mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-13 19:50:25 +03:00
6cb8e5306d
Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
397 lines
16 KiB
C
397 lines
16 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2017 by Delphix. All rights reserved.
|
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
* Copyright 2013 Saso Kiselkov. All rights reserved.
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
|
* Copyright (c) 2017 Datto Inc.
|
|
*/
|
|
|
|
#ifndef _SYS_SPA_IMPL_H
|
|
#define _SYS_SPA_IMPL_H
|
|
|
|
#include <sys/spa.h>
|
|
#include <sys/vdev.h>
|
|
#include <sys/vdev_removal.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/bplist.h>
|
|
#include <sys/bpobj.h>
|
|
#include <sys/dsl_crypt.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/zthr.h>
|
|
#include <zfeature_common.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
typedef struct spa_error_entry {
|
|
zbookmark_phys_t se_bookmark;
|
|
char *se_name;
|
|
avl_node_t se_avl;
|
|
} spa_error_entry_t;
|
|
|
|
typedef struct spa_history_phys {
|
|
uint64_t sh_pool_create_len; /* ending offset of zpool create */
|
|
uint64_t sh_phys_max_off; /* physical EOF */
|
|
uint64_t sh_bof; /* logical BOF */
|
|
uint64_t sh_eof; /* logical EOF */
|
|
uint64_t sh_records_lost; /* num of records overwritten */
|
|
} spa_history_phys_t;
|
|
|
|
/*
|
|
* All members must be uint64_t, for byteswap purposes.
|
|
*/
|
|
typedef struct spa_removing_phys {
|
|
uint64_t sr_state; /* dsl_scan_state_t */
|
|
|
|
/*
|
|
* The vdev ID that we most recently attempted to remove,
|
|
* or -1 if no removal has been attempted.
|
|
*/
|
|
uint64_t sr_removing_vdev;
|
|
|
|
/*
|
|
* The vdev ID that we most recently successfully removed,
|
|
* or -1 if no devices have been removed.
|
|
*/
|
|
uint64_t sr_prev_indirect_vdev;
|
|
|
|
uint64_t sr_start_time;
|
|
uint64_t sr_end_time;
|
|
|
|
/*
|
|
* Note that we can not use the space map's or indirect mapping's
|
|
* accounting as a substitute for these values, because we need to
|
|
* count frees of not-yet-copied data as though it did the copy.
|
|
* Otherwise, we could get into a situation where copied > to_copy,
|
|
* or we complete before copied == to_copy.
|
|
*/
|
|
uint64_t sr_to_copy; /* bytes that need to be copied */
|
|
uint64_t sr_copied; /* bytes that have been copied or freed */
|
|
} spa_removing_phys_t;
|
|
|
|
/*
|
|
* This struct is stored as an entry in the DMU_POOL_DIRECTORY_OBJECT
|
|
* (with key DMU_POOL_CONDENSING_INDIRECT). It is present if a condense
|
|
* of an indirect vdev's mapping object is in progress.
|
|
*/
|
|
typedef struct spa_condensing_indirect_phys {
|
|
/*
|
|
* The vdev ID of the indirect vdev whose indirect mapping is
|
|
* being condensed.
|
|
*/
|
|
uint64_t scip_vdev;
|
|
|
|
/*
|
|
* The vdev's old obsolete spacemap. This spacemap's contents are
|
|
* being integrated into the new mapping.
|
|
*/
|
|
uint64_t scip_prev_obsolete_sm_object;
|
|
|
|
/*
|
|
* The new mapping object that is being created.
|
|
*/
|
|
uint64_t scip_next_mapping_object;
|
|
} spa_condensing_indirect_phys_t;
|
|
|
|
struct spa_aux_vdev {
|
|
uint64_t sav_object; /* MOS object for device list */
|
|
nvlist_t *sav_config; /* cached device config */
|
|
vdev_t **sav_vdevs; /* devices */
|
|
int sav_count; /* number devices */
|
|
boolean_t sav_sync; /* sync the device list */
|
|
nvlist_t **sav_pending; /* pending device additions */
|
|
uint_t sav_npending; /* # pending devices */
|
|
};
|
|
|
|
typedef struct spa_config_lock {
|
|
kmutex_t scl_lock;
|
|
kthread_t *scl_writer;
|
|
int scl_write_wanted;
|
|
kcondvar_t scl_cv;
|
|
refcount_t scl_count;
|
|
} spa_config_lock_t;
|
|
|
|
typedef struct spa_config_dirent {
|
|
list_node_t scd_link;
|
|
char *scd_path;
|
|
} spa_config_dirent_t;
|
|
|
|
typedef enum zio_taskq_type {
|
|
ZIO_TASKQ_ISSUE = 0,
|
|
ZIO_TASKQ_ISSUE_HIGH,
|
|
ZIO_TASKQ_INTERRUPT,
|
|
ZIO_TASKQ_INTERRUPT_HIGH,
|
|
ZIO_TASKQ_TYPES
|
|
} zio_taskq_type_t;
|
|
|
|
/*
|
|
* State machine for the zpool-poolname process. The states transitions
|
|
* are done as follows:
|
|
*
|
|
* From To Routine
|
|
* PROC_NONE -> PROC_CREATED spa_activate()
|
|
* PROC_CREATED -> PROC_ACTIVE spa_thread()
|
|
* PROC_ACTIVE -> PROC_DEACTIVATE spa_deactivate()
|
|
* PROC_DEACTIVATE -> PROC_GONE spa_thread()
|
|
* PROC_GONE -> PROC_NONE spa_deactivate()
|
|
*/
|
|
typedef enum spa_proc_state {
|
|
SPA_PROC_NONE, /* spa_proc = &p0, no process created */
|
|
SPA_PROC_CREATED, /* spa_activate() has proc, is waiting */
|
|
SPA_PROC_ACTIVE, /* taskqs created, spa_proc set */
|
|
SPA_PROC_DEACTIVATE, /* spa_deactivate() requests process exit */
|
|
SPA_PROC_GONE /* spa_thread() is exiting, spa_proc = &p0 */
|
|
} spa_proc_state_t;
|
|
|
|
typedef struct spa_taskqs {
|
|
uint_t stqs_count;
|
|
taskq_t **stqs_taskq;
|
|
} spa_taskqs_t;
|
|
|
|
typedef enum spa_all_vdev_zap_action {
|
|
AVZ_ACTION_NONE = 0,
|
|
AVZ_ACTION_DESTROY, /* Destroy all per-vdev ZAPs and the AVZ. */
|
|
AVZ_ACTION_REBUILD, /* Populate the new AVZ, see spa_avz_rebuild */
|
|
AVZ_ACTION_INITIALIZE
|
|
} spa_avz_action_t;
|
|
|
|
typedef enum spa_config_source {
|
|
SPA_CONFIG_SRC_NONE = 0,
|
|
SPA_CONFIG_SRC_SCAN, /* scan of path (default: /dev/dsk) */
|
|
SPA_CONFIG_SRC_CACHEFILE, /* any cachefile */
|
|
SPA_CONFIG_SRC_TRYIMPORT, /* returned from call to tryimport */
|
|
SPA_CONFIG_SRC_SPLIT, /* new pool in a pool split */
|
|
SPA_CONFIG_SRC_MOS /* MOS, but not always from right txg */
|
|
} spa_config_source_t;
|
|
|
|
struct spa {
|
|
/*
|
|
* Fields protected by spa_namespace_lock.
|
|
*/
|
|
char spa_name[ZFS_MAX_DATASET_NAME_LEN]; /* pool name */
|
|
char *spa_comment; /* comment */
|
|
avl_node_t spa_avl; /* node in spa_namespace_avl */
|
|
nvlist_t *spa_config; /* last synced config */
|
|
nvlist_t *spa_config_syncing; /* currently syncing config */
|
|
nvlist_t *spa_config_splitting; /* config for splitting */
|
|
nvlist_t *spa_load_info; /* info and errors from load */
|
|
uint64_t spa_config_txg; /* txg of last config change */
|
|
int spa_sync_pass; /* iterate-to-convergence */
|
|
pool_state_t spa_state; /* pool state */
|
|
int spa_inject_ref; /* injection references */
|
|
uint8_t spa_sync_on; /* sync threads are running */
|
|
spa_load_state_t spa_load_state; /* current load operation */
|
|
boolean_t spa_indirect_vdevs_loaded; /* mappings loaded? */
|
|
boolean_t spa_trust_config; /* do we trust vdev tree? */
|
|
spa_config_source_t spa_config_source; /* where config comes from? */
|
|
uint64_t spa_import_flags; /* import specific flags */
|
|
spa_taskqs_t spa_zio_taskq[ZIO_TYPES][ZIO_TASKQ_TYPES];
|
|
dsl_pool_t *spa_dsl_pool;
|
|
boolean_t spa_is_initializing; /* true while opening pool */
|
|
metaslab_class_t *spa_normal_class; /* normal data class */
|
|
metaslab_class_t *spa_log_class; /* intent log data class */
|
|
uint64_t spa_first_txg; /* first txg after spa_open() */
|
|
uint64_t spa_final_txg; /* txg of export/destroy */
|
|
uint64_t spa_freeze_txg; /* freeze pool at this txg */
|
|
uint64_t spa_load_max_txg; /* best initial ub_txg */
|
|
uint64_t spa_claim_max_txg; /* highest claimed birth txg */
|
|
timespec_t spa_loaded_ts; /* 1st successful open time */
|
|
objset_t *spa_meta_objset; /* copy of dp->dp_meta_objset */
|
|
kmutex_t spa_evicting_os_lock; /* Evicting objset list lock */
|
|
list_t spa_evicting_os_list; /* Objsets being evicted. */
|
|
kcondvar_t spa_evicting_os_cv; /* Objset Eviction Completion */
|
|
txg_list_t spa_vdev_txg_list; /* per-txg dirty vdev list */
|
|
vdev_t *spa_root_vdev; /* top-level vdev container */
|
|
int spa_min_ashift; /* of vdevs in normal class */
|
|
int spa_max_ashift; /* of vdevs in normal class */
|
|
uint64_t spa_config_guid; /* config pool guid */
|
|
uint64_t spa_load_guid; /* spa_load initialized guid */
|
|
uint64_t spa_last_synced_guid; /* last synced guid */
|
|
list_t spa_config_dirty_list; /* vdevs with dirty config */
|
|
list_t spa_state_dirty_list; /* vdevs with dirty state */
|
|
kmutex_t spa_alloc_lock;
|
|
avl_tree_t spa_alloc_tree;
|
|
spa_aux_vdev_t spa_spares; /* hot spares */
|
|
spa_aux_vdev_t spa_l2cache; /* L2ARC cache devices */
|
|
nvlist_t *spa_label_features; /* Features for reading MOS */
|
|
uint64_t spa_config_object; /* MOS object for pool config */
|
|
uint64_t spa_config_generation; /* config generation number */
|
|
uint64_t spa_syncing_txg; /* txg currently syncing */
|
|
bpobj_t spa_deferred_bpobj; /* deferred-free bplist */
|
|
bplist_t spa_free_bplist[TXG_SIZE]; /* bplist of stuff to free */
|
|
zio_cksum_salt_t spa_cksum_salt; /* secret salt for cksum */
|
|
/* checksum context templates */
|
|
kmutex_t spa_cksum_tmpls_lock;
|
|
void *spa_cksum_tmpls[ZIO_CHECKSUM_FUNCTIONS];
|
|
uberblock_t spa_ubsync; /* last synced uberblock */
|
|
uberblock_t spa_uberblock; /* current uberblock */
|
|
boolean_t spa_extreme_rewind; /* rewind past deferred frees */
|
|
kmutex_t spa_scrub_lock; /* resilver/scrub lock */
|
|
uint64_t spa_scrub_inflight; /* in-flight scrub bytes */
|
|
uint64_t spa_load_verify_ios; /* in-flight verification IOs */
|
|
kcondvar_t spa_scrub_io_cv; /* scrub I/O completion */
|
|
uint8_t spa_scrub_active; /* active or suspended? */
|
|
uint8_t spa_scrub_type; /* type of scrub we're doing */
|
|
uint8_t spa_scrub_finished; /* indicator to rotate logs */
|
|
uint8_t spa_scrub_started; /* started since last boot */
|
|
uint8_t spa_scrub_reopen; /* scrub doing vdev_reopen */
|
|
uint64_t spa_scan_pass_start; /* start time per pass/reboot */
|
|
uint64_t spa_scan_pass_scrub_pause; /* scrub pause time */
|
|
uint64_t spa_scan_pass_scrub_spent_paused; /* total paused */
|
|
uint64_t spa_scan_pass_exam; /* examined bytes per pass */
|
|
uint64_t spa_scan_pass_issued; /* issued bytes per pass */
|
|
kmutex_t spa_async_lock; /* protect async state */
|
|
kthread_t *spa_async_thread; /* thread doing async task */
|
|
int spa_async_suspended; /* async tasks suspended */
|
|
kcondvar_t spa_async_cv; /* wait for thread_exit() */
|
|
uint16_t spa_async_tasks; /* async task mask */
|
|
uint64_t spa_missing_tvds; /* unopenable tvds on load */
|
|
uint64_t spa_missing_tvds_allowed; /* allow loading spa? */
|
|
|
|
spa_removing_phys_t spa_removing_phys;
|
|
spa_vdev_removal_t *spa_vdev_removal;
|
|
|
|
spa_condensing_indirect_phys_t spa_condensing_indirect_phys;
|
|
spa_condensing_indirect_t *spa_condensing_indirect;
|
|
zthr_t *spa_condense_zthr; /* zthr doing condense. */
|
|
|
|
char *spa_root; /* alternate root directory */
|
|
uint64_t spa_ena; /* spa-wide ereport ENA */
|
|
int spa_last_open_failed; /* error if last open failed */
|
|
uint64_t spa_last_ubsync_txg; /* "best" uberblock txg */
|
|
uint64_t spa_last_ubsync_txg_ts; /* timestamp from that ub */
|
|
uint64_t spa_load_txg; /* ub txg that loaded */
|
|
uint64_t spa_load_txg_ts; /* timestamp from that ub */
|
|
uint64_t spa_load_meta_errors; /* verify metadata err count */
|
|
uint64_t spa_load_data_errors; /* verify data err count */
|
|
uint64_t spa_verify_min_txg; /* start txg of verify scrub */
|
|
kmutex_t spa_errlog_lock; /* error log lock */
|
|
uint64_t spa_errlog_last; /* last error log object */
|
|
uint64_t spa_errlog_scrub; /* scrub error log object */
|
|
kmutex_t spa_errlist_lock; /* error list/ereport lock */
|
|
avl_tree_t spa_errlist_last; /* last error list */
|
|
avl_tree_t spa_errlist_scrub; /* scrub error list */
|
|
uint64_t spa_deflate; /* should we deflate? */
|
|
uint64_t spa_history; /* history object */
|
|
kmutex_t spa_history_lock; /* history lock */
|
|
vdev_t *spa_pending_vdev; /* pending vdev additions */
|
|
kmutex_t spa_props_lock; /* property lock */
|
|
uint64_t spa_pool_props_object; /* object for properties */
|
|
uint64_t spa_bootfs; /* default boot filesystem */
|
|
uint64_t spa_failmode; /* failure mode for the pool */
|
|
uint64_t spa_deadman_failmode; /* failure mode for deadman */
|
|
uint64_t spa_delegation; /* delegation on/off */
|
|
list_t spa_config_list; /* previous cache file(s) */
|
|
/* per-CPU array of root of async I/O: */
|
|
zio_t **spa_async_zio_root;
|
|
zio_t *spa_suspend_zio_root; /* root of all suspended I/O */
|
|
zio_t *spa_txg_zio[TXG_SIZE]; /* spa_sync() waits for this */
|
|
kmutex_t spa_suspend_lock; /* protects suspend_zio_root */
|
|
kcondvar_t spa_suspend_cv; /* notification of resume */
|
|
zio_suspend_reason_t spa_suspended; /* pool is suspended */
|
|
uint8_t spa_claiming; /* pool is doing zil_claim() */
|
|
boolean_t spa_is_root; /* pool is root */
|
|
int spa_minref; /* num refs when first opened */
|
|
int spa_mode; /* FREAD | FWRITE */
|
|
spa_log_state_t spa_log_state; /* log state */
|
|
uint64_t spa_autoexpand; /* lun expansion on/off */
|
|
ddt_t *spa_ddt[ZIO_CHECKSUM_FUNCTIONS]; /* in-core DDTs */
|
|
uint64_t spa_ddt_stat_object; /* DDT statistics */
|
|
uint64_t spa_dedup_dspace; /* Cache get_dedup_dspace() */
|
|
uint64_t spa_dedup_ditto; /* dedup ditto threshold */
|
|
uint64_t spa_dedup_checksum; /* default dedup checksum */
|
|
uint64_t spa_dspace; /* dspace in normal class */
|
|
kmutex_t spa_vdev_top_lock; /* dueling offline/remove */
|
|
kmutex_t spa_proc_lock; /* protects spa_proc* */
|
|
kcondvar_t spa_proc_cv; /* spa_proc_state transitions */
|
|
spa_proc_state_t spa_proc_state; /* see definition */
|
|
proc_t *spa_proc; /* "zpool-poolname" process */
|
|
uint64_t spa_did; /* if procp != p0, did of t1 */
|
|
boolean_t spa_autoreplace; /* autoreplace set in open */
|
|
int spa_vdev_locks; /* locks grabbed */
|
|
uint64_t spa_creation_version; /* version at pool creation */
|
|
uint64_t spa_prev_software_version; /* See ub_software_version */
|
|
uint64_t spa_feat_for_write_obj; /* required to write to pool */
|
|
uint64_t spa_feat_for_read_obj; /* required to read from pool */
|
|
uint64_t spa_feat_desc_obj; /* Feature descriptions */
|
|
uint64_t spa_feat_enabled_txg_obj; /* Feature enabled txg */
|
|
kmutex_t spa_feat_stats_lock; /* protects spa_feat_stats */
|
|
nvlist_t *spa_feat_stats; /* Cache of enabled features */
|
|
/* cache feature refcounts */
|
|
uint64_t spa_feat_refcount_cache[SPA_FEATURES];
|
|
taskqid_t spa_deadman_tqid; /* Task id */
|
|
uint64_t spa_deadman_calls; /* number of deadman calls */
|
|
hrtime_t spa_sync_starttime; /* starting time of spa_sync */
|
|
uint64_t spa_deadman_synctime; /* deadman sync expiration */
|
|
uint64_t spa_deadman_ziotime; /* deadman zio expiration */
|
|
uint64_t spa_all_vdev_zaps; /* ZAP of per-vd ZAP obj #s */
|
|
spa_avz_action_t spa_avz_action; /* destroy/rebuild AVZ? */
|
|
uint64_t spa_errata; /* errata issues detected */
|
|
spa_stats_t spa_stats; /* assorted spa statistics */
|
|
spa_keystore_t spa_keystore; /* loaded crypto keys */
|
|
hrtime_t spa_ccw_fail_time; /* Conf cache write fail time */
|
|
taskq_t *spa_zvol_taskq; /* Taskq for minor management */
|
|
taskq_t *spa_prefetch_taskq; /* Taskq for prefetch threads */
|
|
uint64_t spa_multihost; /* multihost aware (mmp) */
|
|
mmp_thread_t spa_mmp; /* multihost mmp thread */
|
|
|
|
/*
|
|
* spa_refcount & spa_config_lock must be the last elements
|
|
* because refcount_t changes size based on compilation options.
|
|
* In order for the MDB module to function correctly, the other
|
|
* fields must remain in the same location.
|
|
*/
|
|
spa_config_lock_t spa_config_lock[SCL_LOCKS]; /* config changes */
|
|
refcount_t spa_refcount; /* number of opens */
|
|
|
|
taskq_t *spa_upgrade_taskq; /* taskq for upgrade jobs */
|
|
};
|
|
|
|
extern char *spa_config_path;
|
|
|
|
extern void spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
|
|
task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent);
|
|
extern void spa_taskq_dispatch_sync(spa_t *, zio_type_t t, zio_taskq_type_t q,
|
|
task_func_t *func, void *arg, uint_t flags);
|
|
extern void spa_load_spares(spa_t *spa);
|
|
extern void spa_load_l2cache(spa_t *spa);
|
|
extern sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl,
|
|
const char *name);
|
|
extern void spa_event_post(sysevent_t *ev);
|
|
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _SYS_SPA_IMPL_H */
|