mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-27 11:29:36 +03:00
b5a28807cd
Currently, zpool online -e (dynamic vdev expansion) doesn't work on whole disks because we're invoking ioctl(BLKRRPART) from userspace while ZFS still has a partition open on the disk, which results in EBUSY. This patch moves the BLKRRPART invocation from the zpool utility to the module. Specifically, this is done just before opening the device in vdev_disk_open() which is called inside vdev_reopen(). This requires jumping through some hoops to get to the disk device from the partition device, and to make sure we can still open the partition after the BLKRRPART call. Note that this new code path is triggered on dynamic vdev expansion only; other actions, like creating a new pool, are unchanged and still call BLKRRPART from userspace. This change also depends on API changes which are available in 2.6.37 and latter kernels. The build system has been updated to detect this, but there is no compatibility mode for older kernels. This means that online expansion will NOT be available in older kernels. However, it will still be possible to expand the vdev offline. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #808
1486 lines
38 KiB
C
1486 lines
38 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include <strings.h>
|
|
#include <unistd.h>
|
|
#include <uuid/uuid.h>
|
|
#include <zlib.h>
|
|
#include <libintl.h>
|
|
#include <sys/types.h>
|
|
#include <sys/dkio.h>
|
|
#include <sys/vtoc.h>
|
|
#include <sys/mhd.h>
|
|
#include <sys/param.h>
|
|
#include <sys/dktp/fdisk.h>
|
|
#include <sys/efi_partition.h>
|
|
#include <sys/byteorder.h>
|
|
#if defined(__linux__)
|
|
#include <linux/fs.h>
|
|
#endif
|
|
|
|
static struct uuid_to_ptag {
|
|
struct uuid uuid;
|
|
} conversion_array[] = {
|
|
{ EFI_UNUSED },
|
|
{ EFI_BOOT },
|
|
{ EFI_ROOT },
|
|
{ EFI_SWAP },
|
|
{ EFI_USR },
|
|
{ EFI_BACKUP },
|
|
{ EFI_UNUSED }, /* STAND is never used */
|
|
{ EFI_VAR },
|
|
{ EFI_HOME },
|
|
{ EFI_ALTSCTR },
|
|
{ EFI_UNUSED }, /* CACHE (cachefs) is never used */
|
|
{ EFI_RESERVED },
|
|
{ EFI_SYSTEM },
|
|
{ EFI_LEGACY_MBR },
|
|
{ EFI_SYMC_PUB },
|
|
{ EFI_SYMC_CDS },
|
|
{ EFI_MSFT_RESV },
|
|
{ EFI_DELL_BASIC },
|
|
{ EFI_DELL_RAID },
|
|
{ EFI_DELL_SWAP },
|
|
{ EFI_DELL_LVM },
|
|
{ EFI_DELL_RESV },
|
|
{ EFI_AAPL_HFS },
|
|
{ EFI_AAPL_UFS }
|
|
};
|
|
|
|
/*
|
|
* Default vtoc information for non-SVr4 partitions
|
|
*/
|
|
struct dk_map2 default_vtoc_map[NDKMAP] = {
|
|
{ V_ROOT, 0 }, /* a - 0 */
|
|
{ V_SWAP, V_UNMNT }, /* b - 1 */
|
|
{ V_BACKUP, V_UNMNT }, /* c - 2 */
|
|
{ V_UNASSIGNED, 0 }, /* d - 3 */
|
|
{ V_UNASSIGNED, 0 }, /* e - 4 */
|
|
{ V_UNASSIGNED, 0 }, /* f - 5 */
|
|
{ V_USR, 0 }, /* g - 6 */
|
|
{ V_UNASSIGNED, 0 }, /* h - 7 */
|
|
|
|
#if defined(_SUNOS_VTOC_16)
|
|
|
|
#if defined(i386) || defined(__amd64) || defined(__arm) || defined(__powerpc)
|
|
{ V_BOOT, V_UNMNT }, /* i - 8 */
|
|
{ V_ALTSCTR, 0 }, /* j - 9 */
|
|
|
|
#else
|
|
#error No VTOC format defined.
|
|
#endif /* defined(i386) */
|
|
|
|
{ V_UNASSIGNED, 0 }, /* k - 10 */
|
|
{ V_UNASSIGNED, 0 }, /* l - 11 */
|
|
{ V_UNASSIGNED, 0 }, /* m - 12 */
|
|
{ V_UNASSIGNED, 0 }, /* n - 13 */
|
|
{ V_UNASSIGNED, 0 }, /* o - 14 */
|
|
{ V_UNASSIGNED, 0 }, /* p - 15 */
|
|
#endif /* defined(_SUNOS_VTOC_16) */
|
|
};
|
|
|
|
#ifdef DEBUG
|
|
int efi_debug = 1;
|
|
#else
|
|
int efi_debug = 0;
|
|
#endif
|
|
|
|
static int efi_read(int, struct dk_gpt *);
|
|
|
|
/*
|
|
* Return a 32-bit CRC of the contents of the buffer. Pre-and-post
|
|
* one's conditioning will be handled by crc32() internally.
|
|
*/
|
|
static uint32_t
|
|
efi_crc32(const unsigned char *buf, unsigned int size)
|
|
{
|
|
uint32_t crc = crc32(0, Z_NULL, 0);
|
|
|
|
crc = crc32(crc, buf, size);
|
|
|
|
return (crc);
|
|
}
|
|
|
|
static int
|
|
read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
|
|
{
|
|
int sector_size;
|
|
unsigned long long capacity_size;
|
|
|
|
if (ioctl(fd, BLKSSZGET, §or_size) < 0)
|
|
return (-1);
|
|
|
|
if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
|
|
return (-1);
|
|
|
|
*lbsize = (uint_t)sector_size;
|
|
*capacity = (diskaddr_t)(capacity_size / sector_size);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
efi_get_info(int fd, struct dk_cinfo *dki_info)
|
|
{
|
|
#if defined(__linux__)
|
|
char *path;
|
|
char *dev_path;
|
|
int rval = 0;
|
|
|
|
memset(dki_info, 0, sizeof(*dki_info));
|
|
|
|
path = calloc(PATH_MAX, 1);
|
|
if (path == NULL)
|
|
goto error;
|
|
|
|
/*
|
|
* The simplest way to get the partition number under linux is
|
|
* to parse it out of the /dev/<disk><parition> block device name.
|
|
* The kernel creates this using the partition number when it
|
|
* populates /dev/ so it may be trusted. The tricky bit here is
|
|
* that the naming convention is based on the block device type.
|
|
* So we need to take this in to account when parsing out the
|
|
* partition information. Another issue is that the libefi API
|
|
* API only provides the open fd and not the file path. To handle
|
|
* this realpath(3) is used to resolve the block device name from
|
|
* /proc/self/fd/<fd>. Aside from the partition number we collect
|
|
* some additional device info.
|
|
*/
|
|
(void) sprintf(path, "/proc/self/fd/%d", fd);
|
|
dev_path = realpath(path, NULL);
|
|
free(path);
|
|
|
|
if (dev_path == NULL)
|
|
goto error;
|
|
|
|
if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
|
|
strcpy(dki_info->dki_cname, "sd");
|
|
dki_info->dki_ctype = DKC_SCSI_CCS;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
|
|
strcpy(dki_info->dki_cname, "hd");
|
|
dki_info->dki_ctype = DKC_DIRECT;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
|
|
strcpy(dki_info->dki_cname, "pseudo");
|
|
dki_info->dki_ctype = DKC_MD;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
|
|
strcpy(dki_info->dki_cname, "vd");
|
|
dki_info->dki_ctype = DKC_MD;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
|
|
strcpy(dki_info->dki_cname, "pseudo");
|
|
dki_info->dki_ctype = DKC_VBD;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9-]p%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
|
|
strcpy(dki_info->dki_cname, "pseudo");
|
|
dki_info->dki_ctype = DKC_PCMCIA_MEM;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
|
|
strcpy(dki_info->dki_cname, "pseudo");
|
|
dki_info->dki_ctype = DKC_VBD;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else {
|
|
strcpy(dki_info->dki_dname, "unknown");
|
|
strcpy(dki_info->dki_cname, "unknown");
|
|
dki_info->dki_ctype = DKC_UNKNOWN;
|
|
}
|
|
|
|
switch (rval) {
|
|
case 0:
|
|
errno = EINVAL;
|
|
goto error;
|
|
case 1:
|
|
dki_info->dki_partition = 0;
|
|
}
|
|
|
|
free(dev_path);
|
|
#else
|
|
if (ioctl(fd, DKIOCINFO, (caddr_t)dki_info) == -1)
|
|
goto error;
|
|
#endif
|
|
return (0);
|
|
error:
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
|
|
|
|
switch (errno) {
|
|
case EIO:
|
|
return (VT_EIO);
|
|
case EINVAL:
|
|
return (VT_EINVAL);
|
|
default:
|
|
return (VT_ERROR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* the number of blocks the EFI label takes up (round up to nearest
|
|
* block)
|
|
*/
|
|
#define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
|
|
((l) - 1)) / (l)))
|
|
/* number of partitions -- limited by what we can malloc */
|
|
#define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
|
|
sizeof (struct dk_part))
|
|
|
|
int
|
|
efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
|
|
{
|
|
diskaddr_t capacity = 0;
|
|
uint_t lbsize = 0;
|
|
uint_t nblocks;
|
|
size_t length;
|
|
struct dk_gpt *vptr;
|
|
struct uuid uuid;
|
|
struct dk_cinfo dki_info;
|
|
|
|
if (read_disk_info(fd, &capacity, &lbsize) != 0)
|
|
return (-1);
|
|
|
|
#if defined(__linux__)
|
|
if (efi_get_info(fd, &dki_info) != 0)
|
|
return (-1);
|
|
|
|
if (dki_info.dki_partition != 0)
|
|
return (-1);
|
|
|
|
if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
|
|
(dki_info.dki_ctype == DKC_VBD) ||
|
|
(dki_info.dki_ctype == DKC_UNKNOWN))
|
|
return (-1);
|
|
#endif
|
|
|
|
nblocks = NBLOCKS(nparts, lbsize);
|
|
if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
|
|
/* 16K plus one block for the GPT */
|
|
nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
|
|
}
|
|
|
|
if (nparts > MAX_PARTS) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"the maximum number of partitions supported is %lu\n",
|
|
MAX_PARTS);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
length = sizeof (struct dk_gpt) +
|
|
sizeof (struct dk_part) * (nparts - 1);
|
|
|
|
if ((*vtoc = calloc(length, 1)) == NULL)
|
|
return (-1);
|
|
|
|
vptr = *vtoc;
|
|
|
|
vptr->efi_version = EFI_VERSION_CURRENT;
|
|
vptr->efi_lbasize = lbsize;
|
|
vptr->efi_nparts = nparts;
|
|
/*
|
|
* add one block here for the PMBR; on disks with a 512 byte
|
|
* block size and 128 or fewer partitions, efi_first_u_lba
|
|
* should work out to "34"
|
|
*/
|
|
vptr->efi_first_u_lba = nblocks + 1;
|
|
vptr->efi_last_lba = capacity - 1;
|
|
vptr->efi_altern_lba = capacity -1;
|
|
vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
|
|
|
|
(void) uuid_generate((uchar_t *)&uuid);
|
|
UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read EFI - return partition number upon success.
|
|
*/
|
|
int
|
|
efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
|
|
{
|
|
int rval;
|
|
uint32_t nparts;
|
|
int length;
|
|
|
|
/* figure out the number of entries that would fit into 16K */
|
|
nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
|
|
length = (int) sizeof (struct dk_gpt) +
|
|
(int) sizeof (struct dk_part) * (nparts - 1);
|
|
if ((*vtoc = calloc(length, 1)) == NULL)
|
|
return (VT_ERROR);
|
|
|
|
(*vtoc)->efi_nparts = nparts;
|
|
rval = efi_read(fd, *vtoc);
|
|
|
|
if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
|
|
void *tmp;
|
|
length = (int) sizeof (struct dk_gpt) +
|
|
(int) sizeof (struct dk_part) *
|
|
((*vtoc)->efi_nparts - 1);
|
|
nparts = (*vtoc)->efi_nparts;
|
|
if ((tmp = realloc(*vtoc, length)) == NULL) {
|
|
free (*vtoc);
|
|
*vtoc = NULL;
|
|
return (VT_ERROR);
|
|
} else {
|
|
*vtoc = tmp;
|
|
rval = efi_read(fd, *vtoc);
|
|
}
|
|
}
|
|
|
|
if (rval < 0) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"read of EFI table failed, rval=%d\n", rval);
|
|
}
|
|
free (*vtoc);
|
|
*vtoc = NULL;
|
|
}
|
|
|
|
return (rval);
|
|
}
|
|
|
|
static int
|
|
efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
|
|
{
|
|
void *data = dk_ioc->dki_data;
|
|
int error;
|
|
#if defined(__linux__)
|
|
diskaddr_t capacity;
|
|
uint_t lbsize;
|
|
|
|
/*
|
|
* When the IO is not being performed in kernel as an ioctl we need
|
|
* to know the sector size so we can seek to the proper byte offset.
|
|
*/
|
|
if (read_disk_info(fd, &capacity, &lbsize) == -1) {
|
|
if (efi_debug)
|
|
fprintf(stderr,"unable to read disk info: %d",errno);
|
|
|
|
errno = EIO;
|
|
return -1;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case DKIOCGETEFI:
|
|
if (lbsize == 0) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCGETEFI assuming "
|
|
"LBA %d bytes\n", DEV_BSIZE);
|
|
|
|
lbsize = DEV_BSIZE;
|
|
}
|
|
|
|
error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
|
|
if (error == -1) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCGETEFI lseek "
|
|
"error: %d\n", errno);
|
|
return error;
|
|
}
|
|
|
|
error = read(fd, data, dk_ioc->dki_length);
|
|
if (error == -1) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCGETEFI read "
|
|
"error: %d\n", errno);
|
|
return error;
|
|
}
|
|
|
|
if (error != dk_ioc->dki_length) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCGETEFI short "
|
|
"read of %d bytes\n", error);
|
|
errno = EIO;
|
|
return -1;
|
|
}
|
|
error = 0;
|
|
break;
|
|
|
|
case DKIOCSETEFI:
|
|
if (lbsize == 0) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCSETEFI unknown "
|
|
"LBA size\n");
|
|
errno = EIO;
|
|
return -1;
|
|
}
|
|
|
|
error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
|
|
if (error == -1) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCSETEFI lseek "
|
|
"error: %d\n", errno);
|
|
return error;
|
|
}
|
|
|
|
error = write(fd, data, dk_ioc->dki_length);
|
|
if (error == -1) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCSETEFI write "
|
|
"error: %d\n", errno);
|
|
return error;
|
|
}
|
|
|
|
if (error != dk_ioc->dki_length) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCSETEFI short "
|
|
"write of %d bytes\n", error);
|
|
errno = EIO;
|
|
return -1;
|
|
}
|
|
|
|
/* Sync the new EFI table to disk */
|
|
error = fsync(fd);
|
|
if (error == -1)
|
|
return error;
|
|
|
|
/* Ensure any local disk cache is also flushed */
|
|
if (ioctl(fd, BLKFLSBUF, 0) == -1)
|
|
return error;
|
|
|
|
error = 0;
|
|
break;
|
|
|
|
default:
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "unsupported ioctl()\n");
|
|
|
|
errno = EIO;
|
|
return -1;
|
|
}
|
|
#else
|
|
dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
|
|
error = ioctl(fd, cmd, (void *)dk_ioc);
|
|
dk_ioc->dki_data = data;
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
int efi_rescan(int fd)
|
|
{
|
|
#if defined(__linux__)
|
|
int retry = 5;
|
|
int error;
|
|
|
|
/* Notify the kernel a devices partition table has been updated */
|
|
while ((error = ioctl(fd, BLKRRPART)) != 0) {
|
|
if (--retry == 0) {
|
|
(void) fprintf(stderr, "the kernel failed to rescan "
|
|
"the partition table: %d\n", errno);
|
|
return (-1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
check_label(int fd, dk_efi_t *dk_ioc)
|
|
{
|
|
efi_gpt_t *efi;
|
|
uint_t crc;
|
|
|
|
if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
|
|
switch (errno) {
|
|
case EIO:
|
|
return (VT_EIO);
|
|
default:
|
|
return (VT_ERROR);
|
|
}
|
|
}
|
|
efi = dk_ioc->dki_data;
|
|
if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr,
|
|
"Bad EFI signature: 0x%llx != 0x%llx\n",
|
|
(long long)efi->efi_gpt_Signature,
|
|
(long long)LE_64(EFI_SIGNATURE));
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
/*
|
|
* check CRC of the header; the size of the header should
|
|
* never be larger than one block
|
|
*/
|
|
crc = efi->efi_gpt_HeaderCRC32;
|
|
efi->efi_gpt_HeaderCRC32 = 0;
|
|
len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
|
|
|
|
if(headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr,
|
|
"Invalid EFI HeaderSize %llu. Assuming %d.\n",
|
|
headerSize, EFI_MIN_LABEL_SIZE);
|
|
}
|
|
|
|
if ((headerSize > dk_ioc->dki_length) ||
|
|
crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr,
|
|
"Bad EFI CRC: 0x%x != 0x%x\n",
|
|
crc, LE_32(efi_crc32((unsigned char *)efi,
|
|
headerSize)));
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
efi_read(int fd, struct dk_gpt *vtoc)
|
|
{
|
|
int i, j;
|
|
int label_len;
|
|
int rval = 0;
|
|
int md_flag = 0;
|
|
int vdc_flag = 0;
|
|
diskaddr_t capacity = 0;
|
|
uint_t lbsize = 0;
|
|
struct dk_minfo disk_info;
|
|
dk_efi_t dk_ioc;
|
|
efi_gpt_t *efi;
|
|
efi_gpe_t *efi_parts;
|
|
struct dk_cinfo dki_info;
|
|
uint32_t user_length;
|
|
boolean_t legacy_label = B_FALSE;
|
|
|
|
/*
|
|
* get the partition number for this file descriptor.
|
|
*/
|
|
if ((rval = efi_get_info(fd, &dki_info)) != 0)
|
|
return rval;
|
|
|
|
if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
|
|
(strncmp(dki_info.dki_dname, "md", 3) == 0)) {
|
|
md_flag++;
|
|
} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
|
|
(strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
|
|
/*
|
|
* The controller and drive name "vdc" (virtual disk client)
|
|
* indicates a LDoms virtual disk.
|
|
*/
|
|
vdc_flag++;
|
|
}
|
|
|
|
/* get the LBA size */
|
|
if (read_disk_info(fd, &capacity, &lbsize) == -1) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"unable to read disk info: %d",
|
|
errno);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
disk_info.dki_lbsize = lbsize;
|
|
disk_info.dki_capacity = capacity;
|
|
|
|
if (disk_info.dki_lbsize == 0) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"efi_read: assuming LBA 512 bytes\n");
|
|
}
|
|
disk_info.dki_lbsize = DEV_BSIZE;
|
|
}
|
|
/*
|
|
* Read the EFI GPT to figure out how many partitions we need
|
|
* to deal with.
|
|
*/
|
|
dk_ioc.dki_lba = 1;
|
|
if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
|
|
label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
|
|
} else {
|
|
label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
|
|
disk_info.dki_lbsize;
|
|
if (label_len % disk_info.dki_lbsize) {
|
|
/* pad to physical sector size */
|
|
label_len += disk_info.dki_lbsize;
|
|
label_len &= ~(disk_info.dki_lbsize - 1);
|
|
}
|
|
}
|
|
|
|
if (posix_memalign((void **)&dk_ioc.dki_data,
|
|
disk_info.dki_lbsize, label_len))
|
|
return (VT_ERROR);
|
|
|
|
memset(dk_ioc.dki_data, 0, label_len);
|
|
dk_ioc.dki_length = disk_info.dki_lbsize;
|
|
user_length = vtoc->efi_nparts;
|
|
efi = dk_ioc.dki_data;
|
|
if (md_flag) {
|
|
dk_ioc.dki_length = label_len;
|
|
if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
|
|
switch (errno) {
|
|
case EIO:
|
|
return (VT_EIO);
|
|
default:
|
|
return (VT_ERROR);
|
|
}
|
|
}
|
|
} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
|
|
/*
|
|
* No valid label here; try the alternate. Note that here
|
|
* we just read GPT header and save it into dk_ioc.data,
|
|
* Later, we will read GUID partition entry array if we
|
|
* can get valid GPT header.
|
|
*/
|
|
|
|
/*
|
|
* This is a workaround for legacy systems. In the past, the
|
|
* last sector of SCSI disk was invisible on x86 platform. At
|
|
* that time, backup label was saved on the next to the last
|
|
* sector. It is possible for users to move a disk from previous
|
|
* solaris system to present system. Here, we attempt to search
|
|
* legacy backup EFI label first.
|
|
*/
|
|
dk_ioc.dki_lba = disk_info.dki_capacity - 2;
|
|
dk_ioc.dki_length = disk_info.dki_lbsize;
|
|
rval = check_label(fd, &dk_ioc);
|
|
if (rval == VT_EINVAL) {
|
|
/*
|
|
* we didn't find legacy backup EFI label, try to
|
|
* search backup EFI label in the last block.
|
|
*/
|
|
dk_ioc.dki_lba = disk_info.dki_capacity - 1;
|
|
dk_ioc.dki_length = disk_info.dki_lbsize;
|
|
rval = check_label(fd, &dk_ioc);
|
|
if (rval == 0) {
|
|
legacy_label = B_TRUE;
|
|
if (efi_debug)
|
|
(void) fprintf(stderr,
|
|
"efi_read: primary label corrupt; "
|
|
"using EFI backup label located on"
|
|
" the last block\n");
|
|
}
|
|
} else {
|
|
if ((efi_debug) && (rval == 0))
|
|
(void) fprintf(stderr, "efi_read: primary label"
|
|
" corrupt; using legacy EFI backup label "
|
|
" located on the next to last block\n");
|
|
}
|
|
|
|
if (rval == 0) {
|
|
dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
|
|
vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
|
|
vtoc->efi_nparts =
|
|
LE_32(efi->efi_gpt_NumberOfPartitionEntries);
|
|
/*
|
|
* Partition tables are between backup GPT header
|
|
* table and ParitionEntryLBA (the starting LBA of
|
|
* the GUID partition entries array). Now that we
|
|
* already got valid GPT header and saved it in
|
|
* dk_ioc.dki_data, we try to get GUID partition
|
|
* entry array here.
|
|
*/
|
|
/* LINTED */
|
|
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
|
|
+ disk_info.dki_lbsize);
|
|
if (legacy_label)
|
|
dk_ioc.dki_length = disk_info.dki_capacity - 1 -
|
|
dk_ioc.dki_lba;
|
|
else
|
|
dk_ioc.dki_length = disk_info.dki_capacity - 2 -
|
|
dk_ioc.dki_lba;
|
|
dk_ioc.dki_length *= disk_info.dki_lbsize;
|
|
if (dk_ioc.dki_length >
|
|
((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
|
|
rval = VT_EINVAL;
|
|
} else {
|
|
/*
|
|
* read GUID partition entry array
|
|
*/
|
|
rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
|
|
}
|
|
}
|
|
|
|
} else if (rval == 0) {
|
|
|
|
dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
|
|
/* LINTED */
|
|
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
|
|
+ disk_info.dki_lbsize);
|
|
dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
|
|
rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
|
|
|
|
} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
|
|
/*
|
|
* When the device is a LDoms virtual disk, the DKIOCGETEFI
|
|
* ioctl can fail with EINVAL if the virtual disk backend
|
|
* is a ZFS volume serviced by a domain running an old version
|
|
* of Solaris. This is because the DKIOCGETEFI ioctl was
|
|
* initially incorrectly implemented for a ZFS volume and it
|
|
* expected the GPT and GPE to be retrieved with a single ioctl.
|
|
* So we try to read the GPT and the GPE using that old style
|
|
* ioctl.
|
|
*/
|
|
dk_ioc.dki_lba = 1;
|
|
dk_ioc.dki_length = label_len;
|
|
rval = check_label(fd, &dk_ioc);
|
|
}
|
|
|
|
if (rval < 0) {
|
|
free(efi);
|
|
return (rval);
|
|
}
|
|
|
|
/* LINTED -- always longlong aligned */
|
|
efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
|
|
|
|
/*
|
|
* Assemble this into a "dk_gpt" struct for easier
|
|
* digestibility by applications.
|
|
*/
|
|
vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
|
|
vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
|
|
vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
|
|
vtoc->efi_lbasize = disk_info.dki_lbsize;
|
|
vtoc->efi_last_lba = disk_info.dki_capacity - 1;
|
|
vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
|
|
vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
|
|
vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
|
|
UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
|
|
|
|
/*
|
|
* If the array the user passed in is too small, set the length
|
|
* to what it needs to be and return
|
|
*/
|
|
if (user_length < vtoc->efi_nparts) {
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
for (i = 0; i < vtoc->efi_nparts; i++) {
|
|
|
|
UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
|
|
efi_parts[i].efi_gpe_PartitionTypeGUID);
|
|
|
|
for (j = 0;
|
|
j < sizeof (conversion_array)
|
|
/ sizeof (struct uuid_to_ptag); j++) {
|
|
|
|
if (bcmp(&vtoc->efi_parts[i].p_guid,
|
|
&conversion_array[j].uuid,
|
|
sizeof (struct uuid)) == 0) {
|
|
vtoc->efi_parts[i].p_tag = j;
|
|
break;
|
|
}
|
|
}
|
|
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
|
|
continue;
|
|
vtoc->efi_parts[i].p_flag =
|
|
LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
|
|
vtoc->efi_parts[i].p_start =
|
|
LE_64(efi_parts[i].efi_gpe_StartingLBA);
|
|
vtoc->efi_parts[i].p_size =
|
|
LE_64(efi_parts[i].efi_gpe_EndingLBA) -
|
|
vtoc->efi_parts[i].p_start + 1;
|
|
for (j = 0; j < EFI_PART_NAME_LEN; j++) {
|
|
vtoc->efi_parts[i].p_name[j] =
|
|
(uchar_t)LE_16(
|
|
efi_parts[i].efi_gpe_PartitionName[j]);
|
|
}
|
|
|
|
UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
|
|
efi_parts[i].efi_gpe_UniquePartitionGUID);
|
|
}
|
|
free(efi);
|
|
|
|
return (dki_info.dki_partition);
|
|
}
|
|
|
|
/* writes a "protective" MBR */
|
|
static int
|
|
write_pmbr(int fd, struct dk_gpt *vtoc)
|
|
{
|
|
dk_efi_t dk_ioc;
|
|
struct mboot mb;
|
|
uchar_t *cp;
|
|
diskaddr_t size_in_lba;
|
|
uchar_t *buf;
|
|
int len;
|
|
|
|
len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
|
|
if (posix_memalign((void **)&buf, len, len))
|
|
return (VT_ERROR);
|
|
|
|
/*
|
|
* Preserve any boot code and disk signature if the first block is
|
|
* already an MBR.
|
|
*/
|
|
memset(buf, 0, len);
|
|
dk_ioc.dki_lba = 0;
|
|
dk_ioc.dki_length = len;
|
|
/* LINTED -- always longlong aligned */
|
|
dk_ioc.dki_data = (efi_gpt_t *)buf;
|
|
if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
|
|
(void *) memcpy(&mb, buf, sizeof (mb));
|
|
bzero(&mb, sizeof (mb));
|
|
mb.signature = LE_16(MBB_MAGIC);
|
|
} else {
|
|
(void *) memcpy(&mb, buf, sizeof (mb));
|
|
if (mb.signature != LE_16(MBB_MAGIC)) {
|
|
bzero(&mb, sizeof (mb));
|
|
mb.signature = LE_16(MBB_MAGIC);
|
|
}
|
|
}
|
|
|
|
bzero(&mb.parts, sizeof (mb.parts));
|
|
cp = (uchar_t *)&mb.parts[0];
|
|
/* bootable or not */
|
|
*cp++ = 0;
|
|
/* beginning CHS; 0xffffff if not representable */
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
/* OS type */
|
|
*cp++ = EFI_PMBR;
|
|
/* ending CHS; 0xffffff if not representable */
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
/* starting LBA: 1 (little endian format) by EFI definition */
|
|
*cp++ = 0x01;
|
|
*cp++ = 0x00;
|
|
*cp++ = 0x00;
|
|
*cp++ = 0x00;
|
|
/* ending LBA: last block on the disk (little endian format) */
|
|
size_in_lba = vtoc->efi_last_lba;
|
|
if (size_in_lba < 0xffffffff) {
|
|
*cp++ = (size_in_lba & 0x000000ff);
|
|
*cp++ = (size_in_lba & 0x0000ff00) >> 8;
|
|
*cp++ = (size_in_lba & 0x00ff0000) >> 16;
|
|
*cp++ = (size_in_lba & 0xff000000) >> 24;
|
|
} else {
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
}
|
|
|
|
(void *) memcpy(buf, &mb, sizeof (mb));
|
|
/* LINTED -- always longlong aligned */
|
|
dk_ioc.dki_data = (efi_gpt_t *)buf;
|
|
dk_ioc.dki_lba = 0;
|
|
dk_ioc.dki_length = len;
|
|
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
|
|
free(buf);
|
|
switch (errno) {
|
|
case EIO:
|
|
return (VT_EIO);
|
|
case EINVAL:
|
|
return (VT_EINVAL);
|
|
default:
|
|
return (VT_ERROR);
|
|
}
|
|
}
|
|
free(buf);
|
|
return (0);
|
|
}
|
|
|
|
/* make sure the user specified something reasonable */
|
|
static int
|
|
check_input(struct dk_gpt *vtoc)
|
|
{
|
|
int resv_part = -1;
|
|
int i, j;
|
|
diskaddr_t istart, jstart, isize, jsize, endsect;
|
|
|
|
/*
|
|
* Sanity-check the input (make sure no partitions overlap)
|
|
*/
|
|
for (i = 0; i < vtoc->efi_nparts; i++) {
|
|
/* It can't be unassigned and have an actual size */
|
|
if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
|
|
(vtoc->efi_parts[i].p_size != 0)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr, "partition %d is "
|
|
"\"unassigned\" but has a size of %llu",
|
|
i, vtoc->efi_parts[i].p_size);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
|
|
if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
|
|
continue;
|
|
/* we have encountered an unknown uuid */
|
|
vtoc->efi_parts[i].p_tag = 0xff;
|
|
}
|
|
if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
|
|
if (resv_part != -1) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr, "found "
|
|
"duplicate reserved partition "
|
|
"at %d\n", i);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
resv_part = i;
|
|
}
|
|
if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
|
|
(vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"Partition %d starts at %llu. ",
|
|
i,
|
|
vtoc->efi_parts[i].p_start);
|
|
(void) fprintf(stderr,
|
|
"It must be between %llu and %llu.\n",
|
|
vtoc->efi_first_u_lba,
|
|
vtoc->efi_last_u_lba);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
if ((vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size <
|
|
vtoc->efi_first_u_lba) ||
|
|
(vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size >
|
|
vtoc->efi_last_u_lba + 1)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"Partition %d ends at %llu. ",
|
|
i,
|
|
vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size);
|
|
(void) fprintf(stderr,
|
|
"It must be between %llu and %llu.\n",
|
|
vtoc->efi_first_u_lba,
|
|
vtoc->efi_last_u_lba);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
for (j = 0; j < vtoc->efi_nparts; j++) {
|
|
isize = vtoc->efi_parts[i].p_size;
|
|
jsize = vtoc->efi_parts[j].p_size;
|
|
istart = vtoc->efi_parts[i].p_start;
|
|
jstart = vtoc->efi_parts[j].p_start;
|
|
if ((i != j) && (isize != 0) && (jsize != 0)) {
|
|
endsect = jstart + jsize -1;
|
|
if ((jstart <= istart) &&
|
|
(istart <= endsect)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"Partition %d overlaps "
|
|
"partition %d.", i, j);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* just a warning for now */
|
|
if ((resv_part == -1) && efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"no reserved partition found\n");
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* add all the unallocated space to the current label
|
|
*/
|
|
int
|
|
efi_use_whole_disk(int fd)
|
|
{
|
|
struct dk_gpt *efi_label;
|
|
int rval;
|
|
int i;
|
|
uint_t resv_index = 0, data_index = 0;
|
|
diskaddr_t resv_start = 0, data_start = 0;
|
|
diskaddr_t difference;
|
|
|
|
rval = efi_alloc_and_read(fd, &efi_label);
|
|
if (rval < 0) {
|
|
return (rval);
|
|
}
|
|
|
|
/*
|
|
* If alter_lba is 1, we are using the backup label.
|
|
* Since we can locate the backup label by disk capacity,
|
|
* there must be no unallocated space.
|
|
*/
|
|
if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
|
|
>= efi_label->efi_last_lba)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"efi_use_whole_disk: requested space not found\n");
|
|
}
|
|
efi_free(efi_label);
|
|
return (VT_ENOSPC);
|
|
}
|
|
|
|
difference = efi_label->efi_last_lba - efi_label->efi_altern_lba;
|
|
|
|
/*
|
|
* Find the last physically non-zero partition.
|
|
* This is the reserved partition.
|
|
*/
|
|
for (i = 0; i < efi_label->efi_nparts; i ++) {
|
|
if (resv_start < efi_label->efi_parts[i].p_start) {
|
|
resv_start = efi_label->efi_parts[i].p_start;
|
|
resv_index = i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the last physically non-zero partition before that.
|
|
* This is the data partition.
|
|
*/
|
|
for (i = 0; i < resv_index; i ++) {
|
|
if (data_start < efi_label->efi_parts[i].p_start) {
|
|
data_start = efi_label->efi_parts[i].p_start;
|
|
data_index = i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move the reserved partition. There is currently no data in
|
|
* here except fabricated devids (which get generated via
|
|
* efi_write()). So there is no need to copy data.
|
|
*/
|
|
efi_label->efi_parts[data_index].p_size += difference;
|
|
efi_label->efi_parts[resv_index].p_start += difference;
|
|
efi_label->efi_last_u_lba += difference;
|
|
|
|
rval = efi_write(fd, efi_label);
|
|
if (rval < 0) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"efi_use_whole_disk:fail to write label, rval=%d\n",
|
|
rval);
|
|
}
|
|
efi_free(efi_label);
|
|
return (rval);
|
|
}
|
|
|
|
efi_free(efi_label);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* write EFI label and backup label
|
|
*/
|
|
int
|
|
efi_write(int fd, struct dk_gpt *vtoc)
|
|
{
|
|
dk_efi_t dk_ioc;
|
|
efi_gpt_t *efi;
|
|
efi_gpe_t *efi_parts;
|
|
int i, j;
|
|
struct dk_cinfo dki_info;
|
|
int rval;
|
|
int md_flag = 0;
|
|
int nblocks;
|
|
diskaddr_t lba_backup_gpt_hdr;
|
|
|
|
if ((rval = efi_get_info(fd, &dki_info)) != 0)
|
|
return rval;
|
|
|
|
/* check if we are dealing wih a metadevice */
|
|
if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
|
|
(strncmp(dki_info.dki_dname, "md", 3) == 0)) {
|
|
md_flag = 1;
|
|
}
|
|
|
|
if (check_input(vtoc)) {
|
|
/*
|
|
* not valid; if it's a metadevice just pass it down
|
|
* because SVM will do its own checking
|
|
*/
|
|
if (md_flag == 0) {
|
|
return (VT_EINVAL);
|
|
}
|
|
}
|
|
|
|
dk_ioc.dki_lba = 1;
|
|
if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
|
|
dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
|
|
} else {
|
|
dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
|
|
vtoc->efi_lbasize) *
|
|
vtoc->efi_lbasize;
|
|
}
|
|
|
|
/*
|
|
* the number of blocks occupied by GUID partition entry array
|
|
*/
|
|
nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
|
|
|
|
/*
|
|
* Backup GPT header is located on the block after GUID
|
|
* partition entry array. Here, we calculate the address
|
|
* for backup GPT header.
|
|
*/
|
|
lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
|
|
if (posix_memalign((void **)&dk_ioc.dki_data,
|
|
vtoc->efi_lbasize, dk_ioc.dki_length))
|
|
return (VT_ERROR);
|
|
|
|
memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
|
|
efi = dk_ioc.dki_data;
|
|
|
|
/* stuff user's input into EFI struct */
|
|
efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
|
|
efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
|
|
efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
|
|
efi->efi_gpt_Reserved1 = 0;
|
|
efi->efi_gpt_MyLBA = LE_64(1ULL);
|
|
efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
|
|
efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
|
|
efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
|
|
efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
|
|
efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
|
|
efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
|
|
UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
|
|
|
|
/* LINTED -- always longlong aligned */
|
|
efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
|
|
|
|
for (i = 0; i < vtoc->efi_nparts; i++) {
|
|
for (j = 0;
|
|
j < sizeof (conversion_array) /
|
|
sizeof (struct uuid_to_ptag); j++) {
|
|
|
|
if (vtoc->efi_parts[i].p_tag == j) {
|
|
UUID_LE_CONVERT(
|
|
efi_parts[i].efi_gpe_PartitionTypeGUID,
|
|
conversion_array[j].uuid);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (j == sizeof (conversion_array) /
|
|
sizeof (struct uuid_to_ptag)) {
|
|
/*
|
|
* If we didn't have a matching uuid match, bail here.
|
|
* Don't write a label with unknown uuid.
|
|
*/
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"Unknown uuid for p_tag %d\n",
|
|
vtoc->efi_parts[i].p_tag);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
/* Zero's should be written for empty partitions */
|
|
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
|
|
continue;
|
|
|
|
efi_parts[i].efi_gpe_StartingLBA =
|
|
LE_64(vtoc->efi_parts[i].p_start);
|
|
efi_parts[i].efi_gpe_EndingLBA =
|
|
LE_64(vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size - 1);
|
|
efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
|
|
LE_16(vtoc->efi_parts[i].p_flag);
|
|
for (j = 0; j < EFI_PART_NAME_LEN; j++) {
|
|
efi_parts[i].efi_gpe_PartitionName[j] =
|
|
LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
|
|
}
|
|
if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
|
|
uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
|
|
(void) uuid_generate((uchar_t *)
|
|
&vtoc->efi_parts[i].p_uguid);
|
|
}
|
|
bcopy(&vtoc->efi_parts[i].p_uguid,
|
|
&efi_parts[i].efi_gpe_UniquePartitionGUID,
|
|
sizeof (uuid_t));
|
|
}
|
|
efi->efi_gpt_PartitionEntryArrayCRC32 =
|
|
LE_32(efi_crc32((unsigned char *)efi_parts,
|
|
vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
|
|
efi->efi_gpt_HeaderCRC32 =
|
|
LE_32(efi_crc32((unsigned char *)efi,
|
|
LE_32(efi->efi_gpt_HeaderSize)));
|
|
|
|
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
|
|
free(dk_ioc.dki_data);
|
|
switch (errno) {
|
|
case EIO:
|
|
return (VT_EIO);
|
|
case EINVAL:
|
|
return (VT_EINVAL);
|
|
default:
|
|
return (VT_ERROR);
|
|
}
|
|
}
|
|
/* if it's a metadevice we're done */
|
|
if (md_flag) {
|
|
free(dk_ioc.dki_data);
|
|
return (0);
|
|
}
|
|
|
|
/* write backup partition array */
|
|
dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
|
|
dk_ioc.dki_length -= vtoc->efi_lbasize;
|
|
/* LINTED */
|
|
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
|
|
vtoc->efi_lbasize);
|
|
|
|
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
|
|
/*
|
|
* we wrote the primary label okay, so don't fail
|
|
*/
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"write of backup partitions to block %llu "
|
|
"failed, errno %d\n",
|
|
vtoc->efi_last_u_lba + 1,
|
|
errno);
|
|
}
|
|
}
|
|
/*
|
|
* now swap MyLBA and AlternateLBA fields and write backup
|
|
* partition table header
|
|
*/
|
|
dk_ioc.dki_lba = lba_backup_gpt_hdr;
|
|
dk_ioc.dki_length = vtoc->efi_lbasize;
|
|
/* LINTED */
|
|
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
|
|
vtoc->efi_lbasize);
|
|
efi->efi_gpt_AlternateLBA = LE_64(1ULL);
|
|
efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
|
|
efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
|
|
efi->efi_gpt_HeaderCRC32 = 0;
|
|
efi->efi_gpt_HeaderCRC32 =
|
|
LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
|
|
LE_32(efi->efi_gpt_HeaderSize)));
|
|
|
|
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"write of backup header to block %llu failed, "
|
|
"errno %d\n",
|
|
lba_backup_gpt_hdr,
|
|
errno);
|
|
}
|
|
}
|
|
/* write the PMBR */
|
|
(void) write_pmbr(fd, vtoc);
|
|
free(dk_ioc.dki_data);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
efi_free(struct dk_gpt *ptr)
|
|
{
|
|
free(ptr);
|
|
}
|
|
|
|
/*
|
|
* Input: File descriptor
|
|
* Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
|
|
* Otherwise 0.
|
|
*/
|
|
int
|
|
efi_type(int fd)
|
|
{
|
|
#if 0
|
|
struct vtoc vtoc;
|
|
struct extvtoc extvtoc;
|
|
|
|
if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
|
|
if (errno == ENOTSUP)
|
|
return (1);
|
|
else if (errno == ENOTTY) {
|
|
if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
|
|
if (errno == ENOTSUP)
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
#else
|
|
return (ENOSYS);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
efi_err_check(struct dk_gpt *vtoc)
|
|
{
|
|
int resv_part = -1;
|
|
int i, j;
|
|
diskaddr_t istart, jstart, isize, jsize, endsect;
|
|
int overlap = 0;
|
|
|
|
/*
|
|
* make sure no partitions overlap
|
|
*/
|
|
for (i = 0; i < vtoc->efi_nparts; i++) {
|
|
/* It can't be unassigned and have an actual size */
|
|
if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
|
|
(vtoc->efi_parts[i].p_size != 0)) {
|
|
(void) fprintf(stderr,
|
|
"partition %d is \"unassigned\" but has a size "
|
|
"of %llu\n", i, vtoc->efi_parts[i].p_size);
|
|
}
|
|
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
|
|
continue;
|
|
}
|
|
if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
|
|
if (resv_part != -1) {
|
|
(void) fprintf(stderr,
|
|
"found duplicate reserved partition at "
|
|
"%d\n", i);
|
|
}
|
|
resv_part = i;
|
|
if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
|
|
(void) fprintf(stderr,
|
|
"Warning: reserved partition size must "
|
|
"be %d sectors\n", EFI_MIN_RESV_SIZE);
|
|
}
|
|
if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
|
|
(vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
|
|
(void) fprintf(stderr,
|
|
"Partition %d starts at %llu\n",
|
|
i,
|
|
vtoc->efi_parts[i].p_start);
|
|
(void) fprintf(stderr,
|
|
"It must be between %llu and %llu.\n",
|
|
vtoc->efi_first_u_lba,
|
|
vtoc->efi_last_u_lba);
|
|
}
|
|
if ((vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size <
|
|
vtoc->efi_first_u_lba) ||
|
|
(vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size >
|
|
vtoc->efi_last_u_lba + 1)) {
|
|
(void) fprintf(stderr,
|
|
"Partition %d ends at %llu\n",
|
|
i,
|
|
vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size);
|
|
(void) fprintf(stderr,
|
|
"It must be between %llu and %llu.\n",
|
|
vtoc->efi_first_u_lba,
|
|
vtoc->efi_last_u_lba);
|
|
}
|
|
|
|
for (j = 0; j < vtoc->efi_nparts; j++) {
|
|
isize = vtoc->efi_parts[i].p_size;
|
|
jsize = vtoc->efi_parts[j].p_size;
|
|
istart = vtoc->efi_parts[i].p_start;
|
|
jstart = vtoc->efi_parts[j].p_start;
|
|
if ((i != j) && (isize != 0) && (jsize != 0)) {
|
|
endsect = jstart + jsize -1;
|
|
if ((jstart <= istart) &&
|
|
(istart <= endsect)) {
|
|
if (!overlap) {
|
|
(void) fprintf(stderr,
|
|
"label error: EFI Labels do not "
|
|
"support overlapping partitions\n");
|
|
}
|
|
(void) fprintf(stderr,
|
|
"Partition %d overlaps partition "
|
|
"%d.\n", i, j);
|
|
overlap = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* make sure there is a reserved partition */
|
|
if (resv_part == -1) {
|
|
(void) fprintf(stderr,
|
|
"no reserved partition found\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We need to get information necessary to construct a *new* efi
|
|
* label type
|
|
*/
|
|
int
|
|
efi_auto_sense(int fd, struct dk_gpt **vtoc)
|
|
{
|
|
|
|
int i;
|
|
|
|
/*
|
|
* Now build the default partition table
|
|
*/
|
|
if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr, "efi_alloc_and_init failed.\n");
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
for (i = 0; i < MIN((*vtoc)->efi_nparts, V_NUMPAR); i++) {
|
|
(*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
|
|
(*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
|
|
(*vtoc)->efi_parts[i].p_start = 0;
|
|
(*vtoc)->efi_parts[i].p_size = 0;
|
|
}
|
|
/*
|
|
* Make constants first
|
|
* and variable partitions later
|
|
*/
|
|
|
|
/* root partition - s0 128 MB */
|
|
(*vtoc)->efi_parts[0].p_start = 34;
|
|
(*vtoc)->efi_parts[0].p_size = 262144;
|
|
|
|
/* partition - s1 128 MB */
|
|
(*vtoc)->efi_parts[1].p_start = 262178;
|
|
(*vtoc)->efi_parts[1].p_size = 262144;
|
|
|
|
/* partition -s2 is NOT the Backup disk */
|
|
(*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
|
|
|
|
/* partition -s6 /usr partition - HOG */
|
|
(*vtoc)->efi_parts[6].p_start = 524322;
|
|
(*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
|
|
- (1024 * 16);
|
|
|
|
/* efi reserved partition - s9 16K */
|
|
(*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
|
|
(*vtoc)->efi_parts[8].p_size = (1024 * 16);
|
|
(*vtoc)->efi_parts[8].p_tag = V_RESERVED;
|
|
return (0);
|
|
}
|