mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-23 08:26:34 +03:00
9e63631dea
When after #16022 adding new range we aggregate more than two existing ranges, that should be very rare, only if several streams overlap, we may need to zero not the last range, but some earlier. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored by: iXsystems, Inc. Closes #16072
774 lines
23 KiB
C
774 lines
23 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2013, 2017 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/arc_impl.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_zfetch.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/kstat.h>
|
|
#include <sys/wmsum.h>
|
|
|
|
/*
|
|
* This tunable disables predictive prefetch. Note that it leaves "prescient"
|
|
* prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
|
|
* prescient prefetch never issues i/os that end up not being needed,
|
|
* so it can't hurt performance.
|
|
*/
|
|
|
|
static int zfs_prefetch_disable = B_FALSE;
|
|
|
|
/* max # of streams per zfetch */
|
|
static unsigned int zfetch_max_streams = 8;
|
|
/* min time before stream reclaim */
|
|
static unsigned int zfetch_min_sec_reap = 1;
|
|
/* max time before stream delete */
|
|
static unsigned int zfetch_max_sec_reap = 2;
|
|
#ifdef _ILP32
|
|
/* min bytes to prefetch per stream (default 2MB) */
|
|
static unsigned int zfetch_min_distance = 2 * 1024 * 1024;
|
|
/* max bytes to prefetch per stream (default 8MB) */
|
|
unsigned int zfetch_max_distance = 8 * 1024 * 1024;
|
|
#else
|
|
/* min bytes to prefetch per stream (default 4MB) */
|
|
static unsigned int zfetch_min_distance = 4 * 1024 * 1024;
|
|
/* max bytes to prefetch per stream (default 64MB) */
|
|
unsigned int zfetch_max_distance = 64 * 1024 * 1024;
|
|
#endif
|
|
/* max bytes to prefetch indirects for per stream (default 64MB) */
|
|
unsigned int zfetch_max_idistance = 64 * 1024 * 1024;
|
|
/* max request reorder distance within a stream (default 16MB) */
|
|
unsigned int zfetch_max_reorder = 16 * 1024 * 1024;
|
|
/* Max log2 fraction of holes in a stream */
|
|
unsigned int zfetch_hole_shift = 2;
|
|
|
|
typedef struct zfetch_stats {
|
|
kstat_named_t zfetchstat_hits;
|
|
kstat_named_t zfetchstat_future;
|
|
kstat_named_t zfetchstat_stride;
|
|
kstat_named_t zfetchstat_past;
|
|
kstat_named_t zfetchstat_misses;
|
|
kstat_named_t zfetchstat_max_streams;
|
|
kstat_named_t zfetchstat_io_issued;
|
|
kstat_named_t zfetchstat_io_active;
|
|
} zfetch_stats_t;
|
|
|
|
static zfetch_stats_t zfetch_stats = {
|
|
{ "hits", KSTAT_DATA_UINT64 },
|
|
{ "future", KSTAT_DATA_UINT64 },
|
|
{ "stride", KSTAT_DATA_UINT64 },
|
|
{ "past", KSTAT_DATA_UINT64 },
|
|
{ "misses", KSTAT_DATA_UINT64 },
|
|
{ "max_streams", KSTAT_DATA_UINT64 },
|
|
{ "io_issued", KSTAT_DATA_UINT64 },
|
|
{ "io_active", KSTAT_DATA_UINT64 },
|
|
};
|
|
|
|
struct {
|
|
wmsum_t zfetchstat_hits;
|
|
wmsum_t zfetchstat_future;
|
|
wmsum_t zfetchstat_stride;
|
|
wmsum_t zfetchstat_past;
|
|
wmsum_t zfetchstat_misses;
|
|
wmsum_t zfetchstat_max_streams;
|
|
wmsum_t zfetchstat_io_issued;
|
|
aggsum_t zfetchstat_io_active;
|
|
} zfetch_sums;
|
|
|
|
#define ZFETCHSTAT_BUMP(stat) \
|
|
wmsum_add(&zfetch_sums.stat, 1)
|
|
#define ZFETCHSTAT_ADD(stat, val) \
|
|
wmsum_add(&zfetch_sums.stat, val)
|
|
|
|
|
|
static kstat_t *zfetch_ksp;
|
|
|
|
static int
|
|
zfetch_kstats_update(kstat_t *ksp, int rw)
|
|
{
|
|
zfetch_stats_t *zs = ksp->ks_data;
|
|
|
|
if (rw == KSTAT_WRITE)
|
|
return (EACCES);
|
|
zs->zfetchstat_hits.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_hits);
|
|
zs->zfetchstat_future.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_future);
|
|
zs->zfetchstat_stride.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_stride);
|
|
zs->zfetchstat_past.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_past);
|
|
zs->zfetchstat_misses.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_misses);
|
|
zs->zfetchstat_max_streams.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_max_streams);
|
|
zs->zfetchstat_io_issued.value.ui64 =
|
|
wmsum_value(&zfetch_sums.zfetchstat_io_issued);
|
|
zs->zfetchstat_io_active.value.ui64 =
|
|
aggsum_value(&zfetch_sums.zfetchstat_io_active);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zfetch_init(void)
|
|
{
|
|
wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_future, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_stride, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_past, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
|
|
wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
|
|
aggsum_init(&zfetch_sums.zfetchstat_io_active, 0);
|
|
|
|
zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
|
|
KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
|
|
if (zfetch_ksp != NULL) {
|
|
zfetch_ksp->ks_data = &zfetch_stats;
|
|
zfetch_ksp->ks_update = zfetch_kstats_update;
|
|
kstat_install(zfetch_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
zfetch_fini(void)
|
|
{
|
|
if (zfetch_ksp != NULL) {
|
|
kstat_delete(zfetch_ksp);
|
|
zfetch_ksp = NULL;
|
|
}
|
|
|
|
wmsum_fini(&zfetch_sums.zfetchstat_hits);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_future);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_stride);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_past);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_misses);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
|
|
wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
|
|
ASSERT0(aggsum_value(&zfetch_sums.zfetchstat_io_active));
|
|
aggsum_fini(&zfetch_sums.zfetchstat_io_active);
|
|
}
|
|
|
|
/*
|
|
* This takes a pointer to a zfetch structure and a dnode. It performs the
|
|
* necessary setup for the zfetch structure, grokking data from the
|
|
* associated dnode.
|
|
*/
|
|
void
|
|
dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
|
|
{
|
|
if (zf == NULL)
|
|
return;
|
|
zf->zf_dnode = dno;
|
|
zf->zf_numstreams = 0;
|
|
|
|
list_create(&zf->zf_stream, sizeof (zstream_t),
|
|
offsetof(zstream_t, zs_node));
|
|
|
|
mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_stream_fini(zstream_t *zs)
|
|
{
|
|
ASSERT(!list_link_active(&zs->zs_node));
|
|
zfs_refcount_destroy(&zs->zs_callers);
|
|
zfs_refcount_destroy(&zs->zs_refs);
|
|
kmem_free(zs, sizeof (*zs));
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zf->zf_lock));
|
|
list_remove(&zf->zf_stream, zs);
|
|
zf->zf_numstreams--;
|
|
membar_producer();
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
}
|
|
|
|
/*
|
|
* Clean-up state associated with a zfetch structure (e.g. destroy the
|
|
* streams). This doesn't free the zfetch_t itself, that's left to the caller.
|
|
*/
|
|
void
|
|
dmu_zfetch_fini(zfetch_t *zf)
|
|
{
|
|
zstream_t *zs;
|
|
|
|
mutex_enter(&zf->zf_lock);
|
|
while ((zs = list_head(&zf->zf_stream)) != NULL)
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
mutex_exit(&zf->zf_lock);
|
|
list_destroy(&zf->zf_stream);
|
|
mutex_destroy(&zf->zf_lock);
|
|
|
|
zf->zf_dnode = NULL;
|
|
}
|
|
|
|
/*
|
|
* If there aren't too many active streams already, create one more.
|
|
* In process delete/reuse all streams without hits for zfetch_max_sec_reap.
|
|
* If needed, reuse oldest stream without hits for zfetch_min_sec_reap or ever.
|
|
* The "blkid" argument is the next block that we expect this stream to access.
|
|
*/
|
|
static void
|
|
dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
|
|
{
|
|
zstream_t *zs, *zs_next, *zs_old = NULL;
|
|
uint_t now = gethrestime_sec(), t;
|
|
|
|
ASSERT(MUTEX_HELD(&zf->zf_lock));
|
|
|
|
/*
|
|
* Delete too old streams, reusing the first found one.
|
|
*/
|
|
t = now - zfetch_max_sec_reap;
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL; zs = zs_next) {
|
|
zs_next = list_next(&zf->zf_stream, zs);
|
|
/*
|
|
* Skip if still active. 1 -- zf_stream reference.
|
|
*/
|
|
if ((int)(zs->zs_atime - t) >= 0)
|
|
continue;
|
|
if (zfs_refcount_count(&zs->zs_refs) != 1)
|
|
continue;
|
|
if (zs_old)
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
else
|
|
zs_old = zs;
|
|
}
|
|
if (zs_old) {
|
|
zs = zs_old;
|
|
list_remove(&zf->zf_stream, zs);
|
|
goto reuse;
|
|
}
|
|
|
|
/*
|
|
* The maximum number of streams is normally zfetch_max_streams,
|
|
* but for small files we lower it such that it's at least possible
|
|
* for all the streams to be non-overlapping.
|
|
*/
|
|
uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
|
|
(zf->zf_dnode->dn_maxblkid << zf->zf_dnode->dn_datablkshift) /
|
|
zfetch_max_distance));
|
|
if (zf->zf_numstreams >= max_streams) {
|
|
t = now - zfetch_min_sec_reap;
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL;
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
|
if ((int)(zs->zs_atime - t) >= 0)
|
|
continue;
|
|
if (zfs_refcount_count(&zs->zs_refs) != 1)
|
|
continue;
|
|
if (zs_old == NULL ||
|
|
(int)(zs_old->zs_atime - zs->zs_atime) >= 0)
|
|
zs_old = zs;
|
|
}
|
|
if (zs_old) {
|
|
zs = zs_old;
|
|
list_remove(&zf->zf_stream, zs);
|
|
goto reuse;
|
|
}
|
|
ZFETCHSTAT_BUMP(zfetchstat_max_streams);
|
|
return;
|
|
}
|
|
|
|
zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
|
|
zfs_refcount_create(&zs->zs_callers);
|
|
zfs_refcount_create(&zs->zs_refs);
|
|
/* One reference for zf_stream. */
|
|
zfs_refcount_add(&zs->zs_refs, NULL);
|
|
zf->zf_numstreams++;
|
|
|
|
reuse:
|
|
list_insert_head(&zf->zf_stream, zs);
|
|
zs->zs_blkid = blkid;
|
|
/* Allow immediate stream reuse until first hit. */
|
|
zs->zs_atime = now - zfetch_min_sec_reap;
|
|
memset(zs->zs_ranges, 0, sizeof (zs->zs_ranges));
|
|
zs->zs_pf_dist = 0;
|
|
zs->zs_ipf_dist = 0;
|
|
zs->zs_pf_start = blkid;
|
|
zs->zs_pf_end = blkid;
|
|
zs->zs_ipf_start = blkid;
|
|
zs->zs_ipf_end = blkid;
|
|
zs->zs_missed = B_FALSE;
|
|
zs->zs_more = B_FALSE;
|
|
}
|
|
|
|
static void
|
|
dmu_zfetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t io_issued)
|
|
{
|
|
zstream_t *zs = arg;
|
|
|
|
if (io_issued && level == 0 && blkid < zs->zs_blkid)
|
|
zs->zs_more = B_TRUE;
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
aggsum_add(&zfetch_sums.zfetchstat_io_active, -1);
|
|
}
|
|
|
|
/*
|
|
* Process stream hit access for nblks blocks starting at zs_blkid. Return
|
|
* number of blocks to proceed for after aggregation with future ranges.
|
|
*/
|
|
static uint64_t
|
|
dmu_zfetch_hit(zstream_t *zs, uint64_t nblks)
|
|
{
|
|
uint_t i, j;
|
|
|
|
/* Optimize sequential accesses (no future ranges). */
|
|
if (zs->zs_ranges[0].start == 0)
|
|
goto done;
|
|
|
|
/* Look for intersections with further ranges. */
|
|
for (i = 0; i < ZFETCH_RANGES; i++) {
|
|
zsrange_t *r = &zs->zs_ranges[i];
|
|
if (r->start == 0 || r->start > nblks)
|
|
break;
|
|
if (r->end >= nblks) {
|
|
nblks = r->end;
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Delete all found intersecting ranges, updates remaining. */
|
|
for (j = 0; i < ZFETCH_RANGES; i++, j++) {
|
|
if (zs->zs_ranges[i].start == 0)
|
|
break;
|
|
ASSERT3U(zs->zs_ranges[i].start, >, nblks);
|
|
ASSERT3U(zs->zs_ranges[i].end, >, nblks);
|
|
zs->zs_ranges[j].start = zs->zs_ranges[i].start - nblks;
|
|
zs->zs_ranges[j].end = zs->zs_ranges[i].end - nblks;
|
|
}
|
|
if (j < ZFETCH_RANGES) {
|
|
zs->zs_ranges[j].start = 0;
|
|
zs->zs_ranges[j].end = 0;
|
|
}
|
|
|
|
done:
|
|
zs->zs_blkid += nblks;
|
|
return (nblks);
|
|
}
|
|
|
|
/*
|
|
* Process future stream access for nblks blocks starting at blkid. Return
|
|
* number of blocks to proceed for if future ranges reach fill threshold.
|
|
*/
|
|
static uint64_t
|
|
dmu_zfetch_future(zstream_t *zs, uint64_t blkid, uint64_t nblks)
|
|
{
|
|
ASSERT3U(blkid, >, zs->zs_blkid);
|
|
blkid -= zs->zs_blkid;
|
|
ASSERT3U(blkid + nblks, <=, UINT16_MAX);
|
|
|
|
/* Search for first and last intersection or insert point. */
|
|
uint_t f = ZFETCH_RANGES, l = 0, i;
|
|
for (i = 0; i < ZFETCH_RANGES; i++) {
|
|
zsrange_t *r = &zs->zs_ranges[i];
|
|
if (r->start == 0 || r->start > blkid + nblks)
|
|
break;
|
|
if (r->end < blkid)
|
|
continue;
|
|
if (f > i)
|
|
f = i;
|
|
if (l < i)
|
|
l = i;
|
|
}
|
|
if (f <= l) {
|
|
/* Got some intersecting range, expand it if needed. */
|
|
if (zs->zs_ranges[f].start > blkid)
|
|
zs->zs_ranges[f].start = blkid;
|
|
zs->zs_ranges[f].end = MAX(zs->zs_ranges[l].end, blkid + nblks);
|
|
if (f < l) {
|
|
/* Got more than one intersection, remove others. */
|
|
for (f++, l++; l < ZFETCH_RANGES; f++, l++) {
|
|
zs->zs_ranges[f].start = zs->zs_ranges[l].start;
|
|
zs->zs_ranges[f].end = zs->zs_ranges[l].end;
|
|
}
|
|
zs->zs_ranges[f].start = 0;
|
|
zs->zs_ranges[f].end = 0;
|
|
}
|
|
} else if (i < ZFETCH_RANGES) {
|
|
/* Got no intersecting ranges, insert new one. */
|
|
for (l = ZFETCH_RANGES - 1; l > i; l--) {
|
|
zs->zs_ranges[l].start = zs->zs_ranges[l - 1].start;
|
|
zs->zs_ranges[l].end = zs->zs_ranges[l - 1].end;
|
|
}
|
|
zs->zs_ranges[i].start = blkid;
|
|
zs->zs_ranges[i].end = blkid + nblks;
|
|
} else {
|
|
/* No space left to insert. Drop the range. */
|
|
return (0);
|
|
}
|
|
|
|
/* Check if with the new access addition we reached fill threshold. */
|
|
if (zfetch_hole_shift >= 16)
|
|
return (0);
|
|
uint_t hole = 0;
|
|
for (i = f = l = 0; i < ZFETCH_RANGES; i++) {
|
|
zsrange_t *r = &zs->zs_ranges[i];
|
|
if (r->start == 0)
|
|
break;
|
|
hole += r->start - f;
|
|
f = r->end;
|
|
if (hole <= r->end >> zfetch_hole_shift)
|
|
l = r->end;
|
|
}
|
|
if (l > 0)
|
|
return (dmu_zfetch_hit(zs, l));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This is the predictive prefetch entry point. dmu_zfetch_prepare()
|
|
* associates dnode access specified with blkid and nblks arguments with
|
|
* prefetch stream, predicts further accesses based on that stats and returns
|
|
* the stream pointer on success. That pointer must later be passed to
|
|
* dmu_zfetch_run() to initiate the speculative prefetch for the stream and
|
|
* release it. dmu_zfetch() is a wrapper for simple cases when window between
|
|
* prediction and prefetch initiation is not needed.
|
|
* fetch_data argument specifies whether actual data blocks should be fetched:
|
|
* FALSE -- prefetch only indirect blocks for predicted data blocks;
|
|
* TRUE -- prefetch predicted data blocks plus following indirect blocks.
|
|
*/
|
|
zstream_t *
|
|
dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
|
|
boolean_t fetch_data, boolean_t have_lock)
|
|
{
|
|
zstream_t *zs;
|
|
spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
|
|
zfs_prefetch_type_t os_prefetch = zf->zf_dnode->dn_objset->os_prefetch;
|
|
|
|
if (zfs_prefetch_disable || os_prefetch == ZFS_PREFETCH_NONE)
|
|
return (NULL);
|
|
|
|
if (os_prefetch == ZFS_PREFETCH_METADATA)
|
|
fetch_data = B_FALSE;
|
|
|
|
/*
|
|
* If we haven't yet loaded the indirect vdevs' mappings, we
|
|
* can only read from blocks that we carefully ensure are on
|
|
* concrete vdevs (or previously-loaded indirect vdevs). So we
|
|
* can't allow the predictive prefetcher to attempt reads of other
|
|
* blocks (e.g. of the MOS's dnode object).
|
|
*/
|
|
if (!spa_indirect_vdevs_loaded(spa))
|
|
return (NULL);
|
|
|
|
/*
|
|
* As a fast path for small (single-block) files, ignore access
|
|
* to the first block.
|
|
*/
|
|
if (!have_lock && blkid == 0)
|
|
return (NULL);
|
|
|
|
if (!have_lock)
|
|
rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
|
|
|
|
/*
|
|
* A fast path for small files for which no prefetch will
|
|
* happen.
|
|
*/
|
|
uint64_t maxblkid = zf->zf_dnode->dn_maxblkid;
|
|
if (maxblkid < 2) {
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return (NULL);
|
|
}
|
|
mutex_enter(&zf->zf_lock);
|
|
|
|
/*
|
|
* Find perfect prefetch stream. Depending on whether the accesses
|
|
* are block-aligned, first block of the new access may either follow
|
|
* the last block of the previous access, or be equal to it.
|
|
*/
|
|
unsigned int dbs = zf->zf_dnode->dn_datablkshift;
|
|
uint64_t end_blkid = blkid + nblks;
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL;
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
|
if (blkid == zs->zs_blkid) {
|
|
goto hit;
|
|
} else if (blkid + 1 == zs->zs_blkid) {
|
|
blkid++;
|
|
nblks--;
|
|
goto hit;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find close enough prefetch stream. Access crossing stream position
|
|
* is a hit in its new part. Access ahead of stream position considered
|
|
* a hit for metadata prefetch, since we do not care about fill percent,
|
|
* or stored for future otherwise. Access behind stream position is
|
|
* silently ignored, since we already skipped it reaching fill percent.
|
|
*/
|
|
uint_t max_reorder = MIN((zfetch_max_reorder >> dbs) + 1, UINT16_MAX);
|
|
uint_t t = gethrestime_sec() - zfetch_max_sec_reap;
|
|
for (zs = list_head(&zf->zf_stream); zs != NULL;
|
|
zs = list_next(&zf->zf_stream, zs)) {
|
|
if (blkid > zs->zs_blkid) {
|
|
if (end_blkid <= zs->zs_blkid + max_reorder) {
|
|
if (!fetch_data) {
|
|
nblks = dmu_zfetch_hit(zs,
|
|
end_blkid - zs->zs_blkid);
|
|
ZFETCHSTAT_BUMP(zfetchstat_stride);
|
|
goto future;
|
|
}
|
|
nblks = dmu_zfetch_future(zs, blkid, nblks);
|
|
if (nblks > 0)
|
|
ZFETCHSTAT_BUMP(zfetchstat_stride);
|
|
else
|
|
ZFETCHSTAT_BUMP(zfetchstat_future);
|
|
goto future;
|
|
}
|
|
} else if (end_blkid >= zs->zs_blkid) {
|
|
nblks -= zs->zs_blkid - blkid;
|
|
blkid += zs->zs_blkid - blkid;
|
|
goto hit;
|
|
} else if (end_blkid + max_reorder > zs->zs_blkid &&
|
|
(int)(zs->zs_atime - t) >= 0) {
|
|
ZFETCHSTAT_BUMP(zfetchstat_past);
|
|
zs->zs_atime = gethrestime_sec();
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This access is not part of any existing stream. Create a new
|
|
* stream for it unless we are at the end of file.
|
|
*/
|
|
if (end_blkid < maxblkid)
|
|
dmu_zfetch_stream_create(zf, end_blkid);
|
|
mutex_exit(&zf->zf_lock);
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
ZFETCHSTAT_BUMP(zfetchstat_misses);
|
|
return (NULL);
|
|
|
|
hit:
|
|
nblks = dmu_zfetch_hit(zs, nblks);
|
|
ZFETCHSTAT_BUMP(zfetchstat_hits);
|
|
|
|
future:
|
|
zs->zs_atime = gethrestime_sec();
|
|
|
|
/* Exit if we already prefetched for this position before. */
|
|
if (nblks == 0)
|
|
goto out;
|
|
|
|
/* If the file is ending, remove the stream. */
|
|
end_blkid = zs->zs_blkid;
|
|
if (end_blkid >= maxblkid) {
|
|
dmu_zfetch_stream_remove(zf, zs);
|
|
out:
|
|
mutex_exit(&zf->zf_lock);
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* This access was to a block that we issued a prefetch for on
|
|
* behalf of this stream. Calculate further prefetch distances.
|
|
*
|
|
* Start prefetch from the demand access size (nblks). Double the
|
|
* distance every access up to zfetch_min_distance. After that only
|
|
* if needed increase the distance by 1/8 up to zfetch_max_distance.
|
|
*
|
|
* Don't double the distance beyond single block if we have more
|
|
* than ~6% of ARC held by active prefetches. It should help with
|
|
* getting out of RAM on some badly mispredicted read patterns.
|
|
*/
|
|
unsigned int nbytes = nblks << dbs;
|
|
unsigned int pf_nblks;
|
|
if (fetch_data) {
|
|
if (unlikely(zs->zs_pf_dist < nbytes))
|
|
zs->zs_pf_dist = nbytes;
|
|
else if (zs->zs_pf_dist < zfetch_min_distance &&
|
|
(zs->zs_pf_dist < (1 << dbs) ||
|
|
aggsum_compare(&zfetch_sums.zfetchstat_io_active,
|
|
arc_c_max >> (4 + dbs)) < 0))
|
|
zs->zs_pf_dist *= 2;
|
|
else if (zs->zs_more)
|
|
zs->zs_pf_dist += zs->zs_pf_dist / 8;
|
|
zs->zs_more = B_FALSE;
|
|
if (zs->zs_pf_dist > zfetch_max_distance)
|
|
zs->zs_pf_dist = zfetch_max_distance;
|
|
pf_nblks = zs->zs_pf_dist >> dbs;
|
|
} else {
|
|
pf_nblks = 0;
|
|
}
|
|
if (zs->zs_pf_start < end_blkid)
|
|
zs->zs_pf_start = end_blkid;
|
|
if (zs->zs_pf_end < end_blkid + pf_nblks)
|
|
zs->zs_pf_end = end_blkid + pf_nblks;
|
|
|
|
/*
|
|
* Do the same for indirects, starting where we will stop reading
|
|
* data blocks (and the indirects that point to them).
|
|
*/
|
|
if (unlikely(zs->zs_ipf_dist < nbytes))
|
|
zs->zs_ipf_dist = nbytes;
|
|
else
|
|
zs->zs_ipf_dist *= 2;
|
|
if (zs->zs_ipf_dist > zfetch_max_idistance)
|
|
zs->zs_ipf_dist = zfetch_max_idistance;
|
|
pf_nblks = zs->zs_ipf_dist >> dbs;
|
|
if (zs->zs_ipf_start < zs->zs_pf_end)
|
|
zs->zs_ipf_start = zs->zs_pf_end;
|
|
if (zs->zs_ipf_end < zs->zs_pf_end + pf_nblks)
|
|
zs->zs_ipf_end = zs->zs_pf_end + pf_nblks;
|
|
|
|
zfs_refcount_add(&zs->zs_refs, NULL);
|
|
/* Count concurrent callers. */
|
|
zfs_refcount_add(&zs->zs_callers, NULL);
|
|
mutex_exit(&zf->zf_lock);
|
|
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
return (zs);
|
|
}
|
|
|
|
void
|
|
dmu_zfetch_run(zfetch_t *zf, zstream_t *zs, boolean_t missed,
|
|
boolean_t have_lock)
|
|
{
|
|
int64_t pf_start, pf_end, ipf_start, ipf_end;
|
|
int epbs, issued;
|
|
|
|
if (missed)
|
|
zs->zs_missed = missed;
|
|
|
|
/*
|
|
* Postpone the prefetch if there are more concurrent callers.
|
|
* It happens when multiple requests are waiting for the same
|
|
* indirect block. The last one will run the prefetch for all.
|
|
*/
|
|
if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
|
|
/* Drop reference taken in dmu_zfetch_prepare(). */
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&zf->zf_lock);
|
|
if (zs->zs_missed) {
|
|
pf_start = zs->zs_pf_start;
|
|
pf_end = zs->zs_pf_start = zs->zs_pf_end;
|
|
} else {
|
|
pf_start = pf_end = 0;
|
|
}
|
|
ipf_start = zs->zs_ipf_start;
|
|
ipf_end = zs->zs_ipf_start = zs->zs_ipf_end;
|
|
mutex_exit(&zf->zf_lock);
|
|
ASSERT3S(pf_start, <=, pf_end);
|
|
ASSERT3S(ipf_start, <=, ipf_end);
|
|
|
|
epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
|
|
ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
|
|
ASSERT3S(ipf_start, <=, ipf_end);
|
|
issued = pf_end - pf_start + ipf_end - ipf_start;
|
|
if (issued > 1) {
|
|
/* More references on top of taken in dmu_zfetch_prepare(). */
|
|
zfs_refcount_add_few(&zs->zs_refs, issued - 1, NULL);
|
|
} else if (issued == 0) {
|
|
/* Some other thread has done our work, so drop the ref. */
|
|
if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
|
|
dmu_zfetch_stream_fini(zs);
|
|
return;
|
|
}
|
|
aggsum_add(&zfetch_sums.zfetchstat_io_active, issued);
|
|
|
|
if (!have_lock)
|
|
rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
|
|
|
|
issued = 0;
|
|
for (int64_t blk = pf_start; blk < pf_end; blk++) {
|
|
issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
|
|
ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
|
|
}
|
|
for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
|
|
issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
|
|
ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
|
|
}
|
|
|
|
if (!have_lock)
|
|
rw_exit(&zf->zf_dnode->dn_struct_rwlock);
|
|
|
|
if (issued)
|
|
ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
|
|
}
|
|
|
|
void
|
|
dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
|
|
boolean_t missed, boolean_t have_lock)
|
|
{
|
|
zstream_t *zs;
|
|
|
|
zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
|
|
if (zs)
|
|
dmu_zfetch_run(zf, zs, missed, have_lock);
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
|
|
"Disable all ZFS prefetching");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
|
|
"Max number of streams per zfetch");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
|
|
"Min time before stream reclaim");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_sec_reap, UINT, ZMOD_RW,
|
|
"Max time before stream delete");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_distance, UINT, ZMOD_RW,
|
|
"Min bytes to prefetch per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
|
|
"Max bytes to prefetch per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
|
|
"Max bytes to prefetch indirects for per stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_reorder, UINT, ZMOD_RW,
|
|
"Max request reorder distance within a stream");
|
|
|
|
ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, hole_shift, UINT, ZMOD_RW,
|
|
"Max log2 fraction of holes in a stream");
|