mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-12 19:20:28 +03:00
3e4ed4213d
And add it to the AVZ, this is not backwards compatible with older pools due to an assertion in spa_sync() that verifies the number of ZAPs of all vdevs matches the number of ZAPs in the AVZ. Granted, the assertion only applies to #DEBUG builds - still, a feature flag is introduced to avoid the assertion, com.klarasystems:vdev_zaps_v2 Notably, this allows to get/set properties on the root vdev: % zpool set user:prop=value <pool> root-0 Before this commit, it was already possible to get/set properties on top-level vdevs with the syntax <type>-<vdev_id> (e.g. mirror-0): % zpool set user:prop=value <pool> mirror-0 This syntax also applies to the root vdev as it is is of type 'root' with a vdev_id of 0, root-0. The keyword 'root' as an alias for 'root-0'. The following tests have been added: - zpool get all properties from root vdev - zpool set a property on root vdev - verify root vdev ZAP is created Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Rob Wing <rob.wing@klarasystems.com> Sponsored-by: Seagate Technology Submitted-by: Klara, Inc. Closes #14405
1966 lines
48 KiB
C
1966 lines
48 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
|
|
* Copyright 2015 RackTop Systems.
|
|
* Copyright (c) 2016, Intel Corporation.
|
|
* Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
|
|
*/
|
|
|
|
/*
|
|
* Pool import support functions.
|
|
*
|
|
* Used by zpool, ztest, zdb, and zhack to locate importable configs. Since
|
|
* these commands are expected to run in the global zone, we can assume
|
|
* that the devices are all readable when called.
|
|
*
|
|
* To import a pool, we rely on reading the configuration information from the
|
|
* ZFS label of each device. If we successfully read the label, then we
|
|
* organize the configuration information in the following hierarchy:
|
|
*
|
|
* pool guid -> toplevel vdev guid -> label txg
|
|
*
|
|
* Duplicate entries matching this same tuple will be discarded. Once we have
|
|
* examined every device, we pick the best label txg config for each toplevel
|
|
* vdev. We then arrange these toplevel vdevs into a complete pool config, and
|
|
* update any paths that have changed. Finally, we attempt to import the pool
|
|
* using our derived config, and record the results.
|
|
*/
|
|
|
|
#ifdef HAVE_AIO_H
|
|
#include <aio.h>
|
|
#endif
|
|
#include <ctype.h>
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <libintl.h>
|
|
#include <libgen.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <sys/dktp/fdisk.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/fs/zfs.h>
|
|
|
|
#include <thread_pool.h>
|
|
#include <libzutil.h>
|
|
#include <libnvpair.h>
|
|
|
|
#include "zutil_import.h"
|
|
|
|
const char *
|
|
libpc_error_description(libpc_handle_t *hdl)
|
|
{
|
|
if (hdl->lpc_desc[0] != '\0')
|
|
return (hdl->lpc_desc);
|
|
|
|
switch (hdl->lpc_error) {
|
|
case LPC_BADCACHE:
|
|
return (dgettext(TEXT_DOMAIN, "invalid or missing cache file"));
|
|
case LPC_BADPATH:
|
|
return (dgettext(TEXT_DOMAIN, "must be an absolute path"));
|
|
case LPC_NOMEM:
|
|
return (dgettext(TEXT_DOMAIN, "out of memory"));
|
|
case LPC_EACCESS:
|
|
return (dgettext(TEXT_DOMAIN, "some devices require root "
|
|
"privileges"));
|
|
case LPC_UNKNOWN:
|
|
return (dgettext(TEXT_DOMAIN, "unknown error"));
|
|
default:
|
|
assert(hdl->lpc_error == 0);
|
|
return (dgettext(TEXT_DOMAIN, "no error"));
|
|
}
|
|
}
|
|
|
|
static __attribute__((format(printf, 2, 3))) void
|
|
zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
|
|
(void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap);
|
|
hdl->lpc_desc_active = B_TRUE;
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
static void
|
|
zutil_verror(libpc_handle_t *hdl, lpc_error_t error, const char *fmt,
|
|
va_list ap)
|
|
{
|
|
char action[1024];
|
|
|
|
(void) vsnprintf(action, sizeof (action), fmt, ap);
|
|
hdl->lpc_error = error;
|
|
|
|
if (hdl->lpc_desc_active)
|
|
hdl->lpc_desc_active = B_FALSE;
|
|
else
|
|
hdl->lpc_desc[0] = '\0';
|
|
|
|
if (hdl->lpc_printerr)
|
|
(void) fprintf(stderr, "%s: %s\n", action,
|
|
libpc_error_description(hdl));
|
|
}
|
|
|
|
static __attribute__((format(printf, 3, 4))) int
|
|
zutil_error_fmt(libpc_handle_t *hdl, lpc_error_t error,
|
|
const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
|
|
zutil_verror(hdl, error, fmt, ap);
|
|
|
|
va_end(ap);
|
|
|
|
return (-1);
|
|
}
|
|
|
|
static int
|
|
zutil_error(libpc_handle_t *hdl, lpc_error_t error, const char *msg)
|
|
{
|
|
return (zutil_error_fmt(hdl, error, "%s", msg));
|
|
}
|
|
|
|
static int
|
|
zutil_no_memory(libpc_handle_t *hdl)
|
|
{
|
|
zutil_error(hdl, LPC_NOMEM, "internal error");
|
|
exit(1);
|
|
}
|
|
|
|
void *
|
|
zutil_alloc(libpc_handle_t *hdl, size_t size)
|
|
{
|
|
void *data;
|
|
|
|
if ((data = calloc(1, size)) == NULL)
|
|
(void) zutil_no_memory(hdl);
|
|
|
|
return (data);
|
|
}
|
|
|
|
char *
|
|
zutil_strdup(libpc_handle_t *hdl, const char *str)
|
|
{
|
|
char *ret;
|
|
|
|
if ((ret = strdup(str)) == NULL)
|
|
(void) zutil_no_memory(hdl);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static char *
|
|
zutil_strndup(libpc_handle_t *hdl, const char *str, size_t n)
|
|
{
|
|
char *ret;
|
|
|
|
if ((ret = strndup(str, n)) == NULL)
|
|
(void) zutil_no_memory(hdl);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Intermediate structures used to gather configuration information.
|
|
*/
|
|
typedef struct config_entry {
|
|
uint64_t ce_txg;
|
|
nvlist_t *ce_config;
|
|
struct config_entry *ce_next;
|
|
} config_entry_t;
|
|
|
|
typedef struct vdev_entry {
|
|
uint64_t ve_guid;
|
|
config_entry_t *ve_configs;
|
|
struct vdev_entry *ve_next;
|
|
} vdev_entry_t;
|
|
|
|
typedef struct pool_entry {
|
|
uint64_t pe_guid;
|
|
vdev_entry_t *pe_vdevs;
|
|
struct pool_entry *pe_next;
|
|
} pool_entry_t;
|
|
|
|
typedef struct name_entry {
|
|
char *ne_name;
|
|
uint64_t ne_guid;
|
|
uint64_t ne_order;
|
|
uint64_t ne_num_labels;
|
|
struct name_entry *ne_next;
|
|
} name_entry_t;
|
|
|
|
typedef struct pool_list {
|
|
pool_entry_t *pools;
|
|
name_entry_t *names;
|
|
} pool_list_t;
|
|
|
|
/*
|
|
* Go through and fix up any path and/or devid information for the given vdev
|
|
* configuration.
|
|
*/
|
|
static int
|
|
fix_paths(libpc_handle_t *hdl, nvlist_t *nv, name_entry_t *names)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t c, children;
|
|
uint64_t guid;
|
|
name_entry_t *ne, *best;
|
|
const char *path;
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) == 0) {
|
|
for (c = 0; c < children; c++)
|
|
if (fix_paths(hdl, child[c], names) != 0)
|
|
return (-1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This is a leaf (file or disk) vdev. In either case, go through
|
|
* the name list and see if we find a matching guid. If so, replace
|
|
* the path and see if we can calculate a new devid.
|
|
*
|
|
* There may be multiple names associated with a particular guid, in
|
|
* which case we have overlapping partitions or multiple paths to the
|
|
* same disk. In this case we prefer to use the path name which
|
|
* matches the ZPOOL_CONFIG_PATH. If no matching entry is found we
|
|
* use the lowest order device which corresponds to the first match
|
|
* while traversing the ZPOOL_IMPORT_PATH search path.
|
|
*/
|
|
verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
|
|
path = NULL;
|
|
|
|
best = NULL;
|
|
for (ne = names; ne != NULL; ne = ne->ne_next) {
|
|
if (ne->ne_guid == guid) {
|
|
if (path == NULL) {
|
|
best = ne;
|
|
break;
|
|
}
|
|
|
|
if ((strlen(path) == strlen(ne->ne_name)) &&
|
|
strncmp(path, ne->ne_name, strlen(path)) == 0) {
|
|
best = ne;
|
|
break;
|
|
}
|
|
|
|
if (best == NULL) {
|
|
best = ne;
|
|
continue;
|
|
}
|
|
|
|
/* Prefer paths with move vdev labels. */
|
|
if (ne->ne_num_labels > best->ne_num_labels) {
|
|
best = ne;
|
|
continue;
|
|
}
|
|
|
|
/* Prefer paths earlier in the search order. */
|
|
if (ne->ne_num_labels == best->ne_num_labels &&
|
|
ne->ne_order < best->ne_order) {
|
|
best = ne;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best == NULL)
|
|
return (0);
|
|
|
|
if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
|
|
return (-1);
|
|
|
|
update_vdev_config_dev_strs(nv);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add the given configuration to the list of known devices.
|
|
*/
|
|
static int
|
|
add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path,
|
|
int order, int num_labels, nvlist_t *config)
|
|
{
|
|
uint64_t pool_guid, vdev_guid, top_guid, txg, state;
|
|
pool_entry_t *pe;
|
|
vdev_entry_t *ve;
|
|
config_entry_t *ce;
|
|
name_entry_t *ne;
|
|
|
|
/*
|
|
* If this is a hot spare not currently in use or level 2 cache
|
|
* device, add it to the list of names to translate, but don't do
|
|
* anything else.
|
|
*/
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) == 0 &&
|
|
(state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
|
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
|
|
if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL)
|
|
return (-1);
|
|
|
|
if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) {
|
|
free(ne);
|
|
return (-1);
|
|
}
|
|
ne->ne_guid = vdev_guid;
|
|
ne->ne_order = order;
|
|
ne->ne_num_labels = num_labels;
|
|
ne->ne_next = pl->names;
|
|
pl->names = ne;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If we have a valid config but cannot read any of these fields, then
|
|
* it means we have a half-initialized label. In vdev_label_init()
|
|
* we write a label with txg == 0 so that we can identify the device
|
|
* in case the user refers to the same disk later on. If we fail to
|
|
* create the pool, we'll be left with a label in this state
|
|
* which should not be considered part of a valid pool.
|
|
*/
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
&pool_guid) != 0 ||
|
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
|
|
&vdev_guid) != 0 ||
|
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
|
|
&top_guid) != 0 ||
|
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0 || txg == 0) {
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* First, see if we know about this pool. If not, then add it to the
|
|
* list of known pools.
|
|
*/
|
|
for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
|
|
if (pe->pe_guid == pool_guid)
|
|
break;
|
|
}
|
|
|
|
if (pe == NULL) {
|
|
if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
|
|
return (-1);
|
|
}
|
|
pe->pe_guid = pool_guid;
|
|
pe->pe_next = pl->pools;
|
|
pl->pools = pe;
|
|
}
|
|
|
|
/*
|
|
* Second, see if we know about this toplevel vdev. Add it if its
|
|
* missing.
|
|
*/
|
|
for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
|
|
if (ve->ve_guid == top_guid)
|
|
break;
|
|
}
|
|
|
|
if (ve == NULL) {
|
|
if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
|
|
return (-1);
|
|
}
|
|
ve->ve_guid = top_guid;
|
|
ve->ve_next = pe->pe_vdevs;
|
|
pe->pe_vdevs = ve;
|
|
}
|
|
|
|
/*
|
|
* Third, see if we have a config with a matching transaction group. If
|
|
* so, then we do nothing. Otherwise, add it to the list of known
|
|
* configs.
|
|
*/
|
|
for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
|
|
if (ce->ce_txg == txg)
|
|
break;
|
|
}
|
|
|
|
if (ce == NULL) {
|
|
if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) {
|
|
return (-1);
|
|
}
|
|
ce->ce_txg = txg;
|
|
ce->ce_config = fnvlist_dup(config);
|
|
ce->ce_next = ve->ve_configs;
|
|
ve->ve_configs = ce;
|
|
}
|
|
|
|
/*
|
|
* At this point we've successfully added our config to the list of
|
|
* known configs. The last thing to do is add the vdev guid -> path
|
|
* mappings so that we can fix up the configuration as necessary before
|
|
* doing the import.
|
|
*/
|
|
if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL)
|
|
return (-1);
|
|
|
|
if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) {
|
|
free(ne);
|
|
return (-1);
|
|
}
|
|
|
|
ne->ne_guid = vdev_guid;
|
|
ne->ne_order = order;
|
|
ne->ne_num_labels = num_labels;
|
|
ne->ne_next = pl->names;
|
|
pl->names = ne;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid,
|
|
boolean_t *isactive)
|
|
{
|
|
ASSERT(hdl->lpc_ops->pco_pool_active != NULL);
|
|
|
|
int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name,
|
|
guid, isactive);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static nvlist_t *
|
|
zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig)
|
|
{
|
|
ASSERT(hdl->lpc_ops->pco_refresh_config != NULL);
|
|
|
|
return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle,
|
|
tryconfig));
|
|
}
|
|
|
|
/*
|
|
* Determine if the vdev id is a hole in the namespace.
|
|
*/
|
|
static boolean_t
|
|
vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
|
|
{
|
|
int c;
|
|
|
|
for (c = 0; c < holes; c++) {
|
|
|
|
/* Top-level is a hole */
|
|
if (hole_array[c] == id)
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Convert our list of pools into the definitive set of configurations. We
|
|
* start by picking the best config for each toplevel vdev. Once that's done,
|
|
* we assemble the toplevel vdevs into a full config for the pool. We make a
|
|
* pass to fix up any incorrect paths, and then add it to the main list to
|
|
* return to the user.
|
|
*/
|
|
static nvlist_t *
|
|
get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
|
|
nvlist_t *policy)
|
|
{
|
|
pool_entry_t *pe;
|
|
vdev_entry_t *ve;
|
|
config_entry_t *ce;
|
|
nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t i, nspares, nl2cache;
|
|
boolean_t config_seen;
|
|
uint64_t best_txg;
|
|
const char *name, *hostname = NULL;
|
|
uint64_t guid;
|
|
uint_t children = 0;
|
|
nvlist_t **child = NULL;
|
|
uint64_t *hole_array, max_id;
|
|
uint_t c;
|
|
boolean_t isactive;
|
|
nvlist_t *nvl;
|
|
boolean_t valid_top_config = B_FALSE;
|
|
|
|
if (nvlist_alloc(&ret, 0, 0) != 0)
|
|
goto nomem;
|
|
|
|
for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
|
|
uint64_t id, max_txg = 0, hostid = 0;
|
|
uint_t holes = 0;
|
|
|
|
if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
|
|
goto nomem;
|
|
config_seen = B_FALSE;
|
|
|
|
/*
|
|
* Iterate over all toplevel vdevs. Grab the pool configuration
|
|
* from the first one we find, and then go through the rest and
|
|
* add them as necessary to the 'vdevs' member of the config.
|
|
*/
|
|
for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
|
|
|
|
/*
|
|
* Determine the best configuration for this vdev by
|
|
* selecting the config with the latest transaction
|
|
* group.
|
|
*/
|
|
best_txg = 0;
|
|
for (ce = ve->ve_configs; ce != NULL;
|
|
ce = ce->ce_next) {
|
|
|
|
if (ce->ce_txg > best_txg) {
|
|
tmp = ce->ce_config;
|
|
best_txg = ce->ce_txg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We rely on the fact that the max txg for the
|
|
* pool will contain the most up-to-date information
|
|
* about the valid top-levels in the vdev namespace.
|
|
*/
|
|
if (best_txg > max_txg) {
|
|
(void) nvlist_remove(config,
|
|
ZPOOL_CONFIG_VDEV_CHILDREN,
|
|
DATA_TYPE_UINT64);
|
|
(void) nvlist_remove(config,
|
|
ZPOOL_CONFIG_HOLE_ARRAY,
|
|
DATA_TYPE_UINT64_ARRAY);
|
|
|
|
max_txg = best_txg;
|
|
hole_array = NULL;
|
|
holes = 0;
|
|
max_id = 0;
|
|
valid_top_config = B_FALSE;
|
|
|
|
if (nvlist_lookup_uint64(tmp,
|
|
ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
|
|
verify(nvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_VDEV_CHILDREN,
|
|
max_id) == 0);
|
|
valid_top_config = B_TRUE;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64_array(tmp,
|
|
ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
|
|
&holes) == 0) {
|
|
verify(nvlist_add_uint64_array(config,
|
|
ZPOOL_CONFIG_HOLE_ARRAY,
|
|
hole_array, holes) == 0);
|
|
}
|
|
}
|
|
|
|
if (!config_seen) {
|
|
/*
|
|
* Copy the relevant pieces of data to the pool
|
|
* configuration:
|
|
*
|
|
* version
|
|
* pool guid
|
|
* name
|
|
* comment (if available)
|
|
* compatibility features (if available)
|
|
* pool state
|
|
* hostid (if available)
|
|
* hostname (if available)
|
|
*/
|
|
uint64_t state, version;
|
|
const char *comment = NULL;
|
|
const char *compatibility = NULL;
|
|
|
|
version = fnvlist_lookup_uint64(tmp,
|
|
ZPOOL_CONFIG_VERSION);
|
|
fnvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_VERSION, version);
|
|
guid = fnvlist_lookup_uint64(tmp,
|
|
ZPOOL_CONFIG_POOL_GUID);
|
|
fnvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_POOL_GUID, guid);
|
|
name = fnvlist_lookup_string(tmp,
|
|
ZPOOL_CONFIG_POOL_NAME);
|
|
fnvlist_add_string(config,
|
|
ZPOOL_CONFIG_POOL_NAME, name);
|
|
|
|
if (nvlist_lookup_string(tmp,
|
|
ZPOOL_CONFIG_COMMENT, &comment) == 0)
|
|
fnvlist_add_string(config,
|
|
ZPOOL_CONFIG_COMMENT, comment);
|
|
|
|
if (nvlist_lookup_string(tmp,
|
|
ZPOOL_CONFIG_COMPATIBILITY,
|
|
&compatibility) == 0)
|
|
fnvlist_add_string(config,
|
|
ZPOOL_CONFIG_COMPATIBILITY,
|
|
compatibility);
|
|
|
|
state = fnvlist_lookup_uint64(tmp,
|
|
ZPOOL_CONFIG_POOL_STATE);
|
|
fnvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_POOL_STATE, state);
|
|
|
|
hostid = 0;
|
|
if (nvlist_lookup_uint64(tmp,
|
|
ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
|
|
fnvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_HOSTID, hostid);
|
|
hostname = fnvlist_lookup_string(tmp,
|
|
ZPOOL_CONFIG_HOSTNAME);
|
|
fnvlist_add_string(config,
|
|
ZPOOL_CONFIG_HOSTNAME, hostname);
|
|
}
|
|
|
|
config_seen = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Add this top-level vdev to the child array.
|
|
*/
|
|
verify(nvlist_lookup_nvlist(tmp,
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
|
|
verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
|
|
&id) == 0);
|
|
|
|
if (id >= children) {
|
|
nvlist_t **newchild;
|
|
|
|
newchild = zutil_alloc(hdl, (id + 1) *
|
|
sizeof (nvlist_t *));
|
|
if (newchild == NULL)
|
|
goto nomem;
|
|
|
|
for (c = 0; c < children; c++)
|
|
newchild[c] = child[c];
|
|
|
|
free(child);
|
|
child = newchild;
|
|
children = id + 1;
|
|
}
|
|
if (nvlist_dup(nvtop, &child[id], 0) != 0)
|
|
goto nomem;
|
|
|
|
}
|
|
|
|
/*
|
|
* If we have information about all the top-levels then
|
|
* clean up the nvlist which we've constructed. This
|
|
* means removing any extraneous devices that are
|
|
* beyond the valid range or adding devices to the end
|
|
* of our array which appear to be missing.
|
|
*/
|
|
if (valid_top_config) {
|
|
if (max_id < children) {
|
|
for (c = max_id; c < children; c++)
|
|
nvlist_free(child[c]);
|
|
children = max_id;
|
|
} else if (max_id > children) {
|
|
nvlist_t **newchild;
|
|
|
|
newchild = zutil_alloc(hdl, (max_id) *
|
|
sizeof (nvlist_t *));
|
|
if (newchild == NULL)
|
|
goto nomem;
|
|
|
|
for (c = 0; c < children; c++)
|
|
newchild[c] = child[c];
|
|
|
|
free(child);
|
|
child = newchild;
|
|
children = max_id;
|
|
}
|
|
}
|
|
|
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
&guid) == 0);
|
|
|
|
/*
|
|
* The vdev namespace may contain holes as a result of
|
|
* device removal. We must add them back into the vdev
|
|
* tree before we process any missing devices.
|
|
*/
|
|
if (holes > 0) {
|
|
ASSERT(valid_top_config);
|
|
|
|
for (c = 0; c < children; c++) {
|
|
nvlist_t *holey;
|
|
|
|
if (child[c] != NULL ||
|
|
!vdev_is_hole(hole_array, holes, c))
|
|
continue;
|
|
|
|
if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
|
|
0) != 0)
|
|
goto nomem;
|
|
|
|
/*
|
|
* Holes in the namespace are treated as
|
|
* "hole" top-level vdevs and have a
|
|
* special flag set on them.
|
|
*/
|
|
if (nvlist_add_string(holey,
|
|
ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_HOLE) != 0 ||
|
|
nvlist_add_uint64(holey,
|
|
ZPOOL_CONFIG_ID, c) != 0 ||
|
|
nvlist_add_uint64(holey,
|
|
ZPOOL_CONFIG_GUID, 0ULL) != 0) {
|
|
nvlist_free(holey);
|
|
goto nomem;
|
|
}
|
|
child[c] = holey;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look for any missing top-level vdevs. If this is the case,
|
|
* create a faked up 'missing' vdev as a placeholder. We cannot
|
|
* simply compress the child array, because the kernel performs
|
|
* certain checks to make sure the vdev IDs match their location
|
|
* in the configuration.
|
|
*/
|
|
for (c = 0; c < children; c++) {
|
|
if (child[c] == NULL) {
|
|
nvlist_t *missing;
|
|
if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
|
|
0) != 0)
|
|
goto nomem;
|
|
if (nvlist_add_string(missing,
|
|
ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_MISSING) != 0 ||
|
|
nvlist_add_uint64(missing,
|
|
ZPOOL_CONFIG_ID, c) != 0 ||
|
|
nvlist_add_uint64(missing,
|
|
ZPOOL_CONFIG_GUID, 0ULL) != 0) {
|
|
nvlist_free(missing);
|
|
goto nomem;
|
|
}
|
|
child[c] = missing;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Put all of this pool's top-level vdevs into a root vdev.
|
|
*/
|
|
if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
|
|
goto nomem;
|
|
if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_ROOT) != 0 ||
|
|
nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
|
|
nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
|
|
nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
|
|
(const nvlist_t **)child, children) != 0) {
|
|
nvlist_free(nvroot);
|
|
goto nomem;
|
|
}
|
|
|
|
for (c = 0; c < children; c++)
|
|
nvlist_free(child[c]);
|
|
free(child);
|
|
children = 0;
|
|
child = NULL;
|
|
|
|
/*
|
|
* Go through and fix up any paths and/or devids based on our
|
|
* known list of vdev GUID -> path mappings.
|
|
*/
|
|
if (fix_paths(hdl, nvroot, pl->names) != 0) {
|
|
nvlist_free(nvroot);
|
|
goto nomem;
|
|
}
|
|
|
|
/*
|
|
* Add the root vdev to this pool's configuration.
|
|
*/
|
|
if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
nvroot) != 0) {
|
|
nvlist_free(nvroot);
|
|
goto nomem;
|
|
}
|
|
nvlist_free(nvroot);
|
|
|
|
/*
|
|
* zdb uses this path to report on active pools that were
|
|
* imported or created using -R.
|
|
*/
|
|
if (active_ok)
|
|
goto add_pool;
|
|
|
|
/*
|
|
* Determine if this pool is currently active, in which case we
|
|
* can't actually import it.
|
|
*/
|
|
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
|
|
&name) == 0);
|
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
&guid) == 0);
|
|
|
|
if (zutil_pool_active(hdl, name, guid, &isactive) != 0)
|
|
goto error;
|
|
|
|
if (isactive) {
|
|
nvlist_free(config);
|
|
config = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (policy != NULL) {
|
|
if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
|
|
policy) != 0)
|
|
goto nomem;
|
|
}
|
|
|
|
if ((nvl = zutil_refresh_config(hdl, config)) == NULL) {
|
|
nvlist_free(config);
|
|
config = NULL;
|
|
continue;
|
|
}
|
|
|
|
nvlist_free(config);
|
|
config = nvl;
|
|
|
|
/*
|
|
* Go through and update the paths for spares, now that we have
|
|
* them.
|
|
*/
|
|
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&nvroot) == 0);
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
|
&spares, &nspares) == 0) {
|
|
for (i = 0; i < nspares; i++) {
|
|
if (fix_paths(hdl, spares[i], pl->names) != 0)
|
|
goto nomem;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the paths for l2cache devices.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
|
|
&l2cache, &nl2cache) == 0) {
|
|
for (i = 0; i < nl2cache; i++) {
|
|
if (fix_paths(hdl, l2cache[i], pl->names) != 0)
|
|
goto nomem;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore the original information read from the actual label.
|
|
*/
|
|
(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
|
|
DATA_TYPE_UINT64);
|
|
(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
|
|
DATA_TYPE_STRING);
|
|
if (hostid != 0) {
|
|
verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
|
|
hostid) == 0);
|
|
verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
|
|
hostname) == 0);
|
|
}
|
|
|
|
add_pool:
|
|
/*
|
|
* Add this pool to the list of configs.
|
|
*/
|
|
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
|
|
&name) == 0);
|
|
|
|
if (nvlist_add_nvlist(ret, name, config) != 0)
|
|
goto nomem;
|
|
|
|
nvlist_free(config);
|
|
config = NULL;
|
|
}
|
|
|
|
return (ret);
|
|
|
|
nomem:
|
|
(void) zutil_no_memory(hdl);
|
|
error:
|
|
nvlist_free(config);
|
|
nvlist_free(ret);
|
|
for (c = 0; c < children; c++)
|
|
nvlist_free(child[c]);
|
|
free(child);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Return the offset of the given label.
|
|
*/
|
|
static uint64_t
|
|
label_offset(uint64_t size, int l)
|
|
{
|
|
ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
|
|
return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
|
|
0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
|
|
}
|
|
|
|
/*
|
|
* The same description applies as to zpool_read_label below,
|
|
* except here we do it without aio, presumably because an aio call
|
|
* errored out in a way we think not using it could circumvent.
|
|
*/
|
|
static int
|
|
zpool_read_label_slow(int fd, nvlist_t **config, int *num_labels)
|
|
{
|
|
struct stat64 statbuf;
|
|
int l, count = 0;
|
|
vdev_phys_t *label;
|
|
nvlist_t *expected_config = NULL;
|
|
uint64_t expected_guid = 0, size;
|
|
|
|
*config = NULL;
|
|
|
|
if (fstat64_blk(fd, &statbuf) == -1)
|
|
return (0);
|
|
size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
|
|
|
|
label = (vdev_phys_t *)umem_alloc_aligned(sizeof (*label), PAGESIZE,
|
|
UMEM_DEFAULT);
|
|
if (label == NULL)
|
|
return (-1);
|
|
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
|
uint64_t state, guid, txg;
|
|
off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE;
|
|
|
|
if (pread64(fd, label, sizeof (vdev_phys_t),
|
|
offset) != sizeof (vdev_phys_t))
|
|
continue;
|
|
|
|
if (nvlist_unpack(label->vp_nvlist,
|
|
sizeof (label->vp_nvlist), config, 0) != 0)
|
|
continue;
|
|
|
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
|
|
&guid) != 0 || guid == 0) {
|
|
nvlist_free(*config);
|
|
continue;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0 || state > POOL_STATE_L2CACHE) {
|
|
nvlist_free(*config);
|
|
continue;
|
|
}
|
|
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
(nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0 || txg == 0)) {
|
|
nvlist_free(*config);
|
|
continue;
|
|
}
|
|
|
|
if (expected_guid) {
|
|
if (expected_guid == guid)
|
|
count++;
|
|
|
|
nvlist_free(*config);
|
|
} else {
|
|
expected_config = *config;
|
|
expected_guid = guid;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
if (num_labels != NULL)
|
|
*num_labels = count;
|
|
|
|
umem_free_aligned(label, sizeof (*label));
|
|
*config = expected_config;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given a file descriptor, read the label information and return an nvlist
|
|
* describing the configuration, if there is one. The number of valid
|
|
* labels found will be returned in num_labels when non-NULL.
|
|
*/
|
|
int
|
|
zpool_read_label(int fd, nvlist_t **config, int *num_labels)
|
|
{
|
|
#ifndef HAVE_AIO_H
|
|
return (zpool_read_label_slow(fd, config, num_labels));
|
|
#else
|
|
struct stat64 statbuf;
|
|
struct aiocb aiocbs[VDEV_LABELS];
|
|
struct aiocb *aiocbps[VDEV_LABELS];
|
|
vdev_phys_t *labels;
|
|
nvlist_t *expected_config = NULL;
|
|
uint64_t expected_guid = 0, size;
|
|
int error, l, count = 0;
|
|
|
|
*config = NULL;
|
|
|
|
if (fstat64_blk(fd, &statbuf) == -1)
|
|
return (0);
|
|
size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
|
|
|
|
labels = (vdev_phys_t *)umem_alloc_aligned(
|
|
VDEV_LABELS * sizeof (*labels), PAGESIZE, UMEM_DEFAULT);
|
|
if (labels == NULL)
|
|
return (-1);
|
|
|
|
memset(aiocbs, 0, sizeof (aiocbs));
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
|
off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE;
|
|
|
|
aiocbs[l].aio_fildes = fd;
|
|
aiocbs[l].aio_offset = offset;
|
|
aiocbs[l].aio_buf = &labels[l];
|
|
aiocbs[l].aio_nbytes = sizeof (vdev_phys_t);
|
|
aiocbs[l].aio_lio_opcode = LIO_READ;
|
|
aiocbps[l] = &aiocbs[l];
|
|
}
|
|
|
|
if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) {
|
|
int saved_errno = errno;
|
|
boolean_t do_slow = B_FALSE;
|
|
error = -1;
|
|
|
|
if (errno == EAGAIN || errno == EINTR || errno == EIO) {
|
|
/*
|
|
* A portion of the requests may have been submitted.
|
|
* Clean them up.
|
|
*/
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
|
errno = 0;
|
|
switch (aio_error(&aiocbs[l])) {
|
|
case EINVAL:
|
|
break;
|
|
case EINPROGRESS:
|
|
// This shouldn't be possible to
|
|
// encounter, die if we do.
|
|
ASSERT(B_FALSE);
|
|
zfs_fallthrough;
|
|
case EOPNOTSUPP:
|
|
case ENOSYS:
|
|
do_slow = B_TRUE;
|
|
zfs_fallthrough;
|
|
case 0:
|
|
default:
|
|
(void) aio_return(&aiocbs[l]);
|
|
}
|
|
}
|
|
}
|
|
if (do_slow) {
|
|
/*
|
|
* At least some IO involved access unsafe-for-AIO
|
|
* files. Let's try again, without AIO this time.
|
|
*/
|
|
error = zpool_read_label_slow(fd, config, num_labels);
|
|
saved_errno = errno;
|
|
}
|
|
umem_free_aligned(labels, VDEV_LABELS * sizeof (*labels));
|
|
errno = saved_errno;
|
|
return (error);
|
|
}
|
|
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
|
uint64_t state, guid, txg;
|
|
|
|
if (aio_return(&aiocbs[l]) != sizeof (vdev_phys_t))
|
|
continue;
|
|
|
|
if (nvlist_unpack(labels[l].vp_nvlist,
|
|
sizeof (labels[l].vp_nvlist), config, 0) != 0)
|
|
continue;
|
|
|
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
|
|
&guid) != 0 || guid == 0) {
|
|
nvlist_free(*config);
|
|
continue;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0 || state > POOL_STATE_L2CACHE) {
|
|
nvlist_free(*config);
|
|
continue;
|
|
}
|
|
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
(nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0 || txg == 0)) {
|
|
nvlist_free(*config);
|
|
continue;
|
|
}
|
|
|
|
if (expected_guid) {
|
|
if (expected_guid == guid)
|
|
count++;
|
|
|
|
nvlist_free(*config);
|
|
} else {
|
|
expected_config = *config;
|
|
expected_guid = guid;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
if (num_labels != NULL)
|
|
*num_labels = count;
|
|
|
|
umem_free_aligned(labels, VDEV_LABELS * sizeof (*labels));
|
|
*config = expected_config;
|
|
|
|
return (0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Sorted by full path and then vdev guid to allow for multiple entries with
|
|
* the same full path name. This is required because it's possible to
|
|
* have multiple block devices with labels that refer to the same
|
|
* ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both
|
|
* entries need to be added to the cache. Scenarios where this can occur
|
|
* include overwritten pool labels, devices which are visible from multiple
|
|
* hosts and multipath devices.
|
|
*/
|
|
int
|
|
slice_cache_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
|
|
const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
|
|
uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid;
|
|
uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid;
|
|
int rv;
|
|
|
|
rv = TREE_ISIGN(strcmp(nm1, nm2));
|
|
if (rv)
|
|
return (rv);
|
|
|
|
return (TREE_CMP(guid1, guid2));
|
|
}
|
|
|
|
static int
|
|
label_paths_impl(libpc_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid,
|
|
uint64_t vdev_guid, const char **path, const char **devid)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t c, children;
|
|
uint64_t guid;
|
|
const char *val;
|
|
int error;
|
|
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) == 0) {
|
|
for (c = 0; c < children; c++) {
|
|
error = label_paths_impl(hdl, child[c],
|
|
pool_guid, vdev_guid, path, devid);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
if (nvroot == NULL)
|
|
return (0);
|
|
|
|
error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid);
|
|
if ((error != 0) || (guid != vdev_guid))
|
|
return (0);
|
|
|
|
error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val);
|
|
if (error == 0)
|
|
*path = val;
|
|
|
|
error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val);
|
|
if (error == 0)
|
|
*devid = val;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID
|
|
* and store these strings as config_path and devid_path respectively.
|
|
* The returned pointers are only valid as long as label remains valid.
|
|
*/
|
|
int
|
|
label_paths(libpc_handle_t *hdl, nvlist_t *label, const char **path,
|
|
const char **devid)
|
|
{
|
|
nvlist_t *nvroot;
|
|
uint64_t pool_guid;
|
|
uint64_t vdev_guid;
|
|
|
|
*path = NULL;
|
|
*devid = NULL;
|
|
|
|
if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid))
|
|
return (ENOENT);
|
|
|
|
return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path,
|
|
devid));
|
|
}
|
|
|
|
static void
|
|
zpool_find_import_scan_add_slice(libpc_handle_t *hdl, pthread_mutex_t *lock,
|
|
avl_tree_t *cache, const char *path, const char *name, int order)
|
|
{
|
|
avl_index_t where;
|
|
rdsk_node_t *slice;
|
|
|
|
slice = zutil_alloc(hdl, sizeof (rdsk_node_t));
|
|
if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) {
|
|
free(slice);
|
|
return;
|
|
}
|
|
slice->rn_vdev_guid = 0;
|
|
slice->rn_lock = lock;
|
|
slice->rn_avl = cache;
|
|
slice->rn_hdl = hdl;
|
|
slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET;
|
|
slice->rn_labelpaths = B_FALSE;
|
|
|
|
pthread_mutex_lock(lock);
|
|
if (avl_find(cache, slice, &where)) {
|
|
free(slice->rn_name);
|
|
free(slice);
|
|
} else {
|
|
avl_insert(cache, slice, where);
|
|
}
|
|
pthread_mutex_unlock(lock);
|
|
}
|
|
|
|
static int
|
|
zpool_find_import_scan_dir(libpc_handle_t *hdl, pthread_mutex_t *lock,
|
|
avl_tree_t *cache, const char *dir, int order)
|
|
{
|
|
int error;
|
|
char path[MAXPATHLEN];
|
|
struct dirent64 *dp;
|
|
DIR *dirp;
|
|
|
|
if (realpath(dir, path) == NULL) {
|
|
error = errno;
|
|
if (error == ENOENT)
|
|
return (0);
|
|
|
|
zutil_error_aux(hdl, "%s", strerror(error));
|
|
(void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(TEXT_DOMAIN,
|
|
"cannot resolve path '%s'"), dir);
|
|
return (error);
|
|
}
|
|
|
|
dirp = opendir(path);
|
|
if (dirp == NULL) {
|
|
error = errno;
|
|
zutil_error_aux(hdl, "%s", strerror(error));
|
|
(void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(TEXT_DOMAIN,
|
|
"cannot open '%s'"), path);
|
|
return (error);
|
|
}
|
|
|
|
while ((dp = readdir64(dirp)) != NULL) {
|
|
const char *name = dp->d_name;
|
|
if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0)
|
|
continue;
|
|
|
|
switch (dp->d_type) {
|
|
case DT_UNKNOWN:
|
|
case DT_BLK:
|
|
case DT_LNK:
|
|
#ifdef __FreeBSD__
|
|
case DT_CHR:
|
|
#endif
|
|
case DT_REG:
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
zpool_find_import_scan_add_slice(hdl, lock, cache, path, name,
|
|
order);
|
|
}
|
|
|
|
(void) closedir(dirp);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zpool_find_import_scan_path(libpc_handle_t *hdl, pthread_mutex_t *lock,
|
|
avl_tree_t *cache, const char *dir, int order)
|
|
{
|
|
int error = 0;
|
|
char path[MAXPATHLEN];
|
|
char *d = NULL;
|
|
ssize_t dl;
|
|
const char *dpath, *name;
|
|
|
|
/*
|
|
* Separate the directory and the basename.
|
|
* We do this so that we can get the realpath of
|
|
* the directory. We don't get the realpath on the
|
|
* whole path because if it's a symlink, we want the
|
|
* path of the symlink not where it points to.
|
|
*/
|
|
name = zfs_basename(dir);
|
|
if ((dl = zfs_dirnamelen(dir)) == -1)
|
|
dpath = ".";
|
|
else
|
|
dpath = d = zutil_strndup(hdl, dir, dl);
|
|
|
|
if (realpath(dpath, path) == NULL) {
|
|
error = errno;
|
|
if (error == ENOENT) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
zutil_error_aux(hdl, "%s", strerror(error));
|
|
(void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(TEXT_DOMAIN,
|
|
"cannot resolve path '%s'"), dir);
|
|
goto out;
|
|
}
|
|
|
|
zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order);
|
|
|
|
out:
|
|
free(d);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Scan a list of directories for zfs devices.
|
|
*/
|
|
static int
|
|
zpool_find_import_scan(libpc_handle_t *hdl, pthread_mutex_t *lock,
|
|
avl_tree_t **slice_cache, const char * const *dir, size_t dirs)
|
|
{
|
|
avl_tree_t *cache;
|
|
rdsk_node_t *slice;
|
|
void *cookie;
|
|
int i, error;
|
|
|
|
*slice_cache = NULL;
|
|
cache = zutil_alloc(hdl, sizeof (avl_tree_t));
|
|
avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t),
|
|
offsetof(rdsk_node_t, rn_node));
|
|
|
|
for (i = 0; i < dirs; i++) {
|
|
struct stat sbuf;
|
|
|
|
if (stat(dir[i], &sbuf) != 0) {
|
|
error = errno;
|
|
if (error == ENOENT)
|
|
continue;
|
|
|
|
zutil_error_aux(hdl, "%s", strerror(error));
|
|
(void) zutil_error_fmt(hdl, LPC_BADPATH, dgettext(
|
|
TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]);
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* If dir[i] is a directory, we walk through it and add all
|
|
* the entries to the cache. If it's not a directory, we just
|
|
* add it to the cache.
|
|
*/
|
|
if (S_ISDIR(sbuf.st_mode)) {
|
|
if ((error = zpool_find_import_scan_dir(hdl, lock,
|
|
cache, dir[i], i)) != 0)
|
|
goto error;
|
|
} else {
|
|
if ((error = zpool_find_import_scan_path(hdl, lock,
|
|
cache, dir[i], i)) != 0)
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
*slice_cache = cache;
|
|
return (0);
|
|
|
|
error:
|
|
cookie = NULL;
|
|
while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
|
|
free(slice->rn_name);
|
|
free(slice);
|
|
}
|
|
free(cache);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Given a list of directories to search, find all pools stored on disk. This
|
|
* includes partial pools which are not available to import. If no args are
|
|
* given (argc is 0), then the default directory (/dev/dsk) is searched.
|
|
* poolname or guid (but not both) are provided by the caller when trying
|
|
* to import a specific pool.
|
|
*/
|
|
static nvlist_t *
|
|
zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg,
|
|
pthread_mutex_t *lock, avl_tree_t *cache)
|
|
{
|
|
(void) lock;
|
|
nvlist_t *ret = NULL;
|
|
pool_list_t pools = { 0 };
|
|
pool_entry_t *pe, *penext;
|
|
vdev_entry_t *ve, *venext;
|
|
config_entry_t *ce, *cenext;
|
|
name_entry_t *ne, *nenext;
|
|
rdsk_node_t *slice;
|
|
void *cookie;
|
|
tpool_t *t;
|
|
|
|
verify(iarg->poolname == NULL || iarg->guid == 0);
|
|
|
|
/*
|
|
* Create a thread pool to parallelize the process of reading and
|
|
* validating labels, a large number of threads can be used due to
|
|
* minimal contention.
|
|
*/
|
|
t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL);
|
|
for (slice = avl_first(cache); slice;
|
|
(slice = avl_walk(cache, slice, AVL_AFTER)))
|
|
(void) tpool_dispatch(t, zpool_open_func, slice);
|
|
|
|
tpool_wait(t);
|
|
tpool_destroy(t);
|
|
|
|
/*
|
|
* Process the cache, filtering out any entries which are not
|
|
* for the specified pool then adding matching label configs.
|
|
*/
|
|
cookie = NULL;
|
|
while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
|
|
if (slice->rn_config != NULL) {
|
|
nvlist_t *config = slice->rn_config;
|
|
boolean_t matched = B_TRUE;
|
|
boolean_t aux = B_FALSE;
|
|
int fd;
|
|
|
|
/*
|
|
* Check if it's a spare or l2cache device. If it is,
|
|
* we need to skip the name and guid check since they
|
|
* don't exist on aux device label.
|
|
*/
|
|
if (iarg->poolname != NULL || iarg->guid != 0) {
|
|
uint64_t state;
|
|
aux = nvlist_lookup_uint64(config,
|
|
ZPOOL_CONFIG_POOL_STATE, &state) == 0 &&
|
|
(state == POOL_STATE_SPARE ||
|
|
state == POOL_STATE_L2CACHE);
|
|
}
|
|
|
|
if (iarg->poolname != NULL && !aux) {
|
|
const char *pname;
|
|
|
|
matched = nvlist_lookup_string(config,
|
|
ZPOOL_CONFIG_POOL_NAME, &pname) == 0 &&
|
|
strcmp(iarg->poolname, pname) == 0;
|
|
} else if (iarg->guid != 0 && !aux) {
|
|
uint64_t this_guid;
|
|
|
|
matched = nvlist_lookup_uint64(config,
|
|
ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 &&
|
|
iarg->guid == this_guid;
|
|
}
|
|
if (matched) {
|
|
/*
|
|
* Verify all remaining entries can be opened
|
|
* exclusively. This will prune all underlying
|
|
* multipath devices which otherwise could
|
|
* result in the vdev appearing as UNAVAIL.
|
|
*
|
|
* Under zdb, this step isn't required and
|
|
* would prevent a zdb -e of active pools with
|
|
* no cachefile.
|
|
*/
|
|
fd = open(slice->rn_name,
|
|
O_RDONLY | O_EXCL | O_CLOEXEC);
|
|
if (fd >= 0 || iarg->can_be_active) {
|
|
if (fd >= 0)
|
|
close(fd);
|
|
add_config(hdl, &pools,
|
|
slice->rn_name, slice->rn_order,
|
|
slice->rn_num_labels, config);
|
|
}
|
|
}
|
|
nvlist_free(config);
|
|
}
|
|
free(slice->rn_name);
|
|
free(slice);
|
|
}
|
|
avl_destroy(cache);
|
|
free(cache);
|
|
|
|
ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
|
|
|
|
for (pe = pools.pools; pe != NULL; pe = penext) {
|
|
penext = pe->pe_next;
|
|
for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
|
|
venext = ve->ve_next;
|
|
for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
|
|
cenext = ce->ce_next;
|
|
nvlist_free(ce->ce_config);
|
|
free(ce);
|
|
}
|
|
free(ve);
|
|
}
|
|
free(pe);
|
|
}
|
|
|
|
for (ne = pools.names; ne != NULL; ne = nenext) {
|
|
nenext = ne->ne_next;
|
|
free(ne->ne_name);
|
|
free(ne);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Given a config, discover the paths for the devices which
|
|
* exist in the config.
|
|
*/
|
|
static int
|
|
discover_cached_paths(libpc_handle_t *hdl, nvlist_t *nv,
|
|
avl_tree_t *cache, pthread_mutex_t *lock)
|
|
{
|
|
const char *path = NULL;
|
|
ssize_t dl;
|
|
uint_t children;
|
|
nvlist_t **child;
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) == 0) {
|
|
for (int c = 0; c < children; c++) {
|
|
discover_cached_paths(hdl, child[c], cache, lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Once we have the path, we need to add the directory to
|
|
* our directory cache.
|
|
*/
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0) {
|
|
int ret;
|
|
char c = '\0';
|
|
if ((dl = zfs_dirnamelen(path)) == -1) {
|
|
path = ".";
|
|
} else {
|
|
c = path[dl];
|
|
((char *)path)[dl] = '\0';
|
|
|
|
}
|
|
ret = zpool_find_import_scan_dir(hdl, lock, cache,
|
|
path, 0);
|
|
if (c != '\0')
|
|
((char *)path)[dl] = c;
|
|
|
|
return (ret);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given a cache file, return the contents as a list of importable pools.
|
|
* poolname or guid (but not both) are provided by the caller when trying
|
|
* to import a specific pool.
|
|
*/
|
|
static nvlist_t *
|
|
zpool_find_import_cached(libpc_handle_t *hdl, importargs_t *iarg)
|
|
{
|
|
char *buf;
|
|
int fd;
|
|
struct stat64 statbuf;
|
|
nvlist_t *raw, *src, *dst;
|
|
nvlist_t *pools;
|
|
nvpair_t *elem;
|
|
const char *name;
|
|
uint64_t this_guid;
|
|
boolean_t active;
|
|
|
|
verify(iarg->poolname == NULL || iarg->guid == 0);
|
|
|
|
if ((fd = open(iarg->cachefile, O_RDONLY | O_CLOEXEC)) < 0) {
|
|
zutil_error_aux(hdl, "%s", strerror(errno));
|
|
(void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN,
|
|
"failed to open cache file"));
|
|
return (NULL);
|
|
}
|
|
|
|
if (fstat64(fd, &statbuf) != 0) {
|
|
zutil_error_aux(hdl, "%s", strerror(errno));
|
|
(void) close(fd);
|
|
(void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN,
|
|
"failed to get size of cache file"));
|
|
return (NULL);
|
|
}
|
|
|
|
if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) {
|
|
(void) close(fd);
|
|
return (NULL);
|
|
}
|
|
|
|
if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
|
|
(void) close(fd);
|
|
free(buf);
|
|
(void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN,
|
|
"failed to read cache file contents"));
|
|
return (NULL);
|
|
}
|
|
|
|
(void) close(fd);
|
|
|
|
if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
|
|
free(buf);
|
|
(void) zutil_error(hdl, LPC_BADCACHE, dgettext(TEXT_DOMAIN,
|
|
"invalid or corrupt cache file contents"));
|
|
return (NULL);
|
|
}
|
|
|
|
free(buf);
|
|
|
|
/*
|
|
* Go through and get the current state of the pools and refresh their
|
|
* state.
|
|
*/
|
|
if (nvlist_alloc(&pools, 0, 0) != 0) {
|
|
(void) zutil_no_memory(hdl);
|
|
nvlist_free(raw);
|
|
return (NULL);
|
|
}
|
|
|
|
elem = NULL;
|
|
while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
|
|
src = fnvpair_value_nvlist(elem);
|
|
|
|
name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
|
|
if (iarg->poolname != NULL && strcmp(iarg->poolname, name) != 0)
|
|
continue;
|
|
|
|
this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
|
|
if (iarg->guid != 0 && iarg->guid != this_guid)
|
|
continue;
|
|
|
|
if (zutil_pool_active(hdl, name, this_guid, &active) != 0) {
|
|
nvlist_free(raw);
|
|
nvlist_free(pools);
|
|
return (NULL);
|
|
}
|
|
|
|
if (active)
|
|
continue;
|
|
|
|
if (iarg->scan) {
|
|
uint64_t saved_guid = iarg->guid;
|
|
const char *saved_poolname = iarg->poolname;
|
|
pthread_mutex_t lock;
|
|
|
|
/*
|
|
* Create the device cache that will hold the
|
|
* devices we will scan based on the cachefile.
|
|
* This will get destroyed and freed by
|
|
* zpool_find_import_impl.
|
|
*/
|
|
avl_tree_t *cache = zutil_alloc(hdl,
|
|
sizeof (avl_tree_t));
|
|
avl_create(cache, slice_cache_compare,
|
|
sizeof (rdsk_node_t),
|
|
offsetof(rdsk_node_t, rn_node));
|
|
nvlist_t *nvroot = fnvlist_lookup_nvlist(src,
|
|
ZPOOL_CONFIG_VDEV_TREE);
|
|
|
|
/*
|
|
* We only want to find the pool with this_guid.
|
|
* We will reset these values back later.
|
|
*/
|
|
iarg->guid = this_guid;
|
|
iarg->poolname = NULL;
|
|
|
|
/*
|
|
* We need to build up a cache of devices that exists
|
|
* in the paths pointed to by the cachefile. This allows
|
|
* us to preserve the device namespace that was
|
|
* originally specified by the user but also lets us
|
|
* scan devices in those directories in case they had
|
|
* been renamed.
|
|
*/
|
|
pthread_mutex_init(&lock, NULL);
|
|
discover_cached_paths(hdl, nvroot, cache, &lock);
|
|
nvlist_t *nv = zpool_find_import_impl(hdl, iarg,
|
|
&lock, cache);
|
|
pthread_mutex_destroy(&lock);
|
|
|
|
/*
|
|
* zpool_find_import_impl will return back
|
|
* a list of pools that it found based on the
|
|
* device cache. There should only be one pool
|
|
* since we're looking for a specific guid.
|
|
* We will use that pool to build up the final
|
|
* pool nvlist which is returned back to the
|
|
* caller.
|
|
*/
|
|
nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
|
|
if (pair == NULL)
|
|
continue;
|
|
fnvlist_add_nvlist(pools, nvpair_name(pair),
|
|
fnvpair_value_nvlist(pair));
|
|
|
|
VERIFY3P(nvlist_next_nvpair(nv, pair), ==, NULL);
|
|
|
|
iarg->guid = saved_guid;
|
|
iarg->poolname = saved_poolname;
|
|
continue;
|
|
}
|
|
|
|
if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
|
|
iarg->cachefile) != 0) {
|
|
(void) zutil_no_memory(hdl);
|
|
nvlist_free(raw);
|
|
nvlist_free(pools);
|
|
return (NULL);
|
|
}
|
|
|
|
update_vdevs_config_dev_sysfs_path(src);
|
|
|
|
if ((dst = zutil_refresh_config(hdl, src)) == NULL) {
|
|
nvlist_free(raw);
|
|
nvlist_free(pools);
|
|
return (NULL);
|
|
}
|
|
|
|
if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
|
|
(void) zutil_no_memory(hdl);
|
|
nvlist_free(dst);
|
|
nvlist_free(raw);
|
|
nvlist_free(pools);
|
|
return (NULL);
|
|
}
|
|
nvlist_free(dst);
|
|
}
|
|
nvlist_free(raw);
|
|
return (pools);
|
|
}
|
|
|
|
static nvlist_t *
|
|
zpool_find_import(libpc_handle_t *hdl, importargs_t *iarg)
|
|
{
|
|
pthread_mutex_t lock;
|
|
avl_tree_t *cache;
|
|
nvlist_t *pools = NULL;
|
|
|
|
verify(iarg->poolname == NULL || iarg->guid == 0);
|
|
pthread_mutex_init(&lock, NULL);
|
|
|
|
/*
|
|
* Locate pool member vdevs by blkid or by directory scanning.
|
|
* On success a newly allocated AVL tree which is populated with an
|
|
* entry for each discovered vdev will be returned in the cache.
|
|
* It's the caller's responsibility to consume and destroy this tree.
|
|
*/
|
|
if (iarg->scan || iarg->paths != 0) {
|
|
size_t dirs = iarg->paths;
|
|
const char * const *dir = (const char * const *)iarg->path;
|
|
|
|
if (dirs == 0)
|
|
dir = zpool_default_search_paths(&dirs);
|
|
|
|
if (zpool_find_import_scan(hdl, &lock, &cache,
|
|
dir, dirs) != 0) {
|
|
pthread_mutex_destroy(&lock);
|
|
return (NULL);
|
|
}
|
|
} else {
|
|
if (zpool_find_import_blkid(hdl, &lock, &cache) != 0) {
|
|
pthread_mutex_destroy(&lock);
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
pools = zpool_find_import_impl(hdl, iarg, &lock, cache);
|
|
pthread_mutex_destroy(&lock);
|
|
return (pools);
|
|
}
|
|
|
|
|
|
nvlist_t *
|
|
zpool_search_import(libpc_handle_t *hdl, importargs_t *import)
|
|
{
|
|
nvlist_t *pools = NULL;
|
|
|
|
verify(import->poolname == NULL || import->guid == 0);
|
|
|
|
if (import->cachefile != NULL)
|
|
pools = zpool_find_import_cached(hdl, import);
|
|
else
|
|
pools = zpool_find_import(hdl, import);
|
|
|
|
if ((pools == NULL || nvlist_empty(pools)) &&
|
|
hdl->lpc_open_access_error && geteuid() != 0) {
|
|
(void) zutil_error(hdl, LPC_EACCESS, dgettext(TEXT_DOMAIN,
|
|
"no pools found"));
|
|
}
|
|
|
|
return (pools);
|
|
}
|
|
|
|
static boolean_t
|
|
pool_match(nvlist_t *cfg, const char *tgt)
|
|
{
|
|
uint64_t v, guid = strtoull(tgt, NULL, 0);
|
|
const char *s;
|
|
|
|
if (guid != 0) {
|
|
if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0)
|
|
return (v == guid);
|
|
} else {
|
|
if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0)
|
|
return (strcmp(s, tgt) == 0);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
int
|
|
zpool_find_config(libpc_handle_t *hdl, const char *target, nvlist_t **configp,
|
|
importargs_t *args)
|
|
{
|
|
nvlist_t *pools;
|
|
nvlist_t *match = NULL;
|
|
nvlist_t *config = NULL;
|
|
char *sepp = NULL;
|
|
int count = 0;
|
|
char *targetdup = strdup(target);
|
|
|
|
if (targetdup == NULL)
|
|
return (ENOMEM);
|
|
|
|
*configp = NULL;
|
|
|
|
if ((sepp = strpbrk(targetdup, "/@")) != NULL)
|
|
*sepp = '\0';
|
|
|
|
pools = zpool_search_import(hdl, args);
|
|
|
|
if (pools != NULL) {
|
|
nvpair_t *elem = NULL;
|
|
while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
|
|
VERIFY0(nvpair_value_nvlist(elem, &config));
|
|
if (pool_match(config, targetdup)) {
|
|
count++;
|
|
if (match != NULL) {
|
|
/* multiple matches found */
|
|
continue;
|
|
} else {
|
|
match = fnvlist_dup(config);
|
|
}
|
|
}
|
|
}
|
|
fnvlist_free(pools);
|
|
}
|
|
|
|
if (count == 0) {
|
|
free(targetdup);
|
|
return (ENOENT);
|
|
}
|
|
|
|
if (count > 1) {
|
|
free(targetdup);
|
|
fnvlist_free(match);
|
|
return (EINVAL);
|
|
}
|
|
|
|
*configp = match;
|
|
free(targetdup);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Internal function for iterating over the vdevs.
|
|
*
|
|
* For each vdev, func() will be called and will be passed 'zhp' (which is
|
|
* typically the zpool_handle_t cast as a void pointer), the vdev's nvlist, and
|
|
* a user-defined data pointer).
|
|
*
|
|
* The return values from all the func() calls will be OR'd together and
|
|
* returned.
|
|
*/
|
|
int
|
|
for_each_vdev_cb(void *zhp, nvlist_t *nv, pool_vdev_iter_f func,
|
|
void *data)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t c, children;
|
|
int ret = 0;
|
|
int i;
|
|
const char *type;
|
|
|
|
const char *list[] = {
|
|
ZPOOL_CONFIG_SPARES,
|
|
ZPOOL_CONFIG_L2CACHE,
|
|
ZPOOL_CONFIG_CHILDREN
|
|
};
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
|
|
return (ret);
|
|
|
|
/* Don't run our function on indirect vdevs */
|
|
if (strcmp(type, VDEV_TYPE_INDIRECT) != 0) {
|
|
ret |= func(zhp, nv, data);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(list); i++) {
|
|
if (nvlist_lookup_nvlist_array(nv, list[i], &child,
|
|
&children) == 0) {
|
|
for (c = 0; c < children; c++) {
|
|
uint64_t ishole = 0;
|
|
|
|
(void) nvlist_lookup_uint64(child[c],
|
|
ZPOOL_CONFIG_IS_HOLE, &ishole);
|
|
|
|
if (ishole)
|
|
continue;
|
|
|
|
ret |= for_each_vdev_cb(zhp, child[c],
|
|
func, data);
|
|
}
|
|
}
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Given an ZPOOL_CONFIG_VDEV_TREE nvpair, iterate over all the vdevs, calling
|
|
* func() for each one. func() is passed the vdev's nvlist and an optional
|
|
* user-defined 'data' pointer.
|
|
*/
|
|
int
|
|
for_each_vdev_in_nvlist(nvlist_t *nvroot, pool_vdev_iter_f func, void *data)
|
|
{
|
|
return (for_each_vdev_cb(NULL, nvroot, func, data));
|
|
}
|