2fe61a7ecc
Authored by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: John Kennedy <jwk404@gmail.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Reviewed by: Igor Kozhukhov <igor@dilos.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Prakash Surya <prakash.surya@delphix.com> PROBLEM ======= There's a race condition that exists if `zil_free_lwb` races with either `zil_commit_waiter_timeout` and/or `zil_lwb_flush_vdevs_done`. Here's an example panic due to this bug: > ::status debugging crash dump vmcore.0 (64-bit) from ip-10-110-205-40 operating system: 5.11 dlpx-5.2.2.0_2017-12-04-17-28-32b6ba51fb (i86pc) image uuid: 4af0edfb-e58e-6ed8-cafc-d3e9167c7513 panic message: BAD TRAP: type=e (#pf Page fault) rp=ffffff0010555970 addr=60 occurred in module "zfs" due to a NULL pointer dereference dump content: kernel pages only > $c zio_shrink+0x12() zil_lwb_write_issue+0x30d(ffffff03dcd15cc0, ffffff03e0730e20) zil_commit_waiter_timeout+0xa2(ffffff03dcd15cc0, ffffff03d97ffcf8) zil_commit_waiter+0xf3(ffffff03dcd15cc0, ffffff03d97ffcf8) zil_commit+0x80(ffffff03dcd15cc0, 9a9) zfs_write+0xc34(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0) fop_write+0x5b(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0) write+0x250(42, fffffd7ff4832000, 2000) sys_syscall+0x177() If there's an outstanding lwb that's in `zil_commit_waiter_timeout` waiting to timeout, waiting on it's waiter's CV, we must be sure not to call `zil_free_lwb`. If we end up calling `zil_free_lwb`, then that LWB may be freed and can result in a use-after-free situation where the stale lwb pointer stored in the `zil_commit_waiter_t` structure of the thread waiting on the waiter's CV is used. A similar situation can occur if an lwb is issued to disk, and thus in the `LWB_STATE_ISSUED` state, and `zil_free_lwb` is called while the disk is servicing that lwb. In this situation, the lwb will be freed by `zil_free_lwb`, which will result in a use-after-free situation when the lwb's zio completes, and `zil_lwb_flush_vdevs_done` is called. This race condition is prevented in `zil_close` by calling `zil_commit` before `zil_free_lwb` is called, which will ensure all outstanding (i.e. all lwb's in the `LWB_STATE_OPEN` and/or `LWB_STATE_ISSUED` states) reach the `LWB_STATE_DONE` state before the lwb's are freed (`zil_commit` will not return untill all the lwb's are `LWB_STATE_DONE`). Further, this race condition is prevented in `zil_sync` by only calling `zil_free_lwb` for lwb's that do not have their `lwb_buf` pointer set. All lwb's not in the `LWB_STATE_DONE` state will have a non-null value for this pointer; the pointer is only cleared in `zil_lwb_flush_vdevs_done`, at which point the lwb's state will be changed to `LWB_STATE_DONE`. This race *is* present in `zil_suspend`, leading to this bug. At first glance, it would appear as though this would not be true because `zil_suspend` will call `zil_commit`, just like `zil_close`, but the problem is that `zil_suspend` will set the zilog's `zl_suspend` field prior to calling `zil_commit`. Further, in `zil_commit`, if `zl_suspend` is set, `zil_commit` will take a special branch of logic and use `txg_wait_synced` instead of performing the normal `zil_commit` logic. This call to `txg_wait_synced` might be good enough for the data to reach disk safely before it returns, but it does not ensure that all outstanding lwb's reach the `LWB_STATE_DONE` state before it returns. This is because, if there's an lwb "stuck" in `zil_commit_waiter_timeout`, waiting for it's lwb to timeout, it will maintain a non-null value for it's `lwb_buf` field and thus `zil_sync` will not free that lwb. Thus, even though the lwb's data is already on disk, the lwb will be left lingering, waiting on the CV, and will eventually timeout and be issued to disk even though the write is unnecessary. So, after `zil_commit` is called from `zil_suspend`, we incorrectly assume that there are not outstanding lwb's, and proceed to free all lwb's found on the zilog's lwb list. As a result, we free the lwb that will later be used `zil_commit_waiter_timeout`. SOLUTION ======== The solution to this, is to ensure all outstanding lwb's complete before calling `zil_free_lwb` via `zil_destroy` in `zil_suspend`. This patch accomplishes this goal by forcing the normal `zil_commit` logic when called from `zil_sync`. Now, `zil_suspend` will call `zil_commit_impl` which will always use the normal logic of waiting/issuing lwb's to disk before it returns. As a result, any lwb's outstanding when `zil_commit_impl` is called will be guaranteed to reach the `LWB_STATE_DONE` state by the time it returns. Further, no new lwb's will be created via `zil_commit` since the zilog's `zl_suspend` flag will be set. This will force all new callers of `zil_commit` to use `txg_wait_synced` instead of creating and issuing new lwb's. Thus, all lwb's left on the zilog's lwb list when `zil_destroy` is called will be in the `LWB_STATE_DONE` state, and we'll avoid this race condition. OpenZFS-issue: https://www.illumos.org/issues/8909 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ece62b6f8d Closes #6940 |
||
---|---|---|
.. | ||
runfiles | ||
test-runner | ||
zfs-tests | ||
Makefile.am | ||
README.md |
ZFS Test Suite README
- Building and installing the ZFS Test Suite
The ZFS Test Suite runs under the test-runner framework. This framework is built along side the standard ZFS utilities and is included as part of zfs-test package. The zfs-test package can be built from source as follows:
$ ./configure
$ make pkg-utils
The resulting packages can be installed using the rpm or dpkg command as appropriate for your distributions. Alternately, if you have installed ZFS from a distributions repository (not from source) the zfs-test package may be provided for your distribution.
- Installed from source
$ rpm -ivh ./zfs-test*.rpm, or
$ dpkg -i ./zfs-test*.deb,
- Installed from package repository
$ yum install zfs-test
$ apt-get install zfs-test
- Running the ZFS Test Suite
The pre-requisites for running the ZFS Test Suite are:
- Three scratch disks
- Specify the disks you wish to use in the $DISKS variable, as a space delimited list like this: DISKS='vdb vdc vdd'. By default the zfs-tests.sh sciprt will construct three loopback devices to be used for testing: DISKS='loop0 loop1 loop2'.
- A non-root user with a full set of basic privileges and the ability to sudo(8) to root without a password to run the test.
- Specify any pools you wish to preserve as a space delimited list in the $KEEP variable. All pools detected at the start of testing are added automatically.
- The ZFS Test Suite will add users and groups to test machine to verify functionality. Therefore it is strongly advised that a dedicated test machine, which can be a VM, be used for testing.
Once the pre-requisites are satisfied simply run the zfs-tests.sh script:
$ /usr/share/zfs/zfs-tests.sh
Alternately, the zfs-tests.sh script can be run from the source tree to allow developers to rapidly validate their work. In this mode the ZFS utilities and modules from the source tree will be used (rather than those installed on the system). In order to avoid certain types of failures you will need to ensure the ZFS udev rules are installed. This can be done manually or by ensuring some version of ZFS is installed on the system.
$ ./scripts/zfs-tests.sh
The following zfs-tests.sh options are supported:
-v Verbose zfs-tests.sh output When specified additional
information describing the test environment will be logged
prior to invoking test-runner. This includes the runfile
being used, the DISKS targeted, pools to keep, etc.
-q Quiet test-runner output. When specified it is passed to
test-runner(1) which causes output to be written to the
console only for tests that do not pass and the results
summary.
-x Remove all testpools, dm, lo, and files (unsafe). When
specified the script will attempt to remove any leftover
configuration from a previous test run. This includes
destroying any pools named testpool, unused DM devices,
and loopback devices backed by file-vdevs. This operation
can be DANGEROUS because it is possible that the script
will mistakenly remove a resource not related to the testing.
-k Disable cleanup after test failure. When specified the
zfs-tests.sh script will not perform any additional cleanup
when test-runner exists. This is useful when the results of
a specific test need to be preserved for further analysis.
-f Use sparse files directly instread of loopback devices for
the testing. When running in this mode certain tests will
be skipped which depend on real block devices.
-d DIR Create sparse files for vdevs in the DIR directory. By
default these files are created under /var/tmp/.
-s SIZE Use vdevs of SIZE (default: 4G)
-r RUNFILE Run tests in RUNFILE (default: linux.run)
The ZFS Test Suite allows the user to specify a subset of the tests via a runfile. The format of the runfile is explained in test-runner(1), and the files that zfs-tests.sh uses are available for reference under /usr/share/zfs/runfiles. To specify a custom runfile, use the -r option:
$ /usr/share/zfs/zfs-tests.sh -r my_tests.run
- Test results
While the ZFS Test Suite is running, one informational line is printed at the
end of each test, and a results summary is printed at the end of the run. The
results summary includes the location of the complete logs, which is logged in
the form /var/tmp/test_results/[ISO 8601 date]. A normal test run launched
with the zfs-tests.sh
wrapper script will look something like this:
$ /usr/share/zfs/zfs-tests.sh -v -d /mnt
--- Configuration --- Runfile: /usr/share/zfs/runfiles/linux.run STF_TOOLS: /usr/share/zfs/test-runner STF_SUITE: /usr/share/zfs/zfs-tests FILEDIR: /mnt FILES: /mnt/file-vdev0 /mnt/file-vdev1 /mnt/file-vdev2 LOOPBACKS: /dev/loop0 /dev/loop1 /dev/loop2 DISKS: loop0 loop1 loop2 NUM_DISKS: 3 FILESIZE: 4G Keep pool(s): rpool
/usr/share/zfs/test-runner/bin/test-runner.py -c
/usr/share/zfs/runfiles/linux.run -i /usr/share/zfs/zfs-tests
Test: .../tests/functional/acl/posix/setup (run as root) [00:00] [PASS]
...470 additional tests...
Test: .../tests/functional/zvol/zvol_cli/cleanup (run as root) [00:00] [PASS]
Results Summary PASS 472
Running Time: 00:45:09 Percent passed: 100.0% Log directory: /var/tmp/test_results/20160316T181651