mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 20:50:30 +03:00
997f85b4d3
Previous code held ARC state sublist lock throughout all L2ARC write process, which included number of allocations and even ZIO issues. Being blocked in any of those places the code could also block ARC eviction, that could cause OOM activation or even dead- lock if system is low on memory or one is too fragmented. Fix it by dropping the lock as soon as we see a block eligible for L2ARC writing and pick it up later using earlier inserted marker. While there, also reduce scope of hash lock, moving ZIO allocation and other operations not requiring header access out of it. All operations requiring header access move under hash lock, since L2_WRITING flag does not prevent header eviction only transition to arc_l2c_only state with L1 header. To be able to manipulate sublist lock and marker as needed add few more multilist functions and modify one. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored by: iXsystems, Inc. Closes #16040
452 lines
13 KiB
C
452 lines
13 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* This file and its contents are supplied under the terms of the
|
|
* Common Development and Distribution License ("CDDL"), version 1.0.
|
|
* You may only use this file in accordance with the terms of version
|
|
* 1.0 of the CDDL.
|
|
*
|
|
* A full copy of the text of the CDDL should have accompanied this
|
|
* source. A copy of the CDDL is also available via the Internet at
|
|
* http://www.illumos.org/license/CDDL.
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2013, 2017 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/multilist.h>
|
|
#include <sys/trace_zfs.h>
|
|
|
|
/*
|
|
* This overrides the number of sublists in each multilist_t, which defaults
|
|
* to the number of CPUs in the system (see multilist_create()).
|
|
*/
|
|
uint_t zfs_multilist_num_sublists = 0;
|
|
|
|
/*
|
|
* Given the object contained on the list, return a pointer to the
|
|
* object's multilist_node_t structure it contains.
|
|
*/
|
|
#ifdef ZFS_DEBUG
|
|
static multilist_node_t *
|
|
multilist_d2l(multilist_t *ml, void *obj)
|
|
{
|
|
return ((multilist_node_t *)((char *)obj + ml->ml_offset));
|
|
}
|
|
#else
|
|
#define multilist_d2l(ml, obj) ((void) sizeof (ml), (void) sizeof (obj), NULL)
|
|
#endif
|
|
|
|
/*
|
|
* Initialize a new mutlilist using the parameters specified.
|
|
*
|
|
* - 'size' denotes the size of the structure containing the
|
|
* multilist_node_t.
|
|
* - 'offset' denotes the byte offset of the mutlilist_node_t within
|
|
* the structure that contains it.
|
|
* - 'num' specifies the number of internal sublists to create.
|
|
* - 'index_func' is used to determine which sublist to insert into
|
|
* when the multilist_insert() function is called; as well as which
|
|
* sublist to remove from when multilist_remove() is called. The
|
|
* requirements this function must meet, are the following:
|
|
*
|
|
* - It must always return the same value when called on the same
|
|
* object (to ensure the object is removed from the list it was
|
|
* inserted into).
|
|
*
|
|
* - It must return a value in the range [0, number of sublists).
|
|
* The multilist_get_num_sublists() function may be used to
|
|
* determine the number of sublists in the multilist.
|
|
*
|
|
* Also, in order to reduce internal contention between the sublists
|
|
* during insertion and removal, this function should choose evenly
|
|
* between all available sublists when inserting. This isn't a hard
|
|
* requirement, but a general rule of thumb in order to garner the
|
|
* best multi-threaded performance out of the data structure.
|
|
*/
|
|
static void
|
|
multilist_create_impl(multilist_t *ml, size_t size, size_t offset,
|
|
uint_t num, multilist_sublist_index_func_t *index_func)
|
|
{
|
|
ASSERT3U(size, >, 0);
|
|
ASSERT3U(size, >=, offset + sizeof (multilist_node_t));
|
|
ASSERT3U(num, >, 0);
|
|
ASSERT3P(index_func, !=, NULL);
|
|
|
|
ml->ml_offset = offset;
|
|
ml->ml_num_sublists = num;
|
|
ml->ml_index_func = index_func;
|
|
|
|
ml->ml_sublists = kmem_zalloc(sizeof (multilist_sublist_t) *
|
|
ml->ml_num_sublists, KM_SLEEP);
|
|
|
|
ASSERT3P(ml->ml_sublists, !=, NULL);
|
|
|
|
for (int i = 0; i < ml->ml_num_sublists; i++) {
|
|
multilist_sublist_t *mls = &ml->ml_sublists[i];
|
|
mutex_init(&mls->mls_lock, NULL, MUTEX_NOLOCKDEP, NULL);
|
|
list_create(&mls->mls_list, size, offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a new multilist, using the default number of sublists (the number
|
|
* of CPUs, or at least 4, or the tunable zfs_multilist_num_sublists). Note
|
|
* that the multilists do not expand if more CPUs are hot-added. In that case,
|
|
* we will have less fanout than boot_ncpus, but we don't want to always
|
|
* reserve the RAM necessary to create the extra slots for additional CPUs up
|
|
* front, and dynamically adding them is a complex task.
|
|
*/
|
|
void
|
|
multilist_create(multilist_t *ml, size_t size, size_t offset,
|
|
multilist_sublist_index_func_t *index_func)
|
|
{
|
|
uint_t num_sublists;
|
|
|
|
if (zfs_multilist_num_sublists > 0) {
|
|
num_sublists = zfs_multilist_num_sublists;
|
|
} else {
|
|
num_sublists = MAX(boot_ncpus, 4);
|
|
}
|
|
|
|
multilist_create_impl(ml, size, offset, num_sublists, index_func);
|
|
}
|
|
|
|
/*
|
|
* Destroy the given multilist object, and free up any memory it holds.
|
|
*/
|
|
void
|
|
multilist_destroy(multilist_t *ml)
|
|
{
|
|
ASSERT(multilist_is_empty(ml));
|
|
|
|
for (int i = 0; i < ml->ml_num_sublists; i++) {
|
|
multilist_sublist_t *mls = &ml->ml_sublists[i];
|
|
|
|
ASSERT(list_is_empty(&mls->mls_list));
|
|
|
|
list_destroy(&mls->mls_list);
|
|
mutex_destroy(&mls->mls_lock);
|
|
}
|
|
|
|
ASSERT3P(ml->ml_sublists, !=, NULL);
|
|
kmem_free(ml->ml_sublists,
|
|
sizeof (multilist_sublist_t) * ml->ml_num_sublists);
|
|
|
|
ml->ml_num_sublists = 0;
|
|
ml->ml_offset = 0;
|
|
ml->ml_sublists = NULL;
|
|
}
|
|
|
|
/*
|
|
* Insert the given object into the multilist.
|
|
*
|
|
* This function will insert the object specified into the sublist
|
|
* determined using the function given at multilist creation time.
|
|
*
|
|
* The sublist locks are automatically acquired if not already held, to
|
|
* ensure consistency when inserting and removing from multiple threads.
|
|
*/
|
|
void
|
|
multilist_insert(multilist_t *ml, void *obj)
|
|
{
|
|
unsigned int sublist_idx = ml->ml_index_func(ml, obj);
|
|
multilist_sublist_t *mls;
|
|
boolean_t need_lock;
|
|
|
|
DTRACE_PROBE3(multilist__insert, multilist_t *, ml,
|
|
unsigned int, sublist_idx, void *, obj);
|
|
|
|
ASSERT3U(sublist_idx, <, ml->ml_num_sublists);
|
|
|
|
mls = &ml->ml_sublists[sublist_idx];
|
|
|
|
/*
|
|
* Note: Callers may already hold the sublist lock by calling
|
|
* multilist_sublist_lock(). Here we rely on MUTEX_HELD()
|
|
* returning TRUE if and only if the current thread holds the
|
|
* lock. While it's a little ugly to make the lock recursive in
|
|
* this way, it works and allows the calling code to be much
|
|
* simpler -- otherwise it would have to pass around a flag
|
|
* indicating that it already has the lock.
|
|
*/
|
|
need_lock = !MUTEX_HELD(&mls->mls_lock);
|
|
|
|
if (need_lock)
|
|
mutex_enter(&mls->mls_lock);
|
|
|
|
ASSERT(!multilist_link_active(multilist_d2l(ml, obj)));
|
|
|
|
multilist_sublist_insert_head(mls, obj);
|
|
|
|
if (need_lock)
|
|
mutex_exit(&mls->mls_lock);
|
|
}
|
|
|
|
/*
|
|
* Remove the given object from the multilist.
|
|
*
|
|
* This function will remove the object specified from the sublist
|
|
* determined using the function given at multilist creation time.
|
|
*
|
|
* The necessary sublist locks are automatically acquired, to ensure
|
|
* consistency when inserting and removing from multiple threads.
|
|
*/
|
|
void
|
|
multilist_remove(multilist_t *ml, void *obj)
|
|
{
|
|
unsigned int sublist_idx = ml->ml_index_func(ml, obj);
|
|
multilist_sublist_t *mls;
|
|
boolean_t need_lock;
|
|
|
|
DTRACE_PROBE3(multilist__remove, multilist_t *, ml,
|
|
unsigned int, sublist_idx, void *, obj);
|
|
|
|
ASSERT3U(sublist_idx, <, ml->ml_num_sublists);
|
|
|
|
mls = &ml->ml_sublists[sublist_idx];
|
|
/* See comment in multilist_insert(). */
|
|
need_lock = !MUTEX_HELD(&mls->mls_lock);
|
|
|
|
if (need_lock)
|
|
mutex_enter(&mls->mls_lock);
|
|
|
|
ASSERT(multilist_link_active(multilist_d2l(ml, obj)));
|
|
|
|
multilist_sublist_remove(mls, obj);
|
|
|
|
if (need_lock)
|
|
mutex_exit(&mls->mls_lock);
|
|
}
|
|
|
|
/*
|
|
* Check to see if this multilist object is empty.
|
|
*
|
|
* This will return TRUE if it finds all of the sublists of this
|
|
* multilist to be empty, and FALSE otherwise. Each sublist lock will be
|
|
* automatically acquired as necessary.
|
|
*
|
|
* If concurrent insertions and removals are occurring, the semantics
|
|
* of this function become a little fuzzy. Instead of locking all
|
|
* sublists for the entire call time of the function, each sublist is
|
|
* only locked as it is individually checked for emptiness. Thus, it's
|
|
* possible for this function to return TRUE with non-empty sublists at
|
|
* the time the function returns. This would be due to another thread
|
|
* inserting into a given sublist, after that specific sublist was check
|
|
* and deemed empty, but before all sublists have been checked.
|
|
*/
|
|
int
|
|
multilist_is_empty(multilist_t *ml)
|
|
{
|
|
for (int i = 0; i < ml->ml_num_sublists; i++) {
|
|
multilist_sublist_t *mls = &ml->ml_sublists[i];
|
|
/* See comment in multilist_insert(). */
|
|
boolean_t need_lock = !MUTEX_HELD(&mls->mls_lock);
|
|
|
|
if (need_lock)
|
|
mutex_enter(&mls->mls_lock);
|
|
|
|
if (!list_is_empty(&mls->mls_list)) {
|
|
if (need_lock)
|
|
mutex_exit(&mls->mls_lock);
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
if (need_lock)
|
|
mutex_exit(&mls->mls_lock);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/* Return the number of sublists composing this multilist */
|
|
unsigned int
|
|
multilist_get_num_sublists(multilist_t *ml)
|
|
{
|
|
return (ml->ml_num_sublists);
|
|
}
|
|
|
|
/* Return a randomly selected, valid sublist index for this multilist */
|
|
unsigned int
|
|
multilist_get_random_index(multilist_t *ml)
|
|
{
|
|
return (random_in_range(ml->ml_num_sublists));
|
|
}
|
|
|
|
void
|
|
multilist_sublist_lock(multilist_sublist_t *mls)
|
|
{
|
|
mutex_enter(&mls->mls_lock);
|
|
}
|
|
|
|
/* Lock and return the sublist specified at the given index */
|
|
multilist_sublist_t *
|
|
multilist_sublist_lock_idx(multilist_t *ml, unsigned int sublist_idx)
|
|
{
|
|
multilist_sublist_t *mls;
|
|
|
|
ASSERT3U(sublist_idx, <, ml->ml_num_sublists);
|
|
mls = &ml->ml_sublists[sublist_idx];
|
|
mutex_enter(&mls->mls_lock);
|
|
|
|
return (mls);
|
|
}
|
|
|
|
/* Lock and return the sublist that would be used to store the specified obj */
|
|
multilist_sublist_t *
|
|
multilist_sublist_lock_obj(multilist_t *ml, void *obj)
|
|
{
|
|
return (multilist_sublist_lock_idx(ml, ml->ml_index_func(ml, obj)));
|
|
}
|
|
|
|
void
|
|
multilist_sublist_unlock(multilist_sublist_t *mls)
|
|
{
|
|
mutex_exit(&mls->mls_lock);
|
|
}
|
|
|
|
/*
|
|
* We're allowing any object to be inserted into this specific sublist,
|
|
* but this can lead to trouble if multilist_remove() is called to
|
|
* remove this object. Specifically, if calling ml_index_func on this
|
|
* object returns an index for sublist different than what is passed as
|
|
* a parameter here, any call to multilist_remove() with this newly
|
|
* inserted object is undefined! (the call to multilist_remove() will
|
|
* remove the object from a list that it isn't contained in)
|
|
*/
|
|
void
|
|
multilist_sublist_insert_head(multilist_sublist_t *mls, void *obj)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
list_insert_head(&mls->mls_list, obj);
|
|
}
|
|
|
|
/* please see comment above multilist_sublist_insert_head */
|
|
void
|
|
multilist_sublist_insert_tail(multilist_sublist_t *mls, void *obj)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
list_insert_tail(&mls->mls_list, obj);
|
|
}
|
|
|
|
/* please see comment above multilist_sublist_insert_head */
|
|
void
|
|
multilist_sublist_insert_after(multilist_sublist_t *mls, void *prev, void *obj)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
list_insert_after(&mls->mls_list, prev, obj);
|
|
}
|
|
|
|
/* please see comment above multilist_sublist_insert_head */
|
|
void
|
|
multilist_sublist_insert_before(multilist_sublist_t *mls, void *next, void *obj)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
list_insert_before(&mls->mls_list, next, obj);
|
|
}
|
|
|
|
/*
|
|
* Move the object one element forward in the list.
|
|
*
|
|
* This function will move the given object forward in the list (towards
|
|
* the head) by one object. So, in essence, it will swap its position in
|
|
* the list with its "prev" pointer. If the given object is already at the
|
|
* head of the list, it cannot be moved forward any more than it already
|
|
* is, so no action is taken.
|
|
*
|
|
* NOTE: This function **must not** remove any object from the list other
|
|
* than the object given as the parameter. This is relied upon in
|
|
* arc_evict_state_impl().
|
|
*/
|
|
void
|
|
multilist_sublist_move_forward(multilist_sublist_t *mls, void *obj)
|
|
{
|
|
void *prev = list_prev(&mls->mls_list, obj);
|
|
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
ASSERT(!list_is_empty(&mls->mls_list));
|
|
|
|
/* 'obj' must be at the head of the list, nothing to do */
|
|
if (prev == NULL)
|
|
return;
|
|
|
|
list_remove(&mls->mls_list, obj);
|
|
list_insert_before(&mls->mls_list, prev, obj);
|
|
}
|
|
|
|
void
|
|
multilist_sublist_remove(multilist_sublist_t *mls, void *obj)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
list_remove(&mls->mls_list, obj);
|
|
}
|
|
|
|
int
|
|
multilist_sublist_is_empty(multilist_sublist_t *mls)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
return (list_is_empty(&mls->mls_list));
|
|
}
|
|
|
|
int
|
|
multilist_sublist_is_empty_idx(multilist_t *ml, unsigned int sublist_idx)
|
|
{
|
|
multilist_sublist_t *mls;
|
|
int empty;
|
|
|
|
ASSERT3U(sublist_idx, <, ml->ml_num_sublists);
|
|
mls = &ml->ml_sublists[sublist_idx];
|
|
ASSERT(!MUTEX_HELD(&mls->mls_lock));
|
|
mutex_enter(&mls->mls_lock);
|
|
empty = list_is_empty(&mls->mls_list);
|
|
mutex_exit(&mls->mls_lock);
|
|
return (empty);
|
|
}
|
|
|
|
void *
|
|
multilist_sublist_head(multilist_sublist_t *mls)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
return (list_head(&mls->mls_list));
|
|
}
|
|
|
|
void *
|
|
multilist_sublist_tail(multilist_sublist_t *mls)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
return (list_tail(&mls->mls_list));
|
|
}
|
|
|
|
void *
|
|
multilist_sublist_next(multilist_sublist_t *mls, void *obj)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
return (list_next(&mls->mls_list, obj));
|
|
}
|
|
|
|
void *
|
|
multilist_sublist_prev(multilist_sublist_t *mls, void *obj)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mls->mls_lock));
|
|
return (list_prev(&mls->mls_list, obj));
|
|
}
|
|
|
|
void
|
|
multilist_link_init(multilist_node_t *link)
|
|
{
|
|
list_link_init(link);
|
|
}
|
|
|
|
int
|
|
multilist_link_active(multilist_node_t *link)
|
|
{
|
|
return (list_link_active(link));
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, multilist_num_sublists, UINT, ZMOD_RW,
|
|
"Number of sublists used in each multilist");
|