1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-20 15:06:36 +03:00
mirror_zfs/module/zfs/space_map.c
George Wilson 3b7f360c96 OpenZFS 8023 - Panic destroying a metaslab deferred range tree
Authored by: George Wilson <george.wilson@delphix.com>
Approved by: Dan McDonald <danmcd@omniti.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>

We don't want to dirty any data when we're in the final txgs of the pool
export logic. This change introduces checks to make sure that no data is
dirtied after a certain point. It also addresses the culprit of this
specific bug – the space map cannot be upgraded when we're in final
stages of pool export. If we encounter a space map that wants to be
upgraded in this phase, then we simply ignore the request as it will get
retried the next time we set the fragmentation metric on that metaslab.

OpenZFS-issue: https://www.illumos.org/issues/8023
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/2ef00f5
Closes 
2017-04-09 16:12:35 -07:00

553 lines
14 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2012, 2016 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/dnode.h>
#include <sys/dsl_pool.h>
#include <sys/zio.h>
#include <sys/space_map.h>
#include <sys/refcount.h>
#include <sys/zfeature.h>
/*
* The data for a given space map can be kept on blocks of any size.
* Larger blocks entail fewer i/o operations, but they also cause the
* DMU to keep more data in-core, and also to waste more i/o bandwidth
* when only a few blocks have changed since the last transaction group.
*/
int space_map_blksz = (1 << 12);
/*
* Load the space map disk into the specified range tree. Segments of maptype
* are added to the range tree, other segment types are removed.
*
* Note: space_map_load() will drop sm_lock across dmu_read() calls.
* The caller must be OK with this.
*/
int
space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
{
uint64_t *entry, *entry_map, *entry_map_end;
uint64_t bufsize, size, offset, end, space;
int error = 0;
ASSERT(MUTEX_HELD(sm->sm_lock));
end = space_map_length(sm);
space = space_map_allocated(sm);
VERIFY0(range_tree_space(rt));
if (maptype == SM_FREE) {
range_tree_add(rt, sm->sm_start, sm->sm_size);
space = sm->sm_size - space;
}
bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
entry_map = vmem_alloc(bufsize, KM_SLEEP);
mutex_exit(sm->sm_lock);
if (end > bufsize) {
dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
end - bufsize, ZIO_PRIORITY_SYNC_READ);
}
mutex_enter(sm->sm_lock);
for (offset = 0; offset < end; offset += bufsize) {
size = MIN(end - offset, bufsize);
VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
VERIFY(size != 0);
ASSERT3U(sm->sm_blksz, !=, 0);
dprintf("object=%llu offset=%llx size=%llx\n",
space_map_object(sm), offset, size);
mutex_exit(sm->sm_lock);
error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
entry_map, DMU_READ_PREFETCH);
mutex_enter(sm->sm_lock);
if (error != 0)
break;
entry_map_end = entry_map + (size / sizeof (uint64_t));
for (entry = entry_map; entry < entry_map_end; entry++) {
uint64_t e = *entry;
uint64_t offset, size;
if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
continue;
offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
sm->sm_start;
size = SM_RUN_DECODE(e) << sm->sm_shift;
VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
VERIFY3U(offset, >=, sm->sm_start);
VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
if (SM_TYPE_DECODE(e) == maptype) {
VERIFY3U(range_tree_space(rt) + size, <=,
sm->sm_size);
range_tree_add(rt, offset, size);
} else {
range_tree_remove(rt, offset, size);
}
}
}
if (error == 0)
VERIFY3U(range_tree_space(rt), ==, space);
else
range_tree_vacate(rt, NULL, NULL);
vmem_free(entry_map, bufsize);
return (error);
}
void
space_map_histogram_clear(space_map_t *sm)
{
if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
return;
bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
}
boolean_t
space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
{
int i;
/*
* Verify that the in-core range tree does not have any
* ranges smaller than our sm_shift size.
*/
for (i = 0; i < sm->sm_shift; i++) {
if (rt->rt_histogram[i] != 0)
return (B_FALSE);
}
return (B_TRUE);
}
void
space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
{
int idx = 0;
int i;
ASSERT(MUTEX_HELD(rt->rt_lock));
ASSERT(dmu_tx_is_syncing(tx));
VERIFY3U(space_map_object(sm), !=, 0);
if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
return;
dmu_buf_will_dirty(sm->sm_dbuf, tx);
ASSERT(space_map_histogram_verify(sm, rt));
/*
* Transfer the content of the range tree histogram to the space
* map histogram. The space map histogram contains 32 buckets ranging
* between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
* however, can represent ranges from 2^0 to 2^63. Since the space
* map only cares about allocatable blocks (minimum of sm_shift) we
* can safely ignore all ranges in the range tree smaller than sm_shift.
*/
for (i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
/*
* Since the largest histogram bucket in the space map is
* 2^(32+sm_shift-1), we need to normalize the values in
* the range tree for any bucket larger than that size. For
* example given an sm_shift of 9, ranges larger than 2^40
* would get normalized as if they were 1TB ranges. Assume
* the range tree had a count of 5 in the 2^44 (16TB) bucket,
* the calculation below would normalize this to 5 * 2^4 (16).
*/
ASSERT3U(i, >=, idx + sm->sm_shift);
sm->sm_phys->smp_histogram[idx] +=
rt->rt_histogram[i] << (i - idx - sm->sm_shift);
/*
* Increment the space map's index as long as we haven't
* reached the maximum bucket size. Accumulate all ranges
* larger than the max bucket size into the last bucket.
*/
if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
ASSERT3U(idx + sm->sm_shift, ==, i);
idx++;
ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
}
}
}
uint64_t
space_map_entries(space_map_t *sm, range_tree_t *rt)
{
avl_tree_t *t = &rt->rt_root;
range_seg_t *rs;
uint64_t size, entries;
/*
* All space_maps always have a debug entry so account for it here.
*/
entries = 1;
/*
* Traverse the range tree and calculate the number of space map
* entries that would be required to write out the range tree.
*/
for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
entries += howmany(size, SM_RUN_MAX);
}
return (entries);
}
/*
* Note: space_map_write() will drop sm_lock across dmu_write() calls.
*/
void
space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
dmu_tx_t *tx)
{
objset_t *os = sm->sm_os;
spa_t *spa = dmu_objset_spa(os);
avl_tree_t *t = &rt->rt_root;
range_seg_t *rs;
uint64_t size, total, rt_space, nodes;
uint64_t *entry, *entry_map, *entry_map_end;
uint64_t expected_entries, actual_entries = 1;
ASSERT(MUTEX_HELD(rt->rt_lock));
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
VERIFY3U(space_map_object(sm), !=, 0);
dmu_buf_will_dirty(sm->sm_dbuf, tx);
/*
* This field is no longer necessary since the in-core space map
* now contains the object number but is maintained for backwards
* compatibility.
*/
sm->sm_phys->smp_object = sm->sm_object;
if (range_tree_space(rt) == 0) {
VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
return;
}
if (maptype == SM_ALLOC)
sm->sm_phys->smp_alloc += range_tree_space(rt);
else
sm->sm_phys->smp_alloc -= range_tree_space(rt);
expected_entries = space_map_entries(sm, rt);
entry_map = vmem_alloc(sm->sm_blksz, KM_SLEEP);
entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
entry = entry_map;
*entry++ = SM_DEBUG_ENCODE(1) |
SM_DEBUG_ACTION_ENCODE(maptype) |
SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
total = 0;
nodes = avl_numnodes(&rt->rt_root);
rt_space = range_tree_space(rt);
for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
uint64_t start;
size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
total += size << sm->sm_shift;
while (size != 0) {
uint64_t run_len;
run_len = MIN(size, SM_RUN_MAX);
if (entry == entry_map_end) {
mutex_exit(rt->rt_lock);
dmu_write(os, space_map_object(sm),
sm->sm_phys->smp_objsize, sm->sm_blksz,
entry_map, tx);
mutex_enter(rt->rt_lock);
sm->sm_phys->smp_objsize += sm->sm_blksz;
entry = entry_map;
}
*entry++ = SM_OFFSET_ENCODE(start) |
SM_TYPE_ENCODE(maptype) |
SM_RUN_ENCODE(run_len);
start += run_len;
size -= run_len;
actual_entries++;
}
}
if (entry != entry_map) {
size = (entry - entry_map) * sizeof (uint64_t);
mutex_exit(rt->rt_lock);
dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
size, entry_map, tx);
mutex_enter(rt->rt_lock);
sm->sm_phys->smp_objsize += size;
}
ASSERT3U(expected_entries, ==, actual_entries);
/*
* Ensure that the space_map's accounting wasn't changed
* while we were in the middle of writing it out.
*/
VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
VERIFY3U(range_tree_space(rt), ==, rt_space);
VERIFY3U(range_tree_space(rt), ==, total);
vmem_free(entry_map, sm->sm_blksz);
}
static int
space_map_open_impl(space_map_t *sm)
{
int error;
u_longlong_t blocks;
error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
if (error)
return (error);
dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
sm->sm_phys = sm->sm_dbuf->db_data;
return (0);
}
int
space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp)
{
space_map_t *sm;
int error;
ASSERT(*smp == NULL);
ASSERT(os != NULL);
ASSERT(object != 0);
sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);
sm->sm_start = start;
sm->sm_size = size;
sm->sm_shift = shift;
sm->sm_lock = lp;
sm->sm_os = os;
sm->sm_object = object;
sm->sm_length = 0;
sm->sm_alloc = 0;
sm->sm_blksz = 0;
sm->sm_dbuf = NULL;
sm->sm_phys = NULL;
error = space_map_open_impl(sm);
if (error != 0) {
space_map_close(sm);
return (error);
}
*smp = sm;
return (0);
}
void
space_map_close(space_map_t *sm)
{
if (sm == NULL)
return;
if (sm->sm_dbuf != NULL)
dmu_buf_rele(sm->sm_dbuf, sm);
sm->sm_dbuf = NULL;
sm->sm_phys = NULL;
kmem_free(sm, sizeof (*sm));
}
void
space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
{
objset_t *os = sm->sm_os;
spa_t *spa = dmu_objset_spa(os);
dmu_object_info_t doi;
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
ASSERT(dmu_tx_is_syncing(tx));
VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
dmu_object_info_from_db(sm->sm_dbuf, &doi);
/*
* If the space map has the wrong bonus size (because
* SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
* the wrong block size (because space_map_blksz has changed),
* free and re-allocate its object with the updated sizes.
*
* Otherwise, just truncate the current object.
*/
if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
doi.doi_data_block_size != space_map_blksz) {
zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
"object[%llu]: old bonus %u, old blocksz %u",
dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
doi.doi_bonus_size, doi.doi_data_block_size);
space_map_free(sm, tx);
dmu_buf_rele(sm->sm_dbuf, sm);
sm->sm_object = space_map_alloc(sm->sm_os, tx);
VERIFY0(space_map_open_impl(sm));
} else {
VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
/*
* If the spacemap is reallocated, its histogram
* will be reset. Do the same in the common case so that
* bugs related to the uncommon case do not go unnoticed.
*/
bzero(sm->sm_phys->smp_histogram,
sizeof (sm->sm_phys->smp_histogram));
}
dmu_buf_will_dirty(sm->sm_dbuf, tx);
sm->sm_phys->smp_objsize = 0;
sm->sm_phys->smp_alloc = 0;
}
/*
* Update the in-core space_map allocation and length values.
*/
void
space_map_update(space_map_t *sm)
{
if (sm == NULL)
return;
ASSERT(MUTEX_HELD(sm->sm_lock));
sm->sm_alloc = sm->sm_phys->smp_alloc;
sm->sm_length = sm->sm_phys->smp_objsize;
}
uint64_t
space_map_alloc(objset_t *os, dmu_tx_t *tx)
{
spa_t *spa = dmu_objset_spa(os);
uint64_t object;
int bonuslen;
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
bonuslen = sizeof (space_map_phys_t);
ASSERT3U(bonuslen, <=, dmu_bonus_max());
} else {
bonuslen = SPACE_MAP_SIZE_V0;
}
object = dmu_object_alloc(os,
DMU_OT_SPACE_MAP, space_map_blksz,
DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
return (object);
}
void
space_map_free(space_map_t *sm, dmu_tx_t *tx)
{
spa_t *spa;
if (sm == NULL)
return;
spa = dmu_objset_spa(sm->sm_os);
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
dmu_object_info_t doi;
dmu_object_info_from_db(sm->sm_dbuf, &doi);
if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
VERIFY(spa_feature_is_active(spa,
SPA_FEATURE_SPACEMAP_HISTOGRAM));
spa_feature_decr(spa,
SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
}
}
VERIFY3U(dmu_object_free(sm->sm_os, space_map_object(sm), tx), ==, 0);
sm->sm_object = 0;
}
uint64_t
space_map_object(space_map_t *sm)
{
return (sm != NULL ? sm->sm_object : 0);
}
/*
* Returns the already synced, on-disk allocated space.
*/
uint64_t
space_map_allocated(space_map_t *sm)
{
return (sm != NULL ? sm->sm_alloc : 0);
}
/*
* Returns the already synced, on-disk length;
*/
uint64_t
space_map_length(space_map_t *sm)
{
return (sm != NULL ? sm->sm_length : 0);
}
/*
* Returns the allocated space that is currently syncing.
*/
int64_t
space_map_alloc_delta(space_map_t *sm)
{
if (sm == NULL)
return (0);
ASSERT(sm->sm_dbuf != NULL);
return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
}