mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-28 03:49:38 +03:00
1070 lines
25 KiB
C
1070 lines
25 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#pragma ident "%Z%%M% %I% %E% SMI"
|
|
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/zap_impl.h>
|
|
#include <sys/zap_leaf.h>
|
|
#include <sys/avl.h>
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/sunddi.h>
|
|
#endif
|
|
|
|
static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx);
|
|
|
|
|
|
static uint64_t
|
|
zap_hash(zap_t *zap, const char *normname)
|
|
{
|
|
const uint8_t *cp;
|
|
uint8_t c;
|
|
uint64_t crc = zap->zap_salt;
|
|
|
|
/* NB: name must already be normalized, if necessary */
|
|
|
|
ASSERT(crc != 0);
|
|
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
|
|
for (cp = (const uint8_t *)normname; (c = *cp) != '\0'; cp++) {
|
|
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF];
|
|
}
|
|
|
|
/*
|
|
* Only use 28 bits, since we need 4 bits in the cookie for the
|
|
* collision differentiator. We MUST use the high bits, since
|
|
* those are the ones that we first pay attention to when
|
|
* chosing the bucket.
|
|
*/
|
|
crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
|
|
|
|
return (crc);
|
|
}
|
|
|
|
static int
|
|
zap_normalize(zap_t *zap, const char *name, char *namenorm)
|
|
{
|
|
size_t inlen, outlen;
|
|
int err;
|
|
|
|
inlen = strlen(name) + 1;
|
|
outlen = ZAP_MAXNAMELEN;
|
|
|
|
err = 0;
|
|
(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
|
|
zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL, U8_UNICODE_LATEST,
|
|
&err);
|
|
|
|
return (err);
|
|
}
|
|
|
|
boolean_t
|
|
zap_match(zap_name_t *zn, const char *matchname)
|
|
{
|
|
if (zn->zn_matchtype == MT_FIRST) {
|
|
char norm[ZAP_MAXNAMELEN];
|
|
|
|
if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
|
|
return (B_FALSE);
|
|
|
|
return (strcmp(zn->zn_name_norm, norm) == 0);
|
|
} else {
|
|
/* MT_BEST or MT_EXACT */
|
|
return (strcmp(zn->zn_name_orij, matchname) == 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
zap_name_free(zap_name_t *zn)
|
|
{
|
|
kmem_free(zn, sizeof (zap_name_t));
|
|
}
|
|
|
|
/* XXX combine this with zap_lockdir()? */
|
|
zap_name_t *
|
|
zap_name_alloc(zap_t *zap, const char *name, matchtype_t mt)
|
|
{
|
|
zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
|
|
|
|
zn->zn_zap = zap;
|
|
zn->zn_name_orij = name;
|
|
zn->zn_matchtype = mt;
|
|
if (zap->zap_normflags) {
|
|
if (zap_normalize(zap, name, zn->zn_normbuf) != 0) {
|
|
zap_name_free(zn);
|
|
return (NULL);
|
|
}
|
|
zn->zn_name_norm = zn->zn_normbuf;
|
|
} else {
|
|
if (mt != MT_EXACT) {
|
|
zap_name_free(zn);
|
|
return (NULL);
|
|
}
|
|
zn->zn_name_norm = zn->zn_name_orij;
|
|
}
|
|
|
|
zn->zn_hash = zap_hash(zap, zn->zn_name_norm);
|
|
return (zn);
|
|
}
|
|
|
|
static void
|
|
mzap_byteswap(mzap_phys_t *buf, size_t size)
|
|
{
|
|
int i, max;
|
|
buf->mz_block_type = BSWAP_64(buf->mz_block_type);
|
|
buf->mz_salt = BSWAP_64(buf->mz_salt);
|
|
buf->mz_normflags = BSWAP_64(buf->mz_normflags);
|
|
max = (size / MZAP_ENT_LEN) - 1;
|
|
for (i = 0; i < max; i++) {
|
|
buf->mz_chunk[i].mze_value =
|
|
BSWAP_64(buf->mz_chunk[i].mze_value);
|
|
buf->mz_chunk[i].mze_cd =
|
|
BSWAP_32(buf->mz_chunk[i].mze_cd);
|
|
}
|
|
}
|
|
|
|
void
|
|
zap_byteswap(void *buf, size_t size)
|
|
{
|
|
uint64_t block_type;
|
|
|
|
block_type = *(uint64_t *)buf;
|
|
|
|
if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
|
|
/* ASSERT(magic == ZAP_LEAF_MAGIC); */
|
|
mzap_byteswap(buf, size);
|
|
} else {
|
|
fzap_byteswap(buf, size);
|
|
}
|
|
}
|
|
|
|
static int
|
|
mze_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const mzap_ent_t *mze1 = arg1;
|
|
const mzap_ent_t *mze2 = arg2;
|
|
|
|
if (mze1->mze_hash > mze2->mze_hash)
|
|
return (+1);
|
|
if (mze1->mze_hash < mze2->mze_hash)
|
|
return (-1);
|
|
if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd)
|
|
return (+1);
|
|
if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd)
|
|
return (-1);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep)
|
|
{
|
|
mzap_ent_t *mze;
|
|
|
|
ASSERT(zap->zap_ismicro);
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
ASSERT(mzep->mze_cd < ZAP_MAXCD);
|
|
|
|
mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
|
|
mze->mze_chunkid = chunkid;
|
|
mze->mze_hash = hash;
|
|
mze->mze_phys = *mzep;
|
|
avl_add(&zap->zap_m.zap_avl, mze);
|
|
}
|
|
|
|
static mzap_ent_t *
|
|
mze_find(zap_name_t *zn)
|
|
{
|
|
mzap_ent_t mze_tofind;
|
|
mzap_ent_t *mze;
|
|
avl_index_t idx;
|
|
avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
|
|
|
|
ASSERT(zn->zn_zap->zap_ismicro);
|
|
ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
|
|
|
|
if (strlen(zn->zn_name_norm) >= sizeof (mze_tofind.mze_phys.mze_name))
|
|
return (NULL);
|
|
|
|
mze_tofind.mze_hash = zn->zn_hash;
|
|
mze_tofind.mze_phys.mze_cd = 0;
|
|
|
|
again:
|
|
mze = avl_find(avl, &mze_tofind, &idx);
|
|
if (mze == NULL)
|
|
mze = avl_nearest(avl, idx, AVL_AFTER);
|
|
for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
|
|
if (zap_match(zn, mze->mze_phys.mze_name))
|
|
return (mze);
|
|
}
|
|
if (zn->zn_matchtype == MT_BEST) {
|
|
zn->zn_matchtype = MT_FIRST;
|
|
goto again;
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static uint32_t
|
|
mze_find_unused_cd(zap_t *zap, uint64_t hash)
|
|
{
|
|
mzap_ent_t mze_tofind;
|
|
mzap_ent_t *mze;
|
|
avl_index_t idx;
|
|
avl_tree_t *avl = &zap->zap_m.zap_avl;
|
|
uint32_t cd;
|
|
|
|
ASSERT(zap->zap_ismicro);
|
|
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
|
|
|
|
mze_tofind.mze_hash = hash;
|
|
mze_tofind.mze_phys.mze_cd = 0;
|
|
|
|
cd = 0;
|
|
for (mze = avl_find(avl, &mze_tofind, &idx);
|
|
mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
|
|
if (mze->mze_phys.mze_cd != cd)
|
|
break;
|
|
cd++;
|
|
}
|
|
|
|
return (cd);
|
|
}
|
|
|
|
static void
|
|
mze_remove(zap_t *zap, mzap_ent_t *mze)
|
|
{
|
|
ASSERT(zap->zap_ismicro);
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
avl_remove(&zap->zap_m.zap_avl, mze);
|
|
kmem_free(mze, sizeof (mzap_ent_t));
|
|
}
|
|
|
|
static void
|
|
mze_destroy(zap_t *zap)
|
|
{
|
|
mzap_ent_t *mze;
|
|
void *avlcookie = NULL;
|
|
|
|
while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
|
|
kmem_free(mze, sizeof (mzap_ent_t));
|
|
avl_destroy(&zap->zap_m.zap_avl);
|
|
}
|
|
|
|
static zap_t *
|
|
mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
|
|
{
|
|
zap_t *winner;
|
|
zap_t *zap;
|
|
int i;
|
|
|
|
ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
|
|
|
|
zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
|
|
rw_init(&zap->zap_rwlock, 0, 0, 0);
|
|
rw_enter(&zap->zap_rwlock, RW_WRITER);
|
|
zap->zap_objset = os;
|
|
zap->zap_object = obj;
|
|
zap->zap_dbuf = db;
|
|
|
|
if (*(uint64_t *)db->db_data != ZBT_MICRO) {
|
|
mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
|
|
zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
|
|
} else {
|
|
zap->zap_ismicro = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Make sure that zap_ismicro is set before we let others see
|
|
* it, because zap_lockdir() checks zap_ismicro without the lock
|
|
* held.
|
|
*/
|
|
winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
|
|
|
|
if (winner != NULL) {
|
|
rw_exit(&zap->zap_rwlock);
|
|
rw_destroy(&zap->zap_rwlock);
|
|
if (!zap->zap_ismicro)
|
|
mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
|
|
kmem_free(zap, sizeof (zap_t));
|
|
return (winner);
|
|
}
|
|
|
|
if (zap->zap_ismicro) {
|
|
zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
|
|
zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
|
|
zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
|
|
avl_create(&zap->zap_m.zap_avl, mze_compare,
|
|
sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
|
|
|
|
for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
|
|
mzap_ent_phys_t *mze =
|
|
&zap->zap_m.zap_phys->mz_chunk[i];
|
|
if (mze->mze_name[0]) {
|
|
zap_name_t *zn;
|
|
|
|
zap->zap_m.zap_num_entries++;
|
|
zn = zap_name_alloc(zap, mze->mze_name,
|
|
MT_EXACT);
|
|
mze_insert(zap, i, zn->zn_hash, mze);
|
|
zap_name_free(zn);
|
|
}
|
|
}
|
|
} else {
|
|
zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
|
|
zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
|
|
|
|
ASSERT3U(sizeof (struct zap_leaf_header), ==,
|
|
2*ZAP_LEAF_CHUNKSIZE);
|
|
|
|
/*
|
|
* The embedded pointer table should not overlap the
|
|
* other members.
|
|
*/
|
|
ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
|
|
&zap->zap_f.zap_phys->zap_salt);
|
|
|
|
/*
|
|
* The embedded pointer table should end at the end of
|
|
* the block
|
|
*/
|
|
ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
|
|
1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
|
|
(uintptr_t)zap->zap_f.zap_phys, ==,
|
|
zap->zap_dbuf->db_size);
|
|
}
|
|
rw_exit(&zap->zap_rwlock);
|
|
return (zap);
|
|
}
|
|
|
|
int
|
|
zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
|
|
krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
|
|
{
|
|
zap_t *zap;
|
|
dmu_buf_t *db;
|
|
krw_t lt;
|
|
int err;
|
|
|
|
*zapp = NULL;
|
|
|
|
err = dmu_buf_hold(os, obj, 0, NULL, &db);
|
|
if (err)
|
|
return (err);
|
|
|
|
#ifdef ZFS_DEBUG
|
|
{
|
|
dmu_object_info_t doi;
|
|
dmu_object_info_from_db(db, &doi);
|
|
ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
|
|
}
|
|
#endif
|
|
|
|
zap = dmu_buf_get_user(db);
|
|
if (zap == NULL)
|
|
zap = mzap_open(os, obj, db);
|
|
|
|
/*
|
|
* We're checking zap_ismicro without the lock held, in order to
|
|
* tell what type of lock we want. Once we have some sort of
|
|
* lock, see if it really is the right type. In practice this
|
|
* can only be different if it was upgraded from micro to fat,
|
|
* and micro wanted WRITER but fat only needs READER.
|
|
*/
|
|
lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
|
|
rw_enter(&zap->zap_rwlock, lt);
|
|
if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
|
|
/* it was upgraded, now we only need reader */
|
|
ASSERT(lt == RW_WRITER);
|
|
ASSERT(RW_READER ==
|
|
(!zap->zap_ismicro && fatreader) ? RW_READER : lti);
|
|
rw_downgrade(&zap->zap_rwlock);
|
|
lt = RW_READER;
|
|
}
|
|
|
|
zap->zap_objset = os;
|
|
|
|
if (lt == RW_WRITER)
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
ASSERT3P(zap->zap_dbuf, ==, db);
|
|
|
|
ASSERT(!zap->zap_ismicro ||
|
|
zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
|
|
if (zap->zap_ismicro && tx && adding &&
|
|
zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
|
|
uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
|
|
if (newsz > MZAP_MAX_BLKSZ) {
|
|
dprintf("upgrading obj %llu: num_entries=%u\n",
|
|
obj, zap->zap_m.zap_num_entries);
|
|
*zapp = zap;
|
|
return (mzap_upgrade(zapp, tx));
|
|
}
|
|
err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
|
|
ASSERT3U(err, ==, 0);
|
|
zap->zap_m.zap_num_chunks =
|
|
db->db_size / MZAP_ENT_LEN - 1;
|
|
}
|
|
|
|
*zapp = zap;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zap_unlockdir(zap_t *zap)
|
|
{
|
|
rw_exit(&zap->zap_rwlock);
|
|
dmu_buf_rele(zap->zap_dbuf, NULL);
|
|
}
|
|
|
|
static int
|
|
mzap_upgrade(zap_t **zapp, dmu_tx_t *tx)
|
|
{
|
|
mzap_phys_t *mzp;
|
|
int i, sz, nchunks, err;
|
|
zap_t *zap = *zapp;
|
|
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
sz = zap->zap_dbuf->db_size;
|
|
mzp = kmem_alloc(sz, KM_SLEEP);
|
|
bcopy(zap->zap_dbuf->db_data, mzp, sz);
|
|
nchunks = zap->zap_m.zap_num_chunks;
|
|
|
|
err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
|
|
1ULL << fzap_default_block_shift, 0, tx);
|
|
if (err) {
|
|
kmem_free(mzp, sz);
|
|
return (err);
|
|
}
|
|
|
|
dprintf("upgrading obj=%llu with %u chunks\n",
|
|
zap->zap_object, nchunks);
|
|
/* XXX destroy the avl later, so we can use the stored hash value */
|
|
mze_destroy(zap);
|
|
|
|
fzap_upgrade(zap, tx);
|
|
|
|
for (i = 0; i < nchunks; i++) {
|
|
int err;
|
|
mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
|
|
zap_name_t *zn;
|
|
if (mze->mze_name[0] == 0)
|
|
continue;
|
|
dprintf("adding %s=%llu\n",
|
|
mze->mze_name, mze->mze_value);
|
|
zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
|
|
err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
|
|
zap = zn->zn_zap; /* fzap_add_cd() may change zap */
|
|
zap_name_free(zn);
|
|
if (err)
|
|
break;
|
|
}
|
|
kmem_free(mzp, sz);
|
|
*zapp = zap;
|
|
return (err);
|
|
}
|
|
|
|
static void
|
|
mzap_create_impl(objset_t *os, uint64_t obj, int normflags, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t *db;
|
|
mzap_phys_t *zp;
|
|
|
|
VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db));
|
|
|
|
#ifdef ZFS_DEBUG
|
|
{
|
|
dmu_object_info_t doi;
|
|
dmu_object_info_from_db(db, &doi);
|
|
ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
|
|
}
|
|
#endif
|
|
|
|
dmu_buf_will_dirty(db, tx);
|
|
zp = db->db_data;
|
|
zp->mz_block_type = ZBT_MICRO;
|
|
zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
|
|
zp->mz_normflags = normflags;
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
|
|
int
|
|
zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_claim_norm(os, obj,
|
|
0, ot, bonustype, bonuslen, tx));
|
|
}
|
|
|
|
int
|
|
zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
|
|
dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
int err;
|
|
|
|
err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
|
|
if (err != 0)
|
|
return (err);
|
|
mzap_create_impl(os, obj, normflags, tx);
|
|
return (0);
|
|
}
|
|
|
|
uint64_t
|
|
zap_create(objset_t *os, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
|
|
}
|
|
|
|
uint64_t
|
|
zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
|
|
|
|
mzap_create_impl(os, obj, normflags, tx);
|
|
return (obj);
|
|
}
|
|
|
|
int
|
|
zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
|
|
{
|
|
/*
|
|
* dmu_object_free will free the object number and free the
|
|
* data. Freeing the data will cause our pageout function to be
|
|
* called, which will destroy our data (zap_leaf_t's and zap_t).
|
|
*/
|
|
|
|
return (dmu_object_free(os, zapobj, tx));
|
|
}
|
|
|
|
_NOTE(ARGSUSED(0))
|
|
void
|
|
zap_evict(dmu_buf_t *db, void *vzap)
|
|
{
|
|
zap_t *zap = vzap;
|
|
|
|
rw_destroy(&zap->zap_rwlock);
|
|
|
|
if (zap->zap_ismicro)
|
|
mze_destroy(zap);
|
|
else
|
|
mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
|
|
|
|
kmem_free(zap, sizeof (zap_t));
|
|
}
|
|
|
|
int
|
|
zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_count(zap, count);
|
|
} else {
|
|
*count = zap->zap_m.zap_num_entries;
|
|
}
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* zn may be NULL; if not specified, it will be computed if needed.
|
|
* See also the comment above zap_entry_normalization_conflict().
|
|
*/
|
|
static boolean_t
|
|
mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
|
|
{
|
|
mzap_ent_t *other;
|
|
int direction = AVL_BEFORE;
|
|
boolean_t allocdzn = B_FALSE;
|
|
|
|
if (zap->zap_normflags == 0)
|
|
return (B_FALSE);
|
|
|
|
again:
|
|
for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
|
|
other && other->mze_hash == mze->mze_hash;
|
|
other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
|
|
|
|
if (zn == NULL) {
|
|
zn = zap_name_alloc(zap, mze->mze_phys.mze_name,
|
|
MT_FIRST);
|
|
allocdzn = B_TRUE;
|
|
}
|
|
if (zap_match(zn, other->mze_phys.mze_name)) {
|
|
if (allocdzn)
|
|
zap_name_free(zn);
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
|
|
if (direction == AVL_BEFORE) {
|
|
direction = AVL_AFTER;
|
|
goto again;
|
|
}
|
|
|
|
if (allocdzn)
|
|
zap_name_free(zn);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Routines for manipulating attributes.
|
|
*/
|
|
|
|
int
|
|
zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
|
|
uint64_t integer_size, uint64_t num_integers, void *buf)
|
|
{
|
|
return (zap_lookup_norm(os, zapobj, name, integer_size,
|
|
num_integers, buf, MT_EXACT, NULL, 0, NULL));
|
|
}
|
|
|
|
int
|
|
zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
|
|
uint64_t integer_size, uint64_t num_integers, void *buf,
|
|
matchtype_t mt, char *realname, int rn_len,
|
|
boolean_t *ncp)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
mzap_ent_t *mze;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, name, mt);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_lookup(zn, integer_size, num_integers, buf,
|
|
realname, rn_len, ncp);
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze == NULL) {
|
|
err = ENOENT;
|
|
} else {
|
|
if (num_integers < 1) {
|
|
err = EOVERFLOW;
|
|
} else if (integer_size != 8) {
|
|
err = EINVAL;
|
|
} else {
|
|
*(uint64_t *)buf = mze->mze_phys.mze_value;
|
|
(void) strlcpy(realname,
|
|
mze->mze_phys.mze_name, rn_len);
|
|
if (ncp) {
|
|
*ncp = mzap_normalization_conflict(zap,
|
|
zn, mze);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_length(objset_t *os, uint64_t zapobj, const char *name,
|
|
uint64_t *integer_size, uint64_t *num_integers)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
mzap_ent_t *mze;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, name, MT_EXACT);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_length(zn, integer_size, num_integers);
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze == NULL) {
|
|
err = ENOENT;
|
|
} else {
|
|
if (integer_size)
|
|
*integer_size = 8;
|
|
if (num_integers)
|
|
*num_integers = 1;
|
|
}
|
|
}
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
static void
|
|
mzap_addent(zap_name_t *zn, uint64_t value)
|
|
{
|
|
int i;
|
|
zap_t *zap = zn->zn_zap;
|
|
int start = zap->zap_m.zap_alloc_next;
|
|
uint32_t cd;
|
|
|
|
dprintf("obj=%llu %s=%llu\n", zap->zap_object,
|
|
zn->zn_name_orij, value);
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
#ifdef ZFS_DEBUG
|
|
for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
|
|
mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
|
|
ASSERT(strcmp(zn->zn_name_orij, mze->mze_name) != 0);
|
|
}
|
|
#endif
|
|
|
|
cd = mze_find_unused_cd(zap, zn->zn_hash);
|
|
/* given the limited size of the microzap, this can't happen */
|
|
ASSERT(cd != ZAP_MAXCD);
|
|
|
|
again:
|
|
for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
|
|
mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
|
|
if (mze->mze_name[0] == 0) {
|
|
mze->mze_value = value;
|
|
mze->mze_cd = cd;
|
|
(void) strcpy(mze->mze_name, zn->zn_name_orij);
|
|
zap->zap_m.zap_num_entries++;
|
|
zap->zap_m.zap_alloc_next = i+1;
|
|
if (zap->zap_m.zap_alloc_next ==
|
|
zap->zap_m.zap_num_chunks)
|
|
zap->zap_m.zap_alloc_next = 0;
|
|
mze_insert(zap, i, zn->zn_hash, mze);
|
|
return;
|
|
}
|
|
}
|
|
if (start != 0) {
|
|
start = 0;
|
|
goto again;
|
|
}
|
|
ASSERT(!"out of entries!");
|
|
}
|
|
|
|
int
|
|
zap_add(objset_t *os, uint64_t zapobj, const char *name,
|
|
int integer_size, uint64_t num_integers,
|
|
const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
mzap_ent_t *mze;
|
|
const uint64_t *intval = val;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, name, MT_EXACT);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_add(zn, integer_size, num_integers, val, tx);
|
|
zap = zn->zn_zap; /* fzap_add() may change zap */
|
|
} else if (integer_size != 8 || num_integers != 1 ||
|
|
strlen(name) >= MZAP_NAME_LEN) {
|
|
dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
|
|
zapobj, integer_size, num_integers, name);
|
|
err = mzap_upgrade(&zn->zn_zap, tx);
|
|
if (err == 0)
|
|
err = fzap_add(zn, integer_size, num_integers, val, tx);
|
|
zap = zn->zn_zap; /* fzap_add() may change zap */
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze != NULL) {
|
|
err = EEXIST;
|
|
} else {
|
|
mzap_addent(zn, *intval);
|
|
}
|
|
}
|
|
ASSERT(zap == zn->zn_zap);
|
|
zap_name_free(zn);
|
|
if (zap != NULL) /* may be NULL if fzap_add() failed */
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_update(objset_t *os, uint64_t zapobj, const char *name,
|
|
int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
mzap_ent_t *mze;
|
|
const uint64_t *intval = val;
|
|
zap_name_t *zn;
|
|
int err;
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, name, MT_EXACT);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_update(zn, integer_size, num_integers, val, tx);
|
|
zap = zn->zn_zap; /* fzap_update() may change zap */
|
|
} else if (integer_size != 8 || num_integers != 1 ||
|
|
strlen(name) >= MZAP_NAME_LEN) {
|
|
dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
|
|
zapobj, integer_size, num_integers, name);
|
|
err = mzap_upgrade(&zn->zn_zap, tx);
|
|
if (err == 0)
|
|
err = fzap_update(zn, integer_size, num_integers,
|
|
val, tx);
|
|
zap = zn->zn_zap; /* fzap_update() may change zap */
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze != NULL) {
|
|
mze->mze_phys.mze_value = *intval;
|
|
zap->zap_m.zap_phys->mz_chunk
|
|
[mze->mze_chunkid].mze_value = *intval;
|
|
} else {
|
|
mzap_addent(zn, *intval);
|
|
}
|
|
}
|
|
ASSERT(zap == zn->zn_zap);
|
|
zap_name_free(zn);
|
|
if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
|
|
{
|
|
return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
|
|
}
|
|
|
|
int
|
|
zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
|
|
matchtype_t mt, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
mzap_ent_t *mze;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, name, mt);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_remove(zn, tx);
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze == NULL) {
|
|
err = ENOENT;
|
|
} else {
|
|
zap->zap_m.zap_num_entries--;
|
|
bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
|
|
sizeof (mzap_ent_phys_t));
|
|
mze_remove(zap, mze);
|
|
}
|
|
}
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Routines for iterating over the attributes.
|
|
*/
|
|
|
|
/*
|
|
* We want to keep the high 32 bits of the cursor zero if we can, so
|
|
* that 32-bit programs can access this. So use a small hash value so
|
|
* we can fit 4 bits of cd into the 32-bit cursor.
|
|
*
|
|
* [ 4 zero bits | 32-bit collision differentiator | 28-bit hash value ]
|
|
*/
|
|
void
|
|
zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
|
|
uint64_t serialized)
|
|
{
|
|
zc->zc_objset = os;
|
|
zc->zc_zap = NULL;
|
|
zc->zc_leaf = NULL;
|
|
zc->zc_zapobj = zapobj;
|
|
if (serialized == -1ULL) {
|
|
zc->zc_hash = -1ULL;
|
|
zc->zc_cd = 0;
|
|
} else {
|
|
zc->zc_hash = serialized << (64-ZAP_HASHBITS);
|
|
zc->zc_cd = serialized >> ZAP_HASHBITS;
|
|
if (zc->zc_cd >= ZAP_MAXCD) /* corrupt serialized */
|
|
zc->zc_cd = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
|
|
{
|
|
zap_cursor_init_serialized(zc, os, zapobj, 0);
|
|
}
|
|
|
|
void
|
|
zap_cursor_fini(zap_cursor_t *zc)
|
|
{
|
|
if (zc->zc_zap) {
|
|
rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
|
|
zap_unlockdir(zc->zc_zap);
|
|
zc->zc_zap = NULL;
|
|
}
|
|
if (zc->zc_leaf) {
|
|
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
|
|
zap_put_leaf(zc->zc_leaf);
|
|
zc->zc_leaf = NULL;
|
|
}
|
|
zc->zc_objset = NULL;
|
|
}
|
|
|
|
uint64_t
|
|
zap_cursor_serialize(zap_cursor_t *zc)
|
|
{
|
|
if (zc->zc_hash == -1ULL)
|
|
return (-1ULL);
|
|
ASSERT((zc->zc_hash & (ZAP_MAXCD-1)) == 0);
|
|
ASSERT(zc->zc_cd < ZAP_MAXCD);
|
|
return ((zc->zc_hash >> (64-ZAP_HASHBITS)) |
|
|
((uint64_t)zc->zc_cd << ZAP_HASHBITS));
|
|
}
|
|
|
|
int
|
|
zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
|
|
{
|
|
int err;
|
|
avl_index_t idx;
|
|
mzap_ent_t mze_tofind;
|
|
mzap_ent_t *mze;
|
|
|
|
if (zc->zc_hash == -1ULL)
|
|
return (ENOENT);
|
|
|
|
if (zc->zc_zap == NULL) {
|
|
err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
|
|
RW_READER, TRUE, FALSE, &zc->zc_zap);
|
|
if (err)
|
|
return (err);
|
|
} else {
|
|
rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
|
|
}
|
|
if (!zc->zc_zap->zap_ismicro) {
|
|
err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
|
|
} else {
|
|
err = ENOENT;
|
|
|
|
mze_tofind.mze_hash = zc->zc_hash;
|
|
mze_tofind.mze_phys.mze_cd = zc->zc_cd;
|
|
|
|
mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
|
|
if (mze == NULL) {
|
|
mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
|
|
idx, AVL_AFTER);
|
|
}
|
|
if (mze) {
|
|
ASSERT(0 == bcmp(&mze->mze_phys,
|
|
&zc->zc_zap->zap_m.zap_phys->mz_chunk
|
|
[mze->mze_chunkid], sizeof (mze->mze_phys)));
|
|
|
|
za->za_normalization_conflict =
|
|
mzap_normalization_conflict(zc->zc_zap, NULL, mze);
|
|
za->za_integer_length = 8;
|
|
za->za_num_integers = 1;
|
|
za->za_first_integer = mze->mze_phys.mze_value;
|
|
(void) strcpy(za->za_name, mze->mze_phys.mze_name);
|
|
zc->zc_hash = mze->mze_hash;
|
|
zc->zc_cd = mze->mze_phys.mze_cd;
|
|
err = 0;
|
|
} else {
|
|
zc->zc_hash = -1ULL;
|
|
}
|
|
}
|
|
rw_exit(&zc->zc_zap->zap_rwlock);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
zap_cursor_advance(zap_cursor_t *zc)
|
|
{
|
|
if (zc->zc_hash == -1ULL)
|
|
return;
|
|
zc->zc_cd++;
|
|
if (zc->zc_cd >= ZAP_MAXCD) {
|
|
zc->zc_cd = 0;
|
|
zc->zc_hash += 1ULL<<(64-ZAP_HASHBITS);
|
|
if (zc->zc_hash == 0) /* EOF */
|
|
zc->zc_hash = -1ULL;
|
|
}
|
|
}
|
|
|
|
int
|
|
zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
|
|
{
|
|
int err;
|
|
zap_t *zap;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
|
|
bzero(zs, sizeof (zap_stats_t));
|
|
|
|
if (zap->zap_ismicro) {
|
|
zs->zs_blocksize = zap->zap_dbuf->db_size;
|
|
zs->zs_num_entries = zap->zap_m.zap_num_entries;
|
|
zs->zs_num_blocks = 1;
|
|
} else {
|
|
fzap_get_stats(zap, zs);
|
|
}
|
|
zap_unlockdir(zap);
|
|
return (0);
|
|
}
|