mirror_zfs/module/zfs/space_map.c
Richard Yao b8d06fca08 Switch KM_SLEEP to KM_PUSHPAGE
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.

  * The txg_sync thread
  * The zvol write/discard threads
  * The zpl_putpage() VFS callback

This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages.  If a lock is held over this operation the potential exists to
deadlock the system.  To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.

Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread.  However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA.  This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.

This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:

  21ade34 Disable direct reclaim for z_wr_* threads
  cfc9a5c Fix zpl_writepage() deadlock
  eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))

Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #726
2012-08-27 12:01:37 -07:00

617 lines
15 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/zio.h>
#include <sys/space_map.h>
/*
* Space map routines.
* NOTE: caller is responsible for all locking.
*/
static int
space_map_seg_compare(const void *x1, const void *x2)
{
const space_seg_t *s1 = x1;
const space_seg_t *s2 = x2;
if (s1->ss_start < s2->ss_start) {
if (s1->ss_end > s2->ss_start)
return (0);
return (-1);
}
if (s1->ss_start > s2->ss_start) {
if (s1->ss_start < s2->ss_end)
return (0);
return (1);
}
return (0);
}
void
space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift,
kmutex_t *lp)
{
bzero(sm, sizeof (*sm));
cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL);
avl_create(&sm->sm_root, space_map_seg_compare,
sizeof (space_seg_t), offsetof(struct space_seg, ss_node));
sm->sm_start = start;
sm->sm_size = size;
sm->sm_shift = shift;
sm->sm_lock = lp;
}
void
space_map_destroy(space_map_t *sm)
{
ASSERT(!sm->sm_loaded && !sm->sm_loading);
VERIFY3U(sm->sm_space, ==, 0);
avl_destroy(&sm->sm_root);
cv_destroy(&sm->sm_load_cv);
}
void
space_map_add(space_map_t *sm, uint64_t start, uint64_t size)
{
avl_index_t where;
space_seg_t ssearch, *ss_before, *ss_after, *ss;
uint64_t end = start + size;
int merge_before, merge_after;
ASSERT(MUTEX_HELD(sm->sm_lock));
VERIFY(size != 0);
VERIFY3U(start, >=, sm->sm_start);
VERIFY3U(end, <=, sm->sm_start + sm->sm_size);
VERIFY(sm->sm_space + size <= sm->sm_size);
VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
ssearch.ss_start = start;
ssearch.ss_end = end;
ss = avl_find(&sm->sm_root, &ssearch, &where);
if (ss != NULL && ss->ss_start <= start && ss->ss_end >= end) {
zfs_panic_recover("zfs: allocating allocated segment"
"(offset=%llu size=%llu)\n",
(longlong_t)start, (longlong_t)size);
return;
}
/* Make sure we don't overlap with either of our neighbors */
VERIFY(ss == NULL);
ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE);
ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER);
merge_before = (ss_before != NULL && ss_before->ss_end == start);
merge_after = (ss_after != NULL && ss_after->ss_start == end);
if (merge_before && merge_after) {
avl_remove(&sm->sm_root, ss_before);
if (sm->sm_pp_root) {
avl_remove(sm->sm_pp_root, ss_before);
avl_remove(sm->sm_pp_root, ss_after);
}
ss_after->ss_start = ss_before->ss_start;
kmem_free(ss_before, sizeof (*ss_before));
ss = ss_after;
} else if (merge_before) {
ss_before->ss_end = end;
if (sm->sm_pp_root)
avl_remove(sm->sm_pp_root, ss_before);
ss = ss_before;
} else if (merge_after) {
ss_after->ss_start = start;
if (sm->sm_pp_root)
avl_remove(sm->sm_pp_root, ss_after);
ss = ss_after;
} else {
ss = kmem_alloc(sizeof (*ss), KM_PUSHPAGE);
ss->ss_start = start;
ss->ss_end = end;
avl_insert(&sm->sm_root, ss, where);
}
if (sm->sm_pp_root)
avl_add(sm->sm_pp_root, ss);
sm->sm_space += size;
}
void
space_map_remove(space_map_t *sm, uint64_t start, uint64_t size)
{
avl_index_t where;
space_seg_t ssearch, *ss, *newseg;
uint64_t end = start + size;
int left_over, right_over;
ASSERT(MUTEX_HELD(sm->sm_lock));
VERIFY(size != 0);
VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
ssearch.ss_start = start;
ssearch.ss_end = end;
ss = avl_find(&sm->sm_root, &ssearch, &where);
/* Make sure we completely overlap with someone */
if (ss == NULL) {
zfs_panic_recover("zfs: freeing free segment "
"(offset=%llu size=%llu)",
(longlong_t)start, (longlong_t)size);
return;
}
VERIFY3U(ss->ss_start, <=, start);
VERIFY3U(ss->ss_end, >=, end);
VERIFY(sm->sm_space - size <= sm->sm_size);
left_over = (ss->ss_start != start);
right_over = (ss->ss_end != end);
if (sm->sm_pp_root)
avl_remove(sm->sm_pp_root, ss);
if (left_over && right_over) {
newseg = kmem_alloc(sizeof (*newseg), KM_PUSHPAGE);
newseg->ss_start = end;
newseg->ss_end = ss->ss_end;
ss->ss_end = start;
avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER);
if (sm->sm_pp_root)
avl_add(sm->sm_pp_root, newseg);
} else if (left_over) {
ss->ss_end = start;
} else if (right_over) {
ss->ss_start = end;
} else {
avl_remove(&sm->sm_root, ss);
kmem_free(ss, sizeof (*ss));
ss = NULL;
}
if (sm->sm_pp_root && ss != NULL)
avl_add(sm->sm_pp_root, ss);
sm->sm_space -= size;
}
boolean_t
space_map_contains(space_map_t *sm, uint64_t start, uint64_t size)
{
avl_index_t where;
space_seg_t ssearch, *ss;
uint64_t end = start + size;
ASSERT(MUTEX_HELD(sm->sm_lock));
VERIFY(size != 0);
VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
ssearch.ss_start = start;
ssearch.ss_end = end;
ss = avl_find(&sm->sm_root, &ssearch, &where);
return (ss != NULL && ss->ss_start <= start && ss->ss_end >= end);
}
void
space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
{
space_seg_t *ss;
void *cookie = NULL;
ASSERT(MUTEX_HELD(sm->sm_lock));
while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
if (func != NULL)
func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
kmem_free(ss, sizeof (*ss));
}
sm->sm_space = 0;
}
void
space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
{
space_seg_t *ss;
ASSERT(MUTEX_HELD(sm->sm_lock));
for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
func(mdest, ss->ss_start, ss->ss_end - ss->ss_start);
}
/*
* Wait for any in-progress space_map_load() to complete.
*/
void
space_map_load_wait(space_map_t *sm)
{
ASSERT(MUTEX_HELD(sm->sm_lock));
while (sm->sm_loading) {
ASSERT(!sm->sm_loaded);
cv_wait(&sm->sm_load_cv, sm->sm_lock);
}
}
/*
* Note: space_map_load() will drop sm_lock across dmu_read() calls.
* The caller must be OK with this.
*/
int
space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype,
space_map_obj_t *smo, objset_t *os)
{
uint64_t *entry, *entry_map, *entry_map_end;
uint64_t bufsize, size, offset, end, space;
uint64_t mapstart = sm->sm_start;
int error = 0;
ASSERT(MUTEX_HELD(sm->sm_lock));
ASSERT(!sm->sm_loaded);
ASSERT(!sm->sm_loading);
sm->sm_loading = B_TRUE;
end = smo->smo_objsize;
space = smo->smo_alloc;
ASSERT(sm->sm_ops == NULL);
VERIFY3U(sm->sm_space, ==, 0);
if (maptype == SM_FREE) {
space_map_add(sm, sm->sm_start, sm->sm_size);
space = sm->sm_size - space;
}
bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT;
entry_map = zio_buf_alloc(bufsize);
mutex_exit(sm->sm_lock);
if (end > bufsize)
dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize);
mutex_enter(sm->sm_lock);
for (offset = 0; offset < end; offset += bufsize) {
size = MIN(end - offset, bufsize);
VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
VERIFY(size != 0);
dprintf("object=%llu offset=%llx size=%llx\n",
smo->smo_object, offset, size);
mutex_exit(sm->sm_lock);
error = dmu_read(os, smo->smo_object, offset, size, entry_map,
DMU_READ_PREFETCH);
mutex_enter(sm->sm_lock);
if (error != 0)
break;
entry_map_end = entry_map + (size / sizeof (uint64_t));
for (entry = entry_map; entry < entry_map_end; entry++) {
uint64_t e = *entry;
if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
continue;
(SM_TYPE_DECODE(e) == maptype ?
space_map_add : space_map_remove)(sm,
(SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart,
SM_RUN_DECODE(e) << sm->sm_shift);
}
}
if (error == 0) {
VERIFY3U(sm->sm_space, ==, space);
sm->sm_loaded = B_TRUE;
sm->sm_ops = ops;
if (ops != NULL)
ops->smop_load(sm);
} else {
space_map_vacate(sm, NULL, NULL);
}
zio_buf_free(entry_map, bufsize);
sm->sm_loading = B_FALSE;
cv_broadcast(&sm->sm_load_cv);
return (error);
}
void
space_map_unload(space_map_t *sm)
{
ASSERT(MUTEX_HELD(sm->sm_lock));
if (sm->sm_loaded && sm->sm_ops != NULL)
sm->sm_ops->smop_unload(sm);
sm->sm_loaded = B_FALSE;
sm->sm_ops = NULL;
space_map_vacate(sm, NULL, NULL);
}
uint64_t
space_map_maxsize(space_map_t *sm)
{
ASSERT(sm->sm_ops != NULL);
return (sm->sm_ops->smop_max(sm));
}
uint64_t
space_map_alloc(space_map_t *sm, uint64_t size)
{
uint64_t start;
start = sm->sm_ops->smop_alloc(sm, size);
if (start != -1ULL)
space_map_remove(sm, start, size);
return (start);
}
void
space_map_claim(space_map_t *sm, uint64_t start, uint64_t size)
{
sm->sm_ops->smop_claim(sm, start, size);
space_map_remove(sm, start, size);
}
void
space_map_free(space_map_t *sm, uint64_t start, uint64_t size)
{
space_map_add(sm, start, size);
sm->sm_ops->smop_free(sm, start, size);
}
/*
* Note: space_map_sync() will drop sm_lock across dmu_write() calls.
*/
void
space_map_sync(space_map_t *sm, uint8_t maptype,
space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
{
spa_t *spa = dmu_objset_spa(os);
void *cookie = NULL;
space_seg_t *ss;
uint64_t bufsize, start, size, run_len;
uint64_t *entry, *entry_map, *entry_map_end;
ASSERT(MUTEX_HELD(sm->sm_lock));
if (sm->sm_space == 0)
return;
dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n",
smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa),
maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root),
sm->sm_space);
if (maptype == SM_ALLOC)
smo->smo_alloc += sm->sm_space;
else
smo->smo_alloc -= sm->sm_space;
bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t);
bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT);
entry_map = zio_buf_alloc(bufsize);
entry_map_end = entry_map + (bufsize / sizeof (uint64_t));
entry = entry_map;
*entry++ = SM_DEBUG_ENCODE(1) |
SM_DEBUG_ACTION_ENCODE(maptype) |
SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
size = ss->ss_end - ss->ss_start;
start = (ss->ss_start - sm->sm_start) >> sm->sm_shift;
sm->sm_space -= size;
size >>= sm->sm_shift;
while (size) {
run_len = MIN(size, SM_RUN_MAX);
if (entry == entry_map_end) {
mutex_exit(sm->sm_lock);
dmu_write(os, smo->smo_object, smo->smo_objsize,
bufsize, entry_map, tx);
mutex_enter(sm->sm_lock);
smo->smo_objsize += bufsize;
entry = entry_map;
}
*entry++ = SM_OFFSET_ENCODE(start) |
SM_TYPE_ENCODE(maptype) |
SM_RUN_ENCODE(run_len);
start += run_len;
size -= run_len;
}
kmem_free(ss, sizeof (*ss));
}
if (entry != entry_map) {
size = (entry - entry_map) * sizeof (uint64_t);
mutex_exit(sm->sm_lock);
dmu_write(os, smo->smo_object, smo->smo_objsize,
size, entry_map, tx);
mutex_enter(sm->sm_lock);
smo->smo_objsize += size;
}
zio_buf_free(entry_map, bufsize);
VERIFY3U(sm->sm_space, ==, 0);
}
void
space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
{
VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0);
smo->smo_objsize = 0;
smo->smo_alloc = 0;
}
/*
* Space map reference trees.
*
* A space map is a collection of integers. Every integer is either
* in the map, or it's not. A space map reference tree generalizes
* the idea: it allows its members to have arbitrary reference counts,
* as opposed to the implicit reference count of 0 or 1 in a space map.
* This representation comes in handy when computing the union or
* intersection of multiple space maps. For example, the union of
* N space maps is the subset of the reference tree with refcnt >= 1.
* The intersection of N space maps is the subset with refcnt >= N.
*
* [It's very much like a Fourier transform. Unions and intersections
* are hard to perform in the 'space map domain', so we convert the maps
* into the 'reference count domain', where it's trivial, then invert.]
*
* vdev_dtl_reassess() uses computations of this form to determine
* DTL_MISSING and DTL_OUTAGE for interior vdevs -- e.g. a RAID-Z vdev
* has an outage wherever refcnt >= vdev_nparity + 1, and a mirror vdev
* has an outage wherever refcnt >= vdev_children.
*/
static int
space_map_ref_compare(const void *x1, const void *x2)
{
const space_ref_t *sr1 = x1;
const space_ref_t *sr2 = x2;
if (sr1->sr_offset < sr2->sr_offset)
return (-1);
if (sr1->sr_offset > sr2->sr_offset)
return (1);
if (sr1 < sr2)
return (-1);
if (sr1 > sr2)
return (1);
return (0);
}
void
space_map_ref_create(avl_tree_t *t)
{
avl_create(t, space_map_ref_compare,
sizeof (space_ref_t), offsetof(space_ref_t, sr_node));
}
void
space_map_ref_destroy(avl_tree_t *t)
{
space_ref_t *sr;
void *cookie = NULL;
while ((sr = avl_destroy_nodes(t, &cookie)) != NULL)
kmem_free(sr, sizeof (*sr));
avl_destroy(t);
}
static void
space_map_ref_add_node(avl_tree_t *t, uint64_t offset, int64_t refcnt)
{
space_ref_t *sr;
sr = kmem_alloc(sizeof (*sr), KM_PUSHPAGE);
sr->sr_offset = offset;
sr->sr_refcnt = refcnt;
avl_add(t, sr);
}
void
space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end,
int64_t refcnt)
{
space_map_ref_add_node(t, start, refcnt);
space_map_ref_add_node(t, end, -refcnt);
}
/*
* Convert (or add) a space map into a reference tree.
*/
void
space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt)
{
space_seg_t *ss;
ASSERT(MUTEX_HELD(sm->sm_lock));
for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
space_map_ref_add_seg(t, ss->ss_start, ss->ss_end, refcnt);
}
/*
* Convert a reference tree into a space map. The space map will contain
* all members of the reference tree for which refcnt >= minref.
*/
void
space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref)
{
uint64_t start = -1ULL;
int64_t refcnt = 0;
space_ref_t *sr;
ASSERT(MUTEX_HELD(sm->sm_lock));
space_map_vacate(sm, NULL, NULL);
for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) {
refcnt += sr->sr_refcnt;
if (refcnt >= minref) {
if (start == -1ULL) {
start = sr->sr_offset;
}
} else {
if (start != -1ULL) {
uint64_t end = sr->sr_offset;
ASSERT(start <= end);
if (end > start)
space_map_add(sm, start, end - start);
start = -1ULL;
}
}
}
ASSERT(refcnt == 0);
ASSERT(start == -1ULL);
}