg = UIO_BVEC;
|
|
ret = zpl_iter_write_common(kiocb, from->iov, from->nr_segs,
|
|
iov_iter_count(from), seg, from->iov_offset);
|
|
if (ret > 0)
|
|
iov_iter_advance(from, ret);
|
|
return (ret);
|
|
}
|
|
#else
|
|
static ssize_t
|
|
zpl_aio_write(struct kiocb *kiocb, const struct iovec *iovp,
|
|
unsigned long nr_segs, loff_t pos)
|
|
{
|
|
return (zpl_iter_write_common(kiocb, iovp, nr_segs, kiocb->ki_nbytes,
|
|
UIO_USERSPACE, 0));
|
|
}
|
|
#endif /* HAVE_VFS_RW_ITERATE */
|
|
|
|
static loff_t
|
|
zpl_llseek(struct file *filp, loff_t offset, int whence)
|
|
{
|
|
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
|
|
fstrans_cookie_t cookie;
|
|
|
|
if (whence == SEEK_DATA || whence == SEEK_HOLE) {
|
|
struct inode *ip = filp->f_mapping->host;
|
|
loff_t maxbytes = ip->i_sb->s_maxbytes;
|
|
loff_t error;
|
|
|
|
spl_inode_lock(ip);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_holey(ip, whence, &offset);
|
|
spl_fstrans_unmark(cookie);
|
|
if (error == 0)
|
|
error = lseek_execute(filp, ip, offset, maxbytes);
|
|
spl_inode_unlock(ip);
|
|
|
|
return (error);
|
|
}
|
|
#endif /* SEEK_HOLE && SEEK_DATA */
|
|
|
|
return (generic_file_llseek(filp, offset, whence));
|
|
}
|
|
|
|
/*
|
|
* It's worth taking a moment to describe how mmap is implemented
|
|
* for zfs because it differs considerably from other Linux filesystems.
|
|
* However, this issue is handled the same way under OpenSolaris.
|
|
*
|
|
* The issue is that by design zfs bypasses the Linux page cache and
|
|
* leaves all caching up to the ARC. This has been shown to work
|
|
* well for the common read(2)/write(2) case. However, mmap(2)
|
|
* is problem because it relies on being tightly integrated with the
|
|
* page cache. To handle this we cache mmap'ed files twice, once in
|
|
* the ARC and a second time in the page cache. The code is careful
|
|
* to keep both copies synchronized.
|
|
*
|
|
* When a file with an mmap'ed region is written to using write(2)
|
|
* both the data in the ARC and existing pages in the page cache
|
|
* are updated. For a read(2) data will be read first from the page
|
|
* cache then the ARC if needed. Neither a write(2) or read(2) will
|
|
* will ever result in new pages being added to the page cache.
|
|
*
|
|
* New pages are added to the page cache only via .readpage() which
|
|
* is called when the vfs needs to read a page off disk to back the
|
|
* virtual memory region. These pages may be modified without
|
|
* notifying the ARC and will be written out periodically via
|
|
* .writepage(). This will occur due to either a sync or the usual
|
|
* page aging behavior. Note because a read(2) of a mmap'ed file
|
|
* will always check the page cache first even when the ARC is out
|
|
* of date correct data will still be returned.
|
|
*
|
|
* While this implementation ensures correct behavior it does have
|
|
* have some drawbacks. The most obvious of which is that it
|
|
* increases the required memory footprint when access mmap'ed
|
|
* files. It also adds additional complexity to the code keeping
|
|
* both caches synchronized.
|
|
*
|
|
* Longer term it may be possible to cleanly resolve this wart by
|
|
* mapping page cache pages directly on to the ARC buffers. The
|
|
* Linux address space operations are flexible enough to allow
|
|
* selection of which pages back a particular index. The trick
|
|
* would be working out the details of which subsystem is in
|
|
* charge, the ARC, the page cache, or both. It may also prove
|
|
* helpful to move the ARC buffers to a scatter-gather lists
|
|
* rather than a vmalloc'ed region.
|
|
*/
|
|
static int
|
|
zpl_mmap(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
struct inode *ip = filp->f_mapping->host;
|
|
znode_t *zp = ITOZ(ip);
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
|
|
(size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
|
|
spl_fstrans_unmark(cookie);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = generic_file_mmap(filp, vma);
|
|
if (error)
|
|
return (error);
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
zp->z_is_mapped = 1;
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Populate a page with data for the Linux page cache. This function is
|
|
* only used to support mmap(2). There will be an identical copy of the
|
|
* data in the ARC which is kept up to date via .write() and .writepage().
|
|
*
|
|
* Current this function relies on zpl_read_common() and the O_DIRECT
|
|
* flag to read in a page. This works but the more correct way is to
|
|
* update zfs_fillpage() to be Linux friendly and use that interface.
|
|
*/
|
|
static int
|
|
zpl_readpage(struct file *filp, struct page *pp)
|
|
{
|
|
struct inode *ip;
|
|
struct page *pl[1];
|
|
int error = 0;
|
|
fstrans_cookie_t cookie;
|
|
|
|
ASSERT(PageLocked(pp));
|
|
ip = pp->mapping->host;
|
|
pl[0] = pp;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_getpage(ip, pl, 1);
|
|
spl_fstrans_unmark(cookie);
|
|
|
|
if (error) {
|
|
SetPageError(pp);
|
|
ClearPageUptodate(pp);
|
|
} else {
|
|
ClearPageError(pp);
|
|
SetPageUptodate(pp);
|
|
flush_dcache_page(pp);
|
|
}
|
|
|
|
unlock_page(pp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Populate a set of pages with data for the Linux page cache. This
|
|
* function will only be called for read ahead and never for demand
|
|
* paging. For simplicity, the code relies on read_cache_pages() to
|
|
* correctly lock each page for IO and call zpl_readpage().
|
|
*/
|
|
static int
|
|
zpl_readpages(struct file *filp, struct address_space *mapping,
|
|
struct list_head *pages, unsigned nr_pages)
|
|
{
|
|
return (read_cache_pages(mapping, pages,
|
|
(filler_t *)zpl_readpage, filp));
|
|
}
|
|
|
|
int
|
|
zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
|
|
{
|
|
struct address_space *mapping = data;
|
|
fstrans_cookie_t cookie;
|
|
|
|
ASSERT(PageLocked(pp));
|
|
ASSERT(!PageWriteback(pp));
|
|
|
|
cookie = spl_fstrans_mark();
|
|
(void) zfs_putpage(mapping->host, pp, wbc);
|
|
spl_fstrans_unmark(cookie);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
|
|
{
|
|
znode_t *zp = ITOZ(mapping->host);
|
|
zfs_sb_t *zsb = ITOZSB(mapping->host);
|
|
enum writeback_sync_modes sync_mode;
|
|
int result;
|
|
|
|
ZFS_ENTER(zsb);
|
|
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
wbc->sync_mode = WB_SYNC_ALL;
|
|
ZFS_EXIT(zsb);
|
|
sync_mode = wbc->sync_mode;
|
|
|
|
/*
|
|
* We don't want to run write_cache_pages() in SYNC mode here, because
|
|
* that would make putpage() wait for a single page to be committed to
|
|
* disk every single time, resulting in atrocious performance. Instead
|
|
* we run it once in non-SYNC mode so that the ZIL gets all the data,
|
|
* and then we commit it all in one go.
|
|
*/
|
|
wbc->sync_mode = WB_SYNC_NONE;
|
|
result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
|
|
if (sync_mode != wbc->sync_mode) {
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
if (zsb->z_log != NULL)
|
|
zil_commit(zsb->z_log, zp->z_id);
|
|
ZFS_EXIT(zsb);
|
|
|
|
/*
|
|
* We need to call write_cache_pages() again (we can't just
|
|
* return after the commit) because the previous call in
|
|
* non-SYNC mode does not guarantee that we got all the dirty
|
|
* pages (see the implementation of write_cache_pages() for
|
|
* details). That being said, this is a no-op in most cases.
|
|
*/
|
|
wbc->sync_mode = sync_mode;
|
|
result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
|
|
}
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* Write out dirty pages to the ARC, this function is only required to
|
|
* support mmap(2). Mapped pages may be dirtied by memory operations
|
|
* which never call .write(). These dirty pages are kept in sync with
|
|
* the ARC buffers via this hook.
|
|
*/
|
|
static int
|
|
zpl_writepage(struct page *pp, struct writeback_control *wbc)
|
|
{
|
|
if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
wbc->sync_mode = WB_SYNC_ALL;
|
|
|
|
return (zpl_putpage(pp, wbc, pp->mapping));
|
|
}
|
|
|
|
/*
|
|
* The only flag combination which matches the behavior of zfs_space()
|
|
* is FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
|
|
* flag was introduced in the 2.6.38 kernel.
|
|
*/
|
|
#if defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE)
|
|
long
|
|
zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
|
|
{
|
|
int error = -EOPNOTSUPP;
|
|
|
|
#if defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE)
|
|
cred_t *cr = CRED();
|
|
flock64_t bf;
|
|
loff_t olen;
|
|
fstrans_cookie_t cookie;
|
|
|
|
if (mode != (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
|
|
return (error);
|
|
|
|
crhold(cr);
|
|
|
|
if (offset < 0 || len <= 0)
|
|
return (-EINVAL);
|
|
|
|
spl_inode_lock(ip);
|
|
olen = i_size_read(ip);
|
|
|
|
if (offset > olen) {
|
|
spl_inode_unlock(ip);
|
|
return (0);
|
|
}
|
|
if (offset + len > olen)
|
|
len = olen - offset;
|
|
bf.l_type = F_WRLCK;
|
|
bf.l_whence = 0;
|
|
bf.l_start = offset;
|
|
bf.l_len = len;
|
|
bf.l_pid = 0;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_space(ip, F_FREESP, &bf, FWRITE, offset, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
spl_inode_unlock(ip);
|
|
|
|
crfree(cr);
|
|
#endif /* defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE) */
|
|
|
|
ASSERT3S(error, <=, 0);
|
|
return (error);
|
|
}
|
|
#endif /* defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE) */
|
|
|
|
#ifdef HAVE_FILE_FALLOCATE
|
|
static long
|
|
zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
|
|
{
|
|
return zpl_fallocate_common(filp->f_path.dentry->d_inode,
|
|
mode, offset, len);
|
|
}
|
|
#endif /* HAVE_FILE_FALLOCATE */
|
|
|
|
/*
|
|
* Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
|
|
* attributes common to both Linux and Solaris are mapped.
|
|
*/
|
|
static int
|
|
zpl_ioctl_getflags(struct file *filp, void __user *arg)
|
|
{
|
|
struct inode *ip = file_inode(filp);
|
|
unsigned int ioctl_flags = 0;
|
|
uint64_t zfs_flags = ITOZ(ip)->z_pflags;
|
|
int error;
|
|
|
|
if (zfs_flags & ZFS_IMMUTABLE)
|
|
ioctl_flags |= FS_IMMUTABLE_FL;
|
|
|
|
if (zfs_flags & ZFS_APPENDONLY)
|
|
ioctl_flags |= FS_APPEND_FL;
|
|
|
|
if (zfs_flags & ZFS_NODUMP)
|
|
ioctl_flags |= FS_NODUMP_FL;
|
|
|
|
ioctl_flags &= FS_FL_USER_VISIBLE;
|
|
|
|
error = copy_to_user(arg, &ioctl_flags, sizeof (ioctl_flags));
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* fchange() is a helper macro to detect if we have been asked to change a
|
|
* flag. This is ugly, but the requirement that we do this is a consequence of
|
|
* how the Linux file attribute interface was designed. Another consequence is
|
|
* that concurrent modification of files suffers from a TOCTOU race. Neither
|
|
* are things we can fix without modifying the kernel-userland interface, which
|
|
* is outside of our jurisdiction.
|
|
*/
|
|
|
|
#define fchange(f0, f1, b0, b1) ((((f0) & (b0)) == (b0)) != \
|
|
(((b1) & (f1)) == (f1)))
|
|
|
|
static int
|
|
zpl_ioctl_setflags(struct file *filp, void __user *arg)
|
|
{
|
|
struct inode *ip = file_inode(filp);
|
|
uint64_t zfs_flags = ITOZ(ip)->z_pflags;
|
|
unsigned int ioctl_flags;
|
|
cred_t *cr = CRED();
|
|
xvattr_t xva;
|
|
xoptattr_t *xoap;
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
if (copy_from_user(&ioctl_flags, arg, sizeof (ioctl_flags)))
|
|
return (-EFAULT);
|
|
|
|
if ((ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL)))
|
|
return (-EOPNOTSUPP);
|
|
|
|
if ((ioctl_flags & ~(FS_FL_USER_MODIFIABLE)))
|
|
return (-EACCES);
|
|
|
|
if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
|
|
fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
|
|
!capable(CAP_LINUX_IMMUTABLE))
|
|
return (-EACCES);
|
|
|
|
if (!zpl_inode_owner_or_capable(ip))
|
|
return (-EACCES);
|
|
|
|
xva_init(&xva);
|
|
xoap = xva_getxoptattr(&xva);
|
|
|
|
XVA_SET_REQ(&xva, XAT_IMMUTABLE);
|
|
if (ioctl_flags & FS_IMMUTABLE_FL)
|
|
xoap->xoa_immutable = B_TRUE;
|
|
|
|
XVA_SET_REQ(&xva, XAT_APPENDONLY);
|
|
if (ioctl_flags & FS_APPEND_FL)
|
|
xoap->xoa_appendonly = B_TRUE;
|
|
|
|
XVA_SET_REQ(&xva, XAT_NODUMP);
|
|
if (ioctl_flags & FS_NODUMP_FL)
|
|
xoap->xoa_nodump = B_TRUE;
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_setattr(ip, (vattr_t *)&xva, 0, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static long
|
|
zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case FS_IOC_GETFLAGS:
|
|
return (zpl_ioctl_getflags(filp, (void *)arg));
|
|
case FS_IOC_SETFLAGS:
|
|
return (zpl_ioctl_setflags(filp, (void *)arg));
|
|
default:
|
|
return (-ENOTTY);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static long
|
|
zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case FS_IOC32_GETFLAGS:
|
|
cmd = FS_IOC_GETFLAGS;
|
|
break;
|
|
case FS_IOC32_SETFLAGS:
|
|
cmd = FS_IOC_SETFLAGS;
|
|
break;
|
|
default:
|
|
return (-ENOTTY);
|
|
}
|
|
return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
|
|
}
|
|
#endif /* CONFIG_COMPAT */
|
|
|
|
|
|
const struct address_space_operations zpl_address_space_operations = {
|
|
.readpages = zpl_readpages,
|
|
.readpage = zpl_readpage,
|
|
.writepage = zpl_writepage,
|
|
.writepages = zpl_writepages,
|
|
};
|
|
|
|
const struct file_operations zpl_file_operations = {
|
|
.open = zpl_open,
|
|
.release = zpl_release,
|
|
.llseek = zpl_llseek,
|
|
.read = zpl_read,
|
|
.write = zpl_write,
|
|
#ifdef HAVE_VFS_RW_ITERATE
|
|
.read_iter = zpl_iter_read,
|
|
.write_iter = zpl_iter_write,
|
|
#else
|
|
.aio_read = zpl_aio_read,
|
|
.aio_write = zpl_aio_write,
|
|
#endif
|
|
.mmap = zpl_mmap,
|
|
.fsync = zpl_fsync,
|
|
.aio_fsync = zpl_aio_fsync,
|
|
#ifdef HAVE_FILE_FALLOCATE
|
|
.fallocate = zpl_fallocate,
|
|
#endif /* HAVE_FILE_FALLOCATE */
|
|
.unlocked_ioctl = zpl_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = zpl_compat_ioctl,
|
|
#endif
|
|
};
|
|
|
|
const struct file_operations zpl_dir_file_operations = {
|
|
.llseek = generic_file_llseek,
|
|
.read = generic_read_dir,
|
|
#ifdef HAVE_VFS_ITERATE
|
|
.iterate = zpl_iterate,
|
|
#else
|
|
.readdir = zpl_readdir,
|
|
#endif
|
|
.fsync = zpl_fsync,
|
|
.unlocked_ioctl = zpl_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = zpl_compat_ioctl,
|
|
#endif
|
|
};
|