mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-25 01:16:34 +03:00
6cb8e5306d
Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
7883 lines
214 KiB
C
7883 lines
214 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2017 by Delphix. All rights reserved.
|
|
* Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
* Copyright 2013 Saso Kiselkov. All rights reserved.
|
|
* Copyright (c) 2014 Integros [integros.com]
|
|
* Copyright 2016 Toomas Soome <tsoome@me.com>
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
|
* Copyright (c) 2017 Datto Inc.
|
|
* Copyright 2017 Joyent, Inc.
|
|
*/
|
|
|
|
/*
|
|
* SPA: Storage Pool Allocator
|
|
*
|
|
* This file contains all the routines used when modifying on-disk SPA state.
|
|
* This includes opening, importing, destroying, exporting a pool, and syncing a
|
|
* pool.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fm/fs/zfs.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/vdev_removal.h>
|
|
#include <sys/vdev_indirect_mapping.h>
|
|
#include <sys/vdev_indirect_births.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/mmp.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/bpobj.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/unique.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/callb.h>
|
|
#include <sys/systeminfo.h>
|
|
#include <sys/spa_boot.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/dsl_destroy.h>
|
|
#include <sys/zvol.h>
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/fm/protocol.h>
|
|
#include <sys/fm/util.h>
|
|
#include <sys/bootprops.h>
|
|
#include <sys/callb.h>
|
|
#include <sys/cpupart.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/sysdc.h>
|
|
#include <sys/zone.h>
|
|
#endif /* _KERNEL */
|
|
|
|
#include "zfs_prop.h"
|
|
#include "zfs_comutil.h"
|
|
|
|
/*
|
|
* The interval, in seconds, at which failed configuration cache file writes
|
|
* should be retried.
|
|
*/
|
|
int zfs_ccw_retry_interval = 300;
|
|
|
|
typedef enum zti_modes {
|
|
ZTI_MODE_FIXED, /* value is # of threads (min 1) */
|
|
ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
|
|
ZTI_MODE_NULL, /* don't create a taskq */
|
|
ZTI_NMODES
|
|
} zti_modes_t;
|
|
|
|
#define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
|
|
#define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
|
|
#define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
|
|
#define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
|
|
|
|
#define ZTI_N(n) ZTI_P(n, 1)
|
|
#define ZTI_ONE ZTI_N(1)
|
|
|
|
typedef struct zio_taskq_info {
|
|
zti_modes_t zti_mode;
|
|
uint_t zti_value;
|
|
uint_t zti_count;
|
|
} zio_taskq_info_t;
|
|
|
|
static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
|
|
"iss", "iss_h", "int", "int_h"
|
|
};
|
|
|
|
/*
|
|
* This table defines the taskq settings for each ZFS I/O type. When
|
|
* initializing a pool, we use this table to create an appropriately sized
|
|
* taskq. Some operations are low volume and therefore have a small, static
|
|
* number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
|
|
* macros. Other operations process a large amount of data; the ZTI_BATCH
|
|
* macro causes us to create a taskq oriented for throughput. Some operations
|
|
* are so high frequency and short-lived that the taskq itself can become a a
|
|
* point of lock contention. The ZTI_P(#, #) macro indicates that we need an
|
|
* additional degree of parallelism specified by the number of threads per-
|
|
* taskq and the number of taskqs; when dispatching an event in this case, the
|
|
* particular taskq is chosen at random.
|
|
*
|
|
* The different taskq priorities are to handle the different contexts (issue
|
|
* and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
|
|
* need to be handled with minimum delay.
|
|
*/
|
|
const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
|
|
/* ISSUE ISSUE_HIGH INTR INTR_HIGH */
|
|
{ ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
|
|
{ ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
|
|
{ ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
|
|
{ ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
|
|
{ ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
|
|
{ ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
|
|
};
|
|
|
|
static void spa_sync_version(void *arg, dmu_tx_t *tx);
|
|
static void spa_sync_props(void *arg, dmu_tx_t *tx);
|
|
static boolean_t spa_has_active_shared_spare(spa_t *spa);
|
|
static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport,
|
|
boolean_t reloading);
|
|
static void spa_vdev_resilver_done(spa_t *spa);
|
|
|
|
uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
|
|
id_t zio_taskq_psrset_bind = PS_NONE;
|
|
boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
|
|
uint_t zio_taskq_basedc = 80; /* base duty cycle */
|
|
|
|
boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
|
|
|
|
/*
|
|
* Report any spa_load_verify errors found, but do not fail spa_load.
|
|
* This is used by zdb to analyze non-idle pools.
|
|
*/
|
|
boolean_t spa_load_verify_dryrun = B_FALSE;
|
|
|
|
/*
|
|
* This (illegal) pool name is used when temporarily importing a spa_t in order
|
|
* to get the vdev stats associated with the imported devices.
|
|
*/
|
|
#define TRYIMPORT_NAME "$import"
|
|
|
|
/*
|
|
* For debugging purposes: print out vdev tree during pool import.
|
|
*/
|
|
int spa_load_print_vdev_tree = B_FALSE;
|
|
|
|
/*
|
|
* A non-zero value for zfs_max_missing_tvds means that we allow importing
|
|
* pools with missing top-level vdevs. This is strictly intended for advanced
|
|
* pool recovery cases since missing data is almost inevitable. Pools with
|
|
* missing devices can only be imported read-only for safety reasons, and their
|
|
* fail-mode will be automatically set to "continue".
|
|
*
|
|
* With 1 missing vdev we should be able to import the pool and mount all
|
|
* datasets. User data that was not modified after the missing device has been
|
|
* added should be recoverable. This means that snapshots created prior to the
|
|
* addition of that device should be completely intact.
|
|
*
|
|
* With 2 missing vdevs, some datasets may fail to mount since there are
|
|
* dataset statistics that are stored as regular metadata. Some data might be
|
|
* recoverable if those vdevs were added recently.
|
|
*
|
|
* With 3 or more missing vdevs, the pool is severely damaged and MOS entries
|
|
* may be missing entirely. Chances of data recovery are very low. Note that
|
|
* there are also risks of performing an inadvertent rewind as we might be
|
|
* missing all the vdevs with the latest uberblocks.
|
|
*/
|
|
unsigned long zfs_max_missing_tvds = 0;
|
|
|
|
/*
|
|
* The parameters below are similar to zfs_max_missing_tvds but are only
|
|
* intended for a preliminary open of the pool with an untrusted config which
|
|
* might be incomplete or out-dated.
|
|
*
|
|
* We are more tolerant for pools opened from a cachefile since we could have
|
|
* an out-dated cachefile where a device removal was not registered.
|
|
* We could have set the limit arbitrarily high but in the case where devices
|
|
* are really missing we would want to return the proper error codes; we chose
|
|
* SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
|
|
* and we get a chance to retrieve the trusted config.
|
|
*/
|
|
uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
|
|
/*
|
|
* In the case where config was assembled by scanning device paths (/dev/dsks
|
|
* by default) we are less tolerant since all the existing devices should have
|
|
* been detected and we want spa_load to return the right error codes.
|
|
*/
|
|
uint64_t zfs_max_missing_tvds_scan = 0;
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA properties routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Add a (source=src, propname=propval) list to an nvlist.
|
|
*/
|
|
static void
|
|
spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
|
|
uint64_t intval, zprop_source_t src)
|
|
{
|
|
const char *propname = zpool_prop_to_name(prop);
|
|
nvlist_t *propval;
|
|
|
|
VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
|
|
|
|
if (strval != NULL)
|
|
VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
|
|
else
|
|
VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
|
|
|
|
VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
|
|
nvlist_free(propval);
|
|
}
|
|
|
|
/*
|
|
* Get property values from the spa configuration.
|
|
*/
|
|
static void
|
|
spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
dsl_pool_t *pool = spa->spa_dsl_pool;
|
|
uint64_t size, alloc, cap, version;
|
|
const zprop_source_t src = ZPROP_SRC_NONE;
|
|
spa_config_dirent_t *dp;
|
|
metaslab_class_t *mc = spa_normal_class(spa);
|
|
|
|
ASSERT(MUTEX_HELD(&spa->spa_props_lock));
|
|
|
|
if (rvd != NULL) {
|
|
alloc = metaslab_class_get_alloc(spa_normal_class(spa));
|
|
size = metaslab_class_get_space(spa_normal_class(spa));
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
|
|
size - alloc, src);
|
|
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
|
|
metaslab_class_fragmentation(mc), src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
|
|
metaslab_class_expandable_space(mc), src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
|
|
(spa_mode(spa) == FREAD), src);
|
|
|
|
cap = (size == 0) ? 0 : (alloc * 100 / size);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
|
|
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
|
|
ddt_get_pool_dedup_ratio(spa), src);
|
|
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
|
|
rvd->vdev_state, src);
|
|
|
|
version = spa_version(spa);
|
|
if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
|
|
version, ZPROP_SRC_DEFAULT);
|
|
} else {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
|
|
version, ZPROP_SRC_LOCAL);
|
|
}
|
|
}
|
|
|
|
if (pool != NULL) {
|
|
/*
|
|
* The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
|
|
* when opening pools before this version freedir will be NULL.
|
|
*/
|
|
if (pool->dp_free_dir != NULL) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
|
|
dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
|
|
src);
|
|
} else {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
|
|
NULL, 0, src);
|
|
}
|
|
|
|
if (pool->dp_leak_dir != NULL) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
|
|
dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
|
|
src);
|
|
} else {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
|
|
NULL, 0, src);
|
|
}
|
|
}
|
|
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
|
|
|
|
if (spa->spa_comment != NULL) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
|
|
0, ZPROP_SRC_LOCAL);
|
|
}
|
|
|
|
if (spa->spa_root != NULL)
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
|
|
0, ZPROP_SRC_LOCAL);
|
|
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
|
|
MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
|
|
} else {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
|
|
SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
|
|
}
|
|
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
|
|
DNODE_MAX_SIZE, ZPROP_SRC_NONE);
|
|
} else {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
|
|
DNODE_MIN_SIZE, ZPROP_SRC_NONE);
|
|
}
|
|
|
|
if ((dp = list_head(&spa->spa_config_list)) != NULL) {
|
|
if (dp->scd_path == NULL) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
|
|
"none", 0, ZPROP_SRC_LOCAL);
|
|
} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
|
|
dp->scd_path, 0, ZPROP_SRC_LOCAL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get zpool property values.
|
|
*/
|
|
int
|
|
spa_prop_get(spa_t *spa, nvlist_t **nvp)
|
|
{
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
int err;
|
|
|
|
err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
|
|
if (err)
|
|
return (err);
|
|
|
|
mutex_enter(&spa->spa_props_lock);
|
|
|
|
/*
|
|
* Get properties from the spa config.
|
|
*/
|
|
spa_prop_get_config(spa, nvp);
|
|
|
|
/* If no pool property object, no more prop to get. */
|
|
if (mos == NULL || spa->spa_pool_props_object == 0) {
|
|
mutex_exit(&spa->spa_props_lock);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Get properties from the MOS pool property object.
|
|
*/
|
|
for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
|
|
(err = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
uint64_t intval = 0;
|
|
char *strval = NULL;
|
|
zprop_source_t src = ZPROP_SRC_DEFAULT;
|
|
zpool_prop_t prop;
|
|
|
|
if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
|
|
continue;
|
|
|
|
switch (za.za_integer_length) {
|
|
case 8:
|
|
/* integer property */
|
|
if (za.za_first_integer !=
|
|
zpool_prop_default_numeric(prop))
|
|
src = ZPROP_SRC_LOCAL;
|
|
|
|
if (prop == ZPOOL_PROP_BOOTFS) {
|
|
dsl_pool_t *dp;
|
|
dsl_dataset_t *ds = NULL;
|
|
|
|
dp = spa_get_dsl(spa);
|
|
dsl_pool_config_enter(dp, FTAG);
|
|
if ((err = dsl_dataset_hold_obj(dp,
|
|
za.za_first_integer, FTAG, &ds))) {
|
|
dsl_pool_config_exit(dp, FTAG);
|
|
break;
|
|
}
|
|
|
|
strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
|
|
KM_SLEEP);
|
|
dsl_dataset_name(ds, strval);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
dsl_pool_config_exit(dp, FTAG);
|
|
} else {
|
|
strval = NULL;
|
|
intval = za.za_first_integer;
|
|
}
|
|
|
|
spa_prop_add_list(*nvp, prop, strval, intval, src);
|
|
|
|
if (strval != NULL)
|
|
kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
|
|
|
|
break;
|
|
|
|
case 1:
|
|
/* string property */
|
|
strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
|
|
err = zap_lookup(mos, spa->spa_pool_props_object,
|
|
za.za_name, 1, za.za_num_integers, strval);
|
|
if (err) {
|
|
kmem_free(strval, za.za_num_integers);
|
|
break;
|
|
}
|
|
spa_prop_add_list(*nvp, prop, strval, 0, src);
|
|
kmem_free(strval, za.za_num_integers);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
mutex_exit(&spa->spa_props_lock);
|
|
out:
|
|
if (err && err != ENOENT) {
|
|
nvlist_free(*nvp);
|
|
*nvp = NULL;
|
|
return (err);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Validate the given pool properties nvlist and modify the list
|
|
* for the property values to be set.
|
|
*/
|
|
static int
|
|
spa_prop_validate(spa_t *spa, nvlist_t *props)
|
|
{
|
|
nvpair_t *elem;
|
|
int error = 0, reset_bootfs = 0;
|
|
uint64_t objnum = 0;
|
|
boolean_t has_feature = B_FALSE;
|
|
|
|
elem = NULL;
|
|
while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
|
|
uint64_t intval;
|
|
char *strval, *slash, *check, *fname;
|
|
const char *propname = nvpair_name(elem);
|
|
zpool_prop_t prop = zpool_name_to_prop(propname);
|
|
|
|
switch (prop) {
|
|
case ZPOOL_PROP_INVAL:
|
|
if (!zpool_prop_feature(propname)) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Sanitize the input.
|
|
*/
|
|
if (nvpair_type(elem) != DATA_TYPE_UINT64) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
if (nvpair_value_uint64(elem, &intval) != 0) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
if (intval != 0) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
fname = strchr(propname, '@') + 1;
|
|
if (zfeature_lookup_name(fname, NULL) != 0) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
has_feature = B_TRUE;
|
|
break;
|
|
|
|
case ZPOOL_PROP_VERSION:
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (!error &&
|
|
(intval < spa_version(spa) ||
|
|
intval > SPA_VERSION_BEFORE_FEATURES ||
|
|
has_feature))
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
|
|
case ZPOOL_PROP_DELEGATION:
|
|
case ZPOOL_PROP_AUTOREPLACE:
|
|
case ZPOOL_PROP_LISTSNAPS:
|
|
case ZPOOL_PROP_AUTOEXPAND:
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (!error && intval > 1)
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
|
|
case ZPOOL_PROP_MULTIHOST:
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (!error && intval > 1)
|
|
error = SET_ERROR(EINVAL);
|
|
|
|
if (!error && !spa_get_hostid())
|
|
error = SET_ERROR(ENOTSUP);
|
|
|
|
break;
|
|
|
|
case ZPOOL_PROP_BOOTFS:
|
|
/*
|
|
* If the pool version is less than SPA_VERSION_BOOTFS,
|
|
* or the pool is still being created (version == 0),
|
|
* the bootfs property cannot be set.
|
|
*/
|
|
if (spa_version(spa) < SPA_VERSION_BOOTFS) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure the vdev config is bootable
|
|
*/
|
|
if (!vdev_is_bootable(spa->spa_root_vdev)) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
break;
|
|
}
|
|
|
|
reset_bootfs = 1;
|
|
|
|
error = nvpair_value_string(elem, &strval);
|
|
|
|
if (!error) {
|
|
objset_t *os;
|
|
uint64_t propval;
|
|
|
|
if (strval == NULL || strval[0] == '\0') {
|
|
objnum = zpool_prop_default_numeric(
|
|
ZPOOL_PROP_BOOTFS);
|
|
break;
|
|
}
|
|
|
|
error = dmu_objset_hold(strval, FTAG, &os);
|
|
if (error)
|
|
break;
|
|
|
|
/*
|
|
* Must be ZPL, and its property settings
|
|
* must be supported by GRUB (compression
|
|
* is not gzip, and large blocks or large
|
|
* dnodes are not used).
|
|
*/
|
|
|
|
if (dmu_objset_type(os) != DMU_OST_ZFS) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
} else if ((error =
|
|
dsl_prop_get_int_ds(dmu_objset_ds(os),
|
|
zfs_prop_to_name(ZFS_PROP_COMPRESSION),
|
|
&propval)) == 0 &&
|
|
!BOOTFS_COMPRESS_VALID(propval)) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
} else if ((error =
|
|
dsl_prop_get_int_ds(dmu_objset_ds(os),
|
|
zfs_prop_to_name(ZFS_PROP_DNODESIZE),
|
|
&propval)) == 0 &&
|
|
propval != ZFS_DNSIZE_LEGACY) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
} else {
|
|
objnum = dmu_objset_id(os);
|
|
}
|
|
dmu_objset_rele(os, FTAG);
|
|
}
|
|
break;
|
|
|
|
case ZPOOL_PROP_FAILUREMODE:
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (!error && intval > ZIO_FAILURE_MODE_PANIC)
|
|
error = SET_ERROR(EINVAL);
|
|
|
|
/*
|
|
* This is a special case which only occurs when
|
|
* the pool has completely failed. This allows
|
|
* the user to change the in-core failmode property
|
|
* without syncing it out to disk (I/Os might
|
|
* currently be blocked). We do this by returning
|
|
* EIO to the caller (spa_prop_set) to trick it
|
|
* into thinking we encountered a property validation
|
|
* error.
|
|
*/
|
|
if (!error && spa_suspended(spa)) {
|
|
spa->spa_failmode = intval;
|
|
error = SET_ERROR(EIO);
|
|
}
|
|
break;
|
|
|
|
case ZPOOL_PROP_CACHEFILE:
|
|
if ((error = nvpair_value_string(elem, &strval)) != 0)
|
|
break;
|
|
|
|
if (strval[0] == '\0')
|
|
break;
|
|
|
|
if (strcmp(strval, "none") == 0)
|
|
break;
|
|
|
|
if (strval[0] != '/') {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
slash = strrchr(strval, '/');
|
|
ASSERT(slash != NULL);
|
|
|
|
if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
|
|
strcmp(slash, "/..") == 0)
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
|
|
case ZPOOL_PROP_COMMENT:
|
|
if ((error = nvpair_value_string(elem, &strval)) != 0)
|
|
break;
|
|
for (check = strval; *check != '\0'; check++) {
|
|
if (!isprint(*check)) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
}
|
|
if (strlen(strval) > ZPROP_MAX_COMMENT)
|
|
error = SET_ERROR(E2BIG);
|
|
break;
|
|
|
|
case ZPOOL_PROP_DEDUPDITTO:
|
|
if (spa_version(spa) < SPA_VERSION_DEDUP)
|
|
error = SET_ERROR(ENOTSUP);
|
|
else
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (error == 0 &&
|
|
intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
if (!error && reset_bootfs) {
|
|
error = nvlist_remove(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
|
|
|
|
if (!error) {
|
|
error = nvlist_add_uint64(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
|
|
}
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
|
|
{
|
|
char *cachefile;
|
|
spa_config_dirent_t *dp;
|
|
|
|
if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
|
|
&cachefile) != 0)
|
|
return;
|
|
|
|
dp = kmem_alloc(sizeof (spa_config_dirent_t),
|
|
KM_SLEEP);
|
|
|
|
if (cachefile[0] == '\0')
|
|
dp->scd_path = spa_strdup(spa_config_path);
|
|
else if (strcmp(cachefile, "none") == 0)
|
|
dp->scd_path = NULL;
|
|
else
|
|
dp->scd_path = spa_strdup(cachefile);
|
|
|
|
list_insert_head(&spa->spa_config_list, dp);
|
|
if (need_sync)
|
|
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
|
|
}
|
|
|
|
int
|
|
spa_prop_set(spa_t *spa, nvlist_t *nvp)
|
|
{
|
|
int error;
|
|
nvpair_t *elem = NULL;
|
|
boolean_t need_sync = B_FALSE;
|
|
|
|
if ((error = spa_prop_validate(spa, nvp)) != 0)
|
|
return (error);
|
|
|
|
while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
|
|
zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
|
|
|
|
if (prop == ZPOOL_PROP_CACHEFILE ||
|
|
prop == ZPOOL_PROP_ALTROOT ||
|
|
prop == ZPOOL_PROP_READONLY)
|
|
continue;
|
|
|
|
if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
|
|
uint64_t ver;
|
|
|
|
if (prop == ZPOOL_PROP_VERSION) {
|
|
VERIFY(nvpair_value_uint64(elem, &ver) == 0);
|
|
} else {
|
|
ASSERT(zpool_prop_feature(nvpair_name(elem)));
|
|
ver = SPA_VERSION_FEATURES;
|
|
need_sync = B_TRUE;
|
|
}
|
|
|
|
/* Save time if the version is already set. */
|
|
if (ver == spa_version(spa))
|
|
continue;
|
|
|
|
/*
|
|
* In addition to the pool directory object, we might
|
|
* create the pool properties object, the features for
|
|
* read object, the features for write object, or the
|
|
* feature descriptions object.
|
|
*/
|
|
error = dsl_sync_task(spa->spa_name, NULL,
|
|
spa_sync_version, &ver,
|
|
6, ZFS_SPACE_CHECK_RESERVED);
|
|
if (error)
|
|
return (error);
|
|
continue;
|
|
}
|
|
|
|
need_sync = B_TRUE;
|
|
break;
|
|
}
|
|
|
|
if (need_sync) {
|
|
return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
|
|
nvp, 6, ZFS_SPACE_CHECK_RESERVED));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the bootfs property value is dsobj, clear it.
|
|
*/
|
|
void
|
|
spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
|
|
{
|
|
if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
|
|
VERIFY(zap_remove(spa->spa_meta_objset,
|
|
spa->spa_pool_props_object,
|
|
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
|
|
spa->spa_bootfs = 0;
|
|
}
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
spa_change_guid_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
ASSERTV(uint64_t *newguid = arg);
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
uint64_t vdev_state;
|
|
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
vdev_state = rvd->vdev_state;
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
if (vdev_state != VDEV_STATE_HEALTHY)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
ASSERT3U(spa_guid(spa), !=, *newguid);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
spa_change_guid_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
uint64_t *newguid = arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
uint64_t oldguid;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
oldguid = spa_guid(spa);
|
|
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
rvd->vdev_guid = *newguid;
|
|
rvd->vdev_guid_sum += (*newguid - oldguid);
|
|
vdev_config_dirty(rvd);
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
|
|
oldguid, *newguid);
|
|
}
|
|
|
|
/*
|
|
* Change the GUID for the pool. This is done so that we can later
|
|
* re-import a pool built from a clone of our own vdevs. We will modify
|
|
* the root vdev's guid, our own pool guid, and then mark all of our
|
|
* vdevs dirty. Note that we must make sure that all our vdevs are
|
|
* online when we do this, or else any vdevs that weren't present
|
|
* would be orphaned from our pool. We are also going to issue a
|
|
* sysevent to update any watchers.
|
|
*/
|
|
int
|
|
spa_change_guid(spa_t *spa)
|
|
{
|
|
int error;
|
|
uint64_t guid;
|
|
|
|
mutex_enter(&spa->spa_vdev_top_lock);
|
|
mutex_enter(&spa_namespace_lock);
|
|
guid = spa_generate_guid(NULL);
|
|
|
|
error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
|
|
spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
|
|
|
|
if (error == 0) {
|
|
spa_write_cachefile(spa, B_FALSE, B_TRUE);
|
|
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
|
|
}
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
mutex_exit(&spa->spa_vdev_top_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA state manipulation (open/create/destroy/import/export)
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static int
|
|
spa_error_entry_compare(const void *a, const void *b)
|
|
{
|
|
const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
|
|
const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
|
|
int ret;
|
|
|
|
ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
|
|
sizeof (zbookmark_phys_t));
|
|
|
|
return (AVL_ISIGN(ret));
|
|
}
|
|
|
|
/*
|
|
* Utility function which retrieves copies of the current logs and
|
|
* re-initializes them in the process.
|
|
*/
|
|
void
|
|
spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
|
|
|
|
bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
|
|
bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
|
|
|
|
avl_create(&spa->spa_errlist_scrub,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
avl_create(&spa->spa_errlist_last,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
}
|
|
|
|
static void
|
|
spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
|
|
{
|
|
const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
|
|
enum zti_modes mode = ztip->zti_mode;
|
|
uint_t value = ztip->zti_value;
|
|
uint_t count = ztip->zti_count;
|
|
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
|
|
char name[32];
|
|
uint_t flags = 0;
|
|
boolean_t batch = B_FALSE;
|
|
|
|
if (mode == ZTI_MODE_NULL) {
|
|
tqs->stqs_count = 0;
|
|
tqs->stqs_taskq = NULL;
|
|
return;
|
|
}
|
|
|
|
ASSERT3U(count, >, 0);
|
|
|
|
tqs->stqs_count = count;
|
|
tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
|
|
|
|
switch (mode) {
|
|
case ZTI_MODE_FIXED:
|
|
ASSERT3U(value, >=, 1);
|
|
value = MAX(value, 1);
|
|
flags |= TASKQ_DYNAMIC;
|
|
break;
|
|
|
|
case ZTI_MODE_BATCH:
|
|
batch = B_TRUE;
|
|
flags |= TASKQ_THREADS_CPU_PCT;
|
|
value = MIN(zio_taskq_batch_pct, 100);
|
|
break;
|
|
|
|
default:
|
|
panic("unrecognized mode for %s_%s taskq (%u:%u) in "
|
|
"spa_activate()",
|
|
zio_type_name[t], zio_taskq_types[q], mode, value);
|
|
break;
|
|
}
|
|
|
|
for (uint_t i = 0; i < count; i++) {
|
|
taskq_t *tq;
|
|
|
|
if (count > 1) {
|
|
(void) snprintf(name, sizeof (name), "%s_%s_%u",
|
|
zio_type_name[t], zio_taskq_types[q], i);
|
|
} else {
|
|
(void) snprintf(name, sizeof (name), "%s_%s",
|
|
zio_type_name[t], zio_taskq_types[q]);
|
|
}
|
|
|
|
if (zio_taskq_sysdc && spa->spa_proc != &p0) {
|
|
if (batch)
|
|
flags |= TASKQ_DC_BATCH;
|
|
|
|
tq = taskq_create_sysdc(name, value, 50, INT_MAX,
|
|
spa->spa_proc, zio_taskq_basedc, flags);
|
|
} else {
|
|
pri_t pri = maxclsyspri;
|
|
/*
|
|
* The write issue taskq can be extremely CPU
|
|
* intensive. Run it at slightly less important
|
|
* priority than the other taskqs. Under Linux this
|
|
* means incrementing the priority value on platforms
|
|
* like illumos it should be decremented.
|
|
*/
|
|
if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
|
|
pri++;
|
|
|
|
tq = taskq_create_proc(name, value, pri, 50,
|
|
INT_MAX, spa->spa_proc, flags);
|
|
}
|
|
|
|
tqs->stqs_taskq[i] = tq;
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
|
|
{
|
|
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
|
|
|
|
if (tqs->stqs_taskq == NULL) {
|
|
ASSERT3U(tqs->stqs_count, ==, 0);
|
|
return;
|
|
}
|
|
|
|
for (uint_t i = 0; i < tqs->stqs_count; i++) {
|
|
ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
|
|
taskq_destroy(tqs->stqs_taskq[i]);
|
|
}
|
|
|
|
kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
|
|
tqs->stqs_taskq = NULL;
|
|
}
|
|
|
|
/*
|
|
* Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
|
|
* Note that a type may have multiple discrete taskqs to avoid lock contention
|
|
* on the taskq itself. In that case we choose which taskq at random by using
|
|
* the low bits of gethrtime().
|
|
*/
|
|
void
|
|
spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
|
|
task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
|
|
{
|
|
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
|
|
taskq_t *tq;
|
|
|
|
ASSERT3P(tqs->stqs_taskq, !=, NULL);
|
|
ASSERT3U(tqs->stqs_count, !=, 0);
|
|
|
|
if (tqs->stqs_count == 1) {
|
|
tq = tqs->stqs_taskq[0];
|
|
} else {
|
|
tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
|
|
}
|
|
|
|
taskq_dispatch_ent(tq, func, arg, flags, ent);
|
|
}
|
|
|
|
/*
|
|
* Same as spa_taskq_dispatch_ent() but block on the task until completion.
|
|
*/
|
|
void
|
|
spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
|
|
task_func_t *func, void *arg, uint_t flags)
|
|
{
|
|
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
|
|
taskq_t *tq;
|
|
taskqid_t id;
|
|
|
|
ASSERT3P(tqs->stqs_taskq, !=, NULL);
|
|
ASSERT3U(tqs->stqs_count, !=, 0);
|
|
|
|
if (tqs->stqs_count == 1) {
|
|
tq = tqs->stqs_taskq[0];
|
|
} else {
|
|
tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
|
|
}
|
|
|
|
id = taskq_dispatch(tq, func, arg, flags);
|
|
if (id)
|
|
taskq_wait_id(tq, id);
|
|
}
|
|
|
|
static void
|
|
spa_create_zio_taskqs(spa_t *spa)
|
|
{
|
|
for (int t = 0; t < ZIO_TYPES; t++) {
|
|
for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
|
|
spa_taskqs_init(spa, t, q);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disabled until spa_thread() can be adapted for Linux.
|
|
*/
|
|
#undef HAVE_SPA_THREAD
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
|
|
static void
|
|
spa_thread(void *arg)
|
|
{
|
|
callb_cpr_t cprinfo;
|
|
|
|
spa_t *spa = arg;
|
|
user_t *pu = PTOU(curproc);
|
|
|
|
CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
|
|
spa->spa_name);
|
|
|
|
ASSERT(curproc != &p0);
|
|
(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
|
|
"zpool-%s", spa->spa_name);
|
|
(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
|
|
|
|
/* bind this thread to the requested psrset */
|
|
if (zio_taskq_psrset_bind != PS_NONE) {
|
|
pool_lock();
|
|
mutex_enter(&cpu_lock);
|
|
mutex_enter(&pidlock);
|
|
mutex_enter(&curproc->p_lock);
|
|
|
|
if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
|
|
0, NULL, NULL) == 0) {
|
|
curthread->t_bind_pset = zio_taskq_psrset_bind;
|
|
} else {
|
|
cmn_err(CE_WARN,
|
|
"Couldn't bind process for zfs pool \"%s\" to "
|
|
"pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
|
|
}
|
|
|
|
mutex_exit(&curproc->p_lock);
|
|
mutex_exit(&pidlock);
|
|
mutex_exit(&cpu_lock);
|
|
pool_unlock();
|
|
}
|
|
|
|
if (zio_taskq_sysdc) {
|
|
sysdc_thread_enter(curthread, 100, 0);
|
|
}
|
|
|
|
spa->spa_proc = curproc;
|
|
spa->spa_did = curthread->t_did;
|
|
|
|
spa_create_zio_taskqs(spa);
|
|
|
|
mutex_enter(&spa->spa_proc_lock);
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
|
|
|
|
spa->spa_proc_state = SPA_PROC_ACTIVE;
|
|
cv_broadcast(&spa->spa_proc_cv);
|
|
|
|
CALLB_CPR_SAFE_BEGIN(&cprinfo);
|
|
while (spa->spa_proc_state == SPA_PROC_ACTIVE)
|
|
cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
|
|
CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
|
|
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
|
|
spa->spa_proc_state = SPA_PROC_GONE;
|
|
spa->spa_proc = &p0;
|
|
cv_broadcast(&spa->spa_proc_cv);
|
|
CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
|
|
|
|
mutex_enter(&curproc->p_lock);
|
|
lwp_exit();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Activate an uninitialized pool.
|
|
*/
|
|
static void
|
|
spa_activate(spa_t *spa, int mode)
|
|
{
|
|
ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
|
|
|
|
spa->spa_state = POOL_STATE_ACTIVE;
|
|
spa->spa_mode = mode;
|
|
|
|
spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
|
|
spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
|
|
|
|
/* Try to create a covering process */
|
|
mutex_enter(&spa->spa_proc_lock);
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
|
|
ASSERT(spa->spa_proc == &p0);
|
|
spa->spa_did = 0;
|
|
|
|
#ifdef HAVE_SPA_THREAD
|
|
/* Only create a process if we're going to be around a while. */
|
|
if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
|
|
if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
|
|
NULL, 0) == 0) {
|
|
spa->spa_proc_state = SPA_PROC_CREATED;
|
|
while (spa->spa_proc_state == SPA_PROC_CREATED) {
|
|
cv_wait(&spa->spa_proc_cv,
|
|
&spa->spa_proc_lock);
|
|
}
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
|
|
ASSERT(spa->spa_proc != &p0);
|
|
ASSERT(spa->spa_did != 0);
|
|
} else {
|
|
#ifdef _KERNEL
|
|
cmn_err(CE_WARN,
|
|
"Couldn't create process for zfs pool \"%s\"\n",
|
|
spa->spa_name);
|
|
#endif
|
|
}
|
|
}
|
|
#endif /* HAVE_SPA_THREAD */
|
|
mutex_exit(&spa->spa_proc_lock);
|
|
|
|
/* If we didn't create a process, we need to create our taskqs. */
|
|
if (spa->spa_proc == &p0) {
|
|
spa_create_zio_taskqs(spa);
|
|
}
|
|
|
|
for (size_t i = 0; i < TXG_SIZE; i++)
|
|
spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
|
|
|
|
list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
|
|
offsetof(vdev_t, vdev_config_dirty_node));
|
|
list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
|
|
offsetof(objset_t, os_evicting_node));
|
|
list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
|
|
offsetof(vdev_t, vdev_state_dirty_node));
|
|
|
|
txg_list_create(&spa->spa_vdev_txg_list, spa,
|
|
offsetof(struct vdev, vdev_txg_node));
|
|
|
|
avl_create(&spa->spa_errlist_scrub,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
avl_create(&spa->spa_errlist_last,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
|
|
spa_keystore_init(&spa->spa_keystore);
|
|
|
|
/*
|
|
* This taskq is used to perform zvol-minor-related tasks
|
|
* asynchronously. This has several advantages, including easy
|
|
* resolution of various deadlocks (zfsonlinux bug #3681).
|
|
*
|
|
* The taskq must be single threaded to ensure tasks are always
|
|
* processed in the order in which they were dispatched.
|
|
*
|
|
* A taskq per pool allows one to keep the pools independent.
|
|
* This way if one pool is suspended, it will not impact another.
|
|
*
|
|
* The preferred location to dispatch a zvol minor task is a sync
|
|
* task. In this context, there is easy access to the spa_t and minimal
|
|
* error handling is required because the sync task must succeed.
|
|
*/
|
|
spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
|
|
1, INT_MAX, 0);
|
|
|
|
/*
|
|
* Taskq dedicated to prefetcher threads: this is used to prevent the
|
|
* pool traverse code from monopolizing the global (and limited)
|
|
* system_taskq by inappropriately scheduling long running tasks on it.
|
|
*/
|
|
spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus,
|
|
defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
|
|
|
|
/*
|
|
* The taskq to upgrade datasets in this pool. Currently used by
|
|
* feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
|
|
*/
|
|
spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
|
|
defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
|
|
}
|
|
|
|
/*
|
|
* Opposite of spa_activate().
|
|
*/
|
|
static void
|
|
spa_deactivate(spa_t *spa)
|
|
{
|
|
ASSERT(spa->spa_sync_on == B_FALSE);
|
|
ASSERT(spa->spa_dsl_pool == NULL);
|
|
ASSERT(spa->spa_root_vdev == NULL);
|
|
ASSERT(spa->spa_async_zio_root == NULL);
|
|
ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
|
|
|
|
spa_evicting_os_wait(spa);
|
|
|
|
if (spa->spa_zvol_taskq) {
|
|
taskq_destroy(spa->spa_zvol_taskq);
|
|
spa->spa_zvol_taskq = NULL;
|
|
}
|
|
|
|
if (spa->spa_prefetch_taskq) {
|
|
taskq_destroy(spa->spa_prefetch_taskq);
|
|
spa->spa_prefetch_taskq = NULL;
|
|
}
|
|
|
|
if (spa->spa_upgrade_taskq) {
|
|
taskq_destroy(spa->spa_upgrade_taskq);
|
|
spa->spa_upgrade_taskq = NULL;
|
|
}
|
|
|
|
txg_list_destroy(&spa->spa_vdev_txg_list);
|
|
|
|
list_destroy(&spa->spa_config_dirty_list);
|
|
list_destroy(&spa->spa_evicting_os_list);
|
|
list_destroy(&spa->spa_state_dirty_list);
|
|
|
|
taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
|
|
|
|
for (int t = 0; t < ZIO_TYPES; t++) {
|
|
for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
|
|
spa_taskqs_fini(spa, t, q);
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < TXG_SIZE; i++) {
|
|
ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
|
|
VERIFY0(zio_wait(spa->spa_txg_zio[i]));
|
|
spa->spa_txg_zio[i] = NULL;
|
|
}
|
|
|
|
metaslab_class_destroy(spa->spa_normal_class);
|
|
spa->spa_normal_class = NULL;
|
|
|
|
metaslab_class_destroy(spa->spa_log_class);
|
|
spa->spa_log_class = NULL;
|
|
|
|
/*
|
|
* If this was part of an import or the open otherwise failed, we may
|
|
* still have errors left in the queues. Empty them just in case.
|
|
*/
|
|
spa_errlog_drain(spa);
|
|
avl_destroy(&spa->spa_errlist_scrub);
|
|
avl_destroy(&spa->spa_errlist_last);
|
|
|
|
spa_keystore_fini(&spa->spa_keystore);
|
|
|
|
spa->spa_state = POOL_STATE_UNINITIALIZED;
|
|
|
|
mutex_enter(&spa->spa_proc_lock);
|
|
if (spa->spa_proc_state != SPA_PROC_NONE) {
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
|
|
spa->spa_proc_state = SPA_PROC_DEACTIVATE;
|
|
cv_broadcast(&spa->spa_proc_cv);
|
|
while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
|
|
ASSERT(spa->spa_proc != &p0);
|
|
cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
|
|
}
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
|
|
spa->spa_proc_state = SPA_PROC_NONE;
|
|
}
|
|
ASSERT(spa->spa_proc == &p0);
|
|
mutex_exit(&spa->spa_proc_lock);
|
|
|
|
/*
|
|
* We want to make sure spa_thread() has actually exited the ZFS
|
|
* module, so that the module can't be unloaded out from underneath
|
|
* it.
|
|
*/
|
|
if (spa->spa_did != 0) {
|
|
thread_join(spa->spa_did);
|
|
spa->spa_did = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Verify a pool configuration, and construct the vdev tree appropriately. This
|
|
* will create all the necessary vdevs in the appropriate layout, with each vdev
|
|
* in the CLOSED state. This will prep the pool before open/creation/import.
|
|
* All vdev validation is done by the vdev_alloc() routine.
|
|
*/
|
|
static int
|
|
spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
|
|
uint_t id, int atype)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t children;
|
|
int error;
|
|
|
|
if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
|
|
return (error);
|
|
|
|
if ((*vdp)->vdev_ops->vdev_op_leaf)
|
|
return (0);
|
|
|
|
error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children);
|
|
|
|
if (error == ENOENT)
|
|
return (0);
|
|
|
|
if (error) {
|
|
vdev_free(*vdp);
|
|
*vdp = NULL;
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
for (int c = 0; c < children; c++) {
|
|
vdev_t *vd;
|
|
if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
|
|
atype)) != 0) {
|
|
vdev_free(*vdp);
|
|
*vdp = NULL;
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
ASSERT(*vdp != NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Opposite of spa_load().
|
|
*/
|
|
static void
|
|
spa_unload(spa_t *spa)
|
|
{
|
|
int i;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
spa_load_note(spa, "UNLOADING");
|
|
|
|
/*
|
|
* Stop async tasks.
|
|
*/
|
|
spa_async_suspend(spa);
|
|
|
|
/*
|
|
* Stop syncing.
|
|
*/
|
|
if (spa->spa_sync_on) {
|
|
txg_sync_stop(spa->spa_dsl_pool);
|
|
spa->spa_sync_on = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Even though vdev_free() also calls vdev_metaslab_fini, we need
|
|
* to call it earlier, before we wait for async i/o to complete.
|
|
* This ensures that there is no async metaslab prefetching, by
|
|
* calling taskq_wait(mg_taskq).
|
|
*/
|
|
if (spa->spa_root_vdev != NULL) {
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
|
|
vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
}
|
|
|
|
if (spa->spa_mmp.mmp_thread)
|
|
mmp_thread_stop(spa);
|
|
|
|
/*
|
|
* Wait for any outstanding async I/O to complete.
|
|
*/
|
|
if (spa->spa_async_zio_root != NULL) {
|
|
for (int i = 0; i < max_ncpus; i++)
|
|
(void) zio_wait(spa->spa_async_zio_root[i]);
|
|
kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
|
|
spa->spa_async_zio_root = NULL;
|
|
}
|
|
|
|
if (spa->spa_vdev_removal != NULL) {
|
|
spa_vdev_removal_destroy(spa->spa_vdev_removal);
|
|
spa->spa_vdev_removal = NULL;
|
|
}
|
|
|
|
if (spa->spa_condense_zthr != NULL) {
|
|
ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
|
|
zthr_destroy(spa->spa_condense_zthr);
|
|
spa->spa_condense_zthr = NULL;
|
|
}
|
|
|
|
spa_condense_fini(spa);
|
|
|
|
bpobj_close(&spa->spa_deferred_bpobj);
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
/*
|
|
* Close all vdevs.
|
|
*/
|
|
if (spa->spa_root_vdev)
|
|
vdev_free(spa->spa_root_vdev);
|
|
ASSERT(spa->spa_root_vdev == NULL);
|
|
|
|
/*
|
|
* Close the dsl pool.
|
|
*/
|
|
if (spa->spa_dsl_pool) {
|
|
dsl_pool_close(spa->spa_dsl_pool);
|
|
spa->spa_dsl_pool = NULL;
|
|
spa->spa_meta_objset = NULL;
|
|
}
|
|
|
|
ddt_unload(spa);
|
|
|
|
/*
|
|
* Drop and purge level 2 cache
|
|
*/
|
|
spa_l2cache_drop(spa);
|
|
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++)
|
|
vdev_free(spa->spa_spares.sav_vdevs[i]);
|
|
if (spa->spa_spares.sav_vdevs) {
|
|
kmem_free(spa->spa_spares.sav_vdevs,
|
|
spa->spa_spares.sav_count * sizeof (void *));
|
|
spa->spa_spares.sav_vdevs = NULL;
|
|
}
|
|
if (spa->spa_spares.sav_config) {
|
|
nvlist_free(spa->spa_spares.sav_config);
|
|
spa->spa_spares.sav_config = NULL;
|
|
}
|
|
spa->spa_spares.sav_count = 0;
|
|
|
|
for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
|
|
vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
|
|
vdev_free(spa->spa_l2cache.sav_vdevs[i]);
|
|
}
|
|
if (spa->spa_l2cache.sav_vdevs) {
|
|
kmem_free(spa->spa_l2cache.sav_vdevs,
|
|
spa->spa_l2cache.sav_count * sizeof (void *));
|
|
spa->spa_l2cache.sav_vdevs = NULL;
|
|
}
|
|
if (spa->spa_l2cache.sav_config) {
|
|
nvlist_free(spa->spa_l2cache.sav_config);
|
|
spa->spa_l2cache.sav_config = NULL;
|
|
}
|
|
spa->spa_l2cache.sav_count = 0;
|
|
|
|
spa->spa_async_suspended = 0;
|
|
|
|
spa->spa_indirect_vdevs_loaded = B_FALSE;
|
|
|
|
if (spa->spa_comment != NULL) {
|
|
spa_strfree(spa->spa_comment);
|
|
spa->spa_comment = NULL;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Load (or re-load) the current list of vdevs describing the active spares for
|
|
* this pool. When this is called, we have some form of basic information in
|
|
* 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
|
|
* then re-generate a more complete list including status information.
|
|
*/
|
|
void
|
|
spa_load_spares(spa_t *spa)
|
|
{
|
|
nvlist_t **spares;
|
|
uint_t nspares;
|
|
int i;
|
|
vdev_t *vd, *tvd;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
/*
|
|
* First, close and free any existing spare vdevs.
|
|
*/
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++) {
|
|
vd = spa->spa_spares.sav_vdevs[i];
|
|
|
|
/* Undo the call to spa_activate() below */
|
|
if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
|
|
B_FALSE)) != NULL && tvd->vdev_isspare)
|
|
spa_spare_remove(tvd);
|
|
vdev_close(vd);
|
|
vdev_free(vd);
|
|
}
|
|
|
|
if (spa->spa_spares.sav_vdevs)
|
|
kmem_free(spa->spa_spares.sav_vdevs,
|
|
spa->spa_spares.sav_count * sizeof (void *));
|
|
|
|
if (spa->spa_spares.sav_config == NULL)
|
|
nspares = 0;
|
|
else
|
|
VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
|
|
|
|
spa->spa_spares.sav_count = (int)nspares;
|
|
spa->spa_spares.sav_vdevs = NULL;
|
|
|
|
if (nspares == 0)
|
|
return;
|
|
|
|
/*
|
|
* Construct the array of vdevs, opening them to get status in the
|
|
* process. For each spare, there is potentially two different vdev_t
|
|
* structures associated with it: one in the list of spares (used only
|
|
* for basic validation purposes) and one in the active vdev
|
|
* configuration (if it's spared in). During this phase we open and
|
|
* validate each vdev on the spare list. If the vdev also exists in the
|
|
* active configuration, then we also mark this vdev as an active spare.
|
|
*/
|
|
spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++) {
|
|
VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
|
|
VDEV_ALLOC_SPARE) == 0);
|
|
ASSERT(vd != NULL);
|
|
|
|
spa->spa_spares.sav_vdevs[i] = vd;
|
|
|
|
if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
|
|
B_FALSE)) != NULL) {
|
|
if (!tvd->vdev_isspare)
|
|
spa_spare_add(tvd);
|
|
|
|
/*
|
|
* We only mark the spare active if we were successfully
|
|
* able to load the vdev. Otherwise, importing a pool
|
|
* with a bad active spare would result in strange
|
|
* behavior, because multiple pool would think the spare
|
|
* is actively in use.
|
|
*
|
|
* There is a vulnerability here to an equally bizarre
|
|
* circumstance, where a dead active spare is later
|
|
* brought back to life (onlined or otherwise). Given
|
|
* the rarity of this scenario, and the extra complexity
|
|
* it adds, we ignore the possibility.
|
|
*/
|
|
if (!vdev_is_dead(tvd))
|
|
spa_spare_activate(tvd);
|
|
}
|
|
|
|
vd->vdev_top = vd;
|
|
vd->vdev_aux = &spa->spa_spares;
|
|
|
|
if (vdev_open(vd) != 0)
|
|
continue;
|
|
|
|
if (vdev_validate_aux(vd) == 0)
|
|
spa_spare_add(vd);
|
|
}
|
|
|
|
/*
|
|
* Recompute the stashed list of spares, with status information
|
|
* this time.
|
|
*/
|
|
VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
|
|
spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++)
|
|
spares[i] = vdev_config_generate(spa,
|
|
spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++)
|
|
nvlist_free(spares[i]);
|
|
kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
|
|
}
|
|
|
|
/*
|
|
* Load (or re-load) the current list of vdevs describing the active l2cache for
|
|
* this pool. When this is called, we have some form of basic information in
|
|
* 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
|
|
* then re-generate a more complete list including status information.
|
|
* Devices which are already active have their details maintained, and are
|
|
* not re-opened.
|
|
*/
|
|
void
|
|
spa_load_l2cache(spa_t *spa)
|
|
{
|
|
nvlist_t **l2cache = NULL;
|
|
uint_t nl2cache;
|
|
int i, j, oldnvdevs;
|
|
uint64_t guid;
|
|
vdev_t *vd, **oldvdevs, **newvdevs;
|
|
spa_aux_vdev_t *sav = &spa->spa_l2cache;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
oldvdevs = sav->sav_vdevs;
|
|
oldnvdevs = sav->sav_count;
|
|
sav->sav_vdevs = NULL;
|
|
sav->sav_count = 0;
|
|
|
|
if (sav->sav_config == NULL) {
|
|
nl2cache = 0;
|
|
newvdevs = NULL;
|
|
goto out;
|
|
}
|
|
|
|
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
|
|
newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
|
|
|
|
/*
|
|
* Process new nvlist of vdevs.
|
|
*/
|
|
for (i = 0; i < nl2cache; i++) {
|
|
VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
|
|
&guid) == 0);
|
|
|
|
newvdevs[i] = NULL;
|
|
for (j = 0; j < oldnvdevs; j++) {
|
|
vd = oldvdevs[j];
|
|
if (vd != NULL && guid == vd->vdev_guid) {
|
|
/*
|
|
* Retain previous vdev for add/remove ops.
|
|
*/
|
|
newvdevs[i] = vd;
|
|
oldvdevs[j] = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (newvdevs[i] == NULL) {
|
|
/*
|
|
* Create new vdev
|
|
*/
|
|
VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
|
|
VDEV_ALLOC_L2CACHE) == 0);
|
|
ASSERT(vd != NULL);
|
|
newvdevs[i] = vd;
|
|
|
|
/*
|
|
* Commit this vdev as an l2cache device,
|
|
* even if it fails to open.
|
|
*/
|
|
spa_l2cache_add(vd);
|
|
|
|
vd->vdev_top = vd;
|
|
vd->vdev_aux = sav;
|
|
|
|
spa_l2cache_activate(vd);
|
|
|
|
if (vdev_open(vd) != 0)
|
|
continue;
|
|
|
|
(void) vdev_validate_aux(vd);
|
|
|
|
if (!vdev_is_dead(vd))
|
|
l2arc_add_vdev(spa, vd);
|
|
}
|
|
}
|
|
|
|
sav->sav_vdevs = newvdevs;
|
|
sav->sav_count = (int)nl2cache;
|
|
|
|
/*
|
|
* Recompute the stashed list of l2cache devices, with status
|
|
* information this time.
|
|
*/
|
|
VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
|
|
if (sav->sav_count > 0)
|
|
l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
l2cache[i] = vdev_config_generate(spa,
|
|
sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
|
|
|
|
out:
|
|
/*
|
|
* Purge vdevs that were dropped
|
|
*/
|
|
for (i = 0; i < oldnvdevs; i++) {
|
|
uint64_t pool;
|
|
|
|
vd = oldvdevs[i];
|
|
if (vd != NULL) {
|
|
ASSERT(vd->vdev_isl2cache);
|
|
|
|
if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
|
|
pool != 0ULL && l2arc_vdev_present(vd))
|
|
l2arc_remove_vdev(vd);
|
|
vdev_clear_stats(vd);
|
|
vdev_free(vd);
|
|
}
|
|
}
|
|
|
|
if (oldvdevs)
|
|
kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
|
|
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
nvlist_free(l2cache[i]);
|
|
if (sav->sav_count)
|
|
kmem_free(l2cache, sav->sav_count * sizeof (void *));
|
|
}
|
|
|
|
static int
|
|
load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
|
|
{
|
|
dmu_buf_t *db;
|
|
char *packed = NULL;
|
|
size_t nvsize = 0;
|
|
int error;
|
|
*value = NULL;
|
|
|
|
error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
|
|
if (error)
|
|
return (error);
|
|
|
|
nvsize = *(uint64_t *)db->db_data;
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
packed = vmem_alloc(nvsize, KM_SLEEP);
|
|
error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
|
|
DMU_READ_PREFETCH);
|
|
if (error == 0)
|
|
error = nvlist_unpack(packed, nvsize, value, 0);
|
|
vmem_free(packed, nvsize);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Concrete top-level vdevs that are not missing and are not logs. At every
|
|
* spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
|
|
*/
|
|
static uint64_t
|
|
spa_healthy_core_tvds(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
uint64_t tvds = 0;
|
|
|
|
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
|
|
vdev_t *vd = rvd->vdev_child[i];
|
|
if (vd->vdev_islog)
|
|
continue;
|
|
if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
|
|
tvds++;
|
|
}
|
|
|
|
return (tvds);
|
|
}
|
|
|
|
/*
|
|
* Checks to see if the given vdev could not be opened, in which case we post a
|
|
* sysevent to notify the autoreplace code that the device has been removed.
|
|
*/
|
|
static void
|
|
spa_check_removed(vdev_t *vd)
|
|
{
|
|
for (uint64_t c = 0; c < vd->vdev_children; c++)
|
|
spa_check_removed(vd->vdev_child[c]);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
|
|
vdev_is_concrete(vd)) {
|
|
zfs_post_autoreplace(vd->vdev_spa, vd);
|
|
spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
|
|
}
|
|
}
|
|
|
|
static int
|
|
spa_check_for_missing_logs(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
/*
|
|
* If we're doing a normal import, then build up any additional
|
|
* diagnostic information about missing log devices.
|
|
* We'll pass this up to the user for further processing.
|
|
*/
|
|
if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
|
|
nvlist_t **child, *nv;
|
|
uint64_t idx = 0;
|
|
|
|
child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
|
|
KM_SLEEP);
|
|
VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
|
|
/*
|
|
* We consider a device as missing only if it failed
|
|
* to open (i.e. offline or faulted is not considered
|
|
* as missing).
|
|
*/
|
|
if (tvd->vdev_islog &&
|
|
tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
|
|
child[idx++] = vdev_config_generate(spa, tvd,
|
|
B_FALSE, VDEV_CONFIG_MISSING);
|
|
}
|
|
}
|
|
|
|
if (idx > 0) {
|
|
fnvlist_add_nvlist_array(nv,
|
|
ZPOOL_CONFIG_CHILDREN, child, idx);
|
|
fnvlist_add_nvlist(spa->spa_load_info,
|
|
ZPOOL_CONFIG_MISSING_DEVICES, nv);
|
|
|
|
for (uint64_t i = 0; i < idx; i++)
|
|
nvlist_free(child[i]);
|
|
}
|
|
nvlist_free(nv);
|
|
kmem_free(child, rvd->vdev_children * sizeof (char **));
|
|
|
|
if (idx > 0) {
|
|
spa_load_failed(spa, "some log devices are missing");
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
} else {
|
|
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
|
|
if (tvd->vdev_islog &&
|
|
tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
|
|
spa_set_log_state(spa, SPA_LOG_CLEAR);
|
|
spa_load_note(spa, "some log devices are "
|
|
"missing, ZIL is dropped.");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check for missing log devices
|
|
*/
|
|
static boolean_t
|
|
spa_check_logs(spa_t *spa)
|
|
{
|
|
boolean_t rv = B_FALSE;
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
|
|
switch (spa->spa_log_state) {
|
|
default:
|
|
break;
|
|
case SPA_LOG_MISSING:
|
|
/* need to recheck in case slog has been restored */
|
|
case SPA_LOG_UNKNOWN:
|
|
rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
|
|
zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
|
|
if (rv)
|
|
spa_set_log_state(spa, SPA_LOG_MISSING);
|
|
break;
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
static boolean_t
|
|
spa_passivate_log(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
boolean_t slog_found = B_FALSE;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
if (!spa_has_slogs(spa))
|
|
return (B_FALSE);
|
|
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
if (tvd->vdev_islog) {
|
|
metaslab_group_passivate(mg);
|
|
slog_found = B_TRUE;
|
|
}
|
|
}
|
|
|
|
return (slog_found);
|
|
}
|
|
|
|
static void
|
|
spa_activate_log(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
if (tvd->vdev_islog)
|
|
metaslab_group_activate(mg);
|
|
}
|
|
}
|
|
|
|
int
|
|
spa_reset_logs(spa_t *spa)
|
|
{
|
|
int error;
|
|
|
|
error = dmu_objset_find(spa_name(spa), zil_reset,
|
|
NULL, DS_FIND_CHILDREN);
|
|
if (error == 0) {
|
|
/*
|
|
* We successfully offlined the log device, sync out the
|
|
* current txg so that the "stubby" block can be removed
|
|
* by zil_sync().
|
|
*/
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
spa_aux_check_removed(spa_aux_vdev_t *sav)
|
|
{
|
|
for (int i = 0; i < sav->sav_count; i++)
|
|
spa_check_removed(sav->sav_vdevs[i]);
|
|
}
|
|
|
|
void
|
|
spa_claim_notify(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
if (zio->io_error)
|
|
return;
|
|
|
|
mutex_enter(&spa->spa_props_lock); /* any mutex will do */
|
|
if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
|
|
spa->spa_claim_max_txg = zio->io_bp->blk_birth;
|
|
mutex_exit(&spa->spa_props_lock);
|
|
}
|
|
|
|
typedef struct spa_load_error {
|
|
uint64_t sle_meta_count;
|
|
uint64_t sle_data_count;
|
|
} spa_load_error_t;
|
|
|
|
static void
|
|
spa_load_verify_done(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
spa_load_error_t *sle = zio->io_private;
|
|
dmu_object_type_t type = BP_GET_TYPE(bp);
|
|
int error = zio->io_error;
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
abd_free(zio->io_abd);
|
|
if (error) {
|
|
if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
|
|
type != DMU_OT_INTENT_LOG)
|
|
atomic_inc_64(&sle->sle_meta_count);
|
|
else
|
|
atomic_inc_64(&sle->sle_data_count);
|
|
}
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
spa->spa_load_verify_ios--;
|
|
cv_broadcast(&spa->spa_scrub_io_cv);
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
}
|
|
|
|
/*
|
|
* Maximum number of concurrent scrub i/os to create while verifying
|
|
* a pool while importing it.
|
|
*/
|
|
int spa_load_verify_maxinflight = 10000;
|
|
int spa_load_verify_metadata = B_TRUE;
|
|
int spa_load_verify_data = B_TRUE;
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
|
|
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
|
|
{
|
|
if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
|
|
return (0);
|
|
/*
|
|
* Note: normally this routine will not be called if
|
|
* spa_load_verify_metadata is not set. However, it may be useful
|
|
* to manually set the flag after the traversal has begun.
|
|
*/
|
|
if (!spa_load_verify_metadata)
|
|
return (0);
|
|
if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
|
|
return (0);
|
|
|
|
zio_t *rio = arg;
|
|
size_t size = BP_GET_PSIZE(bp);
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
|
|
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
|
|
spa->spa_load_verify_ios++;
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
|
|
spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
|
|
ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
|
|
ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
|
{
|
|
if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
|
|
return (SET_ERROR(ENAMETOOLONG));
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_load_verify(spa_t *spa)
|
|
{
|
|
zio_t *rio;
|
|
spa_load_error_t sle = { 0 };
|
|
zpool_rewind_policy_t policy;
|
|
boolean_t verify_ok = B_FALSE;
|
|
int error = 0;
|
|
|
|
zpool_get_rewind_policy(spa->spa_config, &policy);
|
|
|
|
if (policy.zrp_request & ZPOOL_NEVER_REWIND)
|
|
return (0);
|
|
|
|
dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
|
|
error = dmu_objset_find_dp(spa->spa_dsl_pool,
|
|
spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
|
|
DS_FIND_CHILDREN);
|
|
dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
rio = zio_root(spa, NULL, &sle,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
|
|
|
|
if (spa_load_verify_metadata) {
|
|
if (spa->spa_extreme_rewind) {
|
|
spa_load_note(spa, "performing a complete scan of the "
|
|
"pool since extreme rewind is on. This may take "
|
|
"a very long time.\n (spa_load_verify_data=%u, "
|
|
"spa_load_verify_metadata=%u)",
|
|
spa_load_verify_data, spa_load_verify_metadata);
|
|
}
|
|
error = traverse_pool(spa, spa->spa_verify_min_txg,
|
|
TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
|
|
TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
|
|
}
|
|
|
|
(void) zio_wait(rio);
|
|
|
|
spa->spa_load_meta_errors = sle.sle_meta_count;
|
|
spa->spa_load_data_errors = sle.sle_data_count;
|
|
|
|
if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
|
|
spa_load_note(spa, "spa_load_verify found %llu metadata errors "
|
|
"and %llu data errors", (u_longlong_t)sle.sle_meta_count,
|
|
(u_longlong_t)sle.sle_data_count);
|
|
}
|
|
|
|
if (spa_load_verify_dryrun ||
|
|
(!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
|
|
sle.sle_data_count <= policy.zrp_maxdata)) {
|
|
int64_t loss = 0;
|
|
|
|
verify_ok = B_TRUE;
|
|
spa->spa_load_txg = spa->spa_uberblock.ub_txg;
|
|
spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
|
|
|
|
loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
|
|
VERIFY(nvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
|
|
VERIFY(nvlist_add_int64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
|
|
VERIFY(nvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
|
|
} else {
|
|
spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
|
|
}
|
|
|
|
if (spa_load_verify_dryrun)
|
|
return (0);
|
|
|
|
if (error) {
|
|
if (error != ENXIO && error != EIO)
|
|
error = SET_ERROR(EIO);
|
|
return (error);
|
|
}
|
|
|
|
return (verify_ok ? 0 : EIO);
|
|
}
|
|
|
|
/*
|
|
* Find a value in the pool props object.
|
|
*/
|
|
static void
|
|
spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
|
|
{
|
|
(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
|
|
zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
|
|
}
|
|
|
|
/*
|
|
* Find a value in the pool directory object.
|
|
*/
|
|
static int
|
|
spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
|
|
{
|
|
int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
name, sizeof (uint64_t), 1, val);
|
|
|
|
if (error != 0 && (error != ENOENT || log_enoent)) {
|
|
spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
|
|
"[error=%d]", name, error);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
|
|
{
|
|
vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
|
|
return (SET_ERROR(err));
|
|
}
|
|
|
|
static void
|
|
spa_spawn_aux_threads(spa_t *spa)
|
|
{
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
spa_start_indirect_condensing_thread(spa);
|
|
}
|
|
|
|
/*
|
|
* Fix up config after a partly-completed split. This is done with the
|
|
* ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
|
|
* pool have that entry in their config, but only the splitting one contains
|
|
* a list of all the guids of the vdevs that are being split off.
|
|
*
|
|
* This function determines what to do with that list: either rejoin
|
|
* all the disks to the pool, or complete the splitting process. To attempt
|
|
* the rejoin, each disk that is offlined is marked online again, and
|
|
* we do a reopen() call. If the vdev label for every disk that was
|
|
* marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
|
|
* then we call vdev_split() on each disk, and complete the split.
|
|
*
|
|
* Otherwise we leave the config alone, with all the vdevs in place in
|
|
* the original pool.
|
|
*/
|
|
static void
|
|
spa_try_repair(spa_t *spa, nvlist_t *config)
|
|
{
|
|
uint_t extracted;
|
|
uint64_t *glist;
|
|
uint_t i, gcount;
|
|
nvlist_t *nvl;
|
|
vdev_t **vd;
|
|
boolean_t attempt_reopen;
|
|
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
|
|
return;
|
|
|
|
/* check that the config is complete */
|
|
if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
|
|
&glist, &gcount) != 0)
|
|
return;
|
|
|
|
vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
|
|
|
|
/* attempt to online all the vdevs & validate */
|
|
attempt_reopen = B_TRUE;
|
|
for (i = 0; i < gcount; i++) {
|
|
if (glist[i] == 0) /* vdev is hole */
|
|
continue;
|
|
|
|
vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
|
|
if (vd[i] == NULL) {
|
|
/*
|
|
* Don't bother attempting to reopen the disks;
|
|
* just do the split.
|
|
*/
|
|
attempt_reopen = B_FALSE;
|
|
} else {
|
|
/* attempt to re-online it */
|
|
vd[i]->vdev_offline = B_FALSE;
|
|
}
|
|
}
|
|
|
|
if (attempt_reopen) {
|
|
vdev_reopen(spa->spa_root_vdev);
|
|
|
|
/* check each device to see what state it's in */
|
|
for (extracted = 0, i = 0; i < gcount; i++) {
|
|
if (vd[i] != NULL &&
|
|
vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
|
|
break;
|
|
++extracted;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If every disk has been moved to the new pool, or if we never
|
|
* even attempted to look at them, then we split them off for
|
|
* good.
|
|
*/
|
|
if (!attempt_reopen || gcount == extracted) {
|
|
for (i = 0; i < gcount; i++)
|
|
if (vd[i] != NULL)
|
|
vdev_split(vd[i]);
|
|
vdev_reopen(spa->spa_root_vdev);
|
|
}
|
|
|
|
kmem_free(vd, gcount * sizeof (vdev_t *));
|
|
}
|
|
|
|
static int
|
|
spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
|
|
{
|
|
char *ereport = FM_EREPORT_ZFS_POOL;
|
|
int error;
|
|
|
|
spa->spa_load_state = state;
|
|
|
|
gethrestime(&spa->spa_loaded_ts);
|
|
error = spa_load_impl(spa, type, &ereport, B_FALSE);
|
|
|
|
/*
|
|
* Don't count references from objsets that are already closed
|
|
* and are making their way through the eviction process.
|
|
*/
|
|
spa_evicting_os_wait(spa);
|
|
spa->spa_minref = refcount_count(&spa->spa_refcount);
|
|
if (error) {
|
|
if (error != EEXIST) {
|
|
spa->spa_loaded_ts.tv_sec = 0;
|
|
spa->spa_loaded_ts.tv_nsec = 0;
|
|
}
|
|
if (error != EBADF) {
|
|
zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
|
|
}
|
|
}
|
|
spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
|
|
spa->spa_ena = 0;
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef ZFS_DEBUG
|
|
/*
|
|
* Count the number of per-vdev ZAPs associated with all of the vdevs in the
|
|
* vdev tree rooted in the given vd, and ensure that each ZAP is present in the
|
|
* spa's per-vdev ZAP list.
|
|
*/
|
|
static uint64_t
|
|
vdev_count_verify_zaps(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t total = 0;
|
|
|
|
if (vd->vdev_top_zap != 0) {
|
|
total++;
|
|
ASSERT0(zap_lookup_int(spa->spa_meta_objset,
|
|
spa->spa_all_vdev_zaps, vd->vdev_top_zap));
|
|
}
|
|
if (vd->vdev_leaf_zap != 0) {
|
|
total++;
|
|
ASSERT0(zap_lookup_int(spa->spa_meta_objset,
|
|
spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
|
|
}
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
total += vdev_count_verify_zaps(vd->vdev_child[i]);
|
|
}
|
|
|
|
return (total);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Determine whether the activity check is required.
|
|
*/
|
|
static boolean_t
|
|
spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
|
|
nvlist_t *config)
|
|
{
|
|
uint64_t state = 0;
|
|
uint64_t hostid = 0;
|
|
uint64_t tryconfig_txg = 0;
|
|
uint64_t tryconfig_timestamp = 0;
|
|
nvlist_t *nvinfo;
|
|
|
|
if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
|
|
nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
|
|
(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
|
|
&tryconfig_txg);
|
|
(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
|
|
&tryconfig_timestamp);
|
|
}
|
|
|
|
(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
|
|
|
|
/*
|
|
* Disable the MMP activity check - This is used by zdb which
|
|
* is intended to be used on potentially active pools.
|
|
*/
|
|
if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Skip the activity check when the MMP feature is disabled.
|
|
*/
|
|
if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
|
|
return (B_FALSE);
|
|
/*
|
|
* If the tryconfig_* values are nonzero, they are the results of an
|
|
* earlier tryimport. If they match the uberblock we just found, then
|
|
* the pool has not changed and we return false so we do not test a
|
|
* second time.
|
|
*/
|
|
if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
|
|
tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp)
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Allow the activity check to be skipped when importing the pool
|
|
* on the same host which last imported it. Since the hostid from
|
|
* configuration may be stale use the one read from the label.
|
|
*/
|
|
if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
|
|
hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
|
|
|
|
if (hostid == spa_get_hostid())
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Skip the activity test when the pool was cleanly exported.
|
|
*/
|
|
if (state != POOL_STATE_ACTIVE)
|
|
return (B_FALSE);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Perform the import activity check. If the user canceled the import or
|
|
* we detected activity then fail.
|
|
*/
|
|
static int
|
|
spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
|
|
{
|
|
uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
|
|
uint64_t txg = ub->ub_txg;
|
|
uint64_t timestamp = ub->ub_timestamp;
|
|
uint64_t import_delay = NANOSEC;
|
|
hrtime_t import_expire;
|
|
nvlist_t *mmp_label = NULL;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
kcondvar_t cv;
|
|
kmutex_t mtx;
|
|
int error = 0;
|
|
|
|
cv_init(&cv, NULL, CV_DEFAULT, NULL);
|
|
mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_enter(&mtx);
|
|
|
|
/*
|
|
* If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
|
|
* during the earlier tryimport. If the txg recorded there is 0 then
|
|
* the pool is known to be active on another host.
|
|
*
|
|
* Otherwise, the pool might be in use on another node. Check for
|
|
* changes in the uberblocks on disk if necessary.
|
|
*/
|
|
if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
|
|
nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
|
|
ZPOOL_CONFIG_LOAD_INFO);
|
|
|
|
if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
|
|
fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
|
|
vdev_uberblock_load(rvd, ub, &mmp_label);
|
|
error = SET_ERROR(EREMOTEIO);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Preferentially use the zfs_multihost_interval from the node which
|
|
* last imported the pool. This value is stored in an MMP uberblock as.
|
|
*
|
|
* ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval
|
|
*/
|
|
if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay)
|
|
import_delay = MAX(import_delay, import_intervals *
|
|
ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1));
|
|
|
|
/* Apply a floor using the local default values. */
|
|
import_delay = MAX(import_delay, import_intervals *
|
|
MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)));
|
|
|
|
zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu import_intervals=%u "
|
|
"leaves=%u", import_delay, ub->ub_mmp_delay, import_intervals,
|
|
vdev_count_leaves(spa));
|
|
|
|
/* Add a small random factor in case of simultaneous imports (0-25%) */
|
|
import_expire = gethrtime() + import_delay +
|
|
(import_delay * spa_get_random(250) / 1000);
|
|
|
|
while (gethrtime() < import_expire) {
|
|
vdev_uberblock_load(rvd, ub, &mmp_label);
|
|
|
|
if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) {
|
|
error = SET_ERROR(EREMOTEIO);
|
|
break;
|
|
}
|
|
|
|
if (mmp_label) {
|
|
nvlist_free(mmp_label);
|
|
mmp_label = NULL;
|
|
}
|
|
|
|
error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
|
|
if (error != -1) {
|
|
error = SET_ERROR(EINTR);
|
|
break;
|
|
}
|
|
error = 0;
|
|
}
|
|
|
|
out:
|
|
mutex_exit(&mtx);
|
|
mutex_destroy(&mtx);
|
|
cv_destroy(&cv);
|
|
|
|
/*
|
|
* If the pool is determined to be active store the status in the
|
|
* spa->spa_load_info nvlist. If the remote hostname or hostid are
|
|
* available from configuration read from disk store them as well.
|
|
* This allows 'zpool import' to generate a more useful message.
|
|
*
|
|
* ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
|
|
* ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
|
|
* ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
|
|
*/
|
|
if (error == EREMOTEIO) {
|
|
char *hostname = "<unknown>";
|
|
uint64_t hostid = 0;
|
|
|
|
if (mmp_label) {
|
|
if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
|
|
hostname = fnvlist_lookup_string(mmp_label,
|
|
ZPOOL_CONFIG_HOSTNAME);
|
|
fnvlist_add_string(spa->spa_load_info,
|
|
ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
|
|
}
|
|
|
|
if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
|
|
hostid = fnvlist_lookup_uint64(mmp_label,
|
|
ZPOOL_CONFIG_HOSTID);
|
|
fnvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_MMP_HOSTID, hostid);
|
|
}
|
|
}
|
|
|
|
fnvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
|
|
fnvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_MMP_TXG, 0);
|
|
|
|
error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
|
|
}
|
|
|
|
if (mmp_label)
|
|
nvlist_free(mmp_label);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
spa_verify_host(spa_t *spa, nvlist_t *mos_config)
|
|
{
|
|
uint64_t hostid;
|
|
char *hostname;
|
|
uint64_t myhostid = 0;
|
|
|
|
if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
|
|
ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
|
|
hostname = fnvlist_lookup_string(mos_config,
|
|
ZPOOL_CONFIG_HOSTNAME);
|
|
|
|
myhostid = zone_get_hostid(NULL);
|
|
|
|
if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
|
|
cmn_err(CE_WARN, "pool '%s' could not be "
|
|
"loaded as it was last accessed by "
|
|
"another system (host: %s hostid: 0x%llx). "
|
|
"See: http://illumos.org/msg/ZFS-8000-EY",
|
|
spa_name(spa), hostname, (u_longlong_t)hostid);
|
|
spa_load_failed(spa, "hostid verification failed: pool "
|
|
"last accessed by host: %s (hostid: 0x%llx)",
|
|
hostname, (u_longlong_t)hostid);
|
|
return (SET_ERROR(EBADF));
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
|
|
{
|
|
int error = 0;
|
|
nvlist_t *nvtree, *nvl, *config = spa->spa_config;
|
|
int parse;
|
|
vdev_t *rvd;
|
|
uint64_t pool_guid;
|
|
char *comment;
|
|
|
|
/*
|
|
* Versioning wasn't explicitly added to the label until later, so if
|
|
* it's not present treat it as the initial version.
|
|
*/
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
|
|
&spa->spa_ubsync.ub_version) != 0)
|
|
spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
|
|
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
|
|
spa_load_failed(spa, "invalid config provided: '%s' missing",
|
|
ZPOOL_CONFIG_POOL_GUID);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state ==
|
|
SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) {
|
|
spa_load_failed(spa, "a pool with guid %llu is already open",
|
|
(u_longlong_t)pool_guid);
|
|
return (SET_ERROR(EEXIST));
|
|
}
|
|
|
|
spa->spa_config_guid = pool_guid;
|
|
|
|
nvlist_free(spa->spa_load_info);
|
|
spa->spa_load_info = fnvlist_alloc();
|
|
|
|
ASSERT(spa->spa_comment == NULL);
|
|
if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
|
|
spa->spa_comment = spa_strdup(comment);
|
|
|
|
(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
|
|
&spa->spa_config_txg);
|
|
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
|
|
spa->spa_config_splitting = fnvlist_dup(nvl);
|
|
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
|
|
spa_load_failed(spa, "invalid config provided: '%s' missing",
|
|
ZPOOL_CONFIG_VDEV_TREE);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Create "The Godfather" zio to hold all async IOs
|
|
*/
|
|
spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (int i = 0; i < max_ncpus; i++) {
|
|
spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
|
|
ZIO_FLAG_GODFATHER);
|
|
}
|
|
|
|
/*
|
|
* Parse the configuration into a vdev tree. We explicitly set the
|
|
* value that will be returned by spa_version() since parsing the
|
|
* configuration requires knowing the version number.
|
|
*/
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
parse = (type == SPA_IMPORT_EXISTING ?
|
|
VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
|
|
error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "unable to parse config [error=%d]",
|
|
error);
|
|
return (error);
|
|
}
|
|
|
|
ASSERT(spa->spa_root_vdev == rvd);
|
|
ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
|
|
ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
|
|
|
|
if (type != SPA_IMPORT_ASSEMBLE) {
|
|
ASSERT(spa_guid(spa) == pool_guid);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Recursively open all vdevs in the vdev tree. This function is called twice:
|
|
* first with the untrusted config, then with the trusted config.
|
|
*/
|
|
static int
|
|
spa_ld_open_vdevs(spa_t *spa)
|
|
{
|
|
int error = 0;
|
|
|
|
/*
|
|
* spa_missing_tvds_allowed defines how many top-level vdevs can be
|
|
* missing/unopenable for the root vdev to be still considered openable.
|
|
*/
|
|
if (spa->spa_trust_config) {
|
|
spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
|
|
} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
|
|
spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
|
|
} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
|
|
spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
|
|
} else {
|
|
spa->spa_missing_tvds_allowed = 0;
|
|
}
|
|
|
|
spa->spa_missing_tvds_allowed =
|
|
MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
error = vdev_open(spa->spa_root_vdev);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
if (spa->spa_missing_tvds != 0) {
|
|
spa_load_note(spa, "vdev tree has %lld missing top-level "
|
|
"vdevs.", (u_longlong_t)spa->spa_missing_tvds);
|
|
if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
|
|
/*
|
|
* Although theoretically we could allow users to open
|
|
* incomplete pools in RW mode, we'd need to add a lot
|
|
* of extra logic (e.g. adjust pool space to account
|
|
* for missing vdevs).
|
|
* This limitation also prevents users from accidentally
|
|
* opening the pool in RW mode during data recovery and
|
|
* damaging it further.
|
|
*/
|
|
spa_load_note(spa, "pools with missing top-level "
|
|
"vdevs can only be opened in read-only mode.");
|
|
error = SET_ERROR(ENXIO);
|
|
} else {
|
|
spa_load_note(spa, "current settings allow for maximum "
|
|
"%lld missing top-level vdevs at this stage.",
|
|
(u_longlong_t)spa->spa_missing_tvds_allowed);
|
|
}
|
|
}
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "unable to open vdev tree [error=%d]",
|
|
error);
|
|
}
|
|
if (spa->spa_missing_tvds != 0 || error != 0)
|
|
vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* We need to validate the vdev labels against the configuration that
|
|
* we have in hand. This function is called twice: first with an untrusted
|
|
* config, then with a trusted config. The validation is more strict when the
|
|
* config is trusted.
|
|
*/
|
|
static int
|
|
spa_ld_validate_vdevs(spa_t *spa)
|
|
{
|
|
int error = 0;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
error = vdev_validate(rvd);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
|
|
return (error);
|
|
}
|
|
|
|
if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
|
|
spa_load_failed(spa, "cannot open vdev tree after invalidating "
|
|
"some vdevs");
|
|
vdev_dbgmsg_print_tree(rvd, 2);
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
nvlist_t *label;
|
|
uberblock_t *ub = &spa->spa_uberblock;
|
|
boolean_t activity_check = B_FALSE;
|
|
|
|
/*
|
|
* Find the best uberblock.
|
|
*/
|
|
vdev_uberblock_load(rvd, ub, &label);
|
|
|
|
/*
|
|
* If we weren't able to find a single valid uberblock, return failure.
|
|
*/
|
|
if (ub->ub_txg == 0) {
|
|
nvlist_free(label);
|
|
spa_load_failed(spa, "no valid uberblock found");
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
|
|
}
|
|
|
|
spa_load_note(spa, "using uberblock with txg=%llu",
|
|
(u_longlong_t)ub->ub_txg);
|
|
|
|
|
|
/*
|
|
* For pools which have the multihost property on determine if the
|
|
* pool is truly inactive and can be safely imported. Prevent
|
|
* hosts which don't have a hostid set from importing the pool.
|
|
*/
|
|
activity_check = spa_activity_check_required(spa, ub, label,
|
|
spa->spa_config);
|
|
if (activity_check) {
|
|
if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
|
|
spa_get_hostid() == 0) {
|
|
nvlist_free(label);
|
|
fnvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
|
|
}
|
|
|
|
int error = spa_activity_check(spa, ub, spa->spa_config);
|
|
if (error) {
|
|
nvlist_free(label);
|
|
return (error);
|
|
}
|
|
|
|
fnvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
|
|
fnvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
|
|
}
|
|
|
|
/*
|
|
* If the pool has an unsupported version we can't open it.
|
|
*/
|
|
if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
|
|
nvlist_free(label);
|
|
spa_load_failed(spa, "version %llu is not supported",
|
|
(u_longlong_t)ub->ub_version);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
|
|
}
|
|
|
|
if (ub->ub_version >= SPA_VERSION_FEATURES) {
|
|
nvlist_t *features;
|
|
|
|
/*
|
|
* If we weren't able to find what's necessary for reading the
|
|
* MOS in the label, return failure.
|
|
*/
|
|
if (label == NULL) {
|
|
spa_load_failed(spa, "label config unavailable");
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
|
|
ENXIO));
|
|
}
|
|
|
|
if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
|
|
&features) != 0) {
|
|
nvlist_free(label);
|
|
spa_load_failed(spa, "invalid label: '%s' missing",
|
|
ZPOOL_CONFIG_FEATURES_FOR_READ);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
|
|
ENXIO));
|
|
}
|
|
|
|
/*
|
|
* Update our in-core representation with the definitive values
|
|
* from the label.
|
|
*/
|
|
nvlist_free(spa->spa_label_features);
|
|
VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
|
|
}
|
|
|
|
nvlist_free(label);
|
|
|
|
/*
|
|
* Look through entries in the label nvlist's features_for_read. If
|
|
* there is a feature listed there which we don't understand then we
|
|
* cannot open a pool.
|
|
*/
|
|
if (ub->ub_version >= SPA_VERSION_FEATURES) {
|
|
nvlist_t *unsup_feat;
|
|
|
|
VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
|
|
0);
|
|
|
|
for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
|
|
NULL); nvp != NULL;
|
|
nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
|
|
if (!zfeature_is_supported(nvpair_name(nvp))) {
|
|
VERIFY(nvlist_add_string(unsup_feat,
|
|
nvpair_name(nvp), "") == 0);
|
|
}
|
|
}
|
|
|
|
if (!nvlist_empty(unsup_feat)) {
|
|
VERIFY(nvlist_add_nvlist(spa->spa_load_info,
|
|
ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
|
|
nvlist_free(unsup_feat);
|
|
spa_load_failed(spa, "some features are unsupported");
|
|
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
|
|
ENOTSUP));
|
|
}
|
|
|
|
nvlist_free(unsup_feat);
|
|
}
|
|
|
|
if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_try_repair(spa, spa->spa_config);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
nvlist_free(spa->spa_config_splitting);
|
|
spa->spa_config_splitting = NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize internal SPA structures.
|
|
*/
|
|
spa->spa_state = POOL_STATE_ACTIVE;
|
|
spa->spa_ubsync = spa->spa_uberblock;
|
|
spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
|
|
TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
|
|
spa->spa_first_txg = spa->spa_last_ubsync_txg ?
|
|
spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
|
|
spa->spa_claim_max_txg = spa->spa_first_txg;
|
|
spa->spa_prev_software_version = ub->ub_software_version;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_open_rootbp(spa_t *spa)
|
|
{
|
|
int error = 0;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
|
|
"[error=%d]", error);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_load_trusted_config(spa_t *spa, spa_import_type_t type,
|
|
boolean_t reloading)
|
|
{
|
|
vdev_t *mrvd, *rvd = spa->spa_root_vdev;
|
|
nvlist_t *nv, *mos_config, *policy;
|
|
int error = 0, copy_error;
|
|
uint64_t healthy_tvds, healthy_tvds_mos;
|
|
uint64_t mos_config_txg;
|
|
|
|
if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
|
|
!= 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
/*
|
|
* If we're assembling a pool from a split, the config provided is
|
|
* already trusted so there is nothing to do.
|
|
*/
|
|
if (type == SPA_IMPORT_ASSEMBLE)
|
|
return (0);
|
|
|
|
healthy_tvds = spa_healthy_core_tvds(spa);
|
|
|
|
if (load_nvlist(spa, spa->spa_config_object, &mos_config)
|
|
!= 0) {
|
|
spa_load_failed(spa, "unable to retrieve MOS config");
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
/*
|
|
* If we are doing an open, pool owner wasn't verified yet, thus do
|
|
* the verification here.
|
|
*/
|
|
if (spa->spa_load_state == SPA_LOAD_OPEN) {
|
|
error = spa_verify_host(spa, mos_config);
|
|
if (error != 0) {
|
|
nvlist_free(mos_config);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
/*
|
|
* Build a new vdev tree from the trusted config
|
|
*/
|
|
VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
|
|
|
|
/*
|
|
* Vdev paths in the MOS may be obsolete. If the untrusted config was
|
|
* obtained by scanning /dev/dsk, then it will have the right vdev
|
|
* paths. We update the trusted MOS config with this information.
|
|
* We first try to copy the paths with vdev_copy_path_strict, which
|
|
* succeeds only when both configs have exactly the same vdev tree.
|
|
* If that fails, we fall back to a more flexible method that has a
|
|
* best effort policy.
|
|
*/
|
|
copy_error = vdev_copy_path_strict(rvd, mrvd);
|
|
if (copy_error != 0 || spa_load_print_vdev_tree) {
|
|
spa_load_note(spa, "provided vdev tree:");
|
|
vdev_dbgmsg_print_tree(rvd, 2);
|
|
spa_load_note(spa, "MOS vdev tree:");
|
|
vdev_dbgmsg_print_tree(mrvd, 2);
|
|
}
|
|
if (copy_error != 0) {
|
|
spa_load_note(spa, "vdev_copy_path_strict failed, falling "
|
|
"back to vdev_copy_path_relaxed");
|
|
vdev_copy_path_relaxed(rvd, mrvd);
|
|
}
|
|
|
|
vdev_close(rvd);
|
|
vdev_free(rvd);
|
|
spa->spa_root_vdev = mrvd;
|
|
rvd = mrvd;
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
/*
|
|
* We will use spa_config if we decide to reload the spa or if spa_load
|
|
* fails and we rewind. We must thus regenerate the config using the
|
|
* MOS information with the updated paths. Rewind policy is an import
|
|
* setting and is not in the MOS. We copy it over to our new, trusted
|
|
* config.
|
|
*/
|
|
mos_config_txg = fnvlist_lookup_uint64(mos_config,
|
|
ZPOOL_CONFIG_POOL_TXG);
|
|
nvlist_free(mos_config);
|
|
mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
|
|
if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_REWIND_POLICY,
|
|
&policy) == 0)
|
|
fnvlist_add_nvlist(mos_config, ZPOOL_REWIND_POLICY, policy);
|
|
spa_config_set(spa, mos_config);
|
|
spa->spa_config_source = SPA_CONFIG_SRC_MOS;
|
|
|
|
/*
|
|
* Now that we got the config from the MOS, we should be more strict
|
|
* in checking blkptrs and can make assumptions about the consistency
|
|
* of the vdev tree. spa_trust_config must be set to true before opening
|
|
* vdevs in order for them to be writeable.
|
|
*/
|
|
spa->spa_trust_config = B_TRUE;
|
|
|
|
/*
|
|
* Open and validate the new vdev tree
|
|
*/
|
|
error = spa_ld_open_vdevs(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = spa_ld_validate_vdevs(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (copy_error != 0 || spa_load_print_vdev_tree) {
|
|
spa_load_note(spa, "final vdev tree:");
|
|
vdev_dbgmsg_print_tree(rvd, 2);
|
|
}
|
|
|
|
if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
|
|
!spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
|
|
/*
|
|
* Sanity check to make sure that we are indeed loading the
|
|
* latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
|
|
* in the config provided and they happened to be the only ones
|
|
* to have the latest uberblock, we could involuntarily perform
|
|
* an extreme rewind.
|
|
*/
|
|
healthy_tvds_mos = spa_healthy_core_tvds(spa);
|
|
if (healthy_tvds_mos - healthy_tvds >=
|
|
SPA_SYNC_MIN_VDEVS) {
|
|
spa_load_note(spa, "config provided misses too many "
|
|
"top-level vdevs compared to MOS (%lld vs %lld). ",
|
|
(u_longlong_t)healthy_tvds,
|
|
(u_longlong_t)healthy_tvds_mos);
|
|
spa_load_note(spa, "vdev tree:");
|
|
vdev_dbgmsg_print_tree(rvd, 2);
|
|
if (reloading) {
|
|
spa_load_failed(spa, "config was already "
|
|
"provided from MOS. Aborting.");
|
|
return (spa_vdev_err(rvd,
|
|
VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
spa_load_note(spa, "spa must be reloaded using MOS "
|
|
"config");
|
|
return (SET_ERROR(EAGAIN));
|
|
}
|
|
}
|
|
|
|
error = spa_check_for_missing_logs(spa);
|
|
if (error != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
|
|
|
|
if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
|
|
spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
|
|
"guid sum (%llu != %llu)",
|
|
(u_longlong_t)spa->spa_uberblock.ub_guid_sum,
|
|
(u_longlong_t)rvd->vdev_guid_sum);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
|
|
ENXIO));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_open_indirect_vdev_metadata(spa_t *spa)
|
|
{
|
|
int error = 0;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
/*
|
|
* Everything that we read before spa_remove_init() must be stored
|
|
* on concreted vdevs. Therefore we do this as early as possible.
|
|
*/
|
|
error = spa_remove_init(spa);
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "spa_remove_init failed [error=%d]",
|
|
error);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
/*
|
|
* Retrieve information needed to condense indirect vdev mappings.
|
|
*/
|
|
error = spa_condense_init(spa);
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "spa_condense_init failed [error=%d]",
|
|
error);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
|
|
{
|
|
int error = 0;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
if (spa_version(spa) >= SPA_VERSION_FEATURES) {
|
|
boolean_t missing_feat_read = B_FALSE;
|
|
nvlist_t *unsup_feat, *enabled_feat;
|
|
|
|
if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
|
|
&spa->spa_feat_for_read_obj, B_TRUE) != 0) {
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
|
|
&spa->spa_feat_for_write_obj, B_TRUE) != 0) {
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
|
|
&spa->spa_feat_desc_obj, B_TRUE) != 0) {
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
enabled_feat = fnvlist_alloc();
|
|
unsup_feat = fnvlist_alloc();
|
|
|
|
if (!spa_features_check(spa, B_FALSE,
|
|
unsup_feat, enabled_feat))
|
|
missing_feat_read = B_TRUE;
|
|
|
|
if (spa_writeable(spa) ||
|
|
spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
|
|
if (!spa_features_check(spa, B_TRUE,
|
|
unsup_feat, enabled_feat)) {
|
|
*missing_feat_writep = B_TRUE;
|
|
}
|
|
}
|
|
|
|
fnvlist_add_nvlist(spa->spa_load_info,
|
|
ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
|
|
|
|
if (!nvlist_empty(unsup_feat)) {
|
|
fnvlist_add_nvlist(spa->spa_load_info,
|
|
ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
|
|
}
|
|
|
|
fnvlist_free(enabled_feat);
|
|
fnvlist_free(unsup_feat);
|
|
|
|
if (!missing_feat_read) {
|
|
fnvlist_add_boolean(spa->spa_load_info,
|
|
ZPOOL_CONFIG_CAN_RDONLY);
|
|
}
|
|
|
|
/*
|
|
* If the state is SPA_LOAD_TRYIMPORT, our objective is
|
|
* twofold: to determine whether the pool is available for
|
|
* import in read-write mode and (if it is not) whether the
|
|
* pool is available for import in read-only mode. If the pool
|
|
* is available for import in read-write mode, it is displayed
|
|
* as available in userland; if it is not available for import
|
|
* in read-only mode, it is displayed as unavailable in
|
|
* userland. If the pool is available for import in read-only
|
|
* mode but not read-write mode, it is displayed as unavailable
|
|
* in userland with a special note that the pool is actually
|
|
* available for open in read-only mode.
|
|
*
|
|
* As a result, if the state is SPA_LOAD_TRYIMPORT and we are
|
|
* missing a feature for write, we must first determine whether
|
|
* the pool can be opened read-only before returning to
|
|
* userland in order to know whether to display the
|
|
* abovementioned note.
|
|
*/
|
|
if (missing_feat_read || (*missing_feat_writep &&
|
|
spa_writeable(spa))) {
|
|
spa_load_failed(spa, "pool uses unsupported features");
|
|
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
|
|
ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* Load refcounts for ZFS features from disk into an in-memory
|
|
* cache during SPA initialization.
|
|
*/
|
|
for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
|
|
uint64_t refcount;
|
|
|
|
error = feature_get_refcount_from_disk(spa,
|
|
&spa_feature_table[i], &refcount);
|
|
if (error == 0) {
|
|
spa->spa_feat_refcount_cache[i] = refcount;
|
|
} else if (error == ENOTSUP) {
|
|
spa->spa_feat_refcount_cache[i] =
|
|
SPA_FEATURE_DISABLED;
|
|
} else {
|
|
spa_load_failed(spa, "error getting refcount "
|
|
"for feature %s [error=%d]",
|
|
spa_feature_table[i].fi_guid, error);
|
|
return (spa_vdev_err(rvd,
|
|
VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
|
|
if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
|
|
&spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_load_special_directories(spa_t *spa)
|
|
{
|
|
int error = 0;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
spa->spa_is_initializing = B_TRUE;
|
|
error = dsl_pool_open(spa->spa_dsl_pool);
|
|
spa->spa_is_initializing = B_FALSE;
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_get_props(spa_t *spa)
|
|
{
|
|
int error = 0;
|
|
uint64_t obj;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
/* Grab the checksum salt from the MOS. */
|
|
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_CHECKSUM_SALT, 1,
|
|
sizeof (spa->spa_cksum_salt.zcs_bytes),
|
|
spa->spa_cksum_salt.zcs_bytes);
|
|
if (error == ENOENT) {
|
|
/* Generate a new salt for subsequent use */
|
|
(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
|
|
sizeof (spa->spa_cksum_salt.zcs_bytes));
|
|
} else if (error != 0) {
|
|
spa_load_failed(spa, "unable to retrieve checksum salt from "
|
|
"MOS [error=%d]", error);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "error opening deferred-frees bpobj "
|
|
"[error=%d]", error);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
/*
|
|
* Load the bit that tells us to use the new accounting function
|
|
* (raid-z deflation). If we have an older pool, this will not
|
|
* be present.
|
|
*/
|
|
error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
|
|
&spa->spa_creation_version, B_FALSE);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
/*
|
|
* Load the persistent error log. If we have an older pool, this will
|
|
* not be present.
|
|
*/
|
|
error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
|
|
B_FALSE);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
|
|
&spa->spa_errlog_scrub, B_FALSE);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
/*
|
|
* Load the history object. If we have an older pool, this
|
|
* will not be present.
|
|
*/
|
|
error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
/*
|
|
* Load the per-vdev ZAP map. If we have an older pool, this will not
|
|
* be present; in this case, defer its creation to a later time to
|
|
* avoid dirtying the MOS this early / out of sync context. See
|
|
* spa_sync_config_object.
|
|
*/
|
|
|
|
/* The sentinel is only available in the MOS config. */
|
|
nvlist_t *mos_config;
|
|
if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
|
|
spa_load_failed(spa, "unable to retrieve MOS config");
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
|
|
&spa->spa_all_vdev_zaps, B_FALSE);
|
|
|
|
if (error == ENOENT) {
|
|
VERIFY(!nvlist_exists(mos_config,
|
|
ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
|
|
spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
|
|
ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
|
|
} else if (error != 0) {
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
|
|
/*
|
|
* An older version of ZFS overwrote the sentinel value, so
|
|
* we have orphaned per-vdev ZAPs in the MOS. Defer their
|
|
* destruction to later; see spa_sync_config_object.
|
|
*/
|
|
spa->spa_avz_action = AVZ_ACTION_DESTROY;
|
|
/*
|
|
* We're assuming that no vdevs have had their ZAPs created
|
|
* before this. Better be sure of it.
|
|
*/
|
|
ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
|
|
}
|
|
nvlist_free(mos_config);
|
|
|
|
spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
|
|
|
|
error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
|
|
B_FALSE);
|
|
if (error && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
if (error == 0) {
|
|
uint64_t autoreplace;
|
|
|
|
spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
|
|
spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
|
|
spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
|
|
spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
|
|
spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
|
|
spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
|
|
spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
|
|
&spa->spa_dedup_ditto);
|
|
|
|
spa->spa_autoreplace = (autoreplace != 0);
|
|
}
|
|
|
|
/*
|
|
* If we are importing a pool with missing top-level vdevs,
|
|
* we enforce that the pool doesn't panic or get suspended on
|
|
* error since the likelihood of missing data is extremely high.
|
|
*/
|
|
if (spa->spa_missing_tvds > 0 &&
|
|
spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
|
|
spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
|
|
spa_load_note(spa, "forcing failmode to 'continue' "
|
|
"as some top level vdevs are missing");
|
|
spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
|
|
{
|
|
int error = 0;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
/*
|
|
* If we're assembling the pool from the split-off vdevs of
|
|
* an existing pool, we don't want to attach the spares & cache
|
|
* devices.
|
|
*/
|
|
|
|
/*
|
|
* Load any hot spares for this pool.
|
|
*/
|
|
error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
|
|
B_FALSE);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
|
|
ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
|
|
if (load_nvlist(spa, spa->spa_spares.sav_object,
|
|
&spa->spa_spares.sav_config) != 0) {
|
|
spa_load_failed(spa, "error loading spares nvlist");
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_spares(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
} else if (error == 0) {
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Load any level 2 ARC devices for this pool.
|
|
*/
|
|
error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
|
|
&spa->spa_l2cache.sav_object, B_FALSE);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
|
|
ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
|
|
if (load_nvlist(spa, spa->spa_l2cache.sav_object,
|
|
&spa->spa_l2cache.sav_config) != 0) {
|
|
spa_load_failed(spa, "error loading l2cache nvlist");
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_l2cache(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
} else if (error == 0) {
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_load_vdev_metadata(spa_t *spa)
|
|
{
|
|
int error = 0;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
/*
|
|
* If the 'multihost' property is set, then never allow a pool to
|
|
* be imported when the system hostid is zero. The exception to
|
|
* this rule is zdb which is always allowed to access pools.
|
|
*/
|
|
if (spa_multihost(spa) && spa_get_hostid() == 0 &&
|
|
(spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
|
|
fnvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
|
|
}
|
|
|
|
/*
|
|
* If the 'autoreplace' property is set, then post a resource notifying
|
|
* the ZFS DE that it should not issue any faults for unopenable
|
|
* devices. We also iterate over the vdevs, and post a sysevent for any
|
|
* unopenable vdevs so that the normal autoreplace handler can take
|
|
* over.
|
|
*/
|
|
if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
|
|
spa_check_removed(spa->spa_root_vdev);
|
|
/*
|
|
* For the import case, this is done in spa_import(), because
|
|
* at this point we're using the spare definitions from
|
|
* the MOS config, not necessarily from the userland config.
|
|
*/
|
|
if (spa->spa_load_state != SPA_LOAD_IMPORT) {
|
|
spa_aux_check_removed(&spa->spa_spares);
|
|
spa_aux_check_removed(&spa->spa_l2cache);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
|
|
*/
|
|
error = vdev_load(rvd);
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "vdev_load failed [error=%d]", error);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
|
|
}
|
|
|
|
/*
|
|
* Propagate the leaf DTLs we just loaded all the way up the vdev tree.
|
|
*/
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_load_dedup_tables(spa_t *spa)
|
|
{
|
|
int error = 0;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
error = ddt_load(spa);
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "ddt_load failed [error=%d]", error);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
|
|
boolean_t missing = spa_check_logs(spa);
|
|
if (missing) {
|
|
if (spa->spa_missing_tvds != 0) {
|
|
spa_load_note(spa, "spa_check_logs failed "
|
|
"so dropping the logs");
|
|
} else {
|
|
*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
|
|
spa_load_failed(spa, "spa_check_logs failed");
|
|
return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
|
|
ENXIO));
|
|
}
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_ld_verify_pool_data(spa_t *spa)
|
|
{
|
|
int error = 0;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
/*
|
|
* We've successfully opened the pool, verify that we're ready
|
|
* to start pushing transactions.
|
|
*/
|
|
if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
|
|
error = spa_load_verify(spa);
|
|
if (error != 0) {
|
|
spa_load_failed(spa, "spa_load_verify failed "
|
|
"[error=%d]", error);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
|
|
error));
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
spa_ld_claim_log_blocks(spa_t *spa)
|
|
{
|
|
dmu_tx_t *tx;
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
|
|
/*
|
|
* Claim log blocks that haven't been committed yet.
|
|
* This must all happen in a single txg.
|
|
* Note: spa_claim_max_txg is updated by spa_claim_notify(),
|
|
* invoked from zil_claim_log_block()'s i/o done callback.
|
|
* Price of rollback is that we abandon the log.
|
|
*/
|
|
spa->spa_claiming = B_TRUE;
|
|
|
|
tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
|
|
(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
|
|
zil_claim, tx, DS_FIND_CHILDREN);
|
|
dmu_tx_commit(tx);
|
|
|
|
spa->spa_claiming = B_FALSE;
|
|
|
|
spa_set_log_state(spa, SPA_LOG_GOOD);
|
|
}
|
|
|
|
static void
|
|
spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
|
|
boolean_t reloading)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
int need_update = B_FALSE;
|
|
|
|
/*
|
|
* If the config cache is stale, or we have uninitialized
|
|
* metaslabs (see spa_vdev_add()), then update the config.
|
|
*
|
|
* If this is a verbatim import, trust the current
|
|
* in-core spa_config and update the disk labels.
|
|
*/
|
|
if (reloading || config_cache_txg != spa->spa_config_txg ||
|
|
spa->spa_load_state == SPA_LOAD_IMPORT ||
|
|
spa->spa_load_state == SPA_LOAD_RECOVER ||
|
|
(spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
|
|
need_update = B_TRUE;
|
|
|
|
for (int c = 0; c < rvd->vdev_children; c++)
|
|
if (rvd->vdev_child[c]->vdev_ms_array == 0)
|
|
need_update = B_TRUE;
|
|
|
|
/*
|
|
* Update the config cache asychronously in case we're the
|
|
* root pool, in which case the config cache isn't writable yet.
|
|
*/
|
|
if (need_update)
|
|
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
|
|
}
|
|
|
|
static void
|
|
spa_ld_prepare_for_reload(spa_t *spa)
|
|
{
|
|
int mode = spa->spa_mode;
|
|
int async_suspended = spa->spa_async_suspended;
|
|
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_activate(spa, mode);
|
|
|
|
/*
|
|
* We save the value of spa_async_suspended as it gets reset to 0 by
|
|
* spa_unload(). We want to restore it back to the original value before
|
|
* returning as we might be calling spa_async_resume() later.
|
|
*/
|
|
spa->spa_async_suspended = async_suspended;
|
|
}
|
|
|
|
/*
|
|
* Load an existing storage pool, using the config provided. This config
|
|
* describes which vdevs are part of the pool and is later validated against
|
|
* partial configs present in each vdev's label and an entire copy of the
|
|
* config stored in the MOS.
|
|
*/
|
|
static int
|
|
spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport,
|
|
boolean_t reloading)
|
|
{
|
|
int error = 0;
|
|
boolean_t missing_feat_write = B_FALSE;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
|
|
|
|
/*
|
|
* Never trust the config that is provided unless we are assembling
|
|
* a pool following a split.
|
|
* This means don't trust blkptrs and the vdev tree in general. This
|
|
* also effectively puts the spa in read-only mode since
|
|
* spa_writeable() checks for spa_trust_config to be true.
|
|
* We will later load a trusted config from the MOS.
|
|
*/
|
|
if (type != SPA_IMPORT_ASSEMBLE)
|
|
spa->spa_trust_config = B_FALSE;
|
|
|
|
if (reloading)
|
|
spa_load_note(spa, "RELOADING");
|
|
else
|
|
spa_load_note(spa, "LOADING");
|
|
|
|
/*
|
|
* Parse the config provided to create a vdev tree.
|
|
*/
|
|
error = spa_ld_parse_config(spa, type);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Now that we have the vdev tree, try to open each vdev. This involves
|
|
* opening the underlying physical device, retrieving its geometry and
|
|
* probing the vdev with a dummy I/O. The state of each vdev will be set
|
|
* based on the success of those operations. After this we'll be ready
|
|
* to read from the vdevs.
|
|
*/
|
|
error = spa_ld_open_vdevs(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Read the label of each vdev and make sure that the GUIDs stored
|
|
* there match the GUIDs in the config provided.
|
|
* If we're assembling a new pool that's been split off from an
|
|
* existing pool, the labels haven't yet been updated so we skip
|
|
* validation for now.
|
|
*/
|
|
if (type != SPA_IMPORT_ASSEMBLE) {
|
|
error = spa_ld_validate_vdevs(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Read vdev labels to find the best uberblock (i.e. latest, unless
|
|
* spa_load_max_txg is set) and store it in spa_uberblock. We get the
|
|
* list of features required to read blkptrs in the MOS from the vdev
|
|
* label with the best uberblock and verify that our version of zfs
|
|
* supports them all.
|
|
*/
|
|
error = spa_ld_select_uberblock(spa, type);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Pass that uberblock to the dsl_pool layer which will open the root
|
|
* blkptr. This blkptr points to the latest version of the MOS and will
|
|
* allow us to read its contents.
|
|
*/
|
|
error = spa_ld_open_rootbp(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Retrieve the trusted config stored in the MOS and use it to create
|
|
* a new, exact version of the vdev tree, then reopen all vdevs.
|
|
*/
|
|
error = spa_ld_load_trusted_config(spa, type, reloading);
|
|
if (error == EAGAIN) {
|
|
VERIFY(!reloading);
|
|
/*
|
|
* Redo the loading process with the trusted config if it is
|
|
* too different from the untrusted config.
|
|
*/
|
|
spa_ld_prepare_for_reload(spa);
|
|
return (spa_load_impl(spa, type, ereport, B_TRUE));
|
|
} else if (error != 0) {
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Retrieve the mapping of indirect vdevs. Those vdevs were removed
|
|
* from the pool and their contents were re-mapped to other vdevs. Note
|
|
* that everything that we read before this step must have been
|
|
* rewritten on concrete vdevs after the last device removal was
|
|
* initiated. Otherwise we could be reading from indirect vdevs before
|
|
* we have loaded their mappings.
|
|
*/
|
|
error = spa_ld_open_indirect_vdev_metadata(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Retrieve the full list of active features from the MOS and check if
|
|
* they are all supported.
|
|
*/
|
|
error = spa_ld_check_features(spa, &missing_feat_write);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Load several special directories from the MOS needed by the dsl_pool
|
|
* layer.
|
|
*/
|
|
error = spa_ld_load_special_directories(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Retrieve pool properties from the MOS.
|
|
*/
|
|
error = spa_ld_get_props(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Retrieve the list of auxiliary devices - cache devices and spares -
|
|
* and open them.
|
|
*/
|
|
error = spa_ld_open_aux_vdevs(spa, type);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Load the metadata for all vdevs. Also check if unopenable devices
|
|
* should be autoreplaced.
|
|
*/
|
|
error = spa_ld_load_vdev_metadata(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = spa_ld_load_dedup_tables(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Verify the logs now to make sure we don't have any unexpected errors
|
|
* when we claim log blocks later.
|
|
*/
|
|
error = spa_ld_verify_logs(spa, type, ereport);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (missing_feat_write) {
|
|
ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
|
|
|
|
/*
|
|
* At this point, we know that we can open the pool in
|
|
* read-only mode but not read-write mode. We now have enough
|
|
* information and can return to userland.
|
|
*/
|
|
return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
|
|
ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* Traverse the last txgs to make sure the pool was left off in a safe
|
|
* state. When performing an extreme rewind, we verify the whole pool,
|
|
* which can take a very long time.
|
|
*/
|
|
error = spa_ld_verify_pool_data(spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Calculate the deflated space for the pool. This must be done before
|
|
* we write anything to the pool because we'd need to update the space
|
|
* accounting using the deflated sizes.
|
|
*/
|
|
spa_update_dspace(spa);
|
|
|
|
/*
|
|
* We have now retrieved all the information we needed to open the
|
|
* pool. If we are importing the pool in read-write mode, a few
|
|
* additional steps must be performed to finish the import.
|
|
*/
|
|
if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
|
|
spa->spa_load_max_txg == UINT64_MAX)) {
|
|
uint64_t config_cache_txg = spa->spa_config_txg;
|
|
|
|
ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
|
|
|
|
/*
|
|
* Traverse the ZIL and claim all blocks.
|
|
*/
|
|
spa_ld_claim_log_blocks(spa);
|
|
|
|
/*
|
|
* Kick-off the syncing thread.
|
|
*/
|
|
spa->spa_sync_on = B_TRUE;
|
|
txg_sync_start(spa->spa_dsl_pool);
|
|
mmp_thread_start(spa);
|
|
|
|
/*
|
|
* Wait for all claims to sync. We sync up to the highest
|
|
* claimed log block birth time so that claimed log blocks
|
|
* don't appear to be from the future. spa_claim_max_txg
|
|
* will have been set for us by ZIL traversal operations
|
|
* performed above.
|
|
*/
|
|
txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
|
|
|
|
/*
|
|
* Check if we need to request an update of the config. On the
|
|
* next sync, we would update the config stored in vdev labels
|
|
* and the cachefile (by default /etc/zfs/zpool.cache).
|
|
*/
|
|
spa_ld_check_for_config_update(spa, config_cache_txg,
|
|
reloading);
|
|
|
|
/*
|
|
* Check all DTLs to see if anything needs resilvering.
|
|
*/
|
|
if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
|
|
vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER);
|
|
|
|
/*
|
|
* Log the fact that we booted up (so that we can detect if
|
|
* we rebooted in the middle of an operation).
|
|
*/
|
|
spa_history_log_version(spa, "open", NULL);
|
|
|
|
/*
|
|
* Delete any inconsistent datasets.
|
|
*/
|
|
(void) dmu_objset_find(spa_name(spa),
|
|
dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
|
|
|
|
/*
|
|
* Clean up any stale temporary dataset userrefs.
|
|
*/
|
|
dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
|
|
|
|
spa_restart_removal(spa);
|
|
|
|
spa_spawn_aux_threads(spa);
|
|
}
|
|
|
|
spa_load_note(spa, "LOADED");
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_load_retry(spa_t *spa, spa_load_state_t state)
|
|
{
|
|
int mode = spa->spa_mode;
|
|
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
|
|
spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
|
|
|
|
spa_activate(spa, mode);
|
|
spa_async_suspend(spa);
|
|
|
|
spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
|
|
(u_longlong_t)spa->spa_load_max_txg);
|
|
|
|
return (spa_load(spa, state, SPA_IMPORT_EXISTING));
|
|
}
|
|
|
|
/*
|
|
* If spa_load() fails this function will try loading prior txg's. If
|
|
* 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
|
|
* will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
|
|
* function will not rewind the pool and will return the same error as
|
|
* spa_load().
|
|
*/
|
|
static int
|
|
spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
|
|
int rewind_flags)
|
|
{
|
|
nvlist_t *loadinfo = NULL;
|
|
nvlist_t *config = NULL;
|
|
int load_error, rewind_error;
|
|
uint64_t safe_rewind_txg;
|
|
uint64_t min_txg;
|
|
|
|
if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
|
|
spa->spa_load_max_txg = spa->spa_load_txg;
|
|
spa_set_log_state(spa, SPA_LOG_CLEAR);
|
|
} else {
|
|
spa->spa_load_max_txg = max_request;
|
|
if (max_request != UINT64_MAX)
|
|
spa->spa_extreme_rewind = B_TRUE;
|
|
}
|
|
|
|
load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
|
|
if (load_error == 0)
|
|
return (0);
|
|
|
|
if (spa->spa_root_vdev != NULL)
|
|
config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
|
|
|
|
spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
|
|
spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
|
|
|
|
if (rewind_flags & ZPOOL_NEVER_REWIND) {
|
|
nvlist_free(config);
|
|
return (load_error);
|
|
}
|
|
|
|
if (state == SPA_LOAD_RECOVER) {
|
|
/* Price of rolling back is discarding txgs, including log */
|
|
spa_set_log_state(spa, SPA_LOG_CLEAR);
|
|
} else {
|
|
/*
|
|
* If we aren't rolling back save the load info from our first
|
|
* import attempt so that we can restore it after attempting
|
|
* to rewind.
|
|
*/
|
|
loadinfo = spa->spa_load_info;
|
|
spa->spa_load_info = fnvlist_alloc();
|
|
}
|
|
|
|
spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
|
|
safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
|
|
min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
|
|
TXG_INITIAL : safe_rewind_txg;
|
|
|
|
/*
|
|
* Continue as long as we're finding errors, we're still within
|
|
* the acceptable rewind range, and we're still finding uberblocks
|
|
*/
|
|
while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
|
|
spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
|
|
if (spa->spa_load_max_txg < safe_rewind_txg)
|
|
spa->spa_extreme_rewind = B_TRUE;
|
|
rewind_error = spa_load_retry(spa, state);
|
|
}
|
|
|
|
spa->spa_extreme_rewind = B_FALSE;
|
|
spa->spa_load_max_txg = UINT64_MAX;
|
|
|
|
if (config && (rewind_error || state != SPA_LOAD_RECOVER))
|
|
spa_config_set(spa, config);
|
|
else
|
|
nvlist_free(config);
|
|
|
|
if (state == SPA_LOAD_RECOVER) {
|
|
ASSERT3P(loadinfo, ==, NULL);
|
|
return (rewind_error);
|
|
} else {
|
|
/* Store the rewind info as part of the initial load info */
|
|
fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
|
|
spa->spa_load_info);
|
|
|
|
/* Restore the initial load info */
|
|
fnvlist_free(spa->spa_load_info);
|
|
spa->spa_load_info = loadinfo;
|
|
|
|
return (load_error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pool Open/Import
|
|
*
|
|
* The import case is identical to an open except that the configuration is sent
|
|
* down from userland, instead of grabbed from the configuration cache. For the
|
|
* case of an open, the pool configuration will exist in the
|
|
* POOL_STATE_UNINITIALIZED state.
|
|
*
|
|
* The stats information (gen/count/ustats) is used to gather vdev statistics at
|
|
* the same time open the pool, without having to keep around the spa_t in some
|
|
* ambiguous state.
|
|
*/
|
|
static int
|
|
spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
|
|
nvlist_t **config)
|
|
{
|
|
spa_t *spa;
|
|
spa_load_state_t state = SPA_LOAD_OPEN;
|
|
int error;
|
|
int locked = B_FALSE;
|
|
int firstopen = B_FALSE;
|
|
|
|
*spapp = NULL;
|
|
|
|
/*
|
|
* As disgusting as this is, we need to support recursive calls to this
|
|
* function because dsl_dir_open() is called during spa_load(), and ends
|
|
* up calling spa_open() again. The real fix is to figure out how to
|
|
* avoid dsl_dir_open() calling this in the first place.
|
|
*/
|
|
if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
locked = B_TRUE;
|
|
}
|
|
|
|
if ((spa = spa_lookup(pool)) == NULL) {
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
|
|
zpool_rewind_policy_t policy;
|
|
|
|
firstopen = B_TRUE;
|
|
|
|
zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
|
|
&policy);
|
|
if (policy.zrp_request & ZPOOL_DO_REWIND)
|
|
state = SPA_LOAD_RECOVER;
|
|
|
|
spa_activate(spa, spa_mode_global);
|
|
|
|
if (state != SPA_LOAD_RECOVER)
|
|
spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
|
|
spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
|
|
|
|
zfs_dbgmsg("spa_open_common: opening %s", pool);
|
|
error = spa_load_best(spa, state, policy.zrp_txg,
|
|
policy.zrp_request);
|
|
|
|
if (error == EBADF) {
|
|
/*
|
|
* If vdev_validate() returns failure (indicated by
|
|
* EBADF), it indicates that one of the vdevs indicates
|
|
* that the pool has been exported or destroyed. If
|
|
* this is the case, the config cache is out of sync and
|
|
* we should remove the pool from the namespace.
|
|
*/
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_write_cachefile(spa, B_TRUE, B_TRUE);
|
|
spa_remove(spa);
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
if (error) {
|
|
/*
|
|
* We can't open the pool, but we still have useful
|
|
* information: the state of each vdev after the
|
|
* attempted vdev_open(). Return this to the user.
|
|
*/
|
|
if (config != NULL && spa->spa_config) {
|
|
VERIFY(nvlist_dup(spa->spa_config, config,
|
|
KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist(*config,
|
|
ZPOOL_CONFIG_LOAD_INFO,
|
|
spa->spa_load_info) == 0);
|
|
}
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa->spa_last_open_failed = error;
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
*spapp = NULL;
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
spa_open_ref(spa, tag);
|
|
|
|
if (config != NULL)
|
|
*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
|
|
|
|
/*
|
|
* If we've recovered the pool, pass back any information we
|
|
* gathered while doing the load.
|
|
*/
|
|
if (state == SPA_LOAD_RECOVER) {
|
|
VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
|
|
spa->spa_load_info) == 0);
|
|
}
|
|
|
|
if (locked) {
|
|
spa->spa_last_open_failed = 0;
|
|
spa->spa_last_ubsync_txg = 0;
|
|
spa->spa_load_txg = 0;
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
if (firstopen)
|
|
zvol_create_minors(spa, spa_name(spa), B_TRUE);
|
|
|
|
*spapp = spa;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
|
|
nvlist_t **config)
|
|
{
|
|
return (spa_open_common(name, spapp, tag, policy, config));
|
|
}
|
|
|
|
int
|
|
spa_open(const char *name, spa_t **spapp, void *tag)
|
|
{
|
|
return (spa_open_common(name, spapp, tag, NULL, NULL));
|
|
}
|
|
|
|
/*
|
|
* Lookup the given spa_t, incrementing the inject count in the process,
|
|
* preventing it from being exported or destroyed.
|
|
*/
|
|
spa_t *
|
|
spa_inject_addref(char *name)
|
|
{
|
|
spa_t *spa;
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
if ((spa = spa_lookup(name)) == NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (NULL);
|
|
}
|
|
spa->spa_inject_ref++;
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (spa);
|
|
}
|
|
|
|
void
|
|
spa_inject_delref(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa->spa_inject_ref--;
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
/*
|
|
* Add spares device information to the nvlist.
|
|
*/
|
|
static void
|
|
spa_add_spares(spa_t *spa, nvlist_t *config)
|
|
{
|
|
nvlist_t **spares;
|
|
uint_t i, nspares;
|
|
nvlist_t *nvroot;
|
|
uint64_t guid;
|
|
vdev_stat_t *vs;
|
|
uint_t vsc;
|
|
uint64_t pool;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
|
|
|
|
if (spa->spa_spares.sav_count == 0)
|
|
return;
|
|
|
|
VERIFY(nvlist_lookup_nvlist(config,
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
|
|
if (nspares != 0) {
|
|
VERIFY(nvlist_add_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
|
|
|
|
/*
|
|
* Go through and find any spares which have since been
|
|
* repurposed as an active spare. If this is the case, update
|
|
* their status appropriately.
|
|
*/
|
|
for (i = 0; i < nspares; i++) {
|
|
VERIFY(nvlist_lookup_uint64(spares[i],
|
|
ZPOOL_CONFIG_GUID, &guid) == 0);
|
|
if (spa_spare_exists(guid, &pool, NULL) &&
|
|
pool != 0ULL) {
|
|
VERIFY(nvlist_lookup_uint64_array(
|
|
spares[i], ZPOOL_CONFIG_VDEV_STATS,
|
|
(uint64_t **)&vs, &vsc) == 0);
|
|
vs->vs_state = VDEV_STATE_CANT_OPEN;
|
|
vs->vs_aux = VDEV_AUX_SPARED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add l2cache device information to the nvlist, including vdev stats.
|
|
*/
|
|
static void
|
|
spa_add_l2cache(spa_t *spa, nvlist_t *config)
|
|
{
|
|
nvlist_t **l2cache;
|
|
uint_t i, j, nl2cache;
|
|
nvlist_t *nvroot;
|
|
uint64_t guid;
|
|
vdev_t *vd;
|
|
vdev_stat_t *vs;
|
|
uint_t vsc;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
|
|
|
|
if (spa->spa_l2cache.sav_count == 0)
|
|
return;
|
|
|
|
VERIFY(nvlist_lookup_nvlist(config,
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
|
|
if (nl2cache != 0) {
|
|
VERIFY(nvlist_add_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
|
|
|
|
/*
|
|
* Update level 2 cache device stats.
|
|
*/
|
|
|
|
for (i = 0; i < nl2cache; i++) {
|
|
VERIFY(nvlist_lookup_uint64(l2cache[i],
|
|
ZPOOL_CONFIG_GUID, &guid) == 0);
|
|
|
|
vd = NULL;
|
|
for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
|
|
if (guid ==
|
|
spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
|
|
vd = spa->spa_l2cache.sav_vdevs[j];
|
|
break;
|
|
}
|
|
}
|
|
ASSERT(vd != NULL);
|
|
|
|
VERIFY(nvlist_lookup_uint64_array(l2cache[i],
|
|
ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
|
|
== 0);
|
|
vdev_get_stats(vd, vs);
|
|
vdev_config_generate_stats(vd, l2cache[i]);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
|
|
if (spa->spa_feat_for_read_obj != 0) {
|
|
for (zap_cursor_init(&zc, spa->spa_meta_objset,
|
|
spa->spa_feat_for_read_obj);
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
ASSERT(za.za_integer_length == sizeof (uint64_t) &&
|
|
za.za_num_integers == 1);
|
|
VERIFY0(nvlist_add_uint64(features, za.za_name,
|
|
za.za_first_integer));
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
|
|
if (spa->spa_feat_for_write_obj != 0) {
|
|
for (zap_cursor_init(&zc, spa->spa_meta_objset,
|
|
spa->spa_feat_for_write_obj);
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
ASSERT(za.za_integer_length == sizeof (uint64_t) &&
|
|
za.za_num_integers == 1);
|
|
VERIFY0(nvlist_add_uint64(features, za.za_name,
|
|
za.za_first_integer));
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SPA_FEATURES; i++) {
|
|
zfeature_info_t feature = spa_feature_table[i];
|
|
uint64_t refcount;
|
|
|
|
if (feature_get_refcount(spa, &feature, &refcount) != 0)
|
|
continue;
|
|
|
|
VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Store a list of pool features and their reference counts in the
|
|
* config.
|
|
*
|
|
* The first time this is called on a spa, allocate a new nvlist, fetch
|
|
* the pool features and reference counts from disk, then save the list
|
|
* in the spa. In subsequent calls on the same spa use the saved nvlist
|
|
* and refresh its values from the cached reference counts. This
|
|
* ensures we don't block here on I/O on a suspended pool so 'zpool
|
|
* clear' can resume the pool.
|
|
*/
|
|
static void
|
|
spa_add_feature_stats(spa_t *spa, nvlist_t *config)
|
|
{
|
|
nvlist_t *features;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
|
|
|
|
mutex_enter(&spa->spa_feat_stats_lock);
|
|
features = spa->spa_feat_stats;
|
|
|
|
if (features != NULL) {
|
|
spa_feature_stats_from_cache(spa, features);
|
|
} else {
|
|
VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
|
|
spa->spa_feat_stats = features;
|
|
spa_feature_stats_from_disk(spa, features);
|
|
}
|
|
|
|
VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
|
|
features));
|
|
|
|
mutex_exit(&spa->spa_feat_stats_lock);
|
|
}
|
|
|
|
int
|
|
spa_get_stats(const char *name, nvlist_t **config,
|
|
char *altroot, size_t buflen)
|
|
{
|
|
int error;
|
|
spa_t *spa;
|
|
|
|
*config = NULL;
|
|
error = spa_open_common(name, &spa, FTAG, NULL, config);
|
|
|
|
if (spa != NULL) {
|
|
/*
|
|
* This still leaves a window of inconsistency where the spares
|
|
* or l2cache devices could change and the config would be
|
|
* self-inconsistent.
|
|
*/
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
if (*config != NULL) {
|
|
uint64_t loadtimes[2];
|
|
|
|
loadtimes[0] = spa->spa_loaded_ts.tv_sec;
|
|
loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
|
|
VERIFY(nvlist_add_uint64_array(*config,
|
|
ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
|
|
|
|
VERIFY(nvlist_add_uint64(*config,
|
|
ZPOOL_CONFIG_ERRCOUNT,
|
|
spa_get_errlog_size(spa)) == 0);
|
|
|
|
if (spa_suspended(spa)) {
|
|
VERIFY(nvlist_add_uint64(*config,
|
|
ZPOOL_CONFIG_SUSPENDED,
|
|
spa->spa_failmode) == 0);
|
|
VERIFY(nvlist_add_uint64(*config,
|
|
ZPOOL_CONFIG_SUSPENDED_REASON,
|
|
spa->spa_suspended) == 0);
|
|
}
|
|
|
|
spa_add_spares(spa, *config);
|
|
spa_add_l2cache(spa, *config);
|
|
spa_add_feature_stats(spa, *config);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We want to get the alternate root even for faulted pools, so we cheat
|
|
* and call spa_lookup() directly.
|
|
*/
|
|
if (altroot) {
|
|
if (spa == NULL) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa = spa_lookup(name);
|
|
if (spa)
|
|
spa_altroot(spa, altroot, buflen);
|
|
else
|
|
altroot[0] = '\0';
|
|
spa = NULL;
|
|
mutex_exit(&spa_namespace_lock);
|
|
} else {
|
|
spa_altroot(spa, altroot, buflen);
|
|
}
|
|
}
|
|
|
|
if (spa != NULL) {
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
spa_close(spa, FTAG);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Validate that the auxiliary device array is well formed. We must have an
|
|
* array of nvlists, each which describes a valid leaf vdev. If this is an
|
|
* import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
|
|
* specified, as long as they are well-formed.
|
|
*/
|
|
static int
|
|
spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
|
|
spa_aux_vdev_t *sav, const char *config, uint64_t version,
|
|
vdev_labeltype_t label)
|
|
{
|
|
nvlist_t **dev;
|
|
uint_t i, ndev;
|
|
vdev_t *vd;
|
|
int error;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
/*
|
|
* It's acceptable to have no devs specified.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
|
|
return (0);
|
|
|
|
if (ndev == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* Make sure the pool is formatted with a version that supports this
|
|
* device type.
|
|
*/
|
|
if (spa_version(spa) < version)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* Set the pending device list so we correctly handle device in-use
|
|
* checking.
|
|
*/
|
|
sav->sav_pending = dev;
|
|
sav->sav_npending = ndev;
|
|
|
|
for (i = 0; i < ndev; i++) {
|
|
if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
|
|
mode)) != 0)
|
|
goto out;
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
vdev_free(vd);
|
|
error = SET_ERROR(EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
vd->vdev_top = vd;
|
|
|
|
if ((error = vdev_open(vd)) == 0 &&
|
|
(error = vdev_label_init(vd, crtxg, label)) == 0) {
|
|
VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
|
|
vd->vdev_guid) == 0);
|
|
}
|
|
|
|
vdev_free(vd);
|
|
|
|
if (error &&
|
|
(mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
|
|
goto out;
|
|
else
|
|
error = 0;
|
|
}
|
|
|
|
out:
|
|
sav->sav_pending = NULL;
|
|
sav->sav_npending = 0;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
|
|
&spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
|
|
VDEV_LABEL_SPARE)) != 0) {
|
|
return (error);
|
|
}
|
|
|
|
return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
|
|
&spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
|
|
VDEV_LABEL_L2CACHE));
|
|
}
|
|
|
|
static void
|
|
spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
|
|
const char *config)
|
|
{
|
|
int i;
|
|
|
|
if (sav->sav_config != NULL) {
|
|
nvlist_t **olddevs;
|
|
uint_t oldndevs;
|
|
nvlist_t **newdevs;
|
|
|
|
/*
|
|
* Generate new dev list by concatenating with the
|
|
* current dev list.
|
|
*/
|
|
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
|
|
&olddevs, &oldndevs) == 0);
|
|
|
|
newdevs = kmem_alloc(sizeof (void *) *
|
|
(ndevs + oldndevs), KM_SLEEP);
|
|
for (i = 0; i < oldndevs; i++)
|
|
VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
|
|
KM_SLEEP) == 0);
|
|
for (i = 0; i < ndevs; i++)
|
|
VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
|
|
KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_remove(sav->sav_config, config,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config,
|
|
config, newdevs, ndevs + oldndevs) == 0);
|
|
for (i = 0; i < oldndevs + ndevs; i++)
|
|
nvlist_free(newdevs[i]);
|
|
kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
|
|
} else {
|
|
/*
|
|
* Generate a new dev list.
|
|
*/
|
|
VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
|
|
KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
|
|
devs, ndevs) == 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop and drop level 2 ARC devices
|
|
*/
|
|
void
|
|
spa_l2cache_drop(spa_t *spa)
|
|
{
|
|
vdev_t *vd;
|
|
int i;
|
|
spa_aux_vdev_t *sav = &spa->spa_l2cache;
|
|
|
|
for (i = 0; i < sav->sav_count; i++) {
|
|
uint64_t pool;
|
|
|
|
vd = sav->sav_vdevs[i];
|
|
ASSERT(vd != NULL);
|
|
|
|
if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
|
|
pool != 0ULL && l2arc_vdev_present(vd))
|
|
l2arc_remove_vdev(vd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Verify encryption parameters for spa creation. If we are encrypting, we must
|
|
* have the encryption feature flag enabled.
|
|
*/
|
|
static int
|
|
spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
|
|
boolean_t has_encryption)
|
|
{
|
|
if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
|
|
dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
|
|
!has_encryption)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
return (dmu_objset_create_crypt_check(NULL, dcp));
|
|
}
|
|
|
|
/*
|
|
* Pool Creation
|
|
*/
|
|
int
|
|
spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
|
|
nvlist_t *zplprops, dsl_crypto_params_t *dcp)
|
|
{
|
|
spa_t *spa;
|
|
char *altroot = NULL;
|
|
vdev_t *rvd;
|
|
dsl_pool_t *dp;
|
|
dmu_tx_t *tx;
|
|
int error = 0;
|
|
uint64_t txg = TXG_INITIAL;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t nspares, nl2cache;
|
|
uint64_t version, obj, root_dsobj = 0;
|
|
boolean_t has_features;
|
|
boolean_t has_encryption;
|
|
spa_feature_t feat;
|
|
char *feat_name;
|
|
char *poolname;
|
|
nvlist_t *nvl;
|
|
|
|
if (nvlist_lookup_string(props, "tname", &poolname) != 0)
|
|
poolname = (char *)pool;
|
|
|
|
/*
|
|
* If this pool already exists, return failure.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
if (spa_lookup(poolname) != NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(EEXIST));
|
|
}
|
|
|
|
/*
|
|
* Allocate a new spa_t structure.
|
|
*/
|
|
nvl = fnvlist_alloc();
|
|
fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
|
|
(void) nvlist_lookup_string(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
|
|
spa = spa_add(poolname, nvl, altroot);
|
|
fnvlist_free(nvl);
|
|
spa_activate(spa, spa_mode_global);
|
|
|
|
if (props && (error = spa_prop_validate(spa, props))) {
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Temporary pool names should never be written to disk.
|
|
*/
|
|
if (poolname != pool)
|
|
spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
|
|
|
|
has_features = B_FALSE;
|
|
has_encryption = B_FALSE;
|
|
for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
|
|
elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
|
|
if (zpool_prop_feature(nvpair_name(elem))) {
|
|
has_features = B_TRUE;
|
|
|
|
feat_name = strchr(nvpair_name(elem), '@') + 1;
|
|
VERIFY0(zfeature_lookup_name(feat_name, &feat));
|
|
if (feat == SPA_FEATURE_ENCRYPTION)
|
|
has_encryption = B_TRUE;
|
|
}
|
|
}
|
|
|
|
/* verify encryption params, if they were provided */
|
|
if (dcp != NULL) {
|
|
error = spa_create_check_encryption_params(dcp, has_encryption);
|
|
if (error != 0) {
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
if (has_features || nvlist_lookup_uint64(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
|
|
version = SPA_VERSION;
|
|
}
|
|
ASSERT(SPA_VERSION_IS_SUPPORTED(version));
|
|
|
|
spa->spa_first_txg = txg;
|
|
spa->spa_uberblock.ub_txg = txg - 1;
|
|
spa->spa_uberblock.ub_version = version;
|
|
spa->spa_ubsync = spa->spa_uberblock;
|
|
spa->spa_load_state = SPA_LOAD_CREATE;
|
|
spa->spa_removing_phys.sr_state = DSS_NONE;
|
|
spa->spa_removing_phys.sr_removing_vdev = -1;
|
|
spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
|
|
|
|
/*
|
|
* Create "The Godfather" zio to hold all async IOs
|
|
*/
|
|
spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (int i = 0; i < max_ncpus; i++) {
|
|
spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
|
|
ZIO_FLAG_GODFATHER);
|
|
}
|
|
|
|
/*
|
|
* Create the root vdev.
|
|
*/
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
|
|
|
|
ASSERT(error != 0 || rvd != NULL);
|
|
ASSERT(error != 0 || spa->spa_root_vdev == rvd);
|
|
|
|
if (error == 0 && !zfs_allocatable_devs(nvroot))
|
|
error = SET_ERROR(EINVAL);
|
|
|
|
if (error == 0 &&
|
|
(error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
|
|
(error = spa_validate_aux(spa, nvroot, txg,
|
|
VDEV_ALLOC_ADD)) == 0) {
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_metaslab_set_size(rvd->vdev_child[c]);
|
|
vdev_expand(rvd->vdev_child[c], txg);
|
|
}
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
if (error != 0) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get the list of spares, if specified.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
|
&spares, &nspares) == 0) {
|
|
VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
|
|
KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_spares(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Get the list of level 2 cache devices, if specified.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
|
|
&l2cache, &nl2cache) == 0) {
|
|
VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_l2cache(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
spa->spa_is_initializing = B_TRUE;
|
|
spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
|
|
spa->spa_is_initializing = B_FALSE;
|
|
|
|
/*
|
|
* Create DDTs (dedup tables).
|
|
*/
|
|
ddt_create(spa);
|
|
|
|
spa_update_dspace(spa);
|
|
|
|
tx = dmu_tx_create_assigned(dp, txg);
|
|
|
|
/*
|
|
* Create the pool's history object.
|
|
*/
|
|
if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
|
|
spa_history_create_obj(spa, tx);
|
|
|
|
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
|
|
spa_history_log_version(spa, "create", tx);
|
|
|
|
/*
|
|
* Create the pool config object.
|
|
*/
|
|
spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
|
|
DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
|
|
DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
|
|
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
|
|
sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add pool config");
|
|
}
|
|
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
|
|
sizeof (uint64_t), 1, &version, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add pool version");
|
|
}
|
|
|
|
/* Newly created pools with the right version are always deflated. */
|
|
if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
|
|
spa->spa_deflate = TRUE;
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
|
|
sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add deflate");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the deferred-free bpobj. Turn off compression
|
|
* because sync-to-convergence takes longer if the blocksize
|
|
* keeps changing.
|
|
*/
|
|
obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
|
|
dmu_object_set_compress(spa->spa_meta_objset, obj,
|
|
ZIO_COMPRESS_OFF, tx);
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
|
|
sizeof (uint64_t), 1, &obj, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add bpobj");
|
|
}
|
|
VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
|
|
spa->spa_meta_objset, obj));
|
|
|
|
/*
|
|
* Generate some random noise for salted checksums to operate on.
|
|
*/
|
|
(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
|
|
sizeof (spa->spa_cksum_salt.zcs_bytes));
|
|
|
|
/*
|
|
* Set pool properties.
|
|
*/
|
|
spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
|
|
spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
|
|
spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
|
|
spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
|
|
spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
|
|
|
|
if (props != NULL) {
|
|
spa_configfile_set(spa, props, B_FALSE);
|
|
spa_sync_props(props, tx);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
/*
|
|
* If the root dataset is encrypted we will need to create key mappings
|
|
* for the zio layer before we start to write any data to disk and hold
|
|
* them until after the first txg has been synced. Waiting for the first
|
|
* transaction to complete also ensures that our bean counters are
|
|
* appropriately updated.
|
|
*/
|
|
if (dp->dp_root_dir->dd_crypto_obj != 0) {
|
|
root_dsobj = dsl_dir_phys(dp->dp_root_dir)->dd_head_dataset_obj;
|
|
VERIFY0(spa_keystore_create_mapping_impl(spa, root_dsobj,
|
|
dp->dp_root_dir, FTAG));
|
|
}
|
|
|
|
spa->spa_sync_on = B_TRUE;
|
|
txg_sync_start(dp);
|
|
mmp_thread_start(spa);
|
|
txg_wait_synced(dp, txg);
|
|
|
|
if (dp->dp_root_dir->dd_crypto_obj != 0)
|
|
VERIFY0(spa_keystore_remove_mapping(spa, root_dsobj, FTAG));
|
|
|
|
spa_spawn_aux_threads(spa);
|
|
|
|
spa_write_cachefile(spa, B_FALSE, B_TRUE);
|
|
|
|
/*
|
|
* Don't count references from objsets that are already closed
|
|
* and are making their way through the eviction process.
|
|
*/
|
|
spa_evicting_os_wait(spa);
|
|
spa->spa_minref = refcount_count(&spa->spa_refcount);
|
|
spa->spa_load_state = SPA_LOAD_NONE;
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Import a non-root pool into the system.
|
|
*/
|
|
int
|
|
spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
|
|
{
|
|
spa_t *spa;
|
|
char *altroot = NULL;
|
|
spa_load_state_t state = SPA_LOAD_IMPORT;
|
|
zpool_rewind_policy_t policy;
|
|
uint64_t mode = spa_mode_global;
|
|
uint64_t readonly = B_FALSE;
|
|
int error;
|
|
nvlist_t *nvroot;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t nspares, nl2cache;
|
|
|
|
/*
|
|
* If a pool with this name exists, return failure.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
if (spa_lookup(pool) != NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(EEXIST));
|
|
}
|
|
|
|
/*
|
|
* Create and initialize the spa structure.
|
|
*/
|
|
(void) nvlist_lookup_string(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
|
|
(void) nvlist_lookup_uint64(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
|
|
if (readonly)
|
|
mode = FREAD;
|
|
spa = spa_add(pool, config, altroot);
|
|
spa->spa_import_flags = flags;
|
|
|
|
/*
|
|
* Verbatim import - Take a pool and insert it into the namespace
|
|
* as if it had been loaded at boot.
|
|
*/
|
|
if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
|
|
if (props != NULL)
|
|
spa_configfile_set(spa, props, B_FALSE);
|
|
|
|
spa_write_cachefile(spa, B_FALSE, B_TRUE);
|
|
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
|
|
zfs_dbgmsg("spa_import: verbatim import of %s", pool);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (0);
|
|
}
|
|
|
|
spa_activate(spa, mode);
|
|
|
|
/*
|
|
* Don't start async tasks until we know everything is healthy.
|
|
*/
|
|
spa_async_suspend(spa);
|
|
|
|
zpool_get_rewind_policy(config, &policy);
|
|
if (policy.zrp_request & ZPOOL_DO_REWIND)
|
|
state = SPA_LOAD_RECOVER;
|
|
|
|
spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
|
|
|
|
if (state != SPA_LOAD_RECOVER) {
|
|
spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
|
|
zfs_dbgmsg("spa_import: importing %s", pool);
|
|
} else {
|
|
zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
|
|
"(RECOVERY MODE)", pool, (longlong_t)policy.zrp_txg);
|
|
}
|
|
error = spa_load_best(spa, state, policy.zrp_txg, policy.zrp_request);
|
|
|
|
/*
|
|
* Propagate anything learned while loading the pool and pass it
|
|
* back to caller (i.e. rewind info, missing devices, etc).
|
|
*/
|
|
VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
|
|
spa->spa_load_info) == 0);
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
/*
|
|
* Toss any existing sparelist, as it doesn't have any validity
|
|
* anymore, and conflicts with spa_has_spare().
|
|
*/
|
|
if (spa->spa_spares.sav_config) {
|
|
nvlist_free(spa->spa_spares.sav_config);
|
|
spa->spa_spares.sav_config = NULL;
|
|
spa_load_spares(spa);
|
|
}
|
|
if (spa->spa_l2cache.sav_config) {
|
|
nvlist_free(spa->spa_l2cache.sav_config);
|
|
spa->spa_l2cache.sav_config = NULL;
|
|
spa_load_l2cache(spa);
|
|
}
|
|
|
|
VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&nvroot) == 0);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
if (props != NULL)
|
|
spa_configfile_set(spa, props, B_FALSE);
|
|
|
|
if (error != 0 || (props && spa_writeable(spa) &&
|
|
(error = spa_prop_set(spa, props)))) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (error);
|
|
}
|
|
|
|
spa_async_resume(spa);
|
|
|
|
/*
|
|
* Override any spares and level 2 cache devices as specified by
|
|
* the user, as these may have correct device names/devids, etc.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
|
&spares, &nspares) == 0) {
|
|
if (spa->spa_spares.sav_config)
|
|
VERIFY(nvlist_remove(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
else
|
|
VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_spares(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
|
|
&l2cache, &nl2cache) == 0) {
|
|
if (spa->spa_l2cache.sav_config)
|
|
VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
else
|
|
VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_l2cache(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Check for any removed devices.
|
|
*/
|
|
if (spa->spa_autoreplace) {
|
|
spa_aux_check_removed(&spa->spa_spares);
|
|
spa_aux_check_removed(&spa->spa_l2cache);
|
|
}
|
|
|
|
if (spa_writeable(spa)) {
|
|
/*
|
|
* Update the config cache to include the newly-imported pool.
|
|
*/
|
|
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
|
|
}
|
|
|
|
/*
|
|
* It's possible that the pool was expanded while it was exported.
|
|
* We kick off an async task to handle this for us.
|
|
*/
|
|
spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
|
|
|
|
spa_history_log_version(spa, "import", NULL);
|
|
|
|
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
|
|
|
|
zvol_create_minors(spa, pool, B_TRUE);
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
nvlist_t *
|
|
spa_tryimport(nvlist_t *tryconfig)
|
|
{
|
|
nvlist_t *config = NULL;
|
|
char *poolname, *cachefile;
|
|
spa_t *spa;
|
|
uint64_t state;
|
|
int error;
|
|
zpool_rewind_policy_t policy;
|
|
|
|
if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
|
|
return (NULL);
|
|
|
|
if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
|
|
return (NULL);
|
|
|
|
/*
|
|
* Create and initialize the spa structure.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
|
|
spa_activate(spa, FREAD);
|
|
|
|
/*
|
|
* Rewind pool if a max txg was provided. Note that even though we
|
|
* retrieve the complete rewind policy, only the rewind txg is relevant
|
|
* for tryimport.
|
|
*/
|
|
zpool_get_rewind_policy(spa->spa_config, &policy);
|
|
if (policy.zrp_txg != UINT64_MAX) {
|
|
spa->spa_load_max_txg = policy.zrp_txg;
|
|
spa->spa_extreme_rewind = B_TRUE;
|
|
zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
|
|
poolname, (longlong_t)policy.zrp_txg);
|
|
} else {
|
|
zfs_dbgmsg("spa_tryimport: importing %s", poolname);
|
|
}
|
|
|
|
if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
|
|
== 0) {
|
|
zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
|
|
spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
|
|
} else {
|
|
spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
|
|
}
|
|
|
|
error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
|
|
|
|
/*
|
|
* If 'tryconfig' was at least parsable, return the current config.
|
|
*/
|
|
if (spa->spa_root_vdev != NULL) {
|
|
config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
|
|
VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
|
|
poolname) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
|
state) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
|
|
spa->spa_uberblock.ub_timestamp) == 0);
|
|
VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
|
|
spa->spa_load_info) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
|
|
spa->spa_errata) == 0);
|
|
|
|
/*
|
|
* If the bootfs property exists on this pool then we
|
|
* copy it out so that external consumers can tell which
|
|
* pools are bootable.
|
|
*/
|
|
if ((!error || error == EEXIST) && spa->spa_bootfs) {
|
|
char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
|
|
/*
|
|
* We have to play games with the name since the
|
|
* pool was opened as TRYIMPORT_NAME.
|
|
*/
|
|
if (dsl_dsobj_to_dsname(spa_name(spa),
|
|
spa->spa_bootfs, tmpname) == 0) {
|
|
char *cp;
|
|
char *dsname;
|
|
|
|
dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
|
|
cp = strchr(tmpname, '/');
|
|
if (cp == NULL) {
|
|
(void) strlcpy(dsname, tmpname,
|
|
MAXPATHLEN);
|
|
} else {
|
|
(void) snprintf(dsname, MAXPATHLEN,
|
|
"%s/%s", poolname, ++cp);
|
|
}
|
|
VERIFY(nvlist_add_string(config,
|
|
ZPOOL_CONFIG_BOOTFS, dsname) == 0);
|
|
kmem_free(dsname, MAXPATHLEN);
|
|
}
|
|
kmem_free(tmpname, MAXPATHLEN);
|
|
}
|
|
|
|
/*
|
|
* Add the list of hot spares and level 2 cache devices.
|
|
*/
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
spa_add_spares(spa, config);
|
|
spa_add_l2cache(spa, config);
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
}
|
|
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (config);
|
|
}
|
|
|
|
/*
|
|
* Pool export/destroy
|
|
*
|
|
* The act of destroying or exporting a pool is very simple. We make sure there
|
|
* is no more pending I/O and any references to the pool are gone. Then, we
|
|
* update the pool state and sync all the labels to disk, removing the
|
|
* configuration from the cache afterwards. If the 'hardforce' flag is set, then
|
|
* we don't sync the labels or remove the configuration cache.
|
|
*/
|
|
static int
|
|
spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
|
|
boolean_t force, boolean_t hardforce)
|
|
{
|
|
spa_t *spa;
|
|
|
|
if (oldconfig)
|
|
*oldconfig = NULL;
|
|
|
|
if (!(spa_mode_global & FWRITE))
|
|
return (SET_ERROR(EROFS));
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
if ((spa = spa_lookup(pool)) == NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
/*
|
|
* Put a hold on the pool, drop the namespace lock, stop async tasks,
|
|
* reacquire the namespace lock, and see if we can export.
|
|
*/
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
spa_async_suspend(spa);
|
|
if (spa->spa_zvol_taskq) {
|
|
zvol_remove_minors(spa, spa_name(spa), B_TRUE);
|
|
taskq_wait(spa->spa_zvol_taskq);
|
|
}
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
|
|
goto export_spa;
|
|
/*
|
|
* The pool will be in core if it's openable, in which case we can
|
|
* modify its state. Objsets may be open only because they're dirty,
|
|
* so we have to force it to sync before checking spa_refcnt.
|
|
*/
|
|
if (spa->spa_sync_on) {
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
spa_evicting_os_wait(spa);
|
|
}
|
|
|
|
/*
|
|
* A pool cannot be exported or destroyed if there are active
|
|
* references. If we are resetting a pool, allow references by
|
|
* fault injection handlers.
|
|
*/
|
|
if (!spa_refcount_zero(spa) ||
|
|
(spa->spa_inject_ref != 0 &&
|
|
new_state != POOL_STATE_UNINITIALIZED)) {
|
|
spa_async_resume(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(EBUSY));
|
|
}
|
|
|
|
if (spa->spa_sync_on) {
|
|
/*
|
|
* A pool cannot be exported if it has an active shared spare.
|
|
* This is to prevent other pools stealing the active spare
|
|
* from an exported pool. At user's own will, such pool can
|
|
* be forcedly exported.
|
|
*/
|
|
if (!force && new_state == POOL_STATE_EXPORTED &&
|
|
spa_has_active_shared_spare(spa)) {
|
|
spa_async_resume(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
|
|
/*
|
|
* We want this to be reflected on every label,
|
|
* so mark them all dirty. spa_unload() will do the
|
|
* final sync that pushes these changes out.
|
|
*/
|
|
if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa->spa_state = new_state;
|
|
spa->spa_final_txg = spa_last_synced_txg(spa) +
|
|
TXG_DEFER_SIZE + 1;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
}
|
|
}
|
|
|
|
export_spa:
|
|
if (new_state == POOL_STATE_DESTROYED)
|
|
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
|
|
else if (new_state == POOL_STATE_EXPORTED)
|
|
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
|
|
|
|
if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
}
|
|
|
|
if (oldconfig && spa->spa_config)
|
|
VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
|
|
|
|
if (new_state != POOL_STATE_UNINITIALIZED) {
|
|
if (!hardforce)
|
|
spa_write_cachefile(spa, B_TRUE, B_TRUE);
|
|
spa_remove(spa);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Destroy a storage pool.
|
|
*/
|
|
int
|
|
spa_destroy(char *pool)
|
|
{
|
|
return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
|
|
B_FALSE, B_FALSE));
|
|
}
|
|
|
|
/*
|
|
* Export a storage pool.
|
|
*/
|
|
int
|
|
spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
|
|
boolean_t hardforce)
|
|
{
|
|
return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
|
|
force, hardforce));
|
|
}
|
|
|
|
/*
|
|
* Similar to spa_export(), this unloads the spa_t without actually removing it
|
|
* from the namespace in any way.
|
|
*/
|
|
int
|
|
spa_reset(char *pool)
|
|
{
|
|
return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
|
|
B_FALSE, B_FALSE));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Device manipulation
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Add a device to a storage pool.
|
|
*/
|
|
int
|
|
spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
|
|
{
|
|
uint64_t txg, id;
|
|
int error;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *vd, *tvd;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t nspares, nl2cache;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
|
|
VDEV_ALLOC_ADD)) != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, error));
|
|
|
|
spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
|
|
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
|
|
&nspares) != 0)
|
|
nspares = 0;
|
|
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
|
|
&nl2cache) != 0)
|
|
nl2cache = 0;
|
|
|
|
if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
|
|
return (spa_vdev_exit(spa, vd, txg, EINVAL));
|
|
|
|
if (vd->vdev_children != 0 &&
|
|
(error = vdev_create(vd, txg, B_FALSE)) != 0)
|
|
return (spa_vdev_exit(spa, vd, txg, error));
|
|
|
|
/*
|
|
* We must validate the spares and l2cache devices after checking the
|
|
* children. Otherwise, vdev_inuse() will blindly overwrite the spare.
|
|
*/
|
|
if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
|
|
return (spa_vdev_exit(spa, vd, txg, error));
|
|
|
|
/*
|
|
* If we are in the middle of a device removal, we can only add
|
|
* devices which match the existing devices in the pool.
|
|
* If we are in the middle of a removal, or have some indirect
|
|
* vdevs, we can not add raidz toplevels.
|
|
*/
|
|
if (spa->spa_vdev_removal != NULL ||
|
|
spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
tvd = vd->vdev_child[c];
|
|
if (spa->spa_vdev_removal != NULL &&
|
|
tvd->vdev_ashift != spa->spa_max_ashift) {
|
|
return (spa_vdev_exit(spa, vd, txg, EINVAL));
|
|
}
|
|
/* Fail if top level vdev is raidz */
|
|
if (tvd->vdev_ops == &vdev_raidz_ops) {
|
|
return (spa_vdev_exit(spa, vd, txg, EINVAL));
|
|
}
|
|
/*
|
|
* Need the top level mirror to be
|
|
* a mirror of leaf vdevs only
|
|
*/
|
|
if (tvd->vdev_ops == &vdev_mirror_ops) {
|
|
for (uint64_t cid = 0;
|
|
cid < tvd->vdev_children; cid++) {
|
|
vdev_t *cvd = tvd->vdev_child[cid];
|
|
if (!cvd->vdev_ops->vdev_op_leaf) {
|
|
return (spa_vdev_exit(spa, vd,
|
|
txg, EINVAL));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
|
|
/*
|
|
* Set the vdev id to the first hole, if one exists.
|
|
*/
|
|
for (id = 0; id < rvd->vdev_children; id++) {
|
|
if (rvd->vdev_child[id]->vdev_ishole) {
|
|
vdev_free(rvd->vdev_child[id]);
|
|
break;
|
|
}
|
|
}
|
|
tvd = vd->vdev_child[c];
|
|
vdev_remove_child(vd, tvd);
|
|
tvd->vdev_id = id;
|
|
vdev_add_child(rvd, tvd);
|
|
vdev_config_dirty(tvd);
|
|
}
|
|
|
|
if (nspares != 0) {
|
|
spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
|
|
ZPOOL_CONFIG_SPARES);
|
|
spa_load_spares(spa);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
|
|
if (nl2cache != 0) {
|
|
spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
|
|
ZPOOL_CONFIG_L2CACHE);
|
|
spa_load_l2cache(spa);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* We have to be careful when adding new vdevs to an existing pool.
|
|
* If other threads start allocating from these vdevs before we
|
|
* sync the config cache, and we lose power, then upon reboot we may
|
|
* fail to open the pool because there are DVAs that the config cache
|
|
* can't translate. Therefore, we first add the vdevs without
|
|
* initializing metaslabs; sync the config cache (via spa_vdev_exit());
|
|
* and then let spa_config_update() initialize the new metaslabs.
|
|
*
|
|
* spa_load() checks for added-but-not-initialized vdevs, so that
|
|
* if we lose power at any point in this sequence, the remaining
|
|
* steps will be completed the next time we load the pool.
|
|
*/
|
|
(void) spa_vdev_exit(spa, vd, txg, 0);
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
|
|
spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Attach a device to a mirror. The arguments are the path to any device
|
|
* in the mirror, and the nvroot for the new device. If the path specifies
|
|
* a device that is not mirrored, we automatically insert the mirror vdev.
|
|
*
|
|
* If 'replacing' is specified, the new device is intended to replace the
|
|
* existing device; in this case the two devices are made into their own
|
|
* mirror using the 'replacing' vdev, which is functionally identical to
|
|
* the mirror vdev (it actually reuses all the same ops) but has a few
|
|
* extra rules: you can't attach to it after it's been created, and upon
|
|
* completion of resilvering, the first disk (the one being replaced)
|
|
* is automatically detached.
|
|
*/
|
|
int
|
|
spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
|
|
{
|
|
uint64_t txg, dtl_max_txg;
|
|
ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
|
|
vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
|
|
vdev_ops_t *pvops;
|
|
char *oldvdpath, *newvdpath;
|
|
int newvd_isspare;
|
|
int error;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
|
|
|
|
if (spa->spa_vdev_removal != NULL)
|
|
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
|
|
|
|
if (oldvd == NULL)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
|
|
|
|
if (!oldvd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
pvd = oldvd->vdev_parent;
|
|
|
|
if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
|
|
VDEV_ALLOC_ATTACH)) != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
|
|
|
|
if (newrootvd->vdev_children != 1)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
|
|
|
|
newvd = newrootvd->vdev_child[0];
|
|
|
|
if (!newvd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
|
|
|
|
if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, error));
|
|
|
|
/*
|
|
* Spares can't replace logs
|
|
*/
|
|
if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
|
|
if (!replacing) {
|
|
/*
|
|
* For attach, the only allowable parent is a mirror or the root
|
|
* vdev.
|
|
*/
|
|
if (pvd->vdev_ops != &vdev_mirror_ops &&
|
|
pvd->vdev_ops != &vdev_root_ops)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
|
|
pvops = &vdev_mirror_ops;
|
|
} else {
|
|
/*
|
|
* Active hot spares can only be replaced by inactive hot
|
|
* spares.
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_spare_ops &&
|
|
oldvd->vdev_isspare &&
|
|
!spa_has_spare(spa, newvd->vdev_guid))
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
|
|
/*
|
|
* If the source is a hot spare, and the parent isn't already a
|
|
* spare, then we want to create a new hot spare. Otherwise, we
|
|
* want to create a replacing vdev. The user is not allowed to
|
|
* attach to a spared vdev child unless the 'isspare' state is
|
|
* the same (spare replaces spare, non-spare replaces
|
|
* non-spare).
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_replacing_ops &&
|
|
spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
} else if (pvd->vdev_ops == &vdev_spare_ops &&
|
|
newvd->vdev_isspare != oldvd->vdev_isspare) {
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
}
|
|
|
|
if (newvd->vdev_isspare)
|
|
pvops = &vdev_spare_ops;
|
|
else
|
|
pvops = &vdev_replacing_ops;
|
|
}
|
|
|
|
/*
|
|
* Make sure the new device is big enough.
|
|
*/
|
|
if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
|
|
|
|
/*
|
|
* The new device cannot have a higher alignment requirement
|
|
* than the top-level vdev.
|
|
*/
|
|
if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
|
|
|
|
/*
|
|
* If this is an in-place replacement, update oldvd's path and devid
|
|
* to make it distinguishable from newvd, and unopenable from now on.
|
|
*/
|
|
if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
|
|
spa_strfree(oldvd->vdev_path);
|
|
oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
|
|
KM_SLEEP);
|
|
(void) sprintf(oldvd->vdev_path, "%s/%s",
|
|
newvd->vdev_path, "old");
|
|
if (oldvd->vdev_devid != NULL) {
|
|
spa_strfree(oldvd->vdev_devid);
|
|
oldvd->vdev_devid = NULL;
|
|
}
|
|
}
|
|
|
|
/* mark the device being resilvered */
|
|
newvd->vdev_resilver_txg = txg;
|
|
|
|
/*
|
|
* If the parent is not a mirror, or if we're replacing, insert the new
|
|
* mirror/replacing/spare vdev above oldvd.
|
|
*/
|
|
if (pvd->vdev_ops != pvops)
|
|
pvd = vdev_add_parent(oldvd, pvops);
|
|
|
|
ASSERT(pvd->vdev_top->vdev_parent == rvd);
|
|
ASSERT(pvd->vdev_ops == pvops);
|
|
ASSERT(oldvd->vdev_parent == pvd);
|
|
|
|
/*
|
|
* Extract the new device from its root and add it to pvd.
|
|
*/
|
|
vdev_remove_child(newrootvd, newvd);
|
|
newvd->vdev_id = pvd->vdev_children;
|
|
newvd->vdev_crtxg = oldvd->vdev_crtxg;
|
|
vdev_add_child(pvd, newvd);
|
|
|
|
/*
|
|
* Reevaluate the parent vdev state.
|
|
*/
|
|
vdev_propagate_state(pvd);
|
|
|
|
tvd = newvd->vdev_top;
|
|
ASSERT(pvd->vdev_top == tvd);
|
|
ASSERT(tvd->vdev_parent == rvd);
|
|
|
|
vdev_config_dirty(tvd);
|
|
|
|
/*
|
|
* Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
|
|
* for any dmu_sync-ed blocks. It will propagate upward when
|
|
* spa_vdev_exit() calls vdev_dtl_reassess().
|
|
*/
|
|
dtl_max_txg = txg + TXG_CONCURRENT_STATES;
|
|
|
|
vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
|
|
dtl_max_txg - TXG_INITIAL);
|
|
|
|
if (newvd->vdev_isspare) {
|
|
spa_spare_activate(newvd);
|
|
spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
|
|
}
|
|
|
|
oldvdpath = spa_strdup(oldvd->vdev_path);
|
|
newvdpath = spa_strdup(newvd->vdev_path);
|
|
newvd_isspare = newvd->vdev_isspare;
|
|
|
|
/*
|
|
* Mark newvd's DTL dirty in this txg.
|
|
*/
|
|
vdev_dirty(tvd, VDD_DTL, newvd, txg);
|
|
|
|
/*
|
|
* Schedule the resilver to restart in the future. We do this to
|
|
* ensure that dmu_sync-ed blocks have been stitched into the
|
|
* respective datasets.
|
|
*/
|
|
dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
|
|
|
|
if (spa->spa_bootfs)
|
|
spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
|
|
|
|
spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
|
|
|
|
/*
|
|
* Commit the config
|
|
*/
|
|
(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
|
|
|
|
spa_history_log_internal(spa, "vdev attach", NULL,
|
|
"%s vdev=%s %s vdev=%s",
|
|
replacing && newvd_isspare ? "spare in" :
|
|
replacing ? "replace" : "attach", newvdpath,
|
|
replacing ? "for" : "to", oldvdpath);
|
|
|
|
spa_strfree(oldvdpath);
|
|
spa_strfree(newvdpath);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Detach a device from a mirror or replacing vdev.
|
|
*
|
|
* If 'replace_done' is specified, only detach if the parent
|
|
* is a replacing vdev.
|
|
*/
|
|
int
|
|
spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
|
|
{
|
|
uint64_t txg;
|
|
int error;
|
|
ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
|
|
vdev_t *vd, *pvd, *cvd, *tvd;
|
|
boolean_t unspare = B_FALSE;
|
|
uint64_t unspare_guid = 0;
|
|
char *vdpath;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
vd = spa_lookup_by_guid(spa, guid, B_FALSE);
|
|
|
|
if (vd == NULL)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
pvd = vd->vdev_parent;
|
|
|
|
/*
|
|
* If the parent/child relationship is not as expected, don't do it.
|
|
* Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
|
|
* vdev that's replacing B with C. The user's intent in replacing
|
|
* is to go from M(A,B) to M(A,C). If the user decides to cancel
|
|
* the replace by detaching C, the expected behavior is to end up
|
|
* M(A,B). But suppose that right after deciding to detach C,
|
|
* the replacement of B completes. We would have M(A,C), and then
|
|
* ask to detach C, which would leave us with just A -- not what
|
|
* the user wanted. To prevent this, we make sure that the
|
|
* parent/child relationship hasn't changed -- in this example,
|
|
* that C's parent is still the replacing vdev R.
|
|
*/
|
|
if (pvd->vdev_guid != pguid && pguid != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
|
|
|
|
/*
|
|
* Only 'replacing' or 'spare' vdevs can be replaced.
|
|
*/
|
|
if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
|
|
pvd->vdev_ops != &vdev_spare_ops)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
|
|
spa_version(spa) >= SPA_VERSION_SPARES);
|
|
|
|
/*
|
|
* Only mirror, replacing, and spare vdevs support detach.
|
|
*/
|
|
if (pvd->vdev_ops != &vdev_replacing_ops &&
|
|
pvd->vdev_ops != &vdev_mirror_ops &&
|
|
pvd->vdev_ops != &vdev_spare_ops)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
/*
|
|
* If this device has the only valid copy of some data,
|
|
* we cannot safely detach it.
|
|
*/
|
|
if (vdev_dtl_required(vd))
|
|
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
|
|
|
|
ASSERT(pvd->vdev_children >= 2);
|
|
|
|
/*
|
|
* If we are detaching the second disk from a replacing vdev, then
|
|
* check to see if we changed the original vdev's path to have "/old"
|
|
* at the end in spa_vdev_attach(). If so, undo that change now.
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
|
|
vd->vdev_path != NULL) {
|
|
size_t len = strlen(vd->vdev_path);
|
|
|
|
for (int c = 0; c < pvd->vdev_children; c++) {
|
|
cvd = pvd->vdev_child[c];
|
|
|
|
if (cvd == vd || cvd->vdev_path == NULL)
|
|
continue;
|
|
|
|
if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
|
|
strcmp(cvd->vdev_path + len, "/old") == 0) {
|
|
spa_strfree(cvd->vdev_path);
|
|
cvd->vdev_path = spa_strdup(vd->vdev_path);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are detaching the original disk from a spare, then it implies
|
|
* that the spare should become a real disk, and be removed from the
|
|
* active spare list for the pool.
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_spare_ops &&
|
|
vd->vdev_id == 0 &&
|
|
pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
|
|
unspare = B_TRUE;
|
|
|
|
/*
|
|
* Erase the disk labels so the disk can be used for other things.
|
|
* This must be done after all other error cases are handled,
|
|
* but before we disembowel vd (so we can still do I/O to it).
|
|
* But if we can't do it, don't treat the error as fatal --
|
|
* it may be that the unwritability of the disk is the reason
|
|
* it's being detached!
|
|
*/
|
|
error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
|
|
|
|
/*
|
|
* Remove vd from its parent and compact the parent's children.
|
|
*/
|
|
vdev_remove_child(pvd, vd);
|
|
vdev_compact_children(pvd);
|
|
|
|
/*
|
|
* Remember one of the remaining children so we can get tvd below.
|
|
*/
|
|
cvd = pvd->vdev_child[pvd->vdev_children - 1];
|
|
|
|
/*
|
|
* If we need to remove the remaining child from the list of hot spares,
|
|
* do it now, marking the vdev as no longer a spare in the process.
|
|
* We must do this before vdev_remove_parent(), because that can
|
|
* change the GUID if it creates a new toplevel GUID. For a similar
|
|
* reason, we must remove the spare now, in the same txg as the detach;
|
|
* otherwise someone could attach a new sibling, change the GUID, and
|
|
* the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
|
|
*/
|
|
if (unspare) {
|
|
ASSERT(cvd->vdev_isspare);
|
|
spa_spare_remove(cvd);
|
|
unspare_guid = cvd->vdev_guid;
|
|
(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
|
|
cvd->vdev_unspare = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* If the parent mirror/replacing vdev only has one child,
|
|
* the parent is no longer needed. Remove it from the tree.
|
|
*/
|
|
if (pvd->vdev_children == 1) {
|
|
if (pvd->vdev_ops == &vdev_spare_ops)
|
|
cvd->vdev_unspare = B_FALSE;
|
|
vdev_remove_parent(cvd);
|
|
}
|
|
|
|
|
|
/*
|
|
* We don't set tvd until now because the parent we just removed
|
|
* may have been the previous top-level vdev.
|
|
*/
|
|
tvd = cvd->vdev_top;
|
|
ASSERT(tvd->vdev_parent == rvd);
|
|
|
|
/*
|
|
* Reevaluate the parent vdev state.
|
|
*/
|
|
vdev_propagate_state(cvd);
|
|
|
|
/*
|
|
* If the 'autoexpand' property is set on the pool then automatically
|
|
* try to expand the size of the pool. For example if the device we
|
|
* just detached was smaller than the others, it may be possible to
|
|
* add metaslabs (i.e. grow the pool). We need to reopen the vdev
|
|
* first so that we can obtain the updated sizes of the leaf vdevs.
|
|
*/
|
|
if (spa->spa_autoexpand) {
|
|
vdev_reopen(tvd);
|
|
vdev_expand(tvd, txg);
|
|
}
|
|
|
|
vdev_config_dirty(tvd);
|
|
|
|
/*
|
|
* Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
|
|
* vd->vdev_detached is set and free vd's DTL object in syncing context.
|
|
* But first make sure we're not on any *other* txg's DTL list, to
|
|
* prevent vd from being accessed after it's freed.
|
|
*/
|
|
vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
|
|
for (int t = 0; t < TXG_SIZE; t++)
|
|
(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
|
|
vd->vdev_detached = B_TRUE;
|
|
vdev_dirty(tvd, VDD_DTL, vd, txg);
|
|
|
|
spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
|
|
|
|
/* hang on to the spa before we release the lock */
|
|
spa_open_ref(spa, FTAG);
|
|
|
|
error = spa_vdev_exit(spa, vd, txg, 0);
|
|
|
|
spa_history_log_internal(spa, "detach", NULL,
|
|
"vdev=%s", vdpath);
|
|
spa_strfree(vdpath);
|
|
|
|
/*
|
|
* If this was the removal of the original device in a hot spare vdev,
|
|
* then we want to go through and remove the device from the hot spare
|
|
* list of every other pool.
|
|
*/
|
|
if (unspare) {
|
|
spa_t *altspa = NULL;
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((altspa = spa_next(altspa)) != NULL) {
|
|
if (altspa->spa_state != POOL_STATE_ACTIVE ||
|
|
altspa == spa)
|
|
continue;
|
|
|
|
spa_open_ref(altspa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(altspa, FTAG);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
/* search the rest of the vdevs for spares to remove */
|
|
spa_vdev_resilver_done(spa);
|
|
}
|
|
|
|
/* all done with the spa; OK to release */
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Split a set of devices from their mirrors, and create a new pool from them.
|
|
*/
|
|
int
|
|
spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
|
|
nvlist_t *props, boolean_t exp)
|
|
{
|
|
int error = 0;
|
|
uint64_t txg, *glist;
|
|
spa_t *newspa;
|
|
uint_t c, children, lastlog;
|
|
nvlist_t **child, *nvl, *tmp;
|
|
dmu_tx_t *tx;
|
|
char *altroot = NULL;
|
|
vdev_t *rvd, **vml = NULL; /* vdev modify list */
|
|
boolean_t activate_slog;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
/* clear the log and flush everything up to now */
|
|
activate_slog = spa_passivate_log(spa);
|
|
(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
|
|
error = spa_reset_logs(spa);
|
|
txg = spa_vdev_config_enter(spa);
|
|
|
|
if (activate_slog)
|
|
spa_activate_log(spa);
|
|
|
|
if (error != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, error));
|
|
|
|
/* check new spa name before going any further */
|
|
if (spa_lookup(newname) != NULL)
|
|
return (spa_vdev_exit(spa, NULL, txg, EEXIST));
|
|
|
|
/*
|
|
* scan through all the children to ensure they're all mirrors
|
|
*/
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
|
|
nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
|
|
&children) != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
|
|
|
|
/* first, check to ensure we've got the right child count */
|
|
rvd = spa->spa_root_vdev;
|
|
lastlog = 0;
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *vd = rvd->vdev_child[c];
|
|
|
|
/* don't count the holes & logs as children */
|
|
if (vd->vdev_islog || !vdev_is_concrete(vd)) {
|
|
if (lastlog == 0)
|
|
lastlog = c;
|
|
continue;
|
|
}
|
|
|
|
lastlog = 0;
|
|
}
|
|
if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
|
|
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
|
|
|
|
/* next, ensure no spare or cache devices are part of the split */
|
|
if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
|
|
nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
|
|
|
|
vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
|
|
glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
|
|
|
|
/* then, loop over each vdev and validate it */
|
|
for (c = 0; c < children; c++) {
|
|
uint64_t is_hole = 0;
|
|
|
|
(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
|
|
&is_hole);
|
|
|
|
if (is_hole != 0) {
|
|
if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
|
|
spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
|
|
continue;
|
|
} else {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* which disk is going to be split? */
|
|
if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
|
|
&glist[c]) != 0) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
/* look it up in the spa */
|
|
vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
|
|
if (vml[c] == NULL) {
|
|
error = SET_ERROR(ENODEV);
|
|
break;
|
|
}
|
|
|
|
/* make sure there's nothing stopping the split */
|
|
if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
|
|
vml[c]->vdev_islog ||
|
|
!vdev_is_concrete(vml[c]) ||
|
|
vml[c]->vdev_isspare ||
|
|
vml[c]->vdev_isl2cache ||
|
|
!vdev_writeable(vml[c]) ||
|
|
vml[c]->vdev_children != 0 ||
|
|
vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
|
|
c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
if (vdev_dtl_required(vml[c])) {
|
|
error = SET_ERROR(EBUSY);
|
|
break;
|
|
}
|
|
|
|
/* we need certain info from the top level */
|
|
VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
|
|
vml[c]->vdev_top->vdev_ms_array) == 0);
|
|
VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
|
|
vml[c]->vdev_top->vdev_ms_shift) == 0);
|
|
VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
|
|
vml[c]->vdev_top->vdev_asize) == 0);
|
|
VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
|
|
vml[c]->vdev_top->vdev_ashift) == 0);
|
|
|
|
/* transfer per-vdev ZAPs */
|
|
ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
|
|
VERIFY0(nvlist_add_uint64(child[c],
|
|
ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
|
|
|
|
ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
|
|
VERIFY0(nvlist_add_uint64(child[c],
|
|
ZPOOL_CONFIG_VDEV_TOP_ZAP,
|
|
vml[c]->vdev_parent->vdev_top_zap));
|
|
}
|
|
|
|
if (error != 0) {
|
|
kmem_free(vml, children * sizeof (vdev_t *));
|
|
kmem_free(glist, children * sizeof (uint64_t));
|
|
return (spa_vdev_exit(spa, NULL, txg, error));
|
|
}
|
|
|
|
/* stop writers from using the disks */
|
|
for (c = 0; c < children; c++) {
|
|
if (vml[c] != NULL)
|
|
vml[c]->vdev_offline = B_TRUE;
|
|
}
|
|
vdev_reopen(spa->spa_root_vdev);
|
|
|
|
/*
|
|
* Temporarily record the splitting vdevs in the spa config. This
|
|
* will disappear once the config is regenerated.
|
|
*/
|
|
VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
|
|
glist, children) == 0);
|
|
kmem_free(glist, children * sizeof (uint64_t));
|
|
|
|
mutex_enter(&spa->spa_props_lock);
|
|
VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
|
|
nvl) == 0);
|
|
mutex_exit(&spa->spa_props_lock);
|
|
spa->spa_config_splitting = nvl;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
|
|
/* configure and create the new pool */
|
|
VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
|
exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
|
|
spa_version(spa)) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
|
|
spa->spa_config_txg) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
spa_generate_guid(NULL)) == 0);
|
|
VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
|
|
(void) nvlist_lookup_string(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
|
|
|
|
/* add the new pool to the namespace */
|
|
newspa = spa_add(newname, config, altroot);
|
|
newspa->spa_avz_action = AVZ_ACTION_REBUILD;
|
|
newspa->spa_config_txg = spa->spa_config_txg;
|
|
spa_set_log_state(newspa, SPA_LOG_CLEAR);
|
|
|
|
/* release the spa config lock, retaining the namespace lock */
|
|
spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
|
|
|
|
if (zio_injection_enabled)
|
|
zio_handle_panic_injection(spa, FTAG, 1);
|
|
|
|
spa_activate(newspa, spa_mode_global);
|
|
spa_async_suspend(newspa);
|
|
|
|
newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
|
|
|
|
/* create the new pool from the disks of the original pool */
|
|
error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* if that worked, generate a real config for the new pool */
|
|
if (newspa->spa_root_vdev != NULL) {
|
|
VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
|
|
ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
|
|
spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
|
|
B_TRUE));
|
|
}
|
|
|
|
/* set the props */
|
|
if (props != NULL) {
|
|
spa_configfile_set(newspa, props, B_FALSE);
|
|
error = spa_prop_set(newspa, props);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
/* flush everything */
|
|
txg = spa_vdev_config_enter(newspa);
|
|
vdev_config_dirty(newspa->spa_root_vdev);
|
|
(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
|
|
|
|
if (zio_injection_enabled)
|
|
zio_handle_panic_injection(spa, FTAG, 2);
|
|
|
|
spa_async_resume(newspa);
|
|
|
|
/* finally, update the original pool's config */
|
|
txg = spa_vdev_config_enter(spa);
|
|
tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0)
|
|
dmu_tx_abort(tx);
|
|
for (c = 0; c < children; c++) {
|
|
if (vml[c] != NULL) {
|
|
vdev_split(vml[c]);
|
|
if (error == 0)
|
|
spa_history_log_internal(spa, "detach", tx,
|
|
"vdev=%s", vml[c]->vdev_path);
|
|
|
|
vdev_free(vml[c]);
|
|
}
|
|
}
|
|
spa->spa_avz_action = AVZ_ACTION_REBUILD;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
spa->spa_config_splitting = NULL;
|
|
nvlist_free(nvl);
|
|
if (error == 0)
|
|
dmu_tx_commit(tx);
|
|
(void) spa_vdev_exit(spa, NULL, txg, 0);
|
|
|
|
if (zio_injection_enabled)
|
|
zio_handle_panic_injection(spa, FTAG, 3);
|
|
|
|
/* split is complete; log a history record */
|
|
spa_history_log_internal(newspa, "split", NULL,
|
|
"from pool %s", spa_name(spa));
|
|
|
|
kmem_free(vml, children * sizeof (vdev_t *));
|
|
|
|
/* if we're not going to mount the filesystems in userland, export */
|
|
if (exp)
|
|
error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
|
|
B_FALSE, B_FALSE);
|
|
|
|
return (error);
|
|
|
|
out:
|
|
spa_unload(newspa);
|
|
spa_deactivate(newspa);
|
|
spa_remove(newspa);
|
|
|
|
txg = spa_vdev_config_enter(spa);
|
|
|
|
/* re-online all offlined disks */
|
|
for (c = 0; c < children; c++) {
|
|
if (vml[c] != NULL)
|
|
vml[c]->vdev_offline = B_FALSE;
|
|
}
|
|
vdev_reopen(spa->spa_root_vdev);
|
|
|
|
nvlist_free(spa->spa_config_splitting);
|
|
spa->spa_config_splitting = NULL;
|
|
(void) spa_vdev_exit(spa, NULL, txg, error);
|
|
|
|
kmem_free(vml, children * sizeof (vdev_t *));
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Find any device that's done replacing, or a vdev marked 'unspare' that's
|
|
* currently spared, so we can detach it.
|
|
*/
|
|
static vdev_t *
|
|
spa_vdev_resilver_done_hunt(vdev_t *vd)
|
|
{
|
|
vdev_t *newvd, *oldvd;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
|
|
if (oldvd != NULL)
|
|
return (oldvd);
|
|
}
|
|
|
|
/*
|
|
* Check for a completed replacement. We always consider the first
|
|
* vdev in the list to be the oldest vdev, and the last one to be
|
|
* the newest (see spa_vdev_attach() for how that works). In
|
|
* the case where the newest vdev is faulted, we will not automatically
|
|
* remove it after a resilver completes. This is OK as it will require
|
|
* user intervention to determine which disk the admin wishes to keep.
|
|
*/
|
|
if (vd->vdev_ops == &vdev_replacing_ops) {
|
|
ASSERT(vd->vdev_children > 1);
|
|
|
|
newvd = vd->vdev_child[vd->vdev_children - 1];
|
|
oldvd = vd->vdev_child[0];
|
|
|
|
if (vdev_dtl_empty(newvd, DTL_MISSING) &&
|
|
vdev_dtl_empty(newvd, DTL_OUTAGE) &&
|
|
!vdev_dtl_required(oldvd))
|
|
return (oldvd);
|
|
}
|
|
|
|
/*
|
|
* Check for a completed resilver with the 'unspare' flag set.
|
|
*/
|
|
if (vd->vdev_ops == &vdev_spare_ops) {
|
|
vdev_t *first = vd->vdev_child[0];
|
|
vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
|
|
|
|
if (last->vdev_unspare) {
|
|
oldvd = first;
|
|
newvd = last;
|
|
} else if (first->vdev_unspare) {
|
|
oldvd = last;
|
|
newvd = first;
|
|
} else {
|
|
oldvd = NULL;
|
|
}
|
|
|
|
if (oldvd != NULL &&
|
|
vdev_dtl_empty(newvd, DTL_MISSING) &&
|
|
vdev_dtl_empty(newvd, DTL_OUTAGE) &&
|
|
!vdev_dtl_required(oldvd))
|
|
return (oldvd);
|
|
|
|
/*
|
|
* If there are more than two spares attached to a disk,
|
|
* and those spares are not required, then we want to
|
|
* attempt to free them up now so that they can be used
|
|
* by other pools. Once we're back down to a single
|
|
* disk+spare, we stop removing them.
|
|
*/
|
|
if (vd->vdev_children > 2) {
|
|
newvd = vd->vdev_child[1];
|
|
|
|
if (newvd->vdev_isspare && last->vdev_isspare &&
|
|
vdev_dtl_empty(last, DTL_MISSING) &&
|
|
vdev_dtl_empty(last, DTL_OUTAGE) &&
|
|
!vdev_dtl_required(newvd))
|
|
return (newvd);
|
|
}
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
spa_vdev_resilver_done(spa_t *spa)
|
|
{
|
|
vdev_t *vd, *pvd, *ppvd;
|
|
uint64_t guid, sguid, pguid, ppguid;
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
|
|
pvd = vd->vdev_parent;
|
|
ppvd = pvd->vdev_parent;
|
|
guid = vd->vdev_guid;
|
|
pguid = pvd->vdev_guid;
|
|
ppguid = ppvd->vdev_guid;
|
|
sguid = 0;
|
|
/*
|
|
* If we have just finished replacing a hot spared device, then
|
|
* we need to detach the parent's first child (the original hot
|
|
* spare) as well.
|
|
*/
|
|
if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
|
|
ppvd->vdev_children == 2) {
|
|
ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
|
|
sguid = ppvd->vdev_child[1]->vdev_guid;
|
|
}
|
|
ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
|
|
return;
|
|
if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
|
|
return;
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Update the stored path or FRU for this vdev.
|
|
*/
|
|
int
|
|
spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
|
|
boolean_t ispath)
|
|
{
|
|
vdev_t *vd;
|
|
boolean_t sync = B_FALSE;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
spa_vdev_state_enter(spa, SCL_ALL);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, ENOENT));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
|
|
|
if (ispath) {
|
|
if (strcmp(value, vd->vdev_path) != 0) {
|
|
spa_strfree(vd->vdev_path);
|
|
vd->vdev_path = spa_strdup(value);
|
|
sync = B_TRUE;
|
|
}
|
|
} else {
|
|
if (vd->vdev_fru == NULL) {
|
|
vd->vdev_fru = spa_strdup(value);
|
|
sync = B_TRUE;
|
|
} else if (strcmp(value, vd->vdev_fru) != 0) {
|
|
spa_strfree(vd->vdev_fru);
|
|
vd->vdev_fru = spa_strdup(value);
|
|
sync = B_TRUE;
|
|
}
|
|
}
|
|
|
|
return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
|
|
}
|
|
|
|
int
|
|
spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
|
|
{
|
|
return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
|
|
}
|
|
|
|
int
|
|
spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
|
|
{
|
|
return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA Scanning
|
|
* ==========================================================================
|
|
*/
|
|
int
|
|
spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
|
|
{
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
|
|
|
|
if (dsl_scan_resilvering(spa->spa_dsl_pool))
|
|
return (SET_ERROR(EBUSY));
|
|
|
|
return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
|
|
}
|
|
|
|
int
|
|
spa_scan_stop(spa_t *spa)
|
|
{
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
|
|
if (dsl_scan_resilvering(spa->spa_dsl_pool))
|
|
return (SET_ERROR(EBUSY));
|
|
return (dsl_scan_cancel(spa->spa_dsl_pool));
|
|
}
|
|
|
|
int
|
|
spa_scan(spa_t *spa, pool_scan_func_t func)
|
|
{
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
|
|
|
|
if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* If a resilver was requested, but there is no DTL on a
|
|
* writeable leaf device, we have nothing to do.
|
|
*/
|
|
if (func == POOL_SCAN_RESILVER &&
|
|
!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
|
|
return (0);
|
|
}
|
|
|
|
return (dsl_scan(spa->spa_dsl_pool, func));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA async task processing
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static void
|
|
spa_async_remove(spa_t *spa, vdev_t *vd)
|
|
{
|
|
if (vd->vdev_remove_wanted) {
|
|
vd->vdev_remove_wanted = B_FALSE;
|
|
vd->vdev_delayed_close = B_FALSE;
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
|
|
|
|
/*
|
|
* We want to clear the stats, but we don't want to do a full
|
|
* vdev_clear() as that will cause us to throw away
|
|
* degraded/faulted state as well as attempt to reopen the
|
|
* device, all of which is a waste.
|
|
*/
|
|
vd->vdev_stat.vs_read_errors = 0;
|
|
vd->vdev_stat.vs_write_errors = 0;
|
|
vd->vdev_stat.vs_checksum_errors = 0;
|
|
|
|
vdev_state_dirty(vd->vdev_top);
|
|
}
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
spa_async_remove(spa, vd->vdev_child[c]);
|
|
}
|
|
|
|
static void
|
|
spa_async_probe(spa_t *spa, vdev_t *vd)
|
|
{
|
|
if (vd->vdev_probe_wanted) {
|
|
vd->vdev_probe_wanted = B_FALSE;
|
|
vdev_reopen(vd); /* vdev_open() does the actual probe */
|
|
}
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
spa_async_probe(spa, vd->vdev_child[c]);
|
|
}
|
|
|
|
static void
|
|
spa_async_autoexpand(spa_t *spa, vdev_t *vd)
|
|
{
|
|
if (!spa->spa_autoexpand)
|
|
return;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
spa_async_autoexpand(spa, cvd);
|
|
}
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
|
|
return;
|
|
|
|
spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
|
|
}
|
|
|
|
static void
|
|
spa_async_thread(void *arg)
|
|
{
|
|
spa_t *spa = (spa_t *)arg;
|
|
int tasks;
|
|
|
|
ASSERT(spa->spa_sync_on);
|
|
|
|
mutex_enter(&spa->spa_async_lock);
|
|
tasks = spa->spa_async_tasks;
|
|
spa->spa_async_tasks = 0;
|
|
mutex_exit(&spa->spa_async_lock);
|
|
|
|
/*
|
|
* See if the config needs to be updated.
|
|
*/
|
|
if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
|
|
uint64_t old_space, new_space;
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
old_space = metaslab_class_get_space(spa_normal_class(spa));
|
|
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
|
|
new_space = metaslab_class_get_space(spa_normal_class(spa));
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
/*
|
|
* If the pool grew as a result of the config update,
|
|
* then log an internal history event.
|
|
*/
|
|
if (new_space != old_space) {
|
|
spa_history_log_internal(spa, "vdev online", NULL,
|
|
"pool '%s' size: %llu(+%llu)",
|
|
spa_name(spa), new_space, new_space - old_space);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if any devices need to be marked REMOVED.
|
|
*/
|
|
if (tasks & SPA_ASYNC_REMOVE) {
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
spa_async_remove(spa, spa->spa_root_vdev);
|
|
for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
|
|
spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
|
|
for (int i = 0; i < spa->spa_spares.sav_count; i++)
|
|
spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
|
|
(void) spa_vdev_state_exit(spa, NULL, 0);
|
|
}
|
|
|
|
if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
spa_async_autoexpand(spa, spa->spa_root_vdev);
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
}
|
|
|
|
/*
|
|
* See if any devices need to be probed.
|
|
*/
|
|
if (tasks & SPA_ASYNC_PROBE) {
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
spa_async_probe(spa, spa->spa_root_vdev);
|
|
(void) spa_vdev_state_exit(spa, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* If any devices are done replacing, detach them.
|
|
*/
|
|
if (tasks & SPA_ASYNC_RESILVER_DONE)
|
|
spa_vdev_resilver_done(spa);
|
|
|
|
/*
|
|
* Kick off a resilver.
|
|
*/
|
|
if (tasks & SPA_ASYNC_RESILVER)
|
|
dsl_resilver_restart(spa->spa_dsl_pool, 0);
|
|
|
|
/*
|
|
* Let the world know that we're done.
|
|
*/
|
|
mutex_enter(&spa->spa_async_lock);
|
|
spa->spa_async_thread = NULL;
|
|
cv_broadcast(&spa->spa_async_cv);
|
|
mutex_exit(&spa->spa_async_lock);
|
|
thread_exit();
|
|
}
|
|
|
|
void
|
|
spa_async_suspend(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_async_lock);
|
|
spa->spa_async_suspended++;
|
|
while (spa->spa_async_thread != NULL)
|
|
cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
|
|
mutex_exit(&spa->spa_async_lock);
|
|
|
|
spa_vdev_remove_suspend(spa);
|
|
|
|
zthr_t *condense_thread = spa->spa_condense_zthr;
|
|
if (condense_thread != NULL && zthr_isrunning(condense_thread))
|
|
VERIFY0(zthr_cancel(condense_thread));
|
|
}
|
|
|
|
void
|
|
spa_async_resume(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_async_lock);
|
|
ASSERT(spa->spa_async_suspended != 0);
|
|
spa->spa_async_suspended--;
|
|
mutex_exit(&spa->spa_async_lock);
|
|
spa_restart_removal(spa);
|
|
|
|
zthr_t *condense_thread = spa->spa_condense_zthr;
|
|
if (condense_thread != NULL && !zthr_isrunning(condense_thread))
|
|
zthr_resume(condense_thread);
|
|
}
|
|
|
|
static boolean_t
|
|
spa_async_tasks_pending(spa_t *spa)
|
|
{
|
|
uint_t non_config_tasks;
|
|
uint_t config_task;
|
|
boolean_t config_task_suspended;
|
|
|
|
non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
|
|
config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
|
|
if (spa->spa_ccw_fail_time == 0) {
|
|
config_task_suspended = B_FALSE;
|
|
} else {
|
|
config_task_suspended =
|
|
(gethrtime() - spa->spa_ccw_fail_time) <
|
|
((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
|
|
}
|
|
|
|
return (non_config_tasks || (config_task && !config_task_suspended));
|
|
}
|
|
|
|
static void
|
|
spa_async_dispatch(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_async_lock);
|
|
if (spa_async_tasks_pending(spa) &&
|
|
!spa->spa_async_suspended &&
|
|
spa->spa_async_thread == NULL &&
|
|
rootdir != NULL)
|
|
spa->spa_async_thread = thread_create(NULL, 0,
|
|
spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
void
|
|
spa_async_request(spa_t *spa, int task)
|
|
{
|
|
zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
|
|
mutex_enter(&spa->spa_async_lock);
|
|
spa->spa_async_tasks |= task;
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA syncing routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static int
|
|
bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
bpobj_t *bpo = arg;
|
|
bpobj_enqueue(bpo, bp, tx);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
zio_t *zio = arg;
|
|
|
|
zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
|
|
zio->io_flags));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Note: this simple function is not inlined to make it easier to dtrace the
|
|
* amount of time spent syncing frees.
|
|
*/
|
|
static void
|
|
spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
|
|
{
|
|
zio_t *zio = zio_root(spa, NULL, NULL, 0);
|
|
bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
|
|
VERIFY(zio_wait(zio) == 0);
|
|
}
|
|
|
|
/*
|
|
* Note: this simple function is not inlined to make it easier to dtrace the
|
|
* amount of time spent syncing deferred frees.
|
|
*/
|
|
static void
|
|
spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
|
|
{
|
|
zio_t *zio = zio_root(spa, NULL, NULL, 0);
|
|
VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
|
|
spa_free_sync_cb, zio, tx), ==, 0);
|
|
VERIFY0(zio_wait(zio));
|
|
}
|
|
|
|
static void
|
|
spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
|
|
{
|
|
char *packed = NULL;
|
|
size_t bufsize;
|
|
size_t nvsize = 0;
|
|
dmu_buf_t *db;
|
|
|
|
VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
|
|
|
|
/*
|
|
* Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
|
|
* information. This avoids the dmu_buf_will_dirty() path and
|
|
* saves us a pre-read to get data we don't actually care about.
|
|
*/
|
|
bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
|
|
packed = vmem_alloc(bufsize, KM_SLEEP);
|
|
|
|
VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
|
|
KM_SLEEP) == 0);
|
|
bzero(packed + nvsize, bufsize - nvsize);
|
|
|
|
dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
|
|
|
|
vmem_free(packed, bufsize);
|
|
|
|
VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
|
|
dmu_buf_will_dirty(db, tx);
|
|
*(uint64_t *)db->db_data = nvsize;
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
|
|
static void
|
|
spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
|
|
const char *config, const char *entry)
|
|
{
|
|
nvlist_t *nvroot;
|
|
nvlist_t **list;
|
|
int i;
|
|
|
|
if (!sav->sav_sync)
|
|
return;
|
|
|
|
/*
|
|
* Update the MOS nvlist describing the list of available devices.
|
|
* spa_validate_aux() will have already made sure this nvlist is
|
|
* valid and the vdevs are labeled appropriately.
|
|
*/
|
|
if (sav->sav_object == 0) {
|
|
sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
|
|
DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
|
|
sizeof (uint64_t), tx);
|
|
VERIFY(zap_update(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
|
|
&sav->sav_object, tx) == 0);
|
|
}
|
|
|
|
VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
if (sav->sav_count == 0) {
|
|
VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
|
|
} else {
|
|
list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
|
|
B_FALSE, VDEV_CONFIG_L2CACHE);
|
|
VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
|
|
sav->sav_count) == 0);
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
nvlist_free(list[i]);
|
|
kmem_free(list, sav->sav_count * sizeof (void *));
|
|
}
|
|
|
|
spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
|
|
nvlist_free(nvroot);
|
|
|
|
sav->sav_sync = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
|
|
* The all-vdev ZAP must be empty.
|
|
*/
|
|
static void
|
|
spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
if (vd->vdev_top_zap != 0) {
|
|
VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
|
|
vd->vdev_top_zap, tx));
|
|
}
|
|
if (vd->vdev_leaf_zap != 0) {
|
|
VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
|
|
vd->vdev_leaf_zap, tx));
|
|
}
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
spa_avz_build(vd->vdev_child[i], avz, tx);
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
|
|
{
|
|
nvlist_t *config;
|
|
|
|
/*
|
|
* If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
|
|
* its config may not be dirty but we still need to build per-vdev ZAPs.
|
|
* Similarly, if the pool is being assembled (e.g. after a split), we
|
|
* need to rebuild the AVZ although the config may not be dirty.
|
|
*/
|
|
if (list_is_empty(&spa->spa_config_dirty_list) &&
|
|
spa->spa_avz_action == AVZ_ACTION_NONE)
|
|
return;
|
|
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
|
|
ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
|
|
spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
|
|
spa->spa_all_vdev_zaps != 0);
|
|
|
|
if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
|
|
/* Make and build the new AVZ */
|
|
uint64_t new_avz = zap_create(spa->spa_meta_objset,
|
|
DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
|
|
spa_avz_build(spa->spa_root_vdev, new_avz, tx);
|
|
|
|
/* Diff old AVZ with new one */
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
|
|
for (zap_cursor_init(&zc, spa->spa_meta_objset,
|
|
spa->spa_all_vdev_zaps);
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
uint64_t vdzap = za.za_first_integer;
|
|
if (zap_lookup_int(spa->spa_meta_objset, new_avz,
|
|
vdzap) == ENOENT) {
|
|
/*
|
|
* ZAP is listed in old AVZ but not in new one;
|
|
* destroy it
|
|
*/
|
|
VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
|
|
tx));
|
|
}
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
/* Destroy the old AVZ */
|
|
VERIFY0(zap_destroy(spa->spa_meta_objset,
|
|
spa->spa_all_vdev_zaps, tx));
|
|
|
|
/* Replace the old AVZ in the dir obj with the new one */
|
|
VERIFY0(zap_update(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
|
|
sizeof (new_avz), 1, &new_avz, tx));
|
|
|
|
spa->spa_all_vdev_zaps = new_avz;
|
|
} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
|
|
/* Walk through the AVZ and destroy all listed ZAPs */
|
|
for (zap_cursor_init(&zc, spa->spa_meta_objset,
|
|
spa->spa_all_vdev_zaps);
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
uint64_t zap = za.za_first_integer;
|
|
VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
/* Destroy and unlink the AVZ itself */
|
|
VERIFY0(zap_destroy(spa->spa_meta_objset,
|
|
spa->spa_all_vdev_zaps, tx));
|
|
VERIFY0(zap_remove(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
|
|
spa->spa_all_vdev_zaps = 0;
|
|
}
|
|
|
|
if (spa->spa_all_vdev_zaps == 0) {
|
|
spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
|
|
DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_VDEV_ZAP_MAP, tx);
|
|
}
|
|
spa->spa_avz_action = AVZ_ACTION_NONE;
|
|
|
|
/* Create ZAPs for vdevs that don't have them. */
|
|
vdev_construct_zaps(spa->spa_root_vdev, tx);
|
|
|
|
config = spa_config_generate(spa, spa->spa_root_vdev,
|
|
dmu_tx_get_txg(tx), B_FALSE);
|
|
|
|
/*
|
|
* If we're upgrading the spa version then make sure that
|
|
* the config object gets updated with the correct version.
|
|
*/
|
|
if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
|
|
spa->spa_uberblock.ub_version);
|
|
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
nvlist_free(spa->spa_config_syncing);
|
|
spa->spa_config_syncing = config;
|
|
|
|
spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
|
|
}
|
|
|
|
static void
|
|
spa_sync_version(void *arg, dmu_tx_t *tx)
|
|
{
|
|
uint64_t *versionp = arg;
|
|
uint64_t version = *versionp;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
|
|
/*
|
|
* Setting the version is special cased when first creating the pool.
|
|
*/
|
|
ASSERT(tx->tx_txg != TXG_INITIAL);
|
|
|
|
ASSERT(SPA_VERSION_IS_SUPPORTED(version));
|
|
ASSERT(version >= spa_version(spa));
|
|
|
|
spa->spa_uberblock.ub_version = version;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
spa_history_log_internal(spa, "set", tx, "version=%lld", version);
|
|
}
|
|
|
|
/*
|
|
* Set zpool properties.
|
|
*/
|
|
static void
|
|
spa_sync_props(void *arg, dmu_tx_t *tx)
|
|
{
|
|
nvlist_t *nvp = arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
nvpair_t *elem = NULL;
|
|
|
|
mutex_enter(&spa->spa_props_lock);
|
|
|
|
while ((elem = nvlist_next_nvpair(nvp, elem))) {
|
|
uint64_t intval;
|
|
char *strval, *fname;
|
|
zpool_prop_t prop;
|
|
const char *propname;
|
|
zprop_type_t proptype;
|
|
spa_feature_t fid;
|
|
|
|
switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
|
|
case ZPOOL_PROP_INVAL:
|
|
/*
|
|
* We checked this earlier in spa_prop_validate().
|
|
*/
|
|
ASSERT(zpool_prop_feature(nvpair_name(elem)));
|
|
|
|
fname = strchr(nvpair_name(elem), '@') + 1;
|
|
VERIFY0(zfeature_lookup_name(fname, &fid));
|
|
|
|
spa_feature_enable(spa, fid, tx);
|
|
spa_history_log_internal(spa, "set", tx,
|
|
"%s=enabled", nvpair_name(elem));
|
|
break;
|
|
|
|
case ZPOOL_PROP_VERSION:
|
|
intval = fnvpair_value_uint64(elem);
|
|
/*
|
|
* The version is synced separately before other
|
|
* properties and should be correct by now.
|
|
*/
|
|
ASSERT3U(spa_version(spa), >=, intval);
|
|
break;
|
|
|
|
case ZPOOL_PROP_ALTROOT:
|
|
/*
|
|
* 'altroot' is a non-persistent property. It should
|
|
* have been set temporarily at creation or import time.
|
|
*/
|
|
ASSERT(spa->spa_root != NULL);
|
|
break;
|
|
|
|
case ZPOOL_PROP_READONLY:
|
|
case ZPOOL_PROP_CACHEFILE:
|
|
/*
|
|
* 'readonly' and 'cachefile' are also non-persisitent
|
|
* properties.
|
|
*/
|
|
break;
|
|
case ZPOOL_PROP_COMMENT:
|
|
strval = fnvpair_value_string(elem);
|
|
if (spa->spa_comment != NULL)
|
|
spa_strfree(spa->spa_comment);
|
|
spa->spa_comment = spa_strdup(strval);
|
|
/*
|
|
* We need to dirty the configuration on all the vdevs
|
|
* so that their labels get updated. It's unnecessary
|
|
* to do this for pool creation since the vdev's
|
|
* configuration has already been dirtied.
|
|
*/
|
|
if (tx->tx_txg != TXG_INITIAL)
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
spa_history_log_internal(spa, "set", tx,
|
|
"%s=%s", nvpair_name(elem), strval);
|
|
break;
|
|
default:
|
|
/*
|
|
* Set pool property values in the poolprops mos object.
|
|
*/
|
|
if (spa->spa_pool_props_object == 0) {
|
|
spa->spa_pool_props_object =
|
|
zap_create_link(mos, DMU_OT_POOL_PROPS,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
|
|
tx);
|
|
}
|
|
|
|
/* normalize the property name */
|
|
propname = zpool_prop_to_name(prop);
|
|
proptype = zpool_prop_get_type(prop);
|
|
|
|
if (nvpair_type(elem) == DATA_TYPE_STRING) {
|
|
ASSERT(proptype == PROP_TYPE_STRING);
|
|
strval = fnvpair_value_string(elem);
|
|
VERIFY0(zap_update(mos,
|
|
spa->spa_pool_props_object, propname,
|
|
1, strlen(strval) + 1, strval, tx));
|
|
spa_history_log_internal(spa, "set", tx,
|
|
"%s=%s", nvpair_name(elem), strval);
|
|
} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
|
|
intval = fnvpair_value_uint64(elem);
|
|
|
|
if (proptype == PROP_TYPE_INDEX) {
|
|
const char *unused;
|
|
VERIFY0(zpool_prop_index_to_string(
|
|
prop, intval, &unused));
|
|
}
|
|
VERIFY0(zap_update(mos,
|
|
spa->spa_pool_props_object, propname,
|
|
8, 1, &intval, tx));
|
|
spa_history_log_internal(spa, "set", tx,
|
|
"%s=%lld", nvpair_name(elem), intval);
|
|
} else {
|
|
ASSERT(0); /* not allowed */
|
|
}
|
|
|
|
switch (prop) {
|
|
case ZPOOL_PROP_DELEGATION:
|
|
spa->spa_delegation = intval;
|
|
break;
|
|
case ZPOOL_PROP_BOOTFS:
|
|
spa->spa_bootfs = intval;
|
|
break;
|
|
case ZPOOL_PROP_FAILUREMODE:
|
|
spa->spa_failmode = intval;
|
|
break;
|
|
case ZPOOL_PROP_AUTOEXPAND:
|
|
spa->spa_autoexpand = intval;
|
|
if (tx->tx_txg != TXG_INITIAL)
|
|
spa_async_request(spa,
|
|
SPA_ASYNC_AUTOEXPAND);
|
|
break;
|
|
case ZPOOL_PROP_MULTIHOST:
|
|
spa->spa_multihost = intval;
|
|
break;
|
|
case ZPOOL_PROP_DEDUPDITTO:
|
|
spa->spa_dedup_ditto = intval;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
mutex_exit(&spa->spa_props_lock);
|
|
}
|
|
|
|
/*
|
|
* Perform one-time upgrade on-disk changes. spa_version() does not
|
|
* reflect the new version this txg, so there must be no changes this
|
|
* txg to anything that the upgrade code depends on after it executes.
|
|
* Therefore this must be called after dsl_pool_sync() does the sync
|
|
* tasks.
|
|
*/
|
|
static void
|
|
spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = spa->spa_dsl_pool;
|
|
|
|
ASSERT(spa->spa_sync_pass == 1);
|
|
|
|
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
|
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
|
|
dsl_pool_create_origin(dp, tx);
|
|
|
|
/* Keeping the origin open increases spa_minref */
|
|
spa->spa_minref += 3;
|
|
}
|
|
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
|
|
dsl_pool_upgrade_clones(dp, tx);
|
|
}
|
|
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
|
|
dsl_pool_upgrade_dir_clones(dp, tx);
|
|
|
|
/* Keeping the freedir open increases spa_minref */
|
|
spa->spa_minref += 3;
|
|
}
|
|
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
|
|
spa_feature_create_zap_objects(spa, tx);
|
|
}
|
|
|
|
/*
|
|
* LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
|
|
* when possibility to use lz4 compression for metadata was added
|
|
* Old pools that have this feature enabled must be upgraded to have
|
|
* this feature active
|
|
*/
|
|
if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
|
|
boolean_t lz4_en = spa_feature_is_enabled(spa,
|
|
SPA_FEATURE_LZ4_COMPRESS);
|
|
boolean_t lz4_ac = spa_feature_is_active(spa,
|
|
SPA_FEATURE_LZ4_COMPRESS);
|
|
|
|
if (lz4_en && !lz4_ac)
|
|
spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
|
|
}
|
|
|
|
/*
|
|
* If we haven't written the salt, do so now. Note that the
|
|
* feature may not be activated yet, but that's fine since
|
|
* the presence of this ZAP entry is backwards compatible.
|
|
*/
|
|
if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_CHECKSUM_SALT) == ENOENT) {
|
|
VERIFY0(zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
|
|
sizeof (spa->spa_cksum_salt.zcs_bytes),
|
|
spa->spa_cksum_salt.zcs_bytes, tx));
|
|
}
|
|
|
|
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
|
}
|
|
|
|
static void
|
|
vdev_indirect_state_sync_verify(vdev_t *vd)
|
|
{
|
|
ASSERTV(vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping);
|
|
ASSERTV(vdev_indirect_births_t *vib = vd->vdev_indirect_births);
|
|
|
|
if (vd->vdev_ops == &vdev_indirect_ops) {
|
|
ASSERT(vim != NULL);
|
|
ASSERT(vib != NULL);
|
|
}
|
|
|
|
if (vdev_obsolete_sm_object(vd) != 0) {
|
|
ASSERT(vd->vdev_obsolete_sm != NULL);
|
|
ASSERT(vd->vdev_removing ||
|
|
vd->vdev_ops == &vdev_indirect_ops);
|
|
ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
|
|
ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
|
|
|
|
ASSERT3U(vdev_obsolete_sm_object(vd), ==,
|
|
space_map_object(vd->vdev_obsolete_sm));
|
|
ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
|
|
space_map_allocated(vd->vdev_obsolete_sm));
|
|
}
|
|
ASSERT(vd->vdev_obsolete_segments != NULL);
|
|
|
|
/*
|
|
* Since frees / remaps to an indirect vdev can only
|
|
* happen in syncing context, the obsolete segments
|
|
* tree must be empty when we start syncing.
|
|
*/
|
|
ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
|
|
}
|
|
|
|
/*
|
|
* Sync the specified transaction group. New blocks may be dirtied as
|
|
* part of the process, so we iterate until it converges.
|
|
*/
|
|
void
|
|
spa_sync(spa_t *spa, uint64_t txg)
|
|
{
|
|
dsl_pool_t *dp = spa->spa_dsl_pool;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *vd;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
|
|
zfs_vdev_queue_depth_pct / 100;
|
|
|
|
VERIFY(spa_writeable(spa));
|
|
|
|
/*
|
|
* Wait for i/os issued in open context that need to complete
|
|
* before this txg syncs.
|
|
*/
|
|
VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
|
|
spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
|
|
|
|
/*
|
|
* Lock out configuration changes.
|
|
*/
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
spa->spa_syncing_txg = txg;
|
|
spa->spa_sync_pass = 0;
|
|
|
|
mutex_enter(&spa->spa_alloc_lock);
|
|
VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
|
|
mutex_exit(&spa->spa_alloc_lock);
|
|
|
|
/*
|
|
* If there are any pending vdev state changes, convert them
|
|
* into config changes that go out with this transaction group.
|
|
*/
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
while (list_head(&spa->spa_state_dirty_list) != NULL) {
|
|
/*
|
|
* We need the write lock here because, for aux vdevs,
|
|
* calling vdev_config_dirty() modifies sav_config.
|
|
* This is ugly and will become unnecessary when we
|
|
* eliminate the aux vdev wart by integrating all vdevs
|
|
* into the root vdev tree.
|
|
*/
|
|
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
|
|
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
|
|
while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
|
|
vdev_state_clean(vd);
|
|
vdev_config_dirty(vd);
|
|
}
|
|
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
|
|
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
|
|
}
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
tx = dmu_tx_create_assigned(dp, txg);
|
|
|
|
spa->spa_sync_starttime = gethrtime();
|
|
taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
|
|
spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
|
|
spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
|
|
NSEC_TO_TICK(spa->spa_deadman_synctime));
|
|
|
|
/*
|
|
* If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
|
|
* set spa_deflate if we have no raid-z vdevs.
|
|
*/
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
|
|
int i;
|
|
|
|
for (i = 0; i < rvd->vdev_children; i++) {
|
|
vd = rvd->vdev_child[i];
|
|
if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
|
|
break;
|
|
}
|
|
if (i == rvd->vdev_children) {
|
|
spa->spa_deflate = TRUE;
|
|
VERIFY(0 == zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
|
|
sizeof (uint64_t), 1, &spa->spa_deflate, tx));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the top-level vdev's max queue depth. Evaluate each
|
|
* top-level's async write queue depth in case it changed.
|
|
* The max queue depth will not change in the middle of syncing
|
|
* out this txg.
|
|
*/
|
|
uint64_t queue_depth_total = 0;
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
|
|
!metaslab_group_initialized(mg))
|
|
continue;
|
|
|
|
/*
|
|
* It is safe to do a lock-free check here because only async
|
|
* allocations look at mg_max_alloc_queue_depth, and async
|
|
* allocations all happen from spa_sync().
|
|
*/
|
|
ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
|
|
mg->mg_max_alloc_queue_depth = max_queue_depth;
|
|
queue_depth_total += mg->mg_max_alloc_queue_depth;
|
|
}
|
|
metaslab_class_t *mc = spa_normal_class(spa);
|
|
ASSERT0(refcount_count(&mc->mc_alloc_slots));
|
|
mc->mc_alloc_max_slots = queue_depth_total;
|
|
mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
|
|
|
|
ASSERT3U(mc->mc_alloc_max_slots, <=,
|
|
max_queue_depth * rvd->vdev_children);
|
|
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *vd = rvd->vdev_child[c];
|
|
vdev_indirect_state_sync_verify(vd);
|
|
|
|
if (vdev_indirect_should_condense(vd)) {
|
|
spa_condense_indirect_start_sync(vd, tx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Iterate to convergence.
|
|
*/
|
|
do {
|
|
int pass = ++spa->spa_sync_pass;
|
|
|
|
spa_sync_config_object(spa, tx);
|
|
spa_sync_aux_dev(spa, &spa->spa_spares, tx,
|
|
ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
|
|
spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
|
|
ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
|
|
spa_errlog_sync(spa, txg);
|
|
dsl_pool_sync(dp, txg);
|
|
|
|
if (pass < zfs_sync_pass_deferred_free) {
|
|
spa_sync_frees(spa, free_bpl, tx);
|
|
} else {
|
|
/*
|
|
* We can not defer frees in pass 1, because
|
|
* we sync the deferred frees later in pass 1.
|
|
*/
|
|
ASSERT3U(pass, >, 1);
|
|
bplist_iterate(free_bpl, bpobj_enqueue_cb,
|
|
&spa->spa_deferred_bpobj, tx);
|
|
}
|
|
|
|
ddt_sync(spa, txg);
|
|
dsl_scan_sync(dp, tx);
|
|
|
|
if (spa->spa_vdev_removal != NULL)
|
|
svr_sync(spa, tx);
|
|
|
|
while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
|
|
!= NULL)
|
|
vdev_sync(vd, txg);
|
|
|
|
if (pass == 1) {
|
|
spa_sync_upgrades(spa, tx);
|
|
ASSERT3U(txg, >=,
|
|
spa->spa_uberblock.ub_rootbp.blk_birth);
|
|
/*
|
|
* Note: We need to check if the MOS is dirty
|
|
* because we could have marked the MOS dirty
|
|
* without updating the uberblock (e.g. if we
|
|
* have sync tasks but no dirty user data). We
|
|
* need to check the uberblock's rootbp because
|
|
* it is updated if we have synced out dirty
|
|
* data (though in this case the MOS will most
|
|
* likely also be dirty due to second order
|
|
* effects, we don't want to rely on that here).
|
|
*/
|
|
if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
|
|
!dmu_objset_is_dirty(mos, txg)) {
|
|
/*
|
|
* Nothing changed on the first pass,
|
|
* therefore this TXG is a no-op. Avoid
|
|
* syncing deferred frees, so that we
|
|
* can keep this TXG as a no-op.
|
|
*/
|
|
ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
|
|
txg));
|
|
ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
|
|
ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
|
|
break;
|
|
}
|
|
spa_sync_deferred_frees(spa, tx);
|
|
}
|
|
|
|
} while (dmu_objset_is_dirty(mos, txg));
|
|
|
|
#ifdef ZFS_DEBUG
|
|
if (!list_is_empty(&spa->spa_config_dirty_list)) {
|
|
/*
|
|
* Make sure that the number of ZAPs for all the vdevs matches
|
|
* the number of ZAPs in the per-vdev ZAP list. This only gets
|
|
* called if the config is dirty; otherwise there may be
|
|
* outstanding AVZ operations that weren't completed in
|
|
* spa_sync_config_object.
|
|
*/
|
|
uint64_t all_vdev_zap_entry_count;
|
|
ASSERT0(zap_count(spa->spa_meta_objset,
|
|
spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
|
|
ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
|
|
all_vdev_zap_entry_count);
|
|
}
|
|
#endif
|
|
|
|
if (spa->spa_vdev_removal != NULL) {
|
|
ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
|
|
}
|
|
|
|
/*
|
|
* Rewrite the vdev configuration (which includes the uberblock)
|
|
* to commit the transaction group.
|
|
*
|
|
* If there are no dirty vdevs, we sync the uberblock to a few
|
|
* random top-level vdevs that are known to be visible in the
|
|
* config cache (see spa_vdev_add() for a complete description).
|
|
* If there *are* dirty vdevs, sync the uberblock to all vdevs.
|
|
*/
|
|
for (;;) {
|
|
/*
|
|
* We hold SCL_STATE to prevent vdev open/close/etc.
|
|
* while we're attempting to write the vdev labels.
|
|
*/
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
|
|
if (list_is_empty(&spa->spa_config_dirty_list)) {
|
|
vdev_t *svd[SPA_SYNC_MIN_VDEVS];
|
|
int svdcount = 0;
|
|
int children = rvd->vdev_children;
|
|
int c0 = spa_get_random(children);
|
|
|
|
for (int c = 0; c < children; c++) {
|
|
vd = rvd->vdev_child[(c0 + c) % children];
|
|
if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
|
|
!vdev_is_concrete(vd))
|
|
continue;
|
|
svd[svdcount++] = vd;
|
|
if (svdcount == SPA_SYNC_MIN_VDEVS)
|
|
break;
|
|
}
|
|
error = vdev_config_sync(svd, svdcount, txg);
|
|
} else {
|
|
error = vdev_config_sync(rvd->vdev_child,
|
|
rvd->vdev_children, txg);
|
|
}
|
|
|
|
if (error == 0)
|
|
spa->spa_last_synced_guid = rvd->vdev_guid;
|
|
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
if (error == 0)
|
|
break;
|
|
zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
|
|
zio_resume_wait(spa);
|
|
}
|
|
dmu_tx_commit(tx);
|
|
|
|
taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
|
|
spa->spa_deadman_tqid = 0;
|
|
|
|
/*
|
|
* Clear the dirty config list.
|
|
*/
|
|
while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
|
|
vdev_config_clean(vd);
|
|
|
|
/*
|
|
* Now that the new config has synced transactionally,
|
|
* let it become visible to the config cache.
|
|
*/
|
|
if (spa->spa_config_syncing != NULL) {
|
|
spa_config_set(spa, spa->spa_config_syncing);
|
|
spa->spa_config_txg = txg;
|
|
spa->spa_config_syncing = NULL;
|
|
}
|
|
|
|
dsl_pool_sync_done(dp, txg);
|
|
|
|
mutex_enter(&spa->spa_alloc_lock);
|
|
VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
|
|
mutex_exit(&spa->spa_alloc_lock);
|
|
|
|
/*
|
|
* Update usable space statistics.
|
|
*/
|
|
while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
|
|
vdev_sync_done(vd, txg);
|
|
|
|
spa_update_dspace(spa);
|
|
|
|
/*
|
|
* It had better be the case that we didn't dirty anything
|
|
* since vdev_config_sync().
|
|
*/
|
|
ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
|
|
ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
|
|
ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
|
|
|
|
spa->spa_sync_pass = 0;
|
|
|
|
/*
|
|
* Update the last synced uberblock here. We want to do this at
|
|
* the end of spa_sync() so that consumers of spa_last_synced_txg()
|
|
* will be guaranteed that all the processing associated with
|
|
* that txg has been completed.
|
|
*/
|
|
spa->spa_ubsync = spa->spa_uberblock;
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
|
|
spa_handle_ignored_writes(spa);
|
|
|
|
/*
|
|
* If any async tasks have been requested, kick them off.
|
|
*/
|
|
spa_async_dispatch(spa);
|
|
}
|
|
|
|
/*
|
|
* Sync all pools. We don't want to hold the namespace lock across these
|
|
* operations, so we take a reference on the spa_t and drop the lock during the
|
|
* sync.
|
|
*/
|
|
void
|
|
spa_sync_allpools(void)
|
|
{
|
|
spa_t *spa = NULL;
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL) {
|
|
if (spa_state(spa) != POOL_STATE_ACTIVE ||
|
|
!spa_writeable(spa) || spa_suspended(spa))
|
|
continue;
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Miscellaneous routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Remove all pools in the system.
|
|
*/
|
|
void
|
|
spa_evict_all(void)
|
|
{
|
|
spa_t *spa;
|
|
|
|
/*
|
|
* Remove all cached state. All pools should be closed now,
|
|
* so every spa in the AVL tree should be unreferenced.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(NULL)) != NULL) {
|
|
/*
|
|
* Stop async tasks. The async thread may need to detach
|
|
* a device that's been replaced, which requires grabbing
|
|
* spa_namespace_lock, so we must drop it here.
|
|
*/
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
spa_async_suspend(spa);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
|
|
if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
}
|
|
spa_remove(spa);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
vdev_t *
|
|
spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
|
|
{
|
|
vdev_t *vd;
|
|
int i;
|
|
|
|
if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
|
|
return (vd);
|
|
|
|
if (aux) {
|
|
for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
|
|
vd = spa->spa_l2cache.sav_vdevs[i];
|
|
if (vd->vdev_guid == guid)
|
|
return (vd);
|
|
}
|
|
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++) {
|
|
vd = spa->spa_spares.sav_vdevs[i];
|
|
if (vd->vdev_guid == guid)
|
|
return (vd);
|
|
}
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
spa_upgrade(spa_t *spa, uint64_t version)
|
|
{
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
/*
|
|
* This should only be called for a non-faulted pool, and since a
|
|
* future version would result in an unopenable pool, this shouldn't be
|
|
* possible.
|
|
*/
|
|
ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
|
|
ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
|
|
|
|
spa->spa_uberblock.ub_version = version;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
}
|
|
|
|
boolean_t
|
|
spa_has_spare(spa_t *spa, uint64_t guid)
|
|
{
|
|
int i;
|
|
uint64_t spareguid;
|
|
spa_aux_vdev_t *sav = &spa->spa_spares;
|
|
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
if (sav->sav_vdevs[i]->vdev_guid == guid)
|
|
return (B_TRUE);
|
|
|
|
for (i = 0; i < sav->sav_npending; i++) {
|
|
if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
|
|
&spareguid) == 0 && spareguid == guid)
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Check if a pool has an active shared spare device.
|
|
* Note: reference count of an active spare is 2, as a spare and as a replace
|
|
*/
|
|
static boolean_t
|
|
spa_has_active_shared_spare(spa_t *spa)
|
|
{
|
|
int i, refcnt;
|
|
uint64_t pool;
|
|
spa_aux_vdev_t *sav = &spa->spa_spares;
|
|
|
|
for (i = 0; i < sav->sav_count; i++) {
|
|
if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
|
|
&refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
|
|
refcnt > 2)
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
sysevent_t *
|
|
spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
|
|
{
|
|
sysevent_t *ev = NULL;
|
|
#ifdef _KERNEL
|
|
nvlist_t *resource;
|
|
|
|
resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
|
|
if (resource) {
|
|
ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
|
|
ev->resource = resource;
|
|
}
|
|
#endif
|
|
return (ev);
|
|
}
|
|
|
|
void
|
|
spa_event_post(sysevent_t *ev)
|
|
{
|
|
#ifdef _KERNEL
|
|
if (ev) {
|
|
zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
|
|
kmem_free(ev, sizeof (*ev));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Post a zevent corresponding to the given sysevent. The 'name' must be one
|
|
* of the event definitions in sys/sysevent/eventdefs.h. The payload will be
|
|
* filled in from the spa and (optionally) the vdev. This doesn't do anything
|
|
* in the userland libzpool, as we don't want consumers to misinterpret ztest
|
|
* or zdb as real changes.
|
|
*/
|
|
void
|
|
spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
|
|
{
|
|
spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
/* state manipulation functions */
|
|
EXPORT_SYMBOL(spa_open);
|
|
EXPORT_SYMBOL(spa_open_rewind);
|
|
EXPORT_SYMBOL(spa_get_stats);
|
|
EXPORT_SYMBOL(spa_create);
|
|
EXPORT_SYMBOL(spa_import);
|
|
EXPORT_SYMBOL(spa_tryimport);
|
|
EXPORT_SYMBOL(spa_destroy);
|
|
EXPORT_SYMBOL(spa_export);
|
|
EXPORT_SYMBOL(spa_reset);
|
|
EXPORT_SYMBOL(spa_async_request);
|
|
EXPORT_SYMBOL(spa_async_suspend);
|
|
EXPORT_SYMBOL(spa_async_resume);
|
|
EXPORT_SYMBOL(spa_inject_addref);
|
|
EXPORT_SYMBOL(spa_inject_delref);
|
|
EXPORT_SYMBOL(spa_scan_stat_init);
|
|
EXPORT_SYMBOL(spa_scan_get_stats);
|
|
|
|
/* device maniion */
|
|
EXPORT_SYMBOL(spa_vdev_add);
|
|
EXPORT_SYMBOL(spa_vdev_attach);
|
|
EXPORT_SYMBOL(spa_vdev_detach);
|
|
EXPORT_SYMBOL(spa_vdev_setpath);
|
|
EXPORT_SYMBOL(spa_vdev_setfru);
|
|
EXPORT_SYMBOL(spa_vdev_split_mirror);
|
|
|
|
/* spare statech is global across all pools) */
|
|
EXPORT_SYMBOL(spa_spare_add);
|
|
EXPORT_SYMBOL(spa_spare_remove);
|
|
EXPORT_SYMBOL(spa_spare_exists);
|
|
EXPORT_SYMBOL(spa_spare_activate);
|
|
|
|
/* L2ARC statech is global across all pools) */
|
|
EXPORT_SYMBOL(spa_l2cache_add);
|
|
EXPORT_SYMBOL(spa_l2cache_remove);
|
|
EXPORT_SYMBOL(spa_l2cache_exists);
|
|
EXPORT_SYMBOL(spa_l2cache_activate);
|
|
EXPORT_SYMBOL(spa_l2cache_drop);
|
|
|
|
/* scanning */
|
|
EXPORT_SYMBOL(spa_scan);
|
|
EXPORT_SYMBOL(spa_scan_stop);
|
|
|
|
/* spa syncing */
|
|
EXPORT_SYMBOL(spa_sync); /* only for DMU use */
|
|
EXPORT_SYMBOL(spa_sync_allpools);
|
|
|
|
/* properties */
|
|
EXPORT_SYMBOL(spa_prop_set);
|
|
EXPORT_SYMBOL(spa_prop_get);
|
|
EXPORT_SYMBOL(spa_prop_clear_bootfs);
|
|
|
|
/* asynchronous event notification */
|
|
EXPORT_SYMBOL(spa_event_notify);
|
|
#endif
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
module_param(spa_load_verify_maxinflight, int, 0644);
|
|
MODULE_PARM_DESC(spa_load_verify_maxinflight,
|
|
"Max concurrent traversal I/Os while verifying pool during import -X");
|
|
|
|
module_param(spa_load_verify_metadata, int, 0644);
|
|
MODULE_PARM_DESC(spa_load_verify_metadata,
|
|
"Set to traverse metadata on pool import");
|
|
|
|
module_param(spa_load_verify_data, int, 0644);
|
|
MODULE_PARM_DESC(spa_load_verify_data,
|
|
"Set to traverse data on pool import");
|
|
|
|
module_param(spa_load_print_vdev_tree, int, 0644);
|
|
MODULE_PARM_DESC(spa_load_print_vdev_tree,
|
|
"Print vdev tree to zfs_dbgmsg during pool import");
|
|
|
|
/* CSTYLED */
|
|
module_param(zio_taskq_batch_pct, uint, 0444);
|
|
MODULE_PARM_DESC(zio_taskq_batch_pct,
|
|
"Percentage of CPUs to run an IO worker thread");
|
|
|
|
/* BEGIN CSTYLED */
|
|
module_param(zfs_max_missing_tvds, ulong, 0644);
|
|
MODULE_PARM_DESC(zfs_max_missing_tvds,
|
|
"Allow importing pool with up to this number of missing top-level vdevs"
|
|
" (in read-only mode)");
|
|
/* END CSTYLED */
|
|
|
|
#endif
|