mirror_zfs/module/zfs/dsl_deadlist.c
Serapheim Dimitropoulos a377bde727 Livelist logic should handle dedup blkptrs
Update the logic to handle the dedup-case of consecutive
FREEs in the livelist code. The logic still ensures that
all the FREE entries are matched up with a respective
ALLOC by keeping a refcount for each FREE blkptr that we
encounter and ensuring that this refcount gets to zero
by the time we are done processing the livelist.

zdb -y no longer panics when encountering double frees

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #11480
Closes #12177
2021-06-09 13:05:34 -07:00

1044 lines
29 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
*/
#include <sys/dmu.h>
#include <sys/zap.h>
#include <sys/zfs_context.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dataset.h>
/*
* Deadlist concurrency:
*
* Deadlists can only be modified from the syncing thread.
*
* Except for dsl_deadlist_insert(), it can only be modified with the
* dp_config_rwlock held with RW_WRITER.
*
* The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
* be called concurrently, from open context, with the dl_config_rwlock held
* with RW_READER.
*
* Therefore, we only need to provide locking between dsl_deadlist_insert() and
* the accessors, protecting:
* dl_phys->dl_used,comp,uncomp
* and protecting the dl_tree from being loaded.
* The locking is provided by dl_lock. Note that locking on the bpobj_t
* provides its own locking, and dl_oldfmt is immutable.
*/
/*
* Livelist Overview
* ================
*
* Livelists use the same 'deadlist_t' struct as deadlists and are also used
* to track blkptrs over the lifetime of a dataset. Livelists however, belong
* to clones and track the blkptrs that are clone-specific (were born after
* the clone's creation). The exception is embedded block pointers which are
* not included in livelists because they do not need to be freed.
*
* When it comes time to delete the clone, the livelist provides a quick
* reference as to what needs to be freed. For this reason, livelists also track
* when clone-specific blkptrs are freed before deletion to prevent double
* frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
* deletion algorithm iterates backwards over the livelist, matching
* FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
* are also updated in the case when blkptrs are remapped: the old version
* of the blkptr is cancelled out with a FREE and the new version is tracked
* with an ALLOC.
*
* To bound the amount of memory required for deletion, livelists over a
* certain size are spread over multiple entries. Entries are grouped by
* birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
* be in the same entry. This allows us to delete livelists incrementally
* over multiple syncs, one entry at a time.
*
* During the lifetime of the clone, livelists can get extremely large.
* Their size is managed by periodic condensing (preemptively cancelling out
* FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
* the shared space between the clone and its origin is so small that it
* doesn't make sense to use livelists anymore.
*/
/*
* The threshold sublist size at which we create a new sub-livelist for the
* next txg. However, since blkptrs of the same transaction group must be in
* the same sub-list, the actual sublist size may exceed this. When picking the
* size we had to balance the fact that larger sublists mean fewer sublists
* (decreasing the cost of insertion) against the consideration that sublists
* will be loaded into memory and shouldn't take up an inordinate amount of
* space. We settled on ~500000 entries, corresponding to roughly 128M.
*/
unsigned long zfs_livelist_max_entries = 500000;
/*
* We can approximate how much of a performance gain a livelist will give us
* based on the percentage of blocks shared between the clone and its origin.
* 0 percent shared means that the clone has completely diverged and that the
* old method is maximally effective: every read from the block tree will
* result in lots of frees. Livelists give us gains when they track blocks
* scattered across the tree, when one read in the old method might only
* result in a few frees. Once the clone has been overwritten enough,
* writes are no longer sparse and we'll no longer get much of a benefit from
* tracking them with a livelist. We chose a lower limit of 75 percent shared
* (25 percent overwritten). This means that 1/4 of all block pointers will be
* freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
* to make deletion 4x faster. Once the amount of shared space drops below this
* threshold, the clone will revert to the old deletion method.
*/
int zfs_livelist_min_percent_shared = 75;
static int
dsl_deadlist_compare(const void *arg1, const void *arg2)
{
const dsl_deadlist_entry_t *dle1 = arg1;
const dsl_deadlist_entry_t *dle2 = arg2;
return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
}
static int
dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
{
const dsl_deadlist_cache_entry_t *dlce1 = arg1;
const dsl_deadlist_cache_entry_t *dlce2 = arg2;
return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
}
static void
dsl_deadlist_load_tree(dsl_deadlist_t *dl)
{
zap_cursor_t zc;
zap_attribute_t za;
int error;
ASSERT(MUTEX_HELD(&dl->dl_lock));
ASSERT(!dl->dl_oldfmt);
if (dl->dl_havecache) {
/*
* After loading the tree, the caller may modify the tree,
* e.g. to add or remove nodes, or to make a node no longer
* refer to the empty_bpobj. These changes would make the
* dl_cache incorrect. Therefore we discard the cache here,
* so that it can't become incorrect.
*/
dsl_deadlist_cache_entry_t *dlce;
void *cookie = NULL;
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
!= NULL) {
kmem_free(dlce, sizeof (*dlce));
}
avl_destroy(&dl->dl_cache);
dl->dl_havecache = B_FALSE;
}
if (dl->dl_havetree)
return;
avl_create(&dl->dl_tree, dsl_deadlist_compare,
sizeof (dsl_deadlist_entry_t),
offsetof(dsl_deadlist_entry_t, dle_node));
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
dle->dle_mintxg = zfs_strtonum(za.za_name, NULL);
/*
* Prefetch all the bpobj's so that we do that i/o
* in parallel. Then open them all in a second pass.
*/
dle->dle_bpobj.bpo_object = za.za_first_integer;
dmu_prefetch(dl->dl_os, dle->dle_bpobj.bpo_object,
0, 0, 0, ZIO_PRIORITY_SYNC_READ);
avl_add(&dl->dl_tree, dle);
}
VERIFY3U(error, ==, ENOENT);
zap_cursor_fini(&zc);
for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
dle->dle_bpobj.bpo_object));
}
dl->dl_havetree = B_TRUE;
}
/*
* Load only the non-empty bpobj's into the dl_cache. The cache is an analog
* of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
* is used only for gathering space statistics. The dl_cache has two
* advantages over the dl_tree:
*
* 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
* mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
* many times and to inquire about its (zero) space stats many times.
*
* 2. The dl_cache uses less memory than the dl_tree. We only need to load
* the dl_tree of snapshots when deleting a snapshot, after which we free the
* dl_tree with dsl_deadlist_discard_tree
*/
static void
dsl_deadlist_load_cache(dsl_deadlist_t *dl)
{
zap_cursor_t zc;
zap_attribute_t za;
int error;
ASSERT(MUTEX_HELD(&dl->dl_lock));
ASSERT(!dl->dl_oldfmt);
if (dl->dl_havecache)
return;
uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
sizeof (dsl_deadlist_cache_entry_t),
offsetof(dsl_deadlist_cache_entry_t, dlce_node));
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
if (za.za_first_integer == empty_bpobj)
continue;
dsl_deadlist_cache_entry_t *dlce =
kmem_zalloc(sizeof (*dlce), KM_SLEEP);
dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL);
/*
* Prefetch all the bpobj's so that we do that i/o
* in parallel. Then open them all in a second pass.
*/
dlce->dlce_bpobj = za.za_first_integer;
dmu_prefetch(dl->dl_os, dlce->dlce_bpobj,
0, 0, 0, ZIO_PRIORITY_SYNC_READ);
avl_add(&dl->dl_cache, dlce);
}
VERIFY3U(error, ==, ENOENT);
zap_cursor_fini(&zc);
for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
bpobj_t bpo;
VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
VERIFY0(bpobj_space(&bpo,
&dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
bpobj_close(&bpo);
}
dl->dl_havecache = B_TRUE;
}
/*
* Discard the tree to save memory.
*/
void
dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
{
mutex_enter(&dl->dl_lock);
if (!dl->dl_havetree) {
mutex_exit(&dl->dl_lock);
return;
}
dsl_deadlist_entry_t *dle;
void *cookie = NULL;
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
}
avl_destroy(&dl->dl_tree);
dl->dl_havetree = B_FALSE;
mutex_exit(&dl->dl_lock);
}
void
dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
{
dsl_deadlist_entry_t *dle;
ASSERT(dsl_deadlist_is_open(dl));
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
mutex_exit(&dl->dl_lock);
for (dle = avl_first(&dl->dl_tree); dle != NULL;
dle = AVL_NEXT(&dl->dl_tree, dle)) {
if (func(args, dle) != 0)
break;
}
}
void
dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
{
dmu_object_info_t doi;
ASSERT(!dsl_deadlist_is_open(dl));
mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
dl->dl_os = os;
dl->dl_object = object;
VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
dmu_object_info_from_db(dl->dl_dbuf, &doi);
if (doi.doi_type == DMU_OT_BPOBJ) {
dmu_buf_rele(dl->dl_dbuf, dl);
dl->dl_dbuf = NULL;
dl->dl_oldfmt = B_TRUE;
VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
return;
}
dl->dl_oldfmt = B_FALSE;
dl->dl_phys = dl->dl_dbuf->db_data;
dl->dl_havetree = B_FALSE;
dl->dl_havecache = B_FALSE;
}
boolean_t
dsl_deadlist_is_open(dsl_deadlist_t *dl)
{
return (dl->dl_os != NULL);
}
void
dsl_deadlist_close(dsl_deadlist_t *dl)
{
ASSERT(dsl_deadlist_is_open(dl));
mutex_destroy(&dl->dl_lock);
if (dl->dl_oldfmt) {
dl->dl_oldfmt = B_FALSE;
bpobj_close(&dl->dl_bpobj);
dl->dl_os = NULL;
dl->dl_object = 0;
return;
}
if (dl->dl_havetree) {
dsl_deadlist_entry_t *dle;
void *cookie = NULL;
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
!= NULL) {
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
}
avl_destroy(&dl->dl_tree);
}
if (dl->dl_havecache) {
dsl_deadlist_cache_entry_t *dlce;
void *cookie = NULL;
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
!= NULL) {
kmem_free(dlce, sizeof (*dlce));
}
avl_destroy(&dl->dl_cache);
}
dmu_buf_rele(dl->dl_dbuf, dl);
dl->dl_dbuf = NULL;
dl->dl_phys = NULL;
dl->dl_os = NULL;
dl->dl_object = 0;
}
uint64_t
dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
{
if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
sizeof (dsl_deadlist_phys_t), tx));
}
void
dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
{
dmu_object_info_t doi;
zap_cursor_t zc;
zap_attribute_t za;
int error;
VERIFY0(dmu_object_info(os, dlobj, &doi));
if (doi.doi_type == DMU_OT_BPOBJ) {
bpobj_free(os, dlobj, tx);
return;
}
for (zap_cursor_init(&zc, os, dlobj);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
uint64_t obj = za.za_first_integer;
if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
bpobj_decr_empty(os, tx);
else
bpobj_free(os, obj, tx);
}
VERIFY3U(error, ==, ENOENT);
zap_cursor_fini(&zc);
VERIFY0(dmu_object_free(os, dlobj, tx));
}
static void
dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
{
ASSERT(MUTEX_HELD(&dl->dl_lock));
if (dle->dle_bpobj.bpo_object ==
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
bpobj_close(&dle->dle_bpobj);
bpobj_decr_empty(dl->dl_os, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
dle->dle_mintxg, obj, tx));
}
bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
}
static void
dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
uint64_t obj, dmu_tx_t *tx)
{
ASSERT(MUTEX_HELD(&dl->dl_lock));
if (dle->dle_bpobj.bpo_object !=
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
} else {
bpobj_close(&dle->dle_bpobj);
bpobj_decr_empty(dl->dl_os, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
dle->dle_mintxg, obj, tx));
}
}
void
dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
avl_index_t where;
if (dl->dl_oldfmt) {
bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
return;
}
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dmu_buf_will_dirty(dl->dl_dbuf, tx);
int sign = bp_freed ? -1 : +1;
dl->dl_phys->dl_used +=
sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
dle_tofind.dle_mintxg = bp->blk_birth;
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
if (dle == NULL)
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
else
dle = AVL_PREV(&dl->dl_tree, dle);
if (dle == NULL) {
zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
bp, (longlong_t)bp->blk_birth);
dle = avl_first(&dl->dl_tree);
}
ASSERT3P(dle, !=, NULL);
dle_enqueue(dl, dle, bp, bp_freed, tx);
mutex_exit(&dl->dl_lock);
}
int
dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
dsl_deadlist_t *dl = arg;
dsl_deadlist_insert(dl, bp, B_FALSE, tx);
return (0);
}
int
dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
dsl_deadlist_t *dl = arg;
dsl_deadlist_insert(dl, bp, B_TRUE, tx);
return (0);
}
/*
* Insert new key in deadlist, which must be > all current entries.
* mintxg is not inclusive.
*/
void
dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
{
uint64_t obj;
dsl_deadlist_entry_t *dle;
if (dl->dl_oldfmt)
return;
dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
dle->dle_mintxg = mintxg;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
avl_add(&dl->dl_tree, dle);
VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
mintxg, obj, tx));
mutex_exit(&dl->dl_lock);
}
/*
* Remove this key, merging its entries into the previous key.
*/
void
dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle, *dle_prev;
if (dl->dl_oldfmt)
return;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle_tofind.dle_mintxg = mintxg;
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
ASSERT3P(dle, !=, NULL);
dle_prev = AVL_PREV(&dl->dl_tree, dle);
dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
avl_remove(&dl->dl_tree, dle);
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
mutex_exit(&dl->dl_lock);
}
/*
* Remove a deadlist entry and all of its contents by removing the entry from
* the deadlist's avl tree, freeing the entry's bpobj and adjusting the
* deadlist's space accounting accordingly.
*/
void
dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
{
uint64_t used, comp, uncomp;
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
objset_t *os = dl->dl_os;
if (dl->dl_oldfmt)
return;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle_tofind.dle_mintxg = mintxg;
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
VERIFY3P(dle, !=, NULL);
avl_remove(&dl->dl_tree, dle);
VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dl->dl_phys->dl_used -= used;
dl->dl_phys->dl_comp -= comp;
dl->dl_phys->dl_uncomp -= uncomp;
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
bpobj_decr_empty(os, tx);
} else {
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
}
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
mutex_exit(&dl->dl_lock);
}
/*
* Clear out the contents of a deadlist_entry by freeing its bpobj,
* replacing it with an empty bpobj and adjusting the deadlist's
* space accounting
*/
void
dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
dmu_tx_t *tx)
{
uint64_t new_obj, used, comp, uncomp;
objset_t *os = dl->dl_os;
mutex_enter(&dl->dl_lock);
VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dl->dl_phys->dl_used -= used;
dl->dl_phys->dl_comp -= comp;
dl->dl_phys->dl_uncomp -= uncomp;
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
bpobj_decr_empty(os, tx);
else
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
bpobj_close(&dle->dle_bpobj);
new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
new_obj, tx));
ASSERT(bpobj_is_empty(&dle->dle_bpobj));
mutex_exit(&dl->dl_lock);
}
/*
* Return the first entry in deadlist's avl tree
*/
dsl_deadlist_entry_t *
dsl_deadlist_first(dsl_deadlist_t *dl)
{
dsl_deadlist_entry_t *dle;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle = avl_first(&dl->dl_tree);
mutex_exit(&dl->dl_lock);
return (dle);
}
/*
* Return the last entry in deadlist's avl tree
*/
dsl_deadlist_entry_t *
dsl_deadlist_last(dsl_deadlist_t *dl)
{
dsl_deadlist_entry_t *dle;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
dle = avl_last(&dl->dl_tree);
mutex_exit(&dl->dl_lock);
return (dle);
}
/*
* Walk ds's snapshots to regenerate generate ZAP & AVL.
*/
static void
dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
uint64_t mrs_obj, dmu_tx_t *tx)
{
dsl_deadlist_t dl = { 0 };
dsl_pool_t *dp = dmu_objset_pool(os);
dsl_deadlist_open(&dl, os, dlobj);
if (dl.dl_oldfmt) {
dsl_deadlist_close(&dl);
return;
}
while (mrs_obj != 0) {
dsl_dataset_t *ds;
VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
dsl_deadlist_add_key(&dl,
dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
dsl_dataset_rele(ds, FTAG);
}
dsl_deadlist_close(&dl);
}
uint64_t
dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
uint64_t mrs_obj, dmu_tx_t *tx)
{
dsl_deadlist_entry_t *dle;
uint64_t newobj;
newobj = dsl_deadlist_alloc(dl->dl_os, tx);
if (dl->dl_oldfmt) {
dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
return (newobj);
}
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_tree(dl);
for (dle = avl_first(&dl->dl_tree); dle;
dle = AVL_NEXT(&dl->dl_tree, dle)) {
uint64_t obj;
if (dle->dle_mintxg >= maxtxg)
break;
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
VERIFY0(zap_add_int_key(dl->dl_os, newobj,
dle->dle_mintxg, obj, tx));
}
mutex_exit(&dl->dl_lock);
return (newobj);
}
void
dsl_deadlist_space(dsl_deadlist_t *dl,
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
{
ASSERT(dsl_deadlist_is_open(dl));
if (dl->dl_oldfmt) {
VERIFY0(bpobj_space(&dl->dl_bpobj,
usedp, compp, uncompp));
return;
}
mutex_enter(&dl->dl_lock);
*usedp = dl->dl_phys->dl_used;
*compp = dl->dl_phys->dl_comp;
*uncompp = dl->dl_phys->dl_uncomp;
mutex_exit(&dl->dl_lock);
}
/*
* return space used in the range (mintxg, maxtxg].
* Includes maxtxg, does not include mintxg.
* mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
* UINT64_MAX).
*/
void
dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
{
dsl_deadlist_cache_entry_t *dlce;
dsl_deadlist_cache_entry_t dlce_tofind;
avl_index_t where;
if (dl->dl_oldfmt) {
VERIFY0(bpobj_space_range(&dl->dl_bpobj,
mintxg, maxtxg, usedp, compp, uncompp));
return;
}
*usedp = *compp = *uncompp = 0;
mutex_enter(&dl->dl_lock);
dsl_deadlist_load_cache(dl);
dlce_tofind.dlce_mintxg = mintxg;
dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
/*
* If this mintxg doesn't exist, it may be an empty_bpobj which
* is omitted from the sparse tree. Start at the next non-empty
* entry.
*/
if (dlce == NULL)
dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
for (; dlce && dlce->dlce_mintxg < maxtxg;
dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
*usedp += dlce->dlce_bytes;
*compp += dlce->dlce_comp;
*uncompp += dlce->dlce_uncomp;
}
mutex_exit(&dl->dl_lock);
}
static void
dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
avl_index_t where;
uint64_t used, comp, uncomp;
bpobj_t bpo;
ASSERT(MUTEX_HELD(&dl->dl_lock));
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
bpobj_close(&bpo);
dsl_deadlist_load_tree(dl);
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dl->dl_phys->dl_used += used;
dl->dl_phys->dl_comp += comp;
dl->dl_phys->dl_uncomp += uncomp;
dle_tofind.dle_mintxg = birth;
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
if (dle == NULL)
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
dle_enqueue_subobj(dl, dle, obj, tx);
}
static int
dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
dsl_deadlist_t *dl = arg;
dsl_deadlist_insert(dl, bp, bp_freed, tx);
return (0);
}
/*
* Merge the deadlist pointed to by 'obj' into dl. obj will be left as
* an empty deadlist.
*/
void
dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
{
zap_cursor_t zc;
zap_attribute_t za;
dmu_buf_t *bonus;
dsl_deadlist_phys_t *dlp;
dmu_object_info_t doi;
int error;
VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
if (doi.doi_type == DMU_OT_BPOBJ) {
bpobj_t bpo;
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
bpobj_close(&bpo);
return;
}
mutex_enter(&dl->dl_lock);
for (zap_cursor_init(&zc, dl->dl_os, obj);
(error = zap_cursor_retrieve(&zc, &za)) == 0;
zap_cursor_advance(&zc)) {
uint64_t mintxg = zfs_strtonum(za.za_name, NULL);
dsl_deadlist_insert_bpobj(dl, za.za_first_integer, mintxg, tx);
VERIFY0(zap_remove_int(dl->dl_os, obj, mintxg, tx));
}
VERIFY3U(error, ==, ENOENT);
zap_cursor_fini(&zc);
VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
dlp = bonus->db_data;
dmu_buf_will_dirty(bonus, tx);
bzero(dlp, sizeof (*dlp));
dmu_buf_rele(bonus, FTAG);
mutex_exit(&dl->dl_lock);
}
/*
* Remove entries on dl that are born > mintxg, and put them on the bpobj.
*/
void
dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
dmu_tx_t *tx)
{
dsl_deadlist_entry_t dle_tofind;
dsl_deadlist_entry_t *dle;
avl_index_t where;
ASSERT(!dl->dl_oldfmt);
mutex_enter(&dl->dl_lock);
dmu_buf_will_dirty(dl->dl_dbuf, tx);
dsl_deadlist_load_tree(dl);
dle_tofind.dle_mintxg = mintxg;
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
if (dle == NULL)
dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
while (dle) {
uint64_t used, comp, uncomp;
dsl_deadlist_entry_t *dle_next;
bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
VERIFY0(bpobj_space(&dle->dle_bpobj,
&used, &comp, &uncomp));
ASSERT3U(dl->dl_phys->dl_used, >=, used);
ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
dl->dl_phys->dl_used -= used;
dl->dl_phys->dl_comp -= comp;
dl->dl_phys->dl_uncomp -= uncomp;
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
dle->dle_mintxg, tx));
dle_next = AVL_NEXT(&dl->dl_tree, dle);
avl_remove(&dl->dl_tree, dle);
bpobj_close(&dle->dle_bpobj);
kmem_free(dle, sizeof (*dle));
dle = dle_next;
}
mutex_exit(&dl->dl_lock);
}
typedef struct livelist_entry {
blkptr_t le_bp;
uint32_t le_refcnt;
avl_node_t le_node;
} livelist_entry_t;
static int
livelist_compare(const void *larg, const void *rarg)
{
const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
/* Sort them according to dva[0] */
uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
if (l_dva0_vdev != r_dva0_vdev)
return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
/* if vdevs are equal, sort by offsets. */
uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
if (l_dva0_offset == r_dva0_offset)
ASSERT3U(l->blk_birth, ==, r->blk_birth);
return (TREE_CMP(l_dva0_offset, r_dva0_offset));
}
struct livelist_iter_arg {
avl_tree_t *avl;
bplist_t *to_free;
zthr_t *t;
};
/*
* Expects an AVL tree which is incrementally filled will FREE blkptrs
* and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
* corresponding FREE are stored in the supplied bplist.
*
* Note that multiple FREE and ALLOC entries for the same blkptr may
* be encountered when dedup is involved. For this reason we keep a
* refcount for all the FREE entries of each blkptr and ensure that
* each of those FREE entries has a corresponding ALLOC preceding it.
*/
static int
dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
struct livelist_iter_arg *lia = arg;
avl_tree_t *avl = lia->avl;
bplist_t *to_free = lia->to_free;
zthr_t *t = lia->t;
ASSERT(tx == NULL);
if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
return (SET_ERROR(EINTR));
livelist_entry_t node;
node.le_bp = *bp;
livelist_entry_t *found = avl_find(avl, &node, NULL);
if (bp_freed) {
if (found == NULL) {
/* first free entry for this blkptr */
livelist_entry_t *e =
kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
e->le_bp = *bp;
e->le_refcnt = 1;
avl_add(avl, e);
} else {
/* dedup block free */
ASSERT(BP_GET_DEDUP(bp));
ASSERT3U(BP_GET_CHECKSUM(bp), ==,
BP_GET_CHECKSUM(&found->le_bp));
ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
found->le_refcnt++;
}
} else {
if (found == NULL) {
/* block is currently marked as allocated */
bplist_append(to_free, bp);
} else {
/* alloc matches a free entry */
ASSERT3U(found->le_refcnt, !=, 0);
found->le_refcnt--;
if (found->le_refcnt == 0) {
/* all tracked free pairs have been matched */
avl_remove(avl, found);
kmem_free(found, sizeof (livelist_entry_t));
} else {
/*
* This is definitely a deduped blkptr so
* let's validate it.
*/
ASSERT(BP_GET_DEDUP(bp));
ASSERT3U(BP_GET_CHECKSUM(bp), ==,
BP_GET_CHECKSUM(&found->le_bp));
}
}
}
return (0);
}
/*
* Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
* which have an ALLOC entry but no matching FREE
*/
int
dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
uint64_t *size)
{
avl_tree_t avl;
avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
offsetof(livelist_entry_t, le_node));
/* process the sublist */
struct livelist_iter_arg arg = {
.avl = &avl,
.to_free = to_free,
.t = t
};
int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
VERIFY0(avl_numnodes(&avl));
avl_destroy(&avl);
return (err);
}
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, ULONG, ZMOD_RW,
"Size to start the next sub-livelist in a livelist");
ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
"Threshold at which livelist is disabled");
/* END CSTYLED */