mirror_zfs/cmd/zpool/os/linux/zpool_vdev_os.c
Andrea Gelmini 8a915ba1f6
Removed duplicated includes
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes #11775
2021-03-22 12:34:58 -07:00

408 lines
12 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2018 by Delphix. All rights reserved.
* Copyright (c) 2016, 2017 Intel Corporation.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
*/
/*
* Functions to convert between a list of vdevs and an nvlist representing the
* configuration. Each entry in the list can be one of:
*
* Device vdevs
* disk=(path=..., devid=...)
* file=(path=...)
*
* Group vdevs
* raidz[1|2]=(...)
* mirror=(...)
*
* Hot spares
*
* While the underlying implementation supports it, group vdevs cannot contain
* other group vdevs. All userland verification of devices is contained within
* this file. If successful, the nvlist returned can be passed directly to the
* kernel; we've done as much verification as possible in userland.
*
* Hot spares are a special case, and passed down as an array of disk vdevs, at
* the same level as the root of the vdev tree.
*
* The only function exported by this file is 'make_root_vdev'. The
* function performs several passes:
*
* 1. Construct the vdev specification. Performs syntax validation and
* makes sure each device is valid.
* 2. Check for devices in use. Using libblkid to make sure that no
* devices are also in use. Some can be overridden using the 'force'
* flag, others cannot.
* 3. Check for replication errors if the 'force' flag is not specified.
* validates that the replication level is consistent across the
* entire pool.
* 4. Call libzfs to label any whole disks with an EFI label.
*/
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <libintl.h>
#include <libnvpair.h>
#include <libzutil.h>
#include <limits.h>
#include <sys/spa.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "zpool_util.h"
#include <sys/zfs_context.h>
#include <scsi/scsi.h>
#include <scsi/sg.h>
#include <sys/efi_partition.h>
#include <sys/stat.h>
#include <sys/vtoc.h>
#include <sys/mntent.h>
#include <uuid/uuid.h>
#include <blkid/blkid.h>
typedef struct vdev_disk_db_entry
{
char id[24];
int sector_size;
} vdev_disk_db_entry_t;
/*
* Database of block devices that lie about physical sector sizes. The
* identification string must be precisely 24 characters to avoid false
* negatives
*/
static vdev_disk_db_entry_t vdev_disk_database[] = {
{"ATA ADATA SSD S396 3", 8192},
{"ATA APPLE SSD SM128E", 8192},
{"ATA APPLE SSD SM256E", 8192},
{"ATA APPLE SSD SM512E", 8192},
{"ATA APPLE SSD SM768E", 8192},
{"ATA C400-MTFDDAC064M", 8192},
{"ATA C400-MTFDDAC128M", 8192},
{"ATA C400-MTFDDAC256M", 8192},
{"ATA C400-MTFDDAC512M", 8192},
{"ATA Corsair Force 3 ", 8192},
{"ATA Corsair Force GS", 8192},
{"ATA INTEL SSDSA2CT04", 8192},
{"ATA INTEL SSDSA2BZ10", 8192},
{"ATA INTEL SSDSA2BZ20", 8192},
{"ATA INTEL SSDSA2BZ30", 8192},
{"ATA INTEL SSDSA2CW04", 8192},
{"ATA INTEL SSDSA2CW08", 8192},
{"ATA INTEL SSDSA2CW12", 8192},
{"ATA INTEL SSDSA2CW16", 8192},
{"ATA INTEL SSDSA2CW30", 8192},
{"ATA INTEL SSDSA2CW60", 8192},
{"ATA INTEL SSDSC2CT06", 8192},
{"ATA INTEL SSDSC2CT12", 8192},
{"ATA INTEL SSDSC2CT18", 8192},
{"ATA INTEL SSDSC2CT24", 8192},
{"ATA INTEL SSDSC2CW06", 8192},
{"ATA INTEL SSDSC2CW12", 8192},
{"ATA INTEL SSDSC2CW18", 8192},
{"ATA INTEL SSDSC2CW24", 8192},
{"ATA INTEL SSDSC2CW48", 8192},
{"ATA KINGSTON SH100S3", 8192},
{"ATA KINGSTON SH103S3", 8192},
{"ATA M4-CT064M4SSD2 ", 8192},
{"ATA M4-CT128M4SSD2 ", 8192},
{"ATA M4-CT256M4SSD2 ", 8192},
{"ATA M4-CT512M4SSD2 ", 8192},
{"ATA OCZ-AGILITY2 ", 8192},
{"ATA OCZ-AGILITY3 ", 8192},
{"ATA OCZ-VERTEX2 3.5 ", 8192},
{"ATA OCZ-VERTEX3 ", 8192},
{"ATA OCZ-VERTEX3 LT ", 8192},
{"ATA OCZ-VERTEX3 MI ", 8192},
{"ATA OCZ-VERTEX4 ", 8192},
{"ATA SAMSUNG MZ7WD120", 8192},
{"ATA SAMSUNG MZ7WD240", 8192},
{"ATA SAMSUNG MZ7WD480", 8192},
{"ATA SAMSUNG MZ7WD960", 8192},
{"ATA SAMSUNG SSD 830 ", 8192},
{"ATA Samsung SSD 840 ", 8192},
{"ATA SanDisk SSD U100", 8192},
{"ATA TOSHIBA THNSNH06", 8192},
{"ATA TOSHIBA THNSNH12", 8192},
{"ATA TOSHIBA THNSNH25", 8192},
{"ATA TOSHIBA THNSNH51", 8192},
{"ATA APPLE SSD TS064C", 4096},
{"ATA APPLE SSD TS128C", 4096},
{"ATA APPLE SSD TS256C", 4096},
{"ATA APPLE SSD TS512C", 4096},
{"ATA INTEL SSDSA2M040", 4096},
{"ATA INTEL SSDSA2M080", 4096},
{"ATA INTEL SSDSA2M160", 4096},
{"ATA INTEL SSDSC2MH12", 4096},
{"ATA INTEL SSDSC2MH25", 4096},
{"ATA OCZ CORE_SSD ", 4096},
{"ATA OCZ-VERTEX ", 4096},
{"ATA SAMSUNG MCCOE32G", 4096},
{"ATA SAMSUNG MCCOE64G", 4096},
{"ATA SAMSUNG SSD PM80", 4096},
/* Flash drives optimized for 4KB IOs on larger pages */
{"ATA INTEL SSDSC2BA10", 4096},
{"ATA INTEL SSDSC2BA20", 4096},
{"ATA INTEL SSDSC2BA40", 4096},
{"ATA INTEL SSDSC2BA80", 4096},
{"ATA INTEL SSDSC2BB08", 4096},
{"ATA INTEL SSDSC2BB12", 4096},
{"ATA INTEL SSDSC2BB16", 4096},
{"ATA INTEL SSDSC2BB24", 4096},
{"ATA INTEL SSDSC2BB30", 4096},
{"ATA INTEL SSDSC2BB40", 4096},
{"ATA INTEL SSDSC2BB48", 4096},
{"ATA INTEL SSDSC2BB60", 4096},
{"ATA INTEL SSDSC2BB80", 4096},
{"ATA INTEL SSDSC2BW24", 4096},
{"ATA INTEL SSDSC2BW48", 4096},
{"ATA INTEL SSDSC2BP24", 4096},
{"ATA INTEL SSDSC2BP48", 4096},
{"NA SmrtStorSDLKAE9W", 4096},
{"NVMe Amazon EC2 NVMe ", 4096},
/* Imported from Open Solaris */
{"ATA MARVELL SD88SA02", 4096},
/* Advanced format Hard drives */
{"ATA Hitachi HDS5C303", 4096},
{"ATA SAMSUNG HD204UI ", 4096},
{"ATA ST2000DL004 HD20", 4096},
{"ATA WDC WD10EARS-00M", 4096},
{"ATA WDC WD10EARS-00S", 4096},
{"ATA WDC WD10EARS-00Z", 4096},
{"ATA WDC WD15EARS-00M", 4096},
{"ATA WDC WD15EARS-00S", 4096},
{"ATA WDC WD15EARS-00Z", 4096},
{"ATA WDC WD20EARS-00M", 4096},
{"ATA WDC WD20EARS-00S", 4096},
{"ATA WDC WD20EARS-00Z", 4096},
{"ATA WDC WD1600BEVT-0", 4096},
{"ATA WDC WD2500BEVT-0", 4096},
{"ATA WDC WD3200BEVT-0", 4096},
{"ATA WDC WD5000BEVT-0", 4096},
};
#define INQ_REPLY_LEN 96
#define INQ_CMD_LEN 6
static const int vdev_disk_database_size =
sizeof (vdev_disk_database) / sizeof (vdev_disk_database[0]);
boolean_t
check_sector_size_database(char *path, int *sector_size)
{
unsigned char inq_buff[INQ_REPLY_LEN];
unsigned char sense_buffer[32];
unsigned char inq_cmd_blk[INQ_CMD_LEN] =
{INQUIRY, 0, 0, 0, INQ_REPLY_LEN, 0};
sg_io_hdr_t io_hdr;
int error;
int fd;
int i;
/* Prepare INQUIRY command */
memset(&io_hdr, 0, sizeof (sg_io_hdr_t));
io_hdr.interface_id = 'S';
io_hdr.cmd_len = sizeof (inq_cmd_blk);
io_hdr.mx_sb_len = sizeof (sense_buffer);
io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
io_hdr.dxfer_len = INQ_REPLY_LEN;
io_hdr.dxferp = inq_buff;
io_hdr.cmdp = inq_cmd_blk;
io_hdr.sbp = sense_buffer;
io_hdr.timeout = 10; /* 10 milliseconds is ample time */
if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
return (B_FALSE);
error = ioctl(fd, SG_IO, (unsigned long) &io_hdr);
(void) close(fd);
if (error < 0)
return (B_FALSE);
if ((io_hdr.info & SG_INFO_OK_MASK) != SG_INFO_OK)
return (B_FALSE);
for (i = 0; i < vdev_disk_database_size; i++) {
if (memcmp(inq_buff + 8, vdev_disk_database[i].id, 24))
continue;
*sector_size = vdev_disk_database[i].sector_size;
return (B_TRUE);
}
return (B_FALSE);
}
static int
check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
{
int err;
char *value;
/* No valid type detected device is safe to use */
value = blkid_get_tag_value(cache, "TYPE", path);
if (value == NULL)
return (0);
/*
* If libblkid detects a ZFS device, we check the device
* using check_file() to see if it's safe. The one safe
* case is a spare device shared between multiple pools.
*/
if (strcmp(value, "zfs_member") == 0) {
err = check_file(path, force, isspare);
} else {
if (force) {
err = 0;
} else {
err = -1;
vdev_error(gettext("%s contains a filesystem of "
"type '%s'\n"), path, value);
}
}
free(value);
return (err);
}
/*
* Validate that a disk including all partitions are safe to use.
*
* For EFI labeled disks this can done relatively easily with the libefi
* library. The partition numbers are extracted from the label and used
* to generate the expected /dev/ paths. Each partition can then be
* checked for conflicts.
*
* For non-EFI labeled disks (MBR/EBR/etc) the same process is possible
* but due to the lack of a readily available libraries this scanning is
* not implemented. Instead only the device path as given is checked.
*/
static int
check_disk(const char *path, blkid_cache cache, int force,
boolean_t isspare, boolean_t iswholedisk)
{
struct dk_gpt *vtoc;
char slice_path[MAXPATHLEN];
int err = 0;
int fd, i;
int flags = O_RDONLY|O_DIRECT;
if (!iswholedisk)
return (check_slice(path, cache, force, isspare));
/* only spares can be shared, other devices require exclusive access */
if (!isspare)
flags |= O_EXCL;
if ((fd = open(path, flags)) < 0) {
char *value = blkid_get_tag_value(cache, "TYPE", path);
(void) fprintf(stderr, gettext("%s is in use and contains "
"a %s filesystem.\n"), path, value ? value : "unknown");
free(value);
return (-1);
}
/*
* Expected to fail for non-EFI labeled disks. Just check the device
* as given and do not attempt to detect and scan partitions.
*/
err = efi_alloc_and_read(fd, &vtoc);
if (err) {
(void) close(fd);
return (check_slice(path, cache, force, isspare));
}
/*
* The primary efi partition label is damaged however the secondary
* label at the end of the device is intact. Rather than use this
* label we should play it safe and treat this as a non efi device.
*/
if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
efi_free(vtoc);
(void) close(fd);
if (force) {
/* Partitions will now be created using the backup */
return (0);
} else {
vdev_error(gettext("%s contains a corrupt primary "
"EFI label.\n"), path);
return (-1);
}
}
for (i = 0; i < vtoc->efi_nparts; i++) {
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
continue;
if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
(void) snprintf(slice_path, sizeof (slice_path),
"%s%s%d", path, "-part", i+1);
else
(void) snprintf(slice_path, sizeof (slice_path),
"%s%s%d", path, isdigit(path[strlen(path)-1]) ?
"p" : "", i+1);
err = check_slice(slice_path, cache, force, isspare);
if (err)
break;
}
efi_free(vtoc);
(void) close(fd);
return (err);
}
int
check_device(const char *path, boolean_t force,
boolean_t isspare, boolean_t iswholedisk)
{
blkid_cache cache;
int error;
error = blkid_get_cache(&cache, NULL);
if (error != 0) {
(void) fprintf(stderr, gettext("unable to access the blkid "
"cache.\n"));
return (-1);
}
error = check_disk(path, cache, force, isspare, iswholedisk);
blkid_put_cache(cache);
return (error);
}