mirror_zfs/module/icp/asm-x86_64/modes/ghash-x86_64.S
Attila Fülöp 037e4f2536 x86 asm: Replace .align with .balign
The .align directive used to align storage locations is
ambiguous. On some platforms and assemblers it takes a byte count,
on others the argument is interpreted as a shift value. The current
usage expects the first interpretation.

Replace it with the unambiguous .balign directive which always
expects a byte count, regardless of platform and assembler.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes #14422
2023-01-24 09:04:39 -08:00

721 lines
20 KiB
ArmAsm

# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# March, June 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that
# it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
# function features so called "528B" variant utilizing additional
# 256+16 bytes of per-key storage [+512 bytes shared table].
# Performance results are for this streamed GHASH subroutine and are
# expressed in cycles per processed byte, less is better:
#
# gcc 3.4.x(*) assembler
#
# P4 28.6 14.0 +100%
# Opteron 19.3 7.7 +150%
# Core2 17.8 8.1(**) +120%
# Atom 31.6 16.8 +88%
# VIA Nano 21.8 10.1 +115%
#
# (*) comparison is not completely fair, because C results are
# for vanilla "256B" implementation, while assembler results
# are for "528B";-)
# (**) it's mystery [to me] why Core2 result is not same as for
# Opteron;
# May 2010
#
# Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
# See ghash-x86.pl for background information and details about coding
# techniques.
#
# Special thanks to David Woodhouse for providing access to a
# Westmere-based system on behalf of Intel Open Source Technology Centre.
# December 2012
#
# Overhaul: aggregate Karatsuba post-processing, improve ILP in
# reduction_alg9, increase reduction aggregate factor to 4x. As for
# the latter. ghash-x86.pl discusses that it makes lesser sense to
# increase aggregate factor. Then why increase here? Critical path
# consists of 3 independent pclmulqdq instructions, Karatsuba post-
# processing and reduction. "On top" of this we lay down aggregated
# multiplication operations, triplets of independent pclmulqdq's. As
# issue rate for pclmulqdq is limited, it makes lesser sense to
# aggregate more multiplications than it takes to perform remaining
# non-multiplication operations. 2x is near-optimal coefficient for
# contemporary Intel CPUs (therefore modest improvement coefficient),
# but not for Bulldozer. Latter is because logical SIMD operations
# are twice as slow in comparison to Intel, so that critical path is
# longer. A CPU with higher pclmulqdq issue rate would also benefit
# from higher aggregate factor...
#
# Westmere 1.78(+13%)
# Sandy Bridge 1.80(+8%)
# Ivy Bridge 1.80(+7%)
# Haswell 0.55(+93%) (if system doesn't support AVX)
# Broadwell 0.45(+110%)(if system doesn't support AVX)
# Skylake 0.44(+110%)(if system doesn't support AVX)
# Bulldozer 1.49(+27%)
# Silvermont 2.88(+13%)
# Knights L 2.12(-) (if system doesn't support AVX)
# Goldmont 1.08(+24%)
# March 2013
#
# ... 8x aggregate factor AVX code path is using reduction algorithm
# suggested by Shay Gueron[1]. Even though contemporary AVX-capable
# CPUs such as Sandy and Ivy Bridge can execute it, the code performs
# sub-optimally in comparison to above mentioned version. But thanks
# to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
# it performs in 0.41 cycles per byte on Haswell processor, in
# 0.29 on Broadwell, and in 0.36 on Skylake.
#
# Knights Landing achieves 1.09 cpb.
#
# [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
# Generated once from
# https://github.com/openssl/openssl/blob/5ffc3324/crypto/modes/asm/ghash-x86_64.pl
# and modified for ICP. Modification are kept at a bare minimum to ease later
# upstream merges.
#if defined(__x86_64__) && defined(HAVE_AVX) && \
defined(HAVE_AES) && defined(HAVE_PCLMULQDQ)
#define _ASM
#include <sys/asm_linkage.h>
.text
/* Windows userland links with OpenSSL */
#if !defined (_WIN32) || defined (_KERNEL)
ENTRY_ALIGN(gcm_gmult_clmul, 16)
.cfi_startproc
ENDBR
.L_gmult_clmul:
movdqu (%rdi),%xmm0
movdqa .Lbswap_mask(%rip),%xmm5
movdqu (%rsi),%xmm2
movdqu 32(%rsi),%xmm4
.byte 102,15,56,0,197
movdqa %xmm0,%xmm1
pshufd $78,%xmm0,%xmm3
pxor %xmm0,%xmm3
.byte 102,15,58,68,194,0
.byte 102,15,58,68,202,17
.byte 102,15,58,68,220,0
pxor %xmm0,%xmm3
pxor %xmm1,%xmm3
movdqa %xmm3,%xmm4
psrldq $8,%xmm3
pslldq $8,%xmm4
pxor %xmm3,%xmm1
pxor %xmm4,%xmm0
movdqa %xmm0,%xmm4
movdqa %xmm0,%xmm3
psllq $5,%xmm0
pxor %xmm0,%xmm3
psllq $1,%xmm0
pxor %xmm3,%xmm0
psllq $57,%xmm0
movdqa %xmm0,%xmm3
pslldq $8,%xmm0
psrldq $8,%xmm3
pxor %xmm4,%xmm0
pxor %xmm3,%xmm1
movdqa %xmm0,%xmm4
psrlq $1,%xmm0
pxor %xmm4,%xmm1
pxor %xmm0,%xmm4
psrlq $5,%xmm0
pxor %xmm4,%xmm0
psrlq $1,%xmm0
pxor %xmm1,%xmm0
.byte 102,15,56,0,197
movdqu %xmm0,(%rdi)
RET
.cfi_endproc
SET_SIZE(gcm_gmult_clmul)
#endif /* !_WIN32 || _KERNEL */
ENTRY_ALIGN(gcm_init_htab_avx, 32)
.cfi_startproc
ENDBR
vzeroupper
vmovdqu (%rsi),%xmm2
// KCF/ICP stores H in network byte order with the hi qword first
// so we need to swap all bytes, not the 2 qwords.
vmovdqu .Lbswap_mask(%rip),%xmm4
vpshufb %xmm4,%xmm2,%xmm2
vpshufd $255,%xmm2,%xmm4
vpsrlq $63,%xmm2,%xmm3
vpsllq $1,%xmm2,%xmm2
vpxor %xmm5,%xmm5,%xmm5
vpcmpgtd %xmm4,%xmm5,%xmm5
vpslldq $8,%xmm3,%xmm3
vpor %xmm3,%xmm2,%xmm2
vpand .L0x1c2_polynomial(%rip),%xmm5,%xmm5
vpxor %xmm5,%xmm2,%xmm2
vpunpckhqdq %xmm2,%xmm2,%xmm6
vmovdqa %xmm2,%xmm0
vpxor %xmm2,%xmm6,%xmm6
movq $4,%r10
jmp .Linit_start_avx
.balign 32
.Linit_loop_avx:
vpalignr $8,%xmm3,%xmm4,%xmm5
vmovdqu %xmm5,-16(%rdi)
vpunpckhqdq %xmm0,%xmm0,%xmm3
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x11,%xmm2,%xmm0,%xmm1
vpclmulqdq $0x00,%xmm2,%xmm0,%xmm0
vpclmulqdq $0x00,%xmm6,%xmm3,%xmm3
vpxor %xmm0,%xmm1,%xmm4
vpxor %xmm4,%xmm3,%xmm3
vpslldq $8,%xmm3,%xmm4
vpsrldq $8,%xmm3,%xmm3
vpxor %xmm4,%xmm0,%xmm0
vpxor %xmm3,%xmm1,%xmm1
vpsllq $57,%xmm0,%xmm3
vpsllq $62,%xmm0,%xmm4
vpxor %xmm3,%xmm4,%xmm4
vpsllq $63,%xmm0,%xmm3
vpxor %xmm3,%xmm4,%xmm4
vpslldq $8,%xmm4,%xmm3
vpsrldq $8,%xmm4,%xmm4
vpxor %xmm3,%xmm0,%xmm0
vpxor %xmm4,%xmm1,%xmm1
vpsrlq $1,%xmm0,%xmm4
vpxor %xmm0,%xmm1,%xmm1
vpxor %xmm4,%xmm0,%xmm0
vpsrlq $5,%xmm4,%xmm4
vpxor %xmm4,%xmm0,%xmm0
vpsrlq $1,%xmm0,%xmm0
vpxor %xmm1,%xmm0,%xmm0
.Linit_start_avx:
vmovdqa %xmm0,%xmm5
vpunpckhqdq %xmm0,%xmm0,%xmm3
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x11,%xmm2,%xmm0,%xmm1
vpclmulqdq $0x00,%xmm2,%xmm0,%xmm0
vpclmulqdq $0x00,%xmm6,%xmm3,%xmm3
vpxor %xmm0,%xmm1,%xmm4
vpxor %xmm4,%xmm3,%xmm3
vpslldq $8,%xmm3,%xmm4
vpsrldq $8,%xmm3,%xmm3
vpxor %xmm4,%xmm0,%xmm0
vpxor %xmm3,%xmm1,%xmm1
vpsllq $57,%xmm0,%xmm3
vpsllq $62,%xmm0,%xmm4
vpxor %xmm3,%xmm4,%xmm4
vpsllq $63,%xmm0,%xmm3
vpxor %xmm3,%xmm4,%xmm4
vpslldq $8,%xmm4,%xmm3
vpsrldq $8,%xmm4,%xmm4
vpxor %xmm3,%xmm0,%xmm0
vpxor %xmm4,%xmm1,%xmm1
vpsrlq $1,%xmm0,%xmm4
vpxor %xmm0,%xmm1,%xmm1
vpxor %xmm4,%xmm0,%xmm0
vpsrlq $5,%xmm4,%xmm4
vpxor %xmm4,%xmm0,%xmm0
vpsrlq $1,%xmm0,%xmm0
vpxor %xmm1,%xmm0,%xmm0
vpshufd $78,%xmm5,%xmm3
vpshufd $78,%xmm0,%xmm4
vpxor %xmm5,%xmm3,%xmm3
vmovdqu %xmm5,0(%rdi)
vpxor %xmm0,%xmm4,%xmm4
vmovdqu %xmm0,16(%rdi)
leaq 48(%rdi),%rdi
subq $1,%r10
jnz .Linit_loop_avx
vpalignr $8,%xmm4,%xmm3,%xmm5
vmovdqu %xmm5,-16(%rdi)
vzeroupper
RET
.cfi_endproc
SET_SIZE(gcm_init_htab_avx)
#if !defined (_WIN32) || defined (_KERNEL)
ENTRY_ALIGN(gcm_gmult_avx, 32)
.cfi_startproc
ENDBR
jmp .L_gmult_clmul
.cfi_endproc
SET_SIZE(gcm_gmult_avx)
ENTRY_ALIGN(gcm_ghash_avx, 32)
.cfi_startproc
ENDBR
vzeroupper
vmovdqu (%rdi),%xmm10
leaq .L0x1c2_polynomial(%rip),%r10
leaq 64(%rsi),%rsi
vmovdqu .Lbswap_mask(%rip),%xmm13
vpshufb %xmm13,%xmm10,%xmm10
cmpq $0x80,%rcx
jb .Lshort_avx
subq $0x80,%rcx
vmovdqu 112(%rdx),%xmm14
vmovdqu 0-64(%rsi),%xmm6
vpshufb %xmm13,%xmm14,%xmm14
vmovdqu 32-64(%rsi),%xmm7
vpunpckhqdq %xmm14,%xmm14,%xmm9
vmovdqu 96(%rdx),%xmm15
vpclmulqdq $0x00,%xmm6,%xmm14,%xmm0
vpxor %xmm14,%xmm9,%xmm9
vpshufb %xmm13,%xmm15,%xmm15
vpclmulqdq $0x11,%xmm6,%xmm14,%xmm1
vmovdqu 16-64(%rsi),%xmm6
vpunpckhqdq %xmm15,%xmm15,%xmm8
vmovdqu 80(%rdx),%xmm14
vpclmulqdq $0x00,%xmm7,%xmm9,%xmm2
vpxor %xmm15,%xmm8,%xmm8
vpshufb %xmm13,%xmm14,%xmm14
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm3
vpunpckhqdq %xmm14,%xmm14,%xmm9
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm4
vmovdqu 48-64(%rsi),%xmm6
vpxor %xmm14,%xmm9,%xmm9
vmovdqu 64(%rdx),%xmm15
vpclmulqdq $0x10,%xmm7,%xmm8,%xmm5
vmovdqu 80-64(%rsi),%xmm7
vpshufb %xmm13,%xmm15,%xmm15
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x00,%xmm6,%xmm14,%xmm0
vpxor %xmm1,%xmm4,%xmm4
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpclmulqdq $0x11,%xmm6,%xmm14,%xmm1
vmovdqu 64-64(%rsi),%xmm6
vpxor %xmm2,%xmm5,%xmm5
vpclmulqdq $0x00,%xmm7,%xmm9,%xmm2
vpxor %xmm15,%xmm8,%xmm8
vmovdqu 48(%rdx),%xmm14
vpxor %xmm3,%xmm0,%xmm0
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm3
vpxor %xmm4,%xmm1,%xmm1
vpshufb %xmm13,%xmm14,%xmm14
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm4
vmovdqu 96-64(%rsi),%xmm6
vpxor %xmm5,%xmm2,%xmm2
vpunpckhqdq %xmm14,%xmm14,%xmm9
vpclmulqdq $0x10,%xmm7,%xmm8,%xmm5
vmovdqu 128-64(%rsi),%xmm7
vpxor %xmm14,%xmm9,%xmm9
vmovdqu 32(%rdx),%xmm15
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x00,%xmm6,%xmm14,%xmm0
vpxor %xmm1,%xmm4,%xmm4
vpshufb %xmm13,%xmm15,%xmm15
vpclmulqdq $0x11,%xmm6,%xmm14,%xmm1
vmovdqu 112-64(%rsi),%xmm6
vpxor %xmm2,%xmm5,%xmm5
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpclmulqdq $0x00,%xmm7,%xmm9,%xmm2
vpxor %xmm15,%xmm8,%xmm8
vmovdqu 16(%rdx),%xmm14
vpxor %xmm3,%xmm0,%xmm0
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm3
vpxor %xmm4,%xmm1,%xmm1
vpshufb %xmm13,%xmm14,%xmm14
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm4
vmovdqu 144-64(%rsi),%xmm6
vpxor %xmm5,%xmm2,%xmm2
vpunpckhqdq %xmm14,%xmm14,%xmm9
vpclmulqdq $0x10,%xmm7,%xmm8,%xmm5
vmovdqu 176-64(%rsi),%xmm7
vpxor %xmm14,%xmm9,%xmm9
vmovdqu (%rdx),%xmm15
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x00,%xmm6,%xmm14,%xmm0
vpxor %xmm1,%xmm4,%xmm4
vpshufb %xmm13,%xmm15,%xmm15
vpclmulqdq $0x11,%xmm6,%xmm14,%xmm1
vmovdqu 160-64(%rsi),%xmm6
vpxor %xmm2,%xmm5,%xmm5
vpclmulqdq $0x10,%xmm7,%xmm9,%xmm2
leaq 128(%rdx),%rdx
cmpq $0x80,%rcx
jb .Ltail_avx
vpxor %xmm10,%xmm15,%xmm15
subq $0x80,%rcx
jmp .Loop8x_avx
.balign 32
.Loop8x_avx:
vpunpckhqdq %xmm15,%xmm15,%xmm8
vmovdqu 112(%rdx),%xmm14
vpxor %xmm0,%xmm3,%xmm3
vpxor %xmm15,%xmm8,%xmm8
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm10
vpshufb %xmm13,%xmm14,%xmm14
vpxor %xmm1,%xmm4,%xmm4
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm11
vmovdqu 0-64(%rsi),%xmm6
vpunpckhqdq %xmm14,%xmm14,%xmm9
vpxor %xmm2,%xmm5,%xmm5
vpclmulqdq $0x00,%xmm7,%xmm8,%xmm12
vmovdqu 32-64(%rsi),%xmm7
vpxor %xmm14,%xmm9,%xmm9
vmovdqu 96(%rdx),%xmm15
vpclmulqdq $0x00,%xmm6,%xmm14,%xmm0
vpxor %xmm3,%xmm10,%xmm10
vpshufb %xmm13,%xmm15,%xmm15
vpclmulqdq $0x11,%xmm6,%xmm14,%xmm1
vxorps %xmm4,%xmm11,%xmm11
vmovdqu 16-64(%rsi),%xmm6
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpclmulqdq $0x00,%xmm7,%xmm9,%xmm2
vpxor %xmm5,%xmm12,%xmm12
vxorps %xmm15,%xmm8,%xmm8
vmovdqu 80(%rdx),%xmm14
vpxor %xmm10,%xmm12,%xmm12
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm3
vpxor %xmm11,%xmm12,%xmm12
vpslldq $8,%xmm12,%xmm9
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm4
vpsrldq $8,%xmm12,%xmm12
vpxor %xmm9,%xmm10,%xmm10
vmovdqu 48-64(%rsi),%xmm6
vpshufb %xmm13,%xmm14,%xmm14
vxorps %xmm12,%xmm11,%xmm11
vpxor %xmm1,%xmm4,%xmm4
vpunpckhqdq %xmm14,%xmm14,%xmm9
vpclmulqdq $0x10,%xmm7,%xmm8,%xmm5
vmovdqu 80-64(%rsi),%xmm7
vpxor %xmm14,%xmm9,%xmm9
vpxor %xmm2,%xmm5,%xmm5
vmovdqu 64(%rdx),%xmm15
vpalignr $8,%xmm10,%xmm10,%xmm12
vpclmulqdq $0x00,%xmm6,%xmm14,%xmm0
vpshufb %xmm13,%xmm15,%xmm15
vpxor %xmm3,%xmm0,%xmm0
vpclmulqdq $0x11,%xmm6,%xmm14,%xmm1
vmovdqu 64-64(%rsi),%xmm6
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpxor %xmm4,%xmm1,%xmm1
vpclmulqdq $0x00,%xmm7,%xmm9,%xmm2
vxorps %xmm15,%xmm8,%xmm8
vpxor %xmm5,%xmm2,%xmm2
vmovdqu 48(%rdx),%xmm14
vpclmulqdq $0x10,(%r10),%xmm10,%xmm10
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm3
vpshufb %xmm13,%xmm14,%xmm14
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm4
vmovdqu 96-64(%rsi),%xmm6
vpunpckhqdq %xmm14,%xmm14,%xmm9
vpxor %xmm1,%xmm4,%xmm4
vpclmulqdq $0x10,%xmm7,%xmm8,%xmm5
vmovdqu 128-64(%rsi),%xmm7
vpxor %xmm14,%xmm9,%xmm9
vpxor %xmm2,%xmm5,%xmm5
vmovdqu 32(%rdx),%xmm15
vpclmulqdq $0x00,%xmm6,%xmm14,%xmm0
vpshufb %xmm13,%xmm15,%xmm15
vpxor %xmm3,%xmm0,%xmm0
vpclmulqdq $0x11,%xmm6,%xmm14,%xmm1
vmovdqu 112-64(%rsi),%xmm6
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpxor %xmm4,%xmm1,%xmm1
vpclmulqdq $0x00,%xmm7,%xmm9,%xmm2
vpxor %xmm15,%xmm8,%xmm8
vpxor %xmm5,%xmm2,%xmm2
vxorps %xmm12,%xmm10,%xmm10
vmovdqu 16(%rdx),%xmm14
vpalignr $8,%xmm10,%xmm10,%xmm12
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm3
vpshufb %xmm13,%xmm14,%xmm14
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm4
vmovdqu 144-64(%rsi),%xmm6
vpclmulqdq $0x10,(%r10),%xmm10,%xmm10
vxorps %xmm11,%xmm12,%xmm12
vpunpckhqdq %xmm14,%xmm14,%xmm9
vpxor %xmm1,%xmm4,%xmm4
vpclmulqdq $0x10,%xmm7,%xmm8,%xmm5
vmovdqu 176-64(%rsi),%xmm7
vpxor %xmm14,%xmm9,%xmm9
vpxor %xmm2,%xmm5,%xmm5
vmovdqu (%rdx),%xmm15
vpclmulqdq $0x00,%xmm6,%xmm14,%xmm0
vpshufb %xmm13,%xmm15,%xmm15
vpclmulqdq $0x11,%xmm6,%xmm14,%xmm1
vmovdqu 160-64(%rsi),%xmm6
vpxor %xmm12,%xmm15,%xmm15
vpclmulqdq $0x10,%xmm7,%xmm9,%xmm2
vpxor %xmm10,%xmm15,%xmm15
leaq 128(%rdx),%rdx
subq $0x80,%rcx
jnc .Loop8x_avx
addq $0x80,%rcx
jmp .Ltail_no_xor_avx
.balign 32
.Lshort_avx:
vmovdqu -16(%rdx,%rcx,1),%xmm14
leaq (%rdx,%rcx,1),%rdx
vmovdqu 0-64(%rsi),%xmm6
vmovdqu 32-64(%rsi),%xmm7
vpshufb %xmm13,%xmm14,%xmm15
vmovdqa %xmm0,%xmm3
vmovdqa %xmm1,%xmm4
vmovdqa %xmm2,%xmm5
subq $0x10,%rcx
jz .Ltail_avx
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm0
vpxor %xmm15,%xmm8,%xmm8
vmovdqu -32(%rdx),%xmm14
vpxor %xmm1,%xmm4,%xmm4
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm1
vmovdqu 16-64(%rsi),%xmm6
vpshufb %xmm13,%xmm14,%xmm15
vpxor %xmm2,%xmm5,%xmm5
vpclmulqdq $0x00,%xmm7,%xmm8,%xmm2
vpsrldq $8,%xmm7,%xmm7
subq $0x10,%rcx
jz .Ltail_avx
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm0
vpxor %xmm15,%xmm8,%xmm8
vmovdqu -48(%rdx),%xmm14
vpxor %xmm1,%xmm4,%xmm4
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm1
vmovdqu 48-64(%rsi),%xmm6
vpshufb %xmm13,%xmm14,%xmm15
vpxor %xmm2,%xmm5,%xmm5
vpclmulqdq $0x00,%xmm7,%xmm8,%xmm2
vmovdqu 80-64(%rsi),%xmm7
subq $0x10,%rcx
jz .Ltail_avx
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm0
vpxor %xmm15,%xmm8,%xmm8
vmovdqu -64(%rdx),%xmm14
vpxor %xmm1,%xmm4,%xmm4
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm1
vmovdqu 64-64(%rsi),%xmm6
vpshufb %xmm13,%xmm14,%xmm15
vpxor %xmm2,%xmm5,%xmm5
vpclmulqdq $0x00,%xmm7,%xmm8,%xmm2
vpsrldq $8,%xmm7,%xmm7
subq $0x10,%rcx
jz .Ltail_avx
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm0
vpxor %xmm15,%xmm8,%xmm8
vmovdqu -80(%rdx),%xmm14
vpxor %xmm1,%xmm4,%xmm4
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm1
vmovdqu 96-64(%rsi),%xmm6
vpshufb %xmm13,%xmm14,%xmm15
vpxor %xmm2,%xmm5,%xmm5
vpclmulqdq $0x00,%xmm7,%xmm8,%xmm2
vmovdqu 128-64(%rsi),%xmm7
subq $0x10,%rcx
jz .Ltail_avx
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm0
vpxor %xmm15,%xmm8,%xmm8
vmovdqu -96(%rdx),%xmm14
vpxor %xmm1,%xmm4,%xmm4
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm1
vmovdqu 112-64(%rsi),%xmm6
vpshufb %xmm13,%xmm14,%xmm15
vpxor %xmm2,%xmm5,%xmm5
vpclmulqdq $0x00,%xmm7,%xmm8,%xmm2
vpsrldq $8,%xmm7,%xmm7
subq $0x10,%rcx
jz .Ltail_avx
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm0
vpxor %xmm15,%xmm8,%xmm8
vmovdqu -112(%rdx),%xmm14
vpxor %xmm1,%xmm4,%xmm4
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm1
vmovdqu 144-64(%rsi),%xmm6
vpshufb %xmm13,%xmm14,%xmm15
vpxor %xmm2,%xmm5,%xmm5
vpclmulqdq $0x00,%xmm7,%xmm8,%xmm2
vmovq 184-64(%rsi),%xmm7
subq $0x10,%rcx
jmp .Ltail_avx
.balign 32
.Ltail_avx:
vpxor %xmm10,%xmm15,%xmm15
.Ltail_no_xor_avx:
vpunpckhqdq %xmm15,%xmm15,%xmm8
vpxor %xmm0,%xmm3,%xmm3
vpclmulqdq $0x00,%xmm6,%xmm15,%xmm0
vpxor %xmm15,%xmm8,%xmm8
vpxor %xmm1,%xmm4,%xmm4
vpclmulqdq $0x11,%xmm6,%xmm15,%xmm1
vpxor %xmm2,%xmm5,%xmm5
vpclmulqdq $0x00,%xmm7,%xmm8,%xmm2
vmovdqu (%r10),%xmm12
vpxor %xmm0,%xmm3,%xmm10
vpxor %xmm1,%xmm4,%xmm11
vpxor %xmm2,%xmm5,%xmm5
vpxor %xmm10,%xmm5,%xmm5
vpxor %xmm11,%xmm5,%xmm5
vpslldq $8,%xmm5,%xmm9
vpsrldq $8,%xmm5,%xmm5
vpxor %xmm9,%xmm10,%xmm10
vpxor %xmm5,%xmm11,%xmm11
vpclmulqdq $0x10,%xmm12,%xmm10,%xmm9
vpalignr $8,%xmm10,%xmm10,%xmm10
vpxor %xmm9,%xmm10,%xmm10
vpclmulqdq $0x10,%xmm12,%xmm10,%xmm9
vpalignr $8,%xmm10,%xmm10,%xmm10
vpxor %xmm11,%xmm10,%xmm10
vpxor %xmm9,%xmm10,%xmm10
cmpq $0,%rcx
jne .Lshort_avx
vpshufb %xmm13,%xmm10,%xmm10
vmovdqu %xmm10,(%rdi)
vzeroupper
RET
.cfi_endproc
SET_SIZE(gcm_ghash_avx)
#endif /* !_WIN32 || _KERNEL */
SECTION_STATIC
.balign 64
.Lbswap_mask:
.byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
.L0x1c2_polynomial:
.byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
.L7_mask:
.long 7,0,7,0
.L7_mask_poly:
.long 7,0,450,0
.balign 64
SET_OBJ(.Lrem_4bit)
.Lrem_4bit:
.long 0,0,0,471859200,0,943718400,0,610271232
.long 0,1887436800,0,1822425088,0,1220542464,0,1423966208
.long 0,3774873600,0,4246732800,0,3644850176,0,3311403008
.long 0,2441084928,0,2376073216,0,2847932416,0,3051356160
SET_OBJ(.Lrem_8bit)
.Lrem_8bit:
.value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
.value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
.value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
.value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
.value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
.value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
.value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
.value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
.value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
.value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
.value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
.value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
.value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
.value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
.value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
.value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
.value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
.value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
.value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
.value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
.value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
.value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
.value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
.value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
.value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
.value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
.value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
.value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
.value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
.value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
.value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
.value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
.byte 71,72,65,83,72,32,102,111,114,32,120,56,54,95,54,52,44,32,67,82,89,80,84,79,71,65,77,83,32,98,121,32,60,97,112,112,114,111,64,111,112,101,110,115,115,108,46,111,114,103,62,0
.balign 64
/* Mark the stack non-executable. */
#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif
#endif /* defined(__x86_64__) && defined(HAVE_AVX) && defined(HAVE_AES) ... */