mirror_zfs/module/zfs/vdev_mirror.c
Brian Behlendorf a168788053 Reduce stack for traverse_visitbp() recursion
During pool import stack overflows may still occur due to the
potentially deep recursion of traverse_visitbp().  This is most
likely to occur when additional layers are added to the block
device stack such as DM multipath.  To minimize the stack usage
for this call path the following changes were made:

1) Added the keywork 'noinline' to the vdev_*_map_alloc() functions
   to prevent them from being inlined by gcc.  This reduced the
   stack usage of vdev_raidz_io_start() from 208 to 128 bytes, and
   vdev_mirror_io_start() from 144 to 128 bytes.

2) The 'saved_poolname' charater array in zfsdev_ioctl() was moved
   from the stack to the heap.  This reduced the stack usage of
   zfsdev_ioctl() from 368 to 112 bytes.

3) The major saving came from slimming down traverse_visitbp() from
   from 224 to 144 bytes.  Since this function is called recursively
   the 80 bytes saved per invokation adds up.  The following changes
   were made:

  a) The 'hard' local variable was replaced by a TD_HARD() macro.

  b) The 'pd' local variable was replaced by 'td->td_pfd' references.

  c) The zbookmark_t was moved to the heap.  This does cost us an
     additional memory allocation per recursion by that cost should
     still be minimal.  The cost could be further reduced by adding
     a dedicated zbookmark_t slab cache.

  d) The variable declarations in 'if (BP_GET_LEVEL()) { }' were
     restructured to use the minimum amount of stack.  This includes
     removing the 'cbp' local variable.

Overall for the offending use case roughly 1584 of total stack space
has been saved.  This is enough to avoid overflowing the stack on
stock kernels with 8k stacks.  See #1778 for additional details.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes #1778
2013-11-14 14:28:12 -08:00

564 lines
14 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/fs/zfs.h>
/*
* Virtual device vector for mirroring.
*/
typedef struct mirror_child {
vdev_t *mc_vd;
uint64_t mc_offset;
int mc_error;
int mc_pending;
uint8_t mc_tried;
uint8_t mc_skipped;
uint8_t mc_speculative;
} mirror_child_t;
typedef struct mirror_map {
int mm_children;
int mm_replacing;
int mm_preferred;
int mm_root;
mirror_child_t mm_child[1];
} mirror_map_t;
/*
* When the children are equally busy queue incoming requests to a single
* child for N microseconds. This is done to maximize the likelihood that
* the Linux elevator will be able to merge requests while it is plugged.
* Otherwise, requests are queued to the least busy device.
*
* For rotational disks the Linux elevator will plug for 10ms which is
* why zfs_vdev_mirror_switch_us is set to 10ms by default. For non-
* rotational disks the elevator will not plug, but 10ms is still a small
* enough value that the requests will get spread over all the children.
*
* For fast SSDs it may make sense to decrease zfs_vdev_mirror_switch_us
* significantly to bound the worst case latencies. It would probably be
* ideal to calculate a decaying average of the last observed latencies and
* use that to dynamically adjust the zfs_vdev_mirror_switch_us time.
*/
int zfs_vdev_mirror_switch_us = 10000;
static void
vdev_mirror_map_free(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children]));
}
static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
vdev_mirror_map_free,
zio_vsd_default_cksum_report
};
static int
vdev_mirror_pending(vdev_t *vd)
{
return (avl_numnodes(&vd->vdev_queue.vq_pending_tree));
}
/*
* Avoid inlining the function to keep vdev_mirror_io_start(), which
* is this functions only caller, as small as possible on the stack.
*/
noinline static mirror_map_t *
vdev_mirror_map_alloc(zio_t *zio)
{
mirror_map_t *mm = NULL;
mirror_child_t *mc;
vdev_t *vd = zio->io_vd;
int c, d;
if (vd == NULL) {
dva_t *dva = zio->io_bp->blk_dva;
spa_t *spa = zio->io_spa;
c = BP_GET_NDVAS(zio->io_bp);
mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]),
KM_PUSHPAGE);
mm->mm_children = c;
mm->mm_replacing = B_FALSE;
mm->mm_preferred = spa_get_random(c);
mm->mm_root = B_TRUE;
/*
* Check the other, lower-index DVAs to see if they're on
* the same vdev as the child we picked. If they are, use
* them since they are likely to have been allocated from
* the primary metaslab in use at the time, and hence are
* more likely to have locality with single-copy data.
*/
for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) {
if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c]))
mm->mm_preferred = d;
}
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
}
} else {
int lowest_pending = INT_MAX;
int lowest_nr = 1;
c = vd->vdev_children;
mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]),
KM_PUSHPAGE);
mm->mm_children = c;
mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops ||
vd->vdev_ops == &vdev_spare_ops);
mm->mm_preferred = 0;
mm->mm_root = B_FALSE;
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
mc->mc_vd = vd->vdev_child[c];
mc->mc_offset = zio->io_offset;
if (mm->mm_replacing)
continue;
if (!vdev_readable(mc->mc_vd)) {
mc->mc_error = SET_ERROR(ENXIO);
mc->mc_tried = 1;
mc->mc_skipped = 1;
mc->mc_pending = INT_MAX;
continue;
}
mc->mc_pending = vdev_mirror_pending(mc->mc_vd);
if (mc->mc_pending < lowest_pending) {
lowest_pending = mc->mc_pending;
lowest_nr = 1;
} else if (mc->mc_pending == lowest_pending) {
lowest_nr++;
}
}
d = gethrtime() / (NSEC_PER_USEC * zfs_vdev_mirror_switch_us);
d = (d % lowest_nr) + 1;
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
if (mm->mm_child[c].mc_pending == lowest_pending) {
if (--d == 0) {
mm->mm_preferred = c;
break;
}
}
}
}
zio->io_vsd = mm;
zio->io_vsd_ops = &vdev_mirror_vsd_ops;
return (mm);
}
static int
vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
uint64_t *ashift)
{
int numerrors = 0;
int lasterror = 0;
int c;
if (vd->vdev_children == 0) {
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
return (SET_ERROR(EINVAL));
}
vdev_open_children(vd);
for (c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
if (cvd->vdev_open_error) {
lasterror = cvd->vdev_open_error;
numerrors++;
continue;
}
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
*ashift = MAX(*ashift, cvd->vdev_ashift);
}
if (numerrors == vd->vdev_children) {
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
return (lasterror);
}
return (0);
}
static void
vdev_mirror_close(vdev_t *vd)
{
int c;
for (c = 0; c < vd->vdev_children; c++)
vdev_close(vd->vdev_child[c]);
}
static void
vdev_mirror_child_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
}
static void
vdev_mirror_scrub_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
if (zio->io_error == 0) {
zio_t *pio;
mutex_enter(&zio->io_lock);
while ((pio = zio_walk_parents(zio)) != NULL) {
mutex_enter(&pio->io_lock);
ASSERT3U(zio->io_size, >=, pio->io_size);
bcopy(zio->io_data, pio->io_data, pio->io_size);
mutex_exit(&pio->io_lock);
}
mutex_exit(&zio->io_lock);
}
zio_buf_free(zio->io_data, zio->io_size);
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
}
/*
* Try to find a child whose DTL doesn't contain the block we want to read.
* If we can't, try the read on any vdev we haven't already tried.
*/
static int
vdev_mirror_child_select(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
mirror_child_t *mc;
uint64_t txg = zio->io_txg;
int i, c;
ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
/*
* Try to find a child whose DTL doesn't contain the block to read.
* If a child is known to be completely inaccessible (indicated by
* vdev_readable() returning B_FALSE), don't even try.
*/
for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) {
if (c >= mm->mm_children)
c = 0;
mc = &mm->mm_child[c];
if (mc->mc_tried || mc->mc_skipped)
continue;
if (!vdev_readable(mc->mc_vd)) {
mc->mc_error = SET_ERROR(ENXIO);
mc->mc_tried = 1; /* don't even try */
mc->mc_skipped = 1;
continue;
}
if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1))
return (c);
mc->mc_error = SET_ERROR(ESTALE);
mc->mc_skipped = 1;
mc->mc_speculative = 1;
}
/*
* Every device is either missing or has this txg in its DTL.
* Look for any child we haven't already tried before giving up.
*/
for (c = 0; c < mm->mm_children; c++)
if (!mm->mm_child[c].mc_tried)
return (c);
/*
* Every child failed. There's no place left to look.
*/
return (-1);
}
static int
vdev_mirror_io_start(zio_t *zio)
{
mirror_map_t *mm;
mirror_child_t *mc;
int c, children;
mm = vdev_mirror_map_alloc(zio);
if (zio->io_type == ZIO_TYPE_READ) {
if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
/*
* For scrubbing reads we need to allocate a read
* buffer for each child and issue reads to all
* children. If any child succeeds, it will copy its
* data into zio->io_data in vdev_mirror_scrub_done.
*/
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
zio_buf_alloc(zio->io_size), zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_mirror_scrub_done, mc));
}
return (ZIO_PIPELINE_CONTINUE);
}
/*
* For normal reads just pick one child.
*/
c = vdev_mirror_child_select(zio);
children = (c >= 0);
} else {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
/*
* Writes go to all children.
*/
c = 0;
children = mm->mm_children;
}
while (children--) {
mc = &mm->mm_child[c];
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_mirror_child_done, mc));
c++;
}
return (ZIO_PIPELINE_CONTINUE);
}
static int
vdev_mirror_worst_error(mirror_map_t *mm)
{
int c, error[2] = { 0, 0 };
for (c = 0; c < mm->mm_children; c++) {
mirror_child_t *mc = &mm->mm_child[c];
int s = mc->mc_speculative;
error[s] = zio_worst_error(error[s], mc->mc_error);
}
return (error[0] ? error[0] : error[1]);
}
static void
vdev_mirror_io_done(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
mirror_child_t *mc;
int c;
int good_copies = 0;
int unexpected_errors = 0;
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
if (mc->mc_error) {
if (!mc->mc_skipped)
unexpected_errors++;
} else if (mc->mc_tried) {
good_copies++;
}
}
if (zio->io_type == ZIO_TYPE_WRITE) {
/*
* XXX -- for now, treat partial writes as success.
*
* Now that we support write reallocation, it would be better
* to treat partial failure as real failure unless there are
* no non-degraded top-level vdevs left, and not update DTLs
* if we intend to reallocate.
*/
/* XXPOLICY */
if (good_copies != mm->mm_children) {
/*
* Always require at least one good copy.
*
* For ditto blocks (io_vd == NULL), require
* all copies to be good.
*
* XXX -- for replacing vdevs, there's no great answer.
* If the old device is really dead, we may not even
* be able to access it -- so we only want to
* require good writes to the new device. But if
* the new device turns out to be flaky, we want
* to be able to detach it -- which requires all
* writes to the old device to have succeeded.
*/
if (good_copies == 0 || zio->io_vd == NULL)
zio->io_error = vdev_mirror_worst_error(mm);
}
return;
}
ASSERT(zio->io_type == ZIO_TYPE_READ);
/*
* If we don't have a good copy yet, keep trying other children.
*/
/* XXPOLICY */
if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
ASSERT(c >= 0 && c < mm->mm_children);
mc = &mm->mm_child[c];
zio_vdev_io_redone(zio);
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
ZIO_TYPE_READ, zio->io_priority, 0,
vdev_mirror_child_done, mc));
return;
}
/* XXPOLICY */
if (good_copies == 0) {
zio->io_error = vdev_mirror_worst_error(mm);
ASSERT(zio->io_error != 0);
}
if (good_copies && spa_writeable(zio->io_spa) &&
(unexpected_errors ||
(zio->io_flags & ZIO_FLAG_RESILVER) ||
((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
/*
* Use the good data we have in hand to repair damaged children.
*/
for (c = 0; c < mm->mm_children; c++) {
/*
* Don't rewrite known good children.
* Not only is it unnecessary, it could
* actually be harmful: if the system lost
* power while rewriting the only good copy,
* there would be no good copies left!
*/
mc = &mm->mm_child[c];
if (mc->mc_error == 0) {
if (mc->mc_tried)
continue;
if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
!vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
zio->io_txg, 1))
continue;
mc->mc_error = SET_ERROR(ESTALE);
}
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
zio->io_data, zio->io_size,
ZIO_TYPE_WRITE, zio->io_priority,
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
}
}
}
static void
vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
{
if (faulted == vd->vdev_children)
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLICAS);
else if (degraded + faulted != 0)
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
else
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
}
vdev_ops_t vdev_mirror_ops = {
vdev_mirror_open,
vdev_mirror_close,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
NULL,
NULL,
VDEV_TYPE_MIRROR, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_replacing_ops = {
vdev_mirror_open,
vdev_mirror_close,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
NULL,
NULL,
VDEV_TYPE_REPLACING, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_spare_ops = {
vdev_mirror_open,
vdev_mirror_close,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
NULL,
NULL,
VDEV_TYPE_SPARE, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
#if defined(_KERNEL) && defined(HAVE_SPL)
module_param(zfs_vdev_mirror_switch_us, int, 0644);
MODULE_PARM_DESC(zfs_vdev_mirror_switch_us, "Switch mirrors every N usecs");
#endif