mirror_zfs/module/zfs/zap.c
Chunwei Chen b06f40ea9b Fix ENOSPC in "Handle zap_add() failures in ..."
Commit cc63068 caused ENOSPC error when copy a large amount of files
between two directories. The reason is that the patch limits zap leaf
expansion to 2 retries, and return ENOSPC when failed.

The intent for limiting retries is to prevent pointlessly growing table
to max size when adding a block full of entries with same name in
different case in mixed mode. However, it turns out we cannot use any
limit on the retry. When we copy files from one directory in readdir
order, we are copying in hash order, one leaf block at a time. Which
means that if the leaf block in source directory has expanded 6 times,
and you copy those entries in that block, by the time you need to expand
the leaf in destination directory, you need to expand it 6 times in one
go. So any limit on the retry will result in error where it shouldn't.

Note that while we do use different salt for different directories, it
seems that the salt/hash function doesn't provide enough randomization
to the hash distance to prevent this from happening.

Since cc63068 has already been reverted. This patch adds it back and
removes the retry limit.

Also, as it turn out, failing on zap_add() has a serious side effect for
mzap_upgrade(). When upgrading from micro zap to fat zap, it will
call zap_add() to transfer entries one at a time. If it hit any error
halfway through, the remaining entries will be lost, causing those files
to become orphan. This patch add a VERIFY to catch it.

Reviewed-by: Sanjeev Bagewadi <sanjeev.bagewadi@gmail.com>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Albert Lee <trisk@forkgnu.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Chunwei Chen <david.chen@nutanix.com>
Closes #7401 
Closes #7421
2018-07-06 02:46:51 -07:00

1368 lines
33 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2016 by Delphix. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
*/
/*
* This file contains the top half of the zfs directory structure
* implementation. The bottom half is in zap_leaf.c.
*
* The zdir is an extendable hash data structure. There is a table of
* pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
* each a constant size and hold a variable number of directory entries.
* The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
*
* The pointer table holds a power of 2 number of pointers.
* (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to
* by the pointer at index i in the table holds entries whose hash value
* has a zd_prefix_len - bit prefix
*/
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
#include <sys/fs/zfs.h>
#include <sys/zap.h>
#include <sys/refcount.h>
#include <sys/zap_impl.h>
#include <sys/zap_leaf.h>
int fzap_default_block_shift = 14; /* 16k blocksize */
extern inline zap_phys_t *zap_f_phys(zap_t *zap);
static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
void
fzap_byteswap(void *vbuf, size_t size)
{
uint64_t block_type;
block_type = *(uint64_t *)vbuf;
if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
zap_leaf_byteswap(vbuf, size);
else {
/* it's a ptrtbl block */
byteswap_uint64_array(vbuf, size);
}
}
void
fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
{
dmu_buf_t *db;
zap_leaf_t *l;
int i;
zap_phys_t *zp;
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
zap->zap_ismicro = FALSE;
zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync;
zap->zap_dbu.dbu_evict_func_async = NULL;
mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0);
zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1;
zp = zap_f_phys(zap);
/*
* explicitly zero it since it might be coming from an
* initialized microzap
*/
bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size);
zp->zap_block_type = ZBT_HEADER;
zp->zap_magic = ZAP_MAGIC;
zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
zp->zap_freeblk = 2; /* block 1 will be the first leaf */
zp->zap_num_leafs = 1;
zp->zap_num_entries = 0;
zp->zap_salt = zap->zap_salt;
zp->zap_normflags = zap->zap_normflags;
zp->zap_flags = flags;
/* block 1 will be the first leaf */
for (i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
/*
* set up block 1 - the first leaf
*/
VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object,
1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
dmu_buf_will_dirty(db, tx);
l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
l->l_dbuf = db;
zap_leaf_init(l, zp->zap_normflags != 0);
kmem_free(l, sizeof (zap_leaf_t));
dmu_buf_rele(db, FTAG);
}
static int
zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
{
if (RW_WRITE_HELD(&zap->zap_rwlock))
return (1);
if (rw_tryupgrade(&zap->zap_rwlock)) {
dmu_buf_will_dirty(zap->zap_dbuf, tx);
return (1);
}
return (0);
}
/*
* Generic routines for dealing with the pointer & cookie tables.
*/
static int
zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
dmu_tx_t *tx)
{
uint64_t b, newblk;
dmu_buf_t *db_old, *db_new;
int err;
int bs = FZAP_BLOCK_SHIFT(zap);
int hepb = 1<<(bs-4);
/* hepb = half the number of entries in a block */
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
ASSERT(tbl->zt_blk != 0);
ASSERT(tbl->zt_numblks > 0);
if (tbl->zt_nextblk != 0) {
newblk = tbl->zt_nextblk;
} else {
newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
tbl->zt_nextblk = newblk;
ASSERT0(tbl->zt_blks_copied);
dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
tbl->zt_blk << bs, tbl->zt_numblks << bs,
ZIO_PRIORITY_SYNC_READ);
}
/*
* Copy the ptrtbl from the old to new location.
*/
b = tbl->zt_blks_copied;
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
if (err)
return (err);
/* first half of entries in old[b] go to new[2*b+0] */
VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object,
(newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
dmu_buf_will_dirty(db_new, tx);
transfer_func(db_old->db_data, db_new->db_data, hepb);
dmu_buf_rele(db_new, FTAG);
/* second half of entries in old[b] go to new[2*b+1] */
VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object,
(newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
dmu_buf_will_dirty(db_new, tx);
transfer_func((uint64_t *)db_old->db_data + hepb,
db_new->db_data, hepb);
dmu_buf_rele(db_new, FTAG);
dmu_buf_rele(db_old, FTAG);
tbl->zt_blks_copied++;
dprintf("copied block %llu of %llu\n",
tbl->zt_blks_copied, tbl->zt_numblks);
if (tbl->zt_blks_copied == tbl->zt_numblks) {
(void) dmu_free_range(zap->zap_objset, zap->zap_object,
tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
tbl->zt_blk = newblk;
tbl->zt_numblks *= 2;
tbl->zt_shift++;
tbl->zt_nextblk = 0;
tbl->zt_blks_copied = 0;
dprintf("finished; numblocks now %llu (%uk entries)\n",
tbl->zt_numblks, 1<<(tbl->zt_shift-10));
}
return (0);
}
static int
zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
dmu_tx_t *tx)
{
int err;
uint64_t blk, off;
int bs = FZAP_BLOCK_SHIFT(zap);
dmu_buf_t *db;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT(tbl->zt_blk != 0);
dprintf("storing %llx at index %llx\n", val, idx);
blk = idx >> (bs-3);
off = idx & ((1<<(bs-3))-1);
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
if (err)
return (err);
dmu_buf_will_dirty(db, tx);
if (tbl->zt_nextblk != 0) {
uint64_t idx2 = idx * 2;
uint64_t blk2 = idx2 >> (bs-3);
uint64_t off2 = idx2 & ((1<<(bs-3))-1);
dmu_buf_t *db2;
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
DMU_READ_NO_PREFETCH);
if (err) {
dmu_buf_rele(db, FTAG);
return (err);
}
dmu_buf_will_dirty(db2, tx);
((uint64_t *)db2->db_data)[off2] = val;
((uint64_t *)db2->db_data)[off2+1] = val;
dmu_buf_rele(db2, FTAG);
}
((uint64_t *)db->db_data)[off] = val;
dmu_buf_rele(db, FTAG);
return (0);
}
static int
zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
{
uint64_t blk, off;
int err;
dmu_buf_t *db;
dnode_t *dn;
int bs = FZAP_BLOCK_SHIFT(zap);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
blk = idx >> (bs-3);
off = idx & ((1<<(bs-3))-1);
/*
* Note: this is equivalent to dmu_buf_hold(), but we use
* _dnode_enter / _by_dnode because it's faster because we don't
* have to hold the dnode.
*/
dn = dmu_buf_dnode_enter(zap->zap_dbuf);
err = dmu_buf_hold_by_dnode(dn,
(tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
dmu_buf_dnode_exit(zap->zap_dbuf);
if (err)
return (err);
*valp = ((uint64_t *)db->db_data)[off];
dmu_buf_rele(db, FTAG);
if (tbl->zt_nextblk != 0) {
/*
* read the nextblk for the sake of i/o error checking,
* so that zap_table_load() will catch errors for
* zap_table_store.
*/
blk = (idx*2) >> (bs-3);
dn = dmu_buf_dnode_enter(zap->zap_dbuf);
err = dmu_buf_hold_by_dnode(dn,
(tbl->zt_nextblk + blk) << bs, FTAG, &db,
DMU_READ_NO_PREFETCH);
dmu_buf_dnode_exit(zap->zap_dbuf);
if (err == 0)
dmu_buf_rele(db, FTAG);
}
return (err);
}
/*
* Routines for growing the ptrtbl.
*/
static void
zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
{
int i;
for (i = 0; i < n; i++) {
uint64_t lb = src[i];
dst[2*i+0] = lb;
dst[2*i+1] = lb;
}
}
static int
zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
{
/*
* The pointer table should never use more hash bits than we
* have (otherwise we'd be using useless zero bits to index it).
* If we are within 2 bits of running out, stop growing, since
* this is already an aberrant condition.
*/
if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
return (SET_ERROR(ENOSPC));
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
/*
* We are outgrowing the "embedded" ptrtbl (the one
* stored in the header block). Give it its own entire
* block, which will double the size of the ptrtbl.
*/
uint64_t newblk;
dmu_buf_t *db_new;
int err;
ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk);
newblk = zap_allocate_blocks(zap, 1);
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
DMU_READ_NO_PREFETCH);
if (err)
return (err);
dmu_buf_will_dirty(db_new, tx);
zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
dmu_buf_rele(db_new, FTAG);
zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk;
zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1;
zap_f_phys(zap)->zap_ptrtbl.zt_shift++;
ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
zap_f_phys(zap)->zap_ptrtbl.zt_numblks <<
(FZAP_BLOCK_SHIFT(zap)-3));
return (0);
} else {
return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl,
zap_ptrtbl_transfer, tx));
}
}
static void
zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
{
dmu_buf_will_dirty(zap->zap_dbuf, tx);
mutex_enter(&zap->zap_f.zap_num_entries_mtx);
ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta);
zap_f_phys(zap)->zap_num_entries += delta;
mutex_exit(&zap->zap_f.zap_num_entries_mtx);
}
static uint64_t
zap_allocate_blocks(zap_t *zap, int nblocks)
{
uint64_t newblk;
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
newblk = zap_f_phys(zap)->zap_freeblk;
zap_f_phys(zap)->zap_freeblk += nblocks;
return (newblk);
}
static void
zap_leaf_evict_sync(void *dbu)
{
zap_leaf_t *l = dbu;
rw_destroy(&l->l_rwlock);
kmem_free(l, sizeof (zap_leaf_t));
}
static zap_leaf_t *
zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
{
void *winner;
zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL);
rw_enter(&l->l_rwlock, RW_WRITER);
l->l_blkid = zap_allocate_blocks(zap, 1);
l->l_dbuf = NULL;
VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object,
l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf,
DMU_READ_NO_PREFETCH));
dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
winner = dmu_buf_set_user(l->l_dbuf, &l->l_dbu);
ASSERT(winner == NULL);
dmu_buf_will_dirty(l->l_dbuf, tx);
zap_leaf_init(l, zap->zap_normflags != 0);
zap_f_phys(zap)->zap_num_leafs++;
return (l);
}
int
fzap_count(zap_t *zap, uint64_t *count)
{
ASSERT(!zap->zap_ismicro);
mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
*count = zap_f_phys(zap)->zap_num_entries;
mutex_exit(&zap->zap_f.zap_num_entries_mtx);
return (0);
}
/*
* Routines for obtaining zap_leaf_t's
*/
void
zap_put_leaf(zap_leaf_t *l)
{
rw_exit(&l->l_rwlock);
dmu_buf_rele(l->l_dbuf, NULL);
}
static zap_leaf_t *
zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
{
zap_leaf_t *l, *winner;
ASSERT(blkid != 0);
l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
rw_enter(&l->l_rwlock, RW_WRITER);
l->l_blkid = blkid;
l->l_bs = highbit64(db->db_size) - 1;
l->l_dbuf = db;
dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
winner = dmu_buf_set_user(db, &l->l_dbu);
rw_exit(&l->l_rwlock);
if (winner != NULL) {
/* someone else set it first */
zap_leaf_evict_sync(&l->l_dbu);
l = winner;
}
/*
* lhr_pad was previously used for the next leaf in the leaf
* chain. There should be no chained leafs (as we have removed
* support for them).
*/
ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1);
/*
* There should be more hash entries than there can be
* chunks to put in the hash table
*/
ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
/* The chunks should begin at the end of the hash table */
ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
&zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
/* The chunks should end at the end of the block */
ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
(uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size);
return (l);
}
static int
zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
zap_leaf_t **lp)
{
dmu_buf_t *db;
zap_leaf_t *l;
int bs = FZAP_BLOCK_SHIFT(zap);
int err;
dnode_t *dn;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
/*
* If system crashed just after dmu_free_long_range in zfs_rmnode, we
* would be left with an empty xattr dir in delete queue. blkid=0
* would be passed in when doing zfs_purgedir. If that's the case we
* should just return immediately. The underlying objects should
* already be freed, so this should be perfectly fine.
*/
if (blkid == 0)
return (ENOENT);
dn = dmu_buf_dnode_enter(zap->zap_dbuf);
err = dmu_buf_hold_by_dnode(dn,
blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
dmu_buf_dnode_exit(zap->zap_dbuf);
if (err)
return (err);
ASSERT3U(db->db_object, ==, zap->zap_object);
ASSERT3U(db->db_offset, ==, blkid << bs);
ASSERT3U(db->db_size, ==, 1 << bs);
ASSERT(blkid != 0);
l = dmu_buf_get_user(db);
if (l == NULL)
l = zap_open_leaf(blkid, db);
rw_enter(&l->l_rwlock, lt);
/*
* Must lock before dirtying, otherwise zap_leaf_phys(l) could change,
* causing ASSERT below to fail.
*/
if (lt == RW_WRITER)
dmu_buf_will_dirty(db, tx);
ASSERT3U(l->l_blkid, ==, blkid);
ASSERT3P(l->l_dbuf, ==, db);
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF);
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
*lp = l;
return (0);
}
static int
zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
{
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
ASSERT3U(idx, <,
(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
return (0);
} else {
return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl,
idx, valp));
}
}
static int
zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
{
ASSERT(tx != NULL);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) {
ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
return (0);
} else {
return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl,
idx, blk, tx));
}
}
static int
zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
{
uint64_t idx, blk;
int err;
ASSERT(zap->zap_dbuf == NULL ||
zap_f_phys(zap) == zap->zap_dbuf->db_data);
/* Reality check for corrupt zap objects (leaf or header). */
if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF &&
zap_f_phys(zap)->zap_block_type != ZBT_HEADER) ||
zap_f_phys(zap)->zap_magic != ZAP_MAGIC) {
return (SET_ERROR(EIO));
}
idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
err = zap_idx_to_blk(zap, idx, &blk);
if (err != 0)
return (err);
err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
ASSERT(err ||
ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) ==
zap_leaf_phys(*lp)->l_hdr.lh_prefix);
return (err);
}
static int
zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l,
void *tag, dmu_tx_t *tx, zap_leaf_t **lp)
{
zap_t *zap = zn->zn_zap;
uint64_t hash = zn->zn_hash;
zap_leaf_t *nl;
int prefix_diff, i, err;
uint64_t sibling;
int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
zap_leaf_phys(l)->l_hdr.lh_prefix);
if (zap_tryupgradedir(zap, tx) == 0 ||
old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
/* We failed to upgrade, or need to grow the pointer table */
objset_t *os = zap->zap_objset;
uint64_t object = zap->zap_object;
zap_put_leaf(l);
zap_unlockdir(zap, tag);
err = zap_lockdir(os, object, tx, RW_WRITER,
FALSE, FALSE, tag, &zn->zn_zap);
zap = zn->zn_zap;
if (err)
return (err);
ASSERT(!zap->zap_ismicro);
while (old_prefix_len ==
zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
err = zap_grow_ptrtbl(zap, tx);
if (err)
return (err);
}
err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
if (err)
return (err);
if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) {
/* it split while our locks were down */
*lp = l;
return (0);
}
}
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
zap_leaf_phys(l)->l_hdr.lh_prefix);
prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
(old_prefix_len + 1);
sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
/* check for i/o errors before doing zap_leaf_split */
for (i = 0; i < (1ULL<<prefix_diff); i++) {
uint64_t blk;
err = zap_idx_to_blk(zap, sibling+i, &blk);
if (err)
return (err);
ASSERT3U(blk, ==, l->l_blkid);
}
nl = zap_create_leaf(zap, tx);
zap_leaf_split(l, nl, zap->zap_normflags != 0);
/* set sibling pointers */
for (i = 0; i < (1ULL << prefix_diff); i++) {
err = zap_set_idx_to_blk(zap, sibling+i, nl->l_blkid, tx);
ASSERT0(err); /* we checked for i/o errors above */
}
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0);
if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) {
/* we want the sibling */
zap_put_leaf(l);
*lp = nl;
} else {
zap_put_leaf(nl);
*lp = l;
}
return (0);
}
static void
zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l,
void *tag, dmu_tx_t *tx)
{
zap_t *zap = zn->zn_zap;
int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift &&
zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
zap_put_leaf(l);
if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) {
int err;
/*
* We are in the middle of growing the pointer table, or
* this leaf will soon make us grow it.
*/
if (zap_tryupgradedir(zap, tx) == 0) {
objset_t *os = zap->zap_objset;
uint64_t zapobj = zap->zap_object;
zap_unlockdir(zap, tag);
err = zap_lockdir(os, zapobj, tx,
RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap);
zap = zn->zn_zap;
if (err)
return;
}
/* could have finished growing while our locks were down */
if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift)
(void) zap_grow_ptrtbl(zap, tx);
}
}
static int
fzap_checkname(zap_name_t *zn)
{
if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN)
return (SET_ERROR(ENAMETOOLONG));
return (0);
}
static int
fzap_checksize(uint64_t integer_size, uint64_t num_integers)
{
/* Only integer sizes supported by C */
switch (integer_size) {
case 1:
case 2:
case 4:
case 8:
break;
default:
return (SET_ERROR(EINVAL));
}
if (integer_size * num_integers > ZAP_MAXVALUELEN)
return (E2BIG);
return (0);
}
static int
fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
{
int err;
if ((err = fzap_checkname(zn)) != 0)
return (err);
return (fzap_checksize(integer_size, num_integers));
}
/*
* Routines for manipulating attributes.
*/
int
fzap_lookup(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers, void *buf,
char *realname, int rn_len, boolean_t *ncp)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
if ((err = fzap_checkname(zn)) != 0)
return (err);
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
zap_put_leaf(l);
return (err);
}
err = zap_entry_read(&zeh, integer_size, num_integers, buf);
(void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
if (ncp) {
*ncp = zap_entry_normalization_conflict(&zeh,
zn, NULL, zn->zn_zap);
}
}
zap_put_leaf(l);
return (err);
}
int
fzap_add_cd(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers,
const void *val, uint32_t cd, void *tag, dmu_tx_t *tx)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
zap_t *zap = zn->zn_zap;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT(!zap->zap_ismicro);
ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
retry:
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
err = SET_ERROR(EEXIST);
goto out;
}
if (err != ENOENT)
goto out;
err = zap_entry_create(l, zn, cd,
integer_size, num_integers, val, &zeh);
if (err == 0) {
zap_increment_num_entries(zap, 1, tx);
} else if (err == EAGAIN) {
err = zap_expand_leaf(zn, l, tag, tx, &l);
zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
if (err == 0) {
goto retry;
} else if (err == ENOSPC) {
/*
* If we failed to expand the leaf, then bailout
* as there is no point trying
* zap_put_leaf_maybe_grow_ptrtbl().
*/
return (err);
}
}
out:
if (zap != NULL)
zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
return (err);
}
int
fzap_add(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers,
const void *val, void *tag, dmu_tx_t *tx)
{
int err = fzap_check(zn, integer_size, num_integers);
if (err != 0)
return (err);
return (fzap_add_cd(zn, integer_size, num_integers,
val, ZAP_NEED_CD, tag, tx));
}
int
fzap_update(zap_name_t *zn,
int integer_size, uint64_t num_integers, const void *val,
void *tag, dmu_tx_t *tx)
{
zap_leaf_t *l;
int err, create;
zap_entry_handle_t zeh;
zap_t *zap = zn->zn_zap;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
err = fzap_check(zn, integer_size, num_integers);
if (err != 0)
return (err);
err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
retry:
err = zap_leaf_lookup(l, zn, &zeh);
create = (err == ENOENT);
ASSERT(err == 0 || err == ENOENT);
if (create) {
err = zap_entry_create(l, zn, ZAP_NEED_CD,
integer_size, num_integers, val, &zeh);
if (err == 0)
zap_increment_num_entries(zap, 1, tx);
} else {
err = zap_entry_update(&zeh, integer_size, num_integers, val);
}
if (err == EAGAIN) {
err = zap_expand_leaf(zn, l, tag, tx, &l);
zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
if (err == 0)
goto retry;
}
if (zap != NULL)
zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
return (err);
}
int
fzap_length(zap_name_t *zn,
uint64_t *integer_size, uint64_t *num_integers)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err != 0)
goto out;
if (integer_size)
*integer_size = zeh.zeh_integer_size;
if (num_integers)
*num_integers = zeh.zeh_num_integers;
out:
zap_put_leaf(l);
return (err);
}
int
fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
zap_entry_remove(&zeh);
zap_increment_num_entries(zn->zn_zap, -1, tx);
}
zap_put_leaf(l);
return (err);
}
void
fzap_prefetch(zap_name_t *zn)
{
uint64_t idx, blk;
zap_t *zap = zn->zn_zap;
int bs;
idx = ZAP_HASH_IDX(zn->zn_hash,
zap_f_phys(zap)->zap_ptrtbl.zt_shift);
if (zap_idx_to_blk(zap, idx, &blk) != 0)
return;
bs = FZAP_BLOCK_SHIFT(zap);
dmu_prefetch(zap->zap_objset, zap->zap_object, 0, blk << bs, 1 << bs,
ZIO_PRIORITY_SYNC_READ);
}
/*
* Helper functions for consumers.
*/
uint64_t
zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
const char *name, dmu_tx_t *tx)
{
return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx));
}
uint64_t
zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
const char *name, int dnodesize, dmu_tx_t *tx)
{
uint64_t new_obj;
VERIFY((new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0,
dnodesize, tx)) > 0);
VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
tx));
return (new_obj);
}
int
zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
char *name)
{
zap_cursor_t zc;
zap_attribute_t *za;
int err;
if (mask == 0)
mask = -1ULL;
za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
for (zap_cursor_init(&zc, os, zapobj);
(err = zap_cursor_retrieve(&zc, za)) == 0;
zap_cursor_advance(&zc)) {
if ((za->za_first_integer & mask) == (value & mask)) {
(void) strcpy(name, za->za_name);
break;
}
}
zap_cursor_fini(&zc);
kmem_free(za, sizeof (zap_attribute_t));
return (err);
}
int
zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
{
zap_cursor_t zc;
zap_attribute_t za;
int err;
err = 0;
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, &za) == 0;
(void) zap_cursor_advance(&zc)) {
if (za.za_integer_length != 8 || za.za_num_integers != 1) {
err = SET_ERROR(EINVAL);
break;
}
err = zap_add(os, intoobj, za.za_name,
8, 1, &za.za_first_integer, tx);
if (err)
break;
}
zap_cursor_fini(&zc);
return (err);
}
int
zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
uint64_t value, dmu_tx_t *tx)
{
zap_cursor_t zc;
zap_attribute_t za;
int err;
err = 0;
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, &za) == 0;
(void) zap_cursor_advance(&zc)) {
if (za.za_integer_length != 8 || za.za_num_integers != 1) {
err = SET_ERROR(EINVAL);
break;
}
err = zap_add(os, intoobj, za.za_name,
8, 1, &value, tx);
if (err)
break;
}
zap_cursor_fini(&zc);
return (err);
}
int
zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
dmu_tx_t *tx)
{
zap_cursor_t zc;
zap_attribute_t za;
int err;
err = 0;
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, &za) == 0;
(void) zap_cursor_advance(&zc)) {
uint64_t delta = 0;
if (za.za_integer_length != 8 || za.za_num_integers != 1) {
err = SET_ERROR(EINVAL);
break;
}
err = zap_lookup(os, intoobj, za.za_name, 8, 1, &delta);
if (err != 0 && err != ENOENT)
break;
delta += za.za_first_integer;
err = zap_update(os, intoobj, za.za_name, 8, 1, &delta, tx);
if (err)
break;
}
zap_cursor_fini(&zc);
return (err);
}
int
zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_add(os, obj, name, 8, 1, &value, tx));
}
int
zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_remove(os, obj, name, tx));
}
int
zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_lookup(os, obj, name, 8, 1, &value));
}
int
zap_add_int_key(objset_t *os, uint64_t obj,
uint64_t key, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_add(os, obj, name, 8, 1, &value, tx));
}
int
zap_update_int_key(objset_t *os, uint64_t obj,
uint64_t key, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_update(os, obj, name, 8, 1, &value, tx));
}
int
zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_lookup(os, obj, name, 8, 1, valuep));
}
int
zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
dmu_tx_t *tx)
{
uint64_t value = 0;
int err;
if (delta == 0)
return (0);
err = zap_lookup(os, obj, name, 8, 1, &value);
if (err != 0 && err != ENOENT)
return (err);
value += delta;
if (value == 0)
err = zap_remove(os, obj, name, tx);
else
err = zap_update(os, obj, name, 8, 1, &value, tx);
return (err);
}
int
zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_increment(os, obj, name, delta, tx));
}
/*
* Routines for iterating over the attributes.
*/
int
fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
{
int err = ENOENT;
zap_entry_handle_t zeh;
zap_leaf_t *l;
/* retrieve the next entry at or after zc_hash/zc_cd */
/* if no entry, return ENOENT */
if (zc->zc_leaf &&
(ZAP_HASH_IDX(zc->zc_hash,
zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) !=
zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) {
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
zap_put_leaf(zc->zc_leaf);
zc->zc_leaf = NULL;
}
again:
if (zc->zc_leaf == NULL) {
err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
&zc->zc_leaf);
if (err != 0)
return (err);
} else {
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
}
l = zc->zc_leaf;
err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
if (err == ENOENT) {
if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) {
zc->zc_hash = -1ULL;
zc->zc_cd = 0;
} else {
uint64_t nocare = (1ULL <<
(64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1;
zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
zc->zc_cd = 0;
if (zc->zc_hash == 0) {
zc->zc_hash = -1ULL;
} else {
zap_put_leaf(zc->zc_leaf);
zc->zc_leaf = NULL;
goto again;
}
}
}
if (err == 0) {
zc->zc_hash = zeh.zeh_hash;
zc->zc_cd = zeh.zeh_cd;
za->za_integer_length = zeh.zeh_integer_size;
za->za_num_integers = zeh.zeh_num_integers;
if (zeh.zeh_num_integers == 0) {
za->za_first_integer = 0;
} else {
err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
ASSERT(err == 0 || err == EOVERFLOW);
}
err = zap_entry_read_name(zap, &zeh,
sizeof (za->za_name), za->za_name);
ASSERT(err == 0);
za->za_normalization_conflict =
zap_entry_normalization_conflict(&zeh,
NULL, za->za_name, zap);
}
rw_exit(&zc->zc_leaf->l_rwlock);
return (err);
}
static void
zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
{
int i, err;
uint64_t lastblk = 0;
/*
* NB: if a leaf has more pointers than an entire ptrtbl block
* can hold, then it'll be accounted for more than once, since
* we won't have lastblk.
*/
for (i = 0; i < len; i++) {
zap_leaf_t *l;
if (tbl[i] == lastblk)
continue;
lastblk = tbl[i];
err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
if (err == 0) {
zap_leaf_stats(zap, l, zs);
zap_put_leaf(l);
}
}
}
void
fzap_get_stats(zap_t *zap, zap_stats_t *zs)
{
int bs = FZAP_BLOCK_SHIFT(zap);
zs->zs_blocksize = 1ULL << bs;
/*
* Set zap_phys_t fields
*/
zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs;
zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries;
zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk;
zs->zs_block_type = zap_f_phys(zap)->zap_block_type;
zs->zs_magic = zap_f_phys(zap)->zap_magic;
zs->zs_salt = zap_f_phys(zap)->zap_salt;
/*
* Set zap_ptrtbl fields
*/
zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift;
zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk;
zs->zs_ptrtbl_blks_copied =
zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied;
zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk;
zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
/* the ptrtbl is entirely in the header block. */
zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
} else {
int b;
dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs,
zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs,
ZIO_PRIORITY_SYNC_READ);
for (b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
b++) {
dmu_buf_t *db;
int err;
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs,
FTAG, &db, DMU_READ_NO_PREFETCH);
if (err == 0) {
zap_stats_ptrtbl(zap, db->db_data,
1<<(bs-3), zs);
dmu_buf_rele(db, FTAG);
}
}
}
}