mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-25 01:16:34 +03:00
a1d477c24c
OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
122 lines
4.3 KiB
C
122 lines
4.3 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2013, 2015 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#ifndef _SYS_RANGE_TREE_H
|
|
#define _SYS_RANGE_TREE_H
|
|
|
|
#include <sys/avl.h>
|
|
#include <sys/dmu.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define RANGE_TREE_HISTOGRAM_SIZE 64
|
|
|
|
typedef struct range_tree_ops range_tree_ops_t;
|
|
|
|
/*
|
|
* Note: the range_tree may not be accessed concurrently; consumers
|
|
* must provide external locking if required.
|
|
*/
|
|
typedef struct range_tree {
|
|
avl_tree_t rt_root; /* offset-ordered segment AVL tree */
|
|
uint64_t rt_space; /* sum of all segments in the map */
|
|
uint64_t rt_gap; /* allowable inter-segment gap */
|
|
range_tree_ops_t *rt_ops;
|
|
|
|
/* rt_avl_compare should only be set if rt_arg is an AVL tree */
|
|
void *rt_arg;
|
|
int (*rt_avl_compare)(const void *, const void *);
|
|
|
|
|
|
/*
|
|
* The rt_histogram maintains a histogram of ranges. Each bucket,
|
|
* rt_histogram[i], contains the number of ranges whose size is:
|
|
* 2^i <= size of range in bytes < 2^(i+1)
|
|
*/
|
|
uint64_t rt_histogram[RANGE_TREE_HISTOGRAM_SIZE];
|
|
} range_tree_t;
|
|
|
|
typedef struct range_seg {
|
|
avl_node_t rs_node; /* AVL node */
|
|
avl_node_t rs_pp_node; /* AVL picker-private node */
|
|
uint64_t rs_start; /* starting offset of this segment */
|
|
uint64_t rs_end; /* ending offset (non-inclusive) */
|
|
uint64_t rs_fill; /* actual fill if gap mode is on */
|
|
} range_seg_t;
|
|
|
|
struct range_tree_ops {
|
|
void (*rtop_create)(range_tree_t *rt, void *arg);
|
|
void (*rtop_destroy)(range_tree_t *rt, void *arg);
|
|
void (*rtop_add)(range_tree_t *rt, range_seg_t *rs, void *arg);
|
|
void (*rtop_remove)(range_tree_t *rt, range_seg_t *rs, void *arg);
|
|
void (*rtop_vacate)(range_tree_t *rt, void *arg);
|
|
};
|
|
|
|
typedef void range_tree_func_t(void *arg, uint64_t start, uint64_t size);
|
|
|
|
void range_tree_init(void);
|
|
void range_tree_fini(void);
|
|
range_tree_t *range_tree_create_impl(range_tree_ops_t *ops, void *arg,
|
|
int (*avl_compare) (const void *, const void *), uint64_t gap);
|
|
range_tree_t *range_tree_create(range_tree_ops_t *ops, void *arg);
|
|
void range_tree_destroy(range_tree_t *rt);
|
|
boolean_t range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size);
|
|
range_seg_t *range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size);
|
|
void range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
|
|
uint64_t newstart, uint64_t newsize);
|
|
uint64_t range_tree_space(range_tree_t *rt);
|
|
void range_tree_verify(range_tree_t *rt, uint64_t start, uint64_t size);
|
|
void range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst);
|
|
void range_tree_stat_verify(range_tree_t *rt);
|
|
|
|
void range_tree_add(void *arg, uint64_t start, uint64_t size);
|
|
void range_tree_remove(void *arg, uint64_t start, uint64_t size);
|
|
void range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size);
|
|
void range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta);
|
|
void range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size);
|
|
|
|
void range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg);
|
|
void range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg);
|
|
range_seg_t *range_tree_first(range_tree_t *rt);
|
|
|
|
void rt_avl_create(range_tree_t *rt, void *arg);
|
|
void rt_avl_destroy(range_tree_t *rt, void *arg);
|
|
void rt_avl_add(range_tree_t *rt, range_seg_t *rs, void *arg);
|
|
void rt_avl_remove(range_tree_t *rt, range_seg_t *rs, void *arg);
|
|
void rt_avl_vacate(range_tree_t *rt, void *arg);
|
|
extern struct range_tree_ops rt_avl_ops;
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _SYS_RANGE_TREE_H */
|