mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-18 14:07:10 +03:00
d1d47691c2
When sending raw encrypted datasets the user space accounting is present when it's not expected to be. This leads to the subsequent mount failure due a checksum error when verifying the local mac. Fix this by clearing the OBJSET_FLAG_USERACCOUNTING_COMPLETE and reset the local mac. This allows the user accounting to be correctly updated on first mount using the normal upgrade process. Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-By: Tom Caputi <caputit1@tcnj.edu> Signed-off-by: George Amanakis <gamanakis@gmail.com> Closes #10523 Closes #11221
2864 lines
78 KiB
C
2864 lines
78 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* This file and its contents are supplied under the terms of the
|
|
* Common Development and Distribution License ("CDDL"), version 1.0.
|
|
* You may only use this file in accordance with the terms of version
|
|
* 1.0 of the CDDL.
|
|
*
|
|
* A full copy of the text of the CDDL should have accompanied this
|
|
* source. A copy of the CDDL is also available via the Internet at
|
|
* http://www.illumos.org/license/CDDL.
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2017, Datto, Inc. All rights reserved.
|
|
* Copyright (c) 2018 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dsl_crypt.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/zvol.h>
|
|
|
|
/*
|
|
* This file's primary purpose is for managing master encryption keys in
|
|
* memory and on disk. For more info on how these keys are used, see the
|
|
* block comment in zio_crypt.c.
|
|
*
|
|
* All master keys are stored encrypted on disk in the form of the DSL
|
|
* Crypto Key ZAP object. The binary key data in this object is always
|
|
* randomly generated and is encrypted with the user's wrapping key. This
|
|
* layer of indirection allows the user to change their key without
|
|
* needing to re-encrypt the entire dataset. The ZAP also holds on to the
|
|
* (non-encrypted) encryption algorithm identifier, IV, and MAC needed to
|
|
* safely decrypt the master key. For more info on the user's key see the
|
|
* block comment in libzfs_crypto.c
|
|
*
|
|
* In-memory encryption keys are managed through the spa_keystore. The
|
|
* keystore consists of 3 AVL trees, which are as follows:
|
|
*
|
|
* The Wrapping Key Tree:
|
|
* The wrapping key (wkey) tree stores the user's keys that are fed into the
|
|
* kernel through 'zfs load-key' and related commands. Datasets inherit their
|
|
* parent's wkey by default, so these structures are refcounted. The wrapping
|
|
* keys remain in memory until they are explicitly unloaded (with
|
|
* "zfs unload-key"). Unloading is only possible when no datasets are using
|
|
* them (refcount=0).
|
|
*
|
|
* The DSL Crypto Key Tree:
|
|
* The DSL Crypto Keys (DCK) are the in-memory representation of decrypted
|
|
* master keys. They are used by the functions in zio_crypt.c to perform
|
|
* encryption, decryption, and authentication. Snapshots and clones of a given
|
|
* dataset will share a DSL Crypto Key, so they are also refcounted. Once the
|
|
* refcount on a key hits zero, it is immediately zeroed out and freed.
|
|
*
|
|
* The Crypto Key Mapping Tree:
|
|
* The zio layer needs to lookup master keys by their dataset object id. Since
|
|
* the DSL Crypto Keys can belong to multiple datasets, we maintain a tree of
|
|
* dsl_key_mapping_t's which essentially just map the dataset object id to its
|
|
* appropriate DSL Crypto Key. The management for creating and destroying these
|
|
* mappings hooks into the code for owning and disowning datasets. Usually,
|
|
* there will only be one active dataset owner, but there are times
|
|
* (particularly during dataset creation and destruction) when this may not be
|
|
* true or the dataset may not be initialized enough to own. As a result, this
|
|
* object is also refcounted.
|
|
*/
|
|
|
|
/*
|
|
* This tunable allows datasets to be raw received even if the stream does
|
|
* not include IVset guids or if the guids don't match. This is used as part
|
|
* of the resolution for ZPOOL_ERRATA_ZOL_8308_ENCRYPTION.
|
|
*/
|
|
int zfs_disable_ivset_guid_check = 0;
|
|
|
|
static void
|
|
dsl_wrapping_key_hold(dsl_wrapping_key_t *wkey, void *tag)
|
|
{
|
|
(void) zfs_refcount_add(&wkey->wk_refcnt, tag);
|
|
}
|
|
|
|
static void
|
|
dsl_wrapping_key_rele(dsl_wrapping_key_t *wkey, void *tag)
|
|
{
|
|
(void) zfs_refcount_remove(&wkey->wk_refcnt, tag);
|
|
}
|
|
|
|
static void
|
|
dsl_wrapping_key_free(dsl_wrapping_key_t *wkey)
|
|
{
|
|
ASSERT0(zfs_refcount_count(&wkey->wk_refcnt));
|
|
|
|
if (wkey->wk_key.ck_data) {
|
|
bzero(wkey->wk_key.ck_data,
|
|
CRYPTO_BITS2BYTES(wkey->wk_key.ck_length));
|
|
kmem_free(wkey->wk_key.ck_data,
|
|
CRYPTO_BITS2BYTES(wkey->wk_key.ck_length));
|
|
}
|
|
|
|
zfs_refcount_destroy(&wkey->wk_refcnt);
|
|
kmem_free(wkey, sizeof (dsl_wrapping_key_t));
|
|
}
|
|
|
|
static void
|
|
dsl_wrapping_key_create(uint8_t *wkeydata, zfs_keyformat_t keyformat,
|
|
uint64_t salt, uint64_t iters, dsl_wrapping_key_t **wkey_out)
|
|
{
|
|
dsl_wrapping_key_t *wkey;
|
|
|
|
/* allocate the wrapping key */
|
|
wkey = kmem_alloc(sizeof (dsl_wrapping_key_t), KM_SLEEP);
|
|
|
|
/* allocate and initialize the underlying crypto key */
|
|
wkey->wk_key.ck_data = kmem_alloc(WRAPPING_KEY_LEN, KM_SLEEP);
|
|
|
|
wkey->wk_key.ck_format = CRYPTO_KEY_RAW;
|
|
wkey->wk_key.ck_length = CRYPTO_BYTES2BITS(WRAPPING_KEY_LEN);
|
|
bcopy(wkeydata, wkey->wk_key.ck_data, WRAPPING_KEY_LEN);
|
|
|
|
/* initialize the rest of the struct */
|
|
zfs_refcount_create(&wkey->wk_refcnt);
|
|
wkey->wk_keyformat = keyformat;
|
|
wkey->wk_salt = salt;
|
|
wkey->wk_iters = iters;
|
|
|
|
*wkey_out = wkey;
|
|
}
|
|
|
|
int
|
|
dsl_crypto_params_create_nvlist(dcp_cmd_t cmd, nvlist_t *props,
|
|
nvlist_t *crypto_args, dsl_crypto_params_t **dcp_out)
|
|
{
|
|
int ret;
|
|
uint64_t crypt = ZIO_CRYPT_INHERIT;
|
|
uint64_t keyformat = ZFS_KEYFORMAT_NONE;
|
|
uint64_t salt = 0, iters = 0;
|
|
dsl_crypto_params_t *dcp = NULL;
|
|
dsl_wrapping_key_t *wkey = NULL;
|
|
uint8_t *wkeydata = NULL;
|
|
uint_t wkeydata_len = 0;
|
|
char *keylocation = NULL;
|
|
|
|
dcp = kmem_zalloc(sizeof (dsl_crypto_params_t), KM_SLEEP);
|
|
dcp->cp_cmd = cmd;
|
|
|
|
/* get relevant arguments from the nvlists */
|
|
if (props != NULL) {
|
|
(void) nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_ENCRYPTION), &crypt);
|
|
(void) nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &keyformat);
|
|
(void) nvlist_lookup_string(props,
|
|
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation);
|
|
(void) nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), &salt);
|
|
(void) nvlist_lookup_uint64(props,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &iters);
|
|
|
|
dcp->cp_crypt = crypt;
|
|
}
|
|
|
|
if (crypto_args != NULL) {
|
|
(void) nvlist_lookup_uint8_array(crypto_args, "wkeydata",
|
|
&wkeydata, &wkeydata_len);
|
|
}
|
|
|
|
/* check for valid command */
|
|
if (dcp->cp_cmd >= DCP_CMD_MAX) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
} else {
|
|
dcp->cp_cmd = cmd;
|
|
}
|
|
|
|
/* check for valid crypt */
|
|
if (dcp->cp_crypt >= ZIO_CRYPT_FUNCTIONS) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
} else {
|
|
dcp->cp_crypt = crypt;
|
|
}
|
|
|
|
/* check for valid keyformat */
|
|
if (keyformat >= ZFS_KEYFORMAT_FORMATS) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* check for a valid keylocation (of any kind) and copy it in */
|
|
if (keylocation != NULL) {
|
|
if (!zfs_prop_valid_keylocation(keylocation, B_FALSE)) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
dcp->cp_keylocation = spa_strdup(keylocation);
|
|
}
|
|
|
|
/* check wrapping key length, if given */
|
|
if (wkeydata != NULL && wkeydata_len != WRAPPING_KEY_LEN) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* if the user asked for the default crypt, determine that now */
|
|
if (dcp->cp_crypt == ZIO_CRYPT_ON)
|
|
dcp->cp_crypt = ZIO_CRYPT_ON_VALUE;
|
|
|
|
/* create the wrapping key from the raw data */
|
|
if (wkeydata != NULL) {
|
|
/* create the wrapping key with the verified parameters */
|
|
dsl_wrapping_key_create(wkeydata, keyformat, salt,
|
|
iters, &wkey);
|
|
dcp->cp_wkey = wkey;
|
|
}
|
|
|
|
/*
|
|
* Remove the encryption properties from the nvlist since they are not
|
|
* maintained through the DSL.
|
|
*/
|
|
(void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_ENCRYPTION));
|
|
(void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_KEYFORMAT));
|
|
(void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT));
|
|
(void) nvlist_remove_all(props,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS));
|
|
|
|
*dcp_out = dcp;
|
|
|
|
return (0);
|
|
|
|
error:
|
|
kmem_free(dcp, sizeof (dsl_crypto_params_t));
|
|
*dcp_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
dsl_crypto_params_free(dsl_crypto_params_t *dcp, boolean_t unload)
|
|
{
|
|
if (dcp == NULL)
|
|
return;
|
|
|
|
if (dcp->cp_keylocation != NULL)
|
|
spa_strfree(dcp->cp_keylocation);
|
|
if (unload && dcp->cp_wkey != NULL)
|
|
dsl_wrapping_key_free(dcp->cp_wkey);
|
|
|
|
kmem_free(dcp, sizeof (dsl_crypto_params_t));
|
|
}
|
|
|
|
static int
|
|
spa_crypto_key_compare(const void *a, const void *b)
|
|
{
|
|
const dsl_crypto_key_t *dcka = a;
|
|
const dsl_crypto_key_t *dckb = b;
|
|
|
|
if (dcka->dck_obj < dckb->dck_obj)
|
|
return (-1);
|
|
if (dcka->dck_obj > dckb->dck_obj)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_key_mapping_compare(const void *a, const void *b)
|
|
{
|
|
const dsl_key_mapping_t *kma = a;
|
|
const dsl_key_mapping_t *kmb = b;
|
|
|
|
if (kma->km_dsobj < kmb->km_dsobj)
|
|
return (-1);
|
|
if (kma->km_dsobj > kmb->km_dsobj)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_wkey_compare(const void *a, const void *b)
|
|
{
|
|
const dsl_wrapping_key_t *wka = a;
|
|
const dsl_wrapping_key_t *wkb = b;
|
|
|
|
if (wka->wk_ddobj < wkb->wk_ddobj)
|
|
return (-1);
|
|
if (wka->wk_ddobj > wkb->wk_ddobj)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
spa_keystore_init(spa_keystore_t *sk)
|
|
{
|
|
rw_init(&sk->sk_dk_lock, NULL, RW_DEFAULT, NULL);
|
|
rw_init(&sk->sk_km_lock, NULL, RW_DEFAULT, NULL);
|
|
rw_init(&sk->sk_wkeys_lock, NULL, RW_DEFAULT, NULL);
|
|
avl_create(&sk->sk_dsl_keys, spa_crypto_key_compare,
|
|
sizeof (dsl_crypto_key_t),
|
|
offsetof(dsl_crypto_key_t, dck_avl_link));
|
|
avl_create(&sk->sk_key_mappings, spa_key_mapping_compare,
|
|
sizeof (dsl_key_mapping_t),
|
|
offsetof(dsl_key_mapping_t, km_avl_link));
|
|
avl_create(&sk->sk_wkeys, spa_wkey_compare, sizeof (dsl_wrapping_key_t),
|
|
offsetof(dsl_wrapping_key_t, wk_avl_link));
|
|
}
|
|
|
|
void
|
|
spa_keystore_fini(spa_keystore_t *sk)
|
|
{
|
|
dsl_wrapping_key_t *wkey;
|
|
void *cookie = NULL;
|
|
|
|
ASSERT(avl_is_empty(&sk->sk_dsl_keys));
|
|
ASSERT(avl_is_empty(&sk->sk_key_mappings));
|
|
|
|
while ((wkey = avl_destroy_nodes(&sk->sk_wkeys, &cookie)) != NULL)
|
|
dsl_wrapping_key_free(wkey);
|
|
|
|
avl_destroy(&sk->sk_wkeys);
|
|
avl_destroy(&sk->sk_key_mappings);
|
|
avl_destroy(&sk->sk_dsl_keys);
|
|
rw_destroy(&sk->sk_wkeys_lock);
|
|
rw_destroy(&sk->sk_km_lock);
|
|
rw_destroy(&sk->sk_dk_lock);
|
|
}
|
|
|
|
static int
|
|
dsl_dir_get_encryption_root_ddobj(dsl_dir_t *dd, uint64_t *rddobj)
|
|
{
|
|
if (dd->dd_crypto_obj == 0)
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
return (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
|
|
DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1, rddobj));
|
|
}
|
|
|
|
static int
|
|
dsl_dir_get_encryption_version(dsl_dir_t *dd, uint64_t *version)
|
|
{
|
|
*version = 0;
|
|
|
|
if (dd->dd_crypto_obj == 0)
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
/* version 0 is implied by ENOENT */
|
|
(void) zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
|
|
DSL_CRYPTO_KEY_VERSION, 8, 1, version);
|
|
|
|
return (0);
|
|
}
|
|
|
|
boolean_t
|
|
dsl_dir_incompatible_encryption_version(dsl_dir_t *dd)
|
|
{
|
|
int ret;
|
|
uint64_t version = 0;
|
|
|
|
ret = dsl_dir_get_encryption_version(dd, &version);
|
|
if (ret != 0)
|
|
return (B_FALSE);
|
|
|
|
return (version != ZIO_CRYPT_KEY_CURRENT_VERSION);
|
|
}
|
|
|
|
static int
|
|
spa_keystore_wkey_hold_ddobj_impl(spa_t *spa, uint64_t ddobj,
|
|
void *tag, dsl_wrapping_key_t **wkey_out)
|
|
{
|
|
int ret;
|
|
dsl_wrapping_key_t search_wkey;
|
|
dsl_wrapping_key_t *found_wkey;
|
|
|
|
ASSERT(RW_LOCK_HELD(&spa->spa_keystore.sk_wkeys_lock));
|
|
|
|
/* init the search wrapping key */
|
|
search_wkey.wk_ddobj = ddobj;
|
|
|
|
/* lookup the wrapping key */
|
|
found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &search_wkey, NULL);
|
|
if (!found_wkey) {
|
|
ret = SET_ERROR(ENOENT);
|
|
goto error;
|
|
}
|
|
|
|
/* increment the refcount */
|
|
dsl_wrapping_key_hold(found_wkey, tag);
|
|
|
|
*wkey_out = found_wkey;
|
|
return (0);
|
|
|
|
error:
|
|
*wkey_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
spa_keystore_wkey_hold_dd(spa_t *spa, dsl_dir_t *dd, void *tag,
|
|
dsl_wrapping_key_t **wkey_out)
|
|
{
|
|
int ret;
|
|
dsl_wrapping_key_t *wkey;
|
|
uint64_t rddobj;
|
|
boolean_t locked = B_FALSE;
|
|
|
|
if (!RW_WRITE_HELD(&spa->spa_keystore.sk_wkeys_lock)) {
|
|
rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_READER);
|
|
locked = B_TRUE;
|
|
}
|
|
|
|
/* get the ddobj that the keylocation property was inherited from */
|
|
ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* lookup the wkey in the avl tree */
|
|
ret = spa_keystore_wkey_hold_ddobj_impl(spa, rddobj, tag, &wkey);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* unlock the wkey tree if we locked it */
|
|
if (locked)
|
|
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
|
|
|
|
*wkey_out = wkey;
|
|
return (0);
|
|
|
|
error:
|
|
if (locked)
|
|
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
|
|
|
|
*wkey_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
dsl_crypto_can_set_keylocation(const char *dsname, const char *keylocation)
|
|
{
|
|
int ret = 0;
|
|
dsl_dir_t *dd = NULL;
|
|
dsl_pool_t *dp = NULL;
|
|
uint64_t rddobj;
|
|
|
|
/* hold the dsl dir */
|
|
ret = dsl_pool_hold(dsname, FTAG, &dp);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
|
|
if (ret != 0) {
|
|
dd = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/* if dd is not encrypted, the value may only be "none" */
|
|
if (dd->dd_crypto_obj == 0) {
|
|
if (strcmp(keylocation, "none") != 0) {
|
|
ret = SET_ERROR(EACCES);
|
|
goto out;
|
|
}
|
|
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* check for a valid keylocation for encrypted datasets */
|
|
if (!zfs_prop_valid_keylocation(keylocation, B_TRUE)) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
/* check that this is an encryption root */
|
|
ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
if (rddobj != dd->dd_object) {
|
|
ret = SET_ERROR(EACCES);
|
|
goto out;
|
|
}
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
dsl_pool_rele(dp, FTAG);
|
|
|
|
return (0);
|
|
|
|
out:
|
|
if (dd != NULL)
|
|
dsl_dir_rele(dd, FTAG);
|
|
if (dp != NULL)
|
|
dsl_pool_rele(dp, FTAG);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
dsl_crypto_key_free(dsl_crypto_key_t *dck)
|
|
{
|
|
ASSERT(zfs_refcount_count(&dck->dck_holds) == 0);
|
|
|
|
/* destroy the zio_crypt_key_t */
|
|
zio_crypt_key_destroy(&dck->dck_key);
|
|
|
|
/* free the refcount, wrapping key, and lock */
|
|
zfs_refcount_destroy(&dck->dck_holds);
|
|
if (dck->dck_wkey)
|
|
dsl_wrapping_key_rele(dck->dck_wkey, dck);
|
|
|
|
/* free the key */
|
|
kmem_free(dck, sizeof (dsl_crypto_key_t));
|
|
}
|
|
|
|
static void
|
|
dsl_crypto_key_rele(dsl_crypto_key_t *dck, void *tag)
|
|
{
|
|
if (zfs_refcount_remove(&dck->dck_holds, tag) == 0)
|
|
dsl_crypto_key_free(dck);
|
|
}
|
|
|
|
static int
|
|
dsl_crypto_key_open(objset_t *mos, dsl_wrapping_key_t *wkey,
|
|
uint64_t dckobj, void *tag, dsl_crypto_key_t **dck_out)
|
|
{
|
|
int ret;
|
|
uint64_t crypt = 0, guid = 0, version = 0;
|
|
uint8_t raw_keydata[MASTER_KEY_MAX_LEN];
|
|
uint8_t raw_hmac_keydata[SHA512_HMAC_KEYLEN];
|
|
uint8_t iv[WRAPPING_IV_LEN];
|
|
uint8_t mac[WRAPPING_MAC_LEN];
|
|
dsl_crypto_key_t *dck;
|
|
|
|
/* allocate and initialize the key */
|
|
dck = kmem_zalloc(sizeof (dsl_crypto_key_t), KM_SLEEP);
|
|
|
|
/* fetch all of the values we need from the ZAP */
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
|
|
&crypt);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &guid);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
|
|
MASTER_KEY_MAX_LEN, raw_keydata);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
|
|
SHA512_HMAC_KEYLEN, raw_hmac_keydata);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
|
|
iv);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
|
|
mac);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* the initial on-disk format for encryption did not have a version */
|
|
(void) zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_VERSION, 8, 1, &version);
|
|
|
|
/*
|
|
* Unwrap the keys. If there is an error return EACCES to indicate
|
|
* an authentication failure.
|
|
*/
|
|
ret = zio_crypt_key_unwrap(&wkey->wk_key, crypt, version, guid,
|
|
raw_keydata, raw_hmac_keydata, iv, mac, &dck->dck_key);
|
|
if (ret != 0) {
|
|
ret = SET_ERROR(EACCES);
|
|
goto error;
|
|
}
|
|
|
|
/* finish initializing the dsl_crypto_key_t */
|
|
zfs_refcount_create(&dck->dck_holds);
|
|
dsl_wrapping_key_hold(wkey, dck);
|
|
dck->dck_wkey = wkey;
|
|
dck->dck_obj = dckobj;
|
|
zfs_refcount_add(&dck->dck_holds, tag);
|
|
|
|
*dck_out = dck;
|
|
return (0);
|
|
|
|
error:
|
|
if (dck != NULL) {
|
|
bzero(dck, sizeof (dsl_crypto_key_t));
|
|
kmem_free(dck, sizeof (dsl_crypto_key_t));
|
|
}
|
|
|
|
*dck_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
spa_keystore_dsl_key_hold_impl(spa_t *spa, uint64_t dckobj, void *tag,
|
|
dsl_crypto_key_t **dck_out)
|
|
{
|
|
int ret;
|
|
dsl_crypto_key_t search_dck;
|
|
dsl_crypto_key_t *found_dck;
|
|
|
|
ASSERT(RW_LOCK_HELD(&spa->spa_keystore.sk_dk_lock));
|
|
|
|
/* init the search key */
|
|
search_dck.dck_obj = dckobj;
|
|
|
|
/* find the matching key in the keystore */
|
|
found_dck = avl_find(&spa->spa_keystore.sk_dsl_keys, &search_dck, NULL);
|
|
if (!found_dck) {
|
|
ret = SET_ERROR(ENOENT);
|
|
goto error;
|
|
}
|
|
|
|
/* increment the refcount */
|
|
zfs_refcount_add(&found_dck->dck_holds, tag);
|
|
|
|
*dck_out = found_dck;
|
|
return (0);
|
|
|
|
error:
|
|
*dck_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
spa_keystore_dsl_key_hold_dd(spa_t *spa, dsl_dir_t *dd, void *tag,
|
|
dsl_crypto_key_t **dck_out)
|
|
{
|
|
int ret;
|
|
avl_index_t where;
|
|
dsl_crypto_key_t *dck_io = NULL, *dck_ks = NULL;
|
|
dsl_wrapping_key_t *wkey = NULL;
|
|
uint64_t dckobj = dd->dd_crypto_obj;
|
|
|
|
/* Lookup the key in the tree of currently loaded keys */
|
|
rw_enter(&spa->spa_keystore.sk_dk_lock, RW_READER);
|
|
ret = spa_keystore_dsl_key_hold_impl(spa, dckobj, tag, &dck_ks);
|
|
rw_exit(&spa->spa_keystore.sk_dk_lock);
|
|
if (ret == 0) {
|
|
*dck_out = dck_ks;
|
|
return (0);
|
|
}
|
|
|
|
/* Lookup the wrapping key from the keystore */
|
|
ret = spa_keystore_wkey_hold_dd(spa, dd, FTAG, &wkey);
|
|
if (ret != 0) {
|
|
*dck_out = NULL;
|
|
return (SET_ERROR(EACCES));
|
|
}
|
|
|
|
/* Read the key from disk */
|
|
ret = dsl_crypto_key_open(spa->spa_meta_objset, wkey, dckobj,
|
|
tag, &dck_io);
|
|
if (ret != 0) {
|
|
dsl_wrapping_key_rele(wkey, FTAG);
|
|
*dck_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Add the key to the keystore. It may already exist if it was
|
|
* added while performing the read from disk. In this case discard
|
|
* it and return the key from the keystore.
|
|
*/
|
|
rw_enter(&spa->spa_keystore.sk_dk_lock, RW_WRITER);
|
|
ret = spa_keystore_dsl_key_hold_impl(spa, dckobj, tag, &dck_ks);
|
|
if (ret != 0) {
|
|
avl_find(&spa->spa_keystore.sk_dsl_keys, dck_io, &where);
|
|
avl_insert(&spa->spa_keystore.sk_dsl_keys, dck_io, where);
|
|
*dck_out = dck_io;
|
|
} else {
|
|
dsl_crypto_key_free(dck_io);
|
|
*dck_out = dck_ks;
|
|
}
|
|
|
|
/* Release the wrapping key (the dsl key now has a reference to it) */
|
|
dsl_wrapping_key_rele(wkey, FTAG);
|
|
rw_exit(&spa->spa_keystore.sk_dk_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
spa_keystore_dsl_key_rele(spa_t *spa, dsl_crypto_key_t *dck, void *tag)
|
|
{
|
|
rw_enter(&spa->spa_keystore.sk_dk_lock, RW_WRITER);
|
|
|
|
if (zfs_refcount_remove(&dck->dck_holds, tag) == 0) {
|
|
avl_remove(&spa->spa_keystore.sk_dsl_keys, dck);
|
|
dsl_crypto_key_free(dck);
|
|
}
|
|
|
|
rw_exit(&spa->spa_keystore.sk_dk_lock);
|
|
}
|
|
|
|
int
|
|
spa_keystore_load_wkey_impl(spa_t *spa, dsl_wrapping_key_t *wkey)
|
|
{
|
|
int ret;
|
|
avl_index_t where;
|
|
dsl_wrapping_key_t *found_wkey;
|
|
|
|
rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
|
|
|
|
/* insert the wrapping key into the keystore */
|
|
found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, wkey, &where);
|
|
if (found_wkey != NULL) {
|
|
ret = SET_ERROR(EEXIST);
|
|
goto error_unlock;
|
|
}
|
|
avl_insert(&spa->spa_keystore.sk_wkeys, wkey, where);
|
|
|
|
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
|
|
|
|
return (0);
|
|
|
|
error_unlock:
|
|
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
spa_keystore_load_wkey(const char *dsname, dsl_crypto_params_t *dcp,
|
|
boolean_t noop)
|
|
{
|
|
int ret;
|
|
dsl_dir_t *dd = NULL;
|
|
dsl_crypto_key_t *dck = NULL;
|
|
dsl_wrapping_key_t *wkey = dcp->cp_wkey;
|
|
dsl_pool_t *dp = NULL;
|
|
uint64_t rddobj, keyformat, salt, iters;
|
|
|
|
/*
|
|
* We don't validate the wrapping key's keyformat, salt, or iters
|
|
* since they will never be needed after the DCK has been wrapped.
|
|
*/
|
|
if (dcp->cp_wkey == NULL ||
|
|
dcp->cp_cmd != DCP_CMD_NONE ||
|
|
dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
|
|
dcp->cp_keylocation != NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = dsl_pool_hold(dsname, FTAG, &dp);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
|
|
ret = SET_ERROR(ENOTSUP);
|
|
goto error;
|
|
}
|
|
|
|
/* hold the dsl dir */
|
|
ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
|
|
if (ret != 0) {
|
|
dd = NULL;
|
|
goto error;
|
|
}
|
|
|
|
/* confirm that dd is the encryption root */
|
|
ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
|
|
if (ret != 0 || rddobj != dd->dd_object) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* initialize the wkey's ddobj */
|
|
wkey->wk_ddobj = dd->dd_object;
|
|
|
|
/* verify that the wkey is correct by opening its dsl key */
|
|
ret = dsl_crypto_key_open(dp->dp_meta_objset, wkey,
|
|
dd->dd_crypto_obj, FTAG, &dck);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* initialize the wkey encryption parameters from the DSL Crypto Key */
|
|
ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
|
|
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &keyformat);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ASSERT3U(keyformat, <, ZFS_KEYFORMAT_FORMATS);
|
|
ASSERT3U(keyformat, !=, ZFS_KEYFORMAT_NONE);
|
|
IMPLY(keyformat == ZFS_KEYFORMAT_PASSPHRASE, iters != 0);
|
|
IMPLY(keyformat == ZFS_KEYFORMAT_PASSPHRASE, salt != 0);
|
|
IMPLY(keyformat != ZFS_KEYFORMAT_PASSPHRASE, iters == 0);
|
|
IMPLY(keyformat != ZFS_KEYFORMAT_PASSPHRASE, salt == 0);
|
|
|
|
wkey->wk_keyformat = keyformat;
|
|
wkey->wk_salt = salt;
|
|
wkey->wk_iters = iters;
|
|
|
|
/*
|
|
* At this point we have verified the wkey and confirmed that it can
|
|
* be used to decrypt a DSL Crypto Key. We can simply cleanup and
|
|
* return if this is all the user wanted to do.
|
|
*/
|
|
if (noop)
|
|
goto error;
|
|
|
|
/* insert the wrapping key into the keystore */
|
|
ret = spa_keystore_load_wkey_impl(dp->dp_spa, wkey);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
dsl_crypto_key_rele(dck, FTAG);
|
|
dsl_dir_rele(dd, FTAG);
|
|
dsl_pool_rele(dp, FTAG);
|
|
|
|
/* create any zvols under this ds */
|
|
zvol_create_minors_recursive(dsname);
|
|
|
|
return (0);
|
|
|
|
error:
|
|
if (dck != NULL)
|
|
dsl_crypto_key_rele(dck, FTAG);
|
|
if (dd != NULL)
|
|
dsl_dir_rele(dd, FTAG);
|
|
if (dp != NULL)
|
|
dsl_pool_rele(dp, FTAG);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
spa_keystore_unload_wkey_impl(spa_t *spa, uint64_t ddobj)
|
|
{
|
|
int ret;
|
|
dsl_wrapping_key_t search_wkey;
|
|
dsl_wrapping_key_t *found_wkey;
|
|
|
|
/* init the search wrapping key */
|
|
search_wkey.wk_ddobj = ddobj;
|
|
|
|
rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
|
|
|
|
/* remove the wrapping key from the keystore */
|
|
found_wkey = avl_find(&spa->spa_keystore.sk_wkeys,
|
|
&search_wkey, NULL);
|
|
if (!found_wkey) {
|
|
ret = SET_ERROR(EACCES);
|
|
goto error_unlock;
|
|
} else if (zfs_refcount_count(&found_wkey->wk_refcnt) != 0) {
|
|
ret = SET_ERROR(EBUSY);
|
|
goto error_unlock;
|
|
}
|
|
avl_remove(&spa->spa_keystore.sk_wkeys, found_wkey);
|
|
|
|
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
|
|
|
|
/* free the wrapping key */
|
|
dsl_wrapping_key_free(found_wkey);
|
|
|
|
return (0);
|
|
|
|
error_unlock:
|
|
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
spa_keystore_unload_wkey(const char *dsname)
|
|
{
|
|
int ret = 0;
|
|
dsl_dir_t *dd = NULL;
|
|
dsl_pool_t *dp = NULL;
|
|
spa_t *spa = NULL;
|
|
|
|
ret = spa_open(dsname, &spa, FTAG);
|
|
if (ret != 0)
|
|
return (ret);
|
|
|
|
/*
|
|
* Wait for any outstanding txg IO to complete, releasing any
|
|
* remaining references on the wkey.
|
|
*/
|
|
if (spa_mode(spa) != SPA_MODE_READ)
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
|
|
spa_close(spa, FTAG);
|
|
|
|
/* hold the dsl dir */
|
|
ret = dsl_pool_hold(dsname, FTAG, &dp);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
|
|
ret = (SET_ERROR(ENOTSUP));
|
|
goto error;
|
|
}
|
|
|
|
ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
|
|
if (ret != 0) {
|
|
dd = NULL;
|
|
goto error;
|
|
}
|
|
|
|
/* unload the wkey */
|
|
ret = spa_keystore_unload_wkey_impl(dp->dp_spa, dd->dd_object);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
dsl_pool_rele(dp, FTAG);
|
|
|
|
/* remove any zvols under this ds */
|
|
zvol_remove_minors(dp->dp_spa, dsname, B_TRUE);
|
|
|
|
return (0);
|
|
|
|
error:
|
|
if (dd != NULL)
|
|
dsl_dir_rele(dd, FTAG);
|
|
if (dp != NULL)
|
|
dsl_pool_rele(dp, FTAG);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
key_mapping_add_ref(dsl_key_mapping_t *km, void *tag)
|
|
{
|
|
ASSERT3U(zfs_refcount_count(&km->km_refcnt), >=, 1);
|
|
zfs_refcount_add(&km->km_refcnt, tag);
|
|
}
|
|
|
|
/*
|
|
* The locking here is a little tricky to ensure we don't cause unnecessary
|
|
* performance problems. We want to release a key mapping whenever someone
|
|
* decrements the refcount to 0, but freeing the mapping requires removing
|
|
* it from the spa_keystore, which requires holding sk_km_lock as a writer.
|
|
* Most of the time we don't want to hold this lock as a writer, since the
|
|
* same lock is held as a reader for each IO that needs to encrypt / decrypt
|
|
* data for any dataset and in practice we will only actually free the
|
|
* mapping after unmounting a dataset.
|
|
*/
|
|
void
|
|
key_mapping_rele(spa_t *spa, dsl_key_mapping_t *km, void *tag)
|
|
{
|
|
ASSERT3U(zfs_refcount_count(&km->km_refcnt), >=, 1);
|
|
|
|
if (zfs_refcount_remove(&km->km_refcnt, tag) != 0)
|
|
return;
|
|
|
|
/*
|
|
* We think we are going to need to free the mapping. Add a
|
|
* reference to prevent most other releasers from thinking
|
|
* this might be their responsibility. This is inherently
|
|
* racy, so we will confirm that we are legitimately the
|
|
* last holder once we have the sk_km_lock as a writer.
|
|
*/
|
|
zfs_refcount_add(&km->km_refcnt, FTAG);
|
|
|
|
rw_enter(&spa->spa_keystore.sk_km_lock, RW_WRITER);
|
|
if (zfs_refcount_remove(&km->km_refcnt, FTAG) != 0) {
|
|
rw_exit(&spa->spa_keystore.sk_km_lock);
|
|
return;
|
|
}
|
|
|
|
avl_remove(&spa->spa_keystore.sk_key_mappings, km);
|
|
rw_exit(&spa->spa_keystore.sk_km_lock);
|
|
|
|
spa_keystore_dsl_key_rele(spa, km->km_key, km);
|
|
zfs_refcount_destroy(&km->km_refcnt);
|
|
kmem_free(km, sizeof (dsl_key_mapping_t));
|
|
}
|
|
|
|
int
|
|
spa_keystore_create_mapping(spa_t *spa, dsl_dataset_t *ds, void *tag,
|
|
dsl_key_mapping_t **km_out)
|
|
{
|
|
int ret;
|
|
avl_index_t where;
|
|
dsl_key_mapping_t *km, *found_km;
|
|
boolean_t should_free = B_FALSE;
|
|
|
|
/* Allocate and initialize the mapping */
|
|
km = kmem_zalloc(sizeof (dsl_key_mapping_t), KM_SLEEP);
|
|
zfs_refcount_create(&km->km_refcnt);
|
|
|
|
ret = spa_keystore_dsl_key_hold_dd(spa, ds->ds_dir, km, &km->km_key);
|
|
if (ret != 0) {
|
|
zfs_refcount_destroy(&km->km_refcnt);
|
|
kmem_free(km, sizeof (dsl_key_mapping_t));
|
|
|
|
if (km_out != NULL)
|
|
*km_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
km->km_dsobj = ds->ds_object;
|
|
|
|
rw_enter(&spa->spa_keystore.sk_km_lock, RW_WRITER);
|
|
|
|
/*
|
|
* If a mapping already exists, simply increment its refcount and
|
|
* cleanup the one we made. We want to allocate / free outside of
|
|
* the lock because this lock is also used by the zio layer to lookup
|
|
* key mappings. Otherwise, use the one we created. Normally, there will
|
|
* only be one active reference at a time (the objset owner), but there
|
|
* are times when there could be multiple async users.
|
|
*/
|
|
found_km = avl_find(&spa->spa_keystore.sk_key_mappings, km, &where);
|
|
if (found_km != NULL) {
|
|
should_free = B_TRUE;
|
|
zfs_refcount_add(&found_km->km_refcnt, tag);
|
|
if (km_out != NULL)
|
|
*km_out = found_km;
|
|
} else {
|
|
zfs_refcount_add(&km->km_refcnt, tag);
|
|
avl_insert(&spa->spa_keystore.sk_key_mappings, km, where);
|
|
if (km_out != NULL)
|
|
*km_out = km;
|
|
}
|
|
|
|
rw_exit(&spa->spa_keystore.sk_km_lock);
|
|
|
|
if (should_free) {
|
|
spa_keystore_dsl_key_rele(spa, km->km_key, km);
|
|
zfs_refcount_destroy(&km->km_refcnt);
|
|
kmem_free(km, sizeof (dsl_key_mapping_t));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
spa_keystore_remove_mapping(spa_t *spa, uint64_t dsobj, void *tag)
|
|
{
|
|
int ret;
|
|
dsl_key_mapping_t search_km;
|
|
dsl_key_mapping_t *found_km;
|
|
|
|
/* init the search key mapping */
|
|
search_km.km_dsobj = dsobj;
|
|
|
|
rw_enter(&spa->spa_keystore.sk_km_lock, RW_READER);
|
|
|
|
/* find the matching mapping */
|
|
found_km = avl_find(&spa->spa_keystore.sk_key_mappings,
|
|
&search_km, NULL);
|
|
if (found_km == NULL) {
|
|
ret = SET_ERROR(ENOENT);
|
|
goto error_unlock;
|
|
}
|
|
|
|
rw_exit(&spa->spa_keystore.sk_km_lock);
|
|
|
|
key_mapping_rele(spa, found_km, tag);
|
|
|
|
return (0);
|
|
|
|
error_unlock:
|
|
rw_exit(&spa->spa_keystore.sk_km_lock);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* This function is primarily used by the zio and arc layer to lookup
|
|
* DSL Crypto Keys for encryption. Callers must release the key with
|
|
* spa_keystore_dsl_key_rele(). The function may also be called with
|
|
* dck_out == NULL and tag == NULL to simply check that a key exists
|
|
* without getting a reference to it.
|
|
*/
|
|
int
|
|
spa_keystore_lookup_key(spa_t *spa, uint64_t dsobj, void *tag,
|
|
dsl_crypto_key_t **dck_out)
|
|
{
|
|
int ret;
|
|
dsl_key_mapping_t search_km;
|
|
dsl_key_mapping_t *found_km;
|
|
|
|
ASSERT((tag != NULL && dck_out != NULL) ||
|
|
(tag == NULL && dck_out == NULL));
|
|
|
|
/* init the search key mapping */
|
|
search_km.km_dsobj = dsobj;
|
|
|
|
rw_enter(&spa->spa_keystore.sk_km_lock, RW_READER);
|
|
|
|
/* remove the mapping from the tree */
|
|
found_km = avl_find(&spa->spa_keystore.sk_key_mappings, &search_km,
|
|
NULL);
|
|
if (found_km == NULL) {
|
|
ret = SET_ERROR(ENOENT);
|
|
goto error_unlock;
|
|
}
|
|
|
|
if (found_km && tag)
|
|
zfs_refcount_add(&found_km->km_key->dck_holds, tag);
|
|
|
|
rw_exit(&spa->spa_keystore.sk_km_lock);
|
|
|
|
if (dck_out != NULL)
|
|
*dck_out = found_km->km_key;
|
|
return (0);
|
|
|
|
error_unlock:
|
|
rw_exit(&spa->spa_keystore.sk_km_lock);
|
|
|
|
if (dck_out != NULL)
|
|
*dck_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
dmu_objset_check_wkey_loaded(dsl_dir_t *dd)
|
|
{
|
|
int ret;
|
|
dsl_wrapping_key_t *wkey = NULL;
|
|
|
|
ret = spa_keystore_wkey_hold_dd(dd->dd_pool->dp_spa, dd, FTAG,
|
|
&wkey);
|
|
if (ret != 0)
|
|
return (SET_ERROR(EACCES));
|
|
|
|
dsl_wrapping_key_rele(wkey, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static zfs_keystatus_t
|
|
dsl_dataset_get_keystatus(dsl_dir_t *dd)
|
|
{
|
|
/* check if this dd has a has a dsl key */
|
|
if (dd->dd_crypto_obj == 0)
|
|
return (ZFS_KEYSTATUS_NONE);
|
|
|
|
return (dmu_objset_check_wkey_loaded(dd) == 0 ?
|
|
ZFS_KEYSTATUS_AVAILABLE : ZFS_KEYSTATUS_UNAVAILABLE);
|
|
}
|
|
|
|
static int
|
|
dsl_dir_get_crypt(dsl_dir_t *dd, uint64_t *crypt)
|
|
{
|
|
if (dd->dd_crypto_obj == 0) {
|
|
*crypt = ZIO_CRYPT_OFF;
|
|
return (0);
|
|
}
|
|
|
|
return (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
|
|
DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1, crypt));
|
|
}
|
|
|
|
static void
|
|
dsl_crypto_key_sync_impl(objset_t *mos, uint64_t dckobj, uint64_t crypt,
|
|
uint64_t root_ddobj, uint64_t guid, uint8_t *iv, uint8_t *mac,
|
|
uint8_t *keydata, uint8_t *hmac_keydata, uint64_t keyformat,
|
|
uint64_t salt, uint64_t iters, dmu_tx_t *tx)
|
|
{
|
|
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
|
|
&crypt, tx));
|
|
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1,
|
|
&root_ddobj, tx));
|
|
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1,
|
|
&guid, tx));
|
|
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
|
|
iv, tx));
|
|
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
|
|
mac, tx));
|
|
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
|
|
MASTER_KEY_MAX_LEN, keydata, tx));
|
|
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
|
|
SHA512_HMAC_KEYLEN, hmac_keydata, tx));
|
|
VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_KEYFORMAT),
|
|
8, 1, &keyformat, tx));
|
|
VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
|
|
8, 1, &salt, tx));
|
|
VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
|
|
8, 1, &iters, tx));
|
|
}
|
|
|
|
static void
|
|
dsl_crypto_key_sync(dsl_crypto_key_t *dck, dmu_tx_t *tx)
|
|
{
|
|
zio_crypt_key_t *key = &dck->dck_key;
|
|
dsl_wrapping_key_t *wkey = dck->dck_wkey;
|
|
uint8_t keydata[MASTER_KEY_MAX_LEN];
|
|
uint8_t hmac_keydata[SHA512_HMAC_KEYLEN];
|
|
uint8_t iv[WRAPPING_IV_LEN];
|
|
uint8_t mac[WRAPPING_MAC_LEN];
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
ASSERT3U(key->zk_crypt, <, ZIO_CRYPT_FUNCTIONS);
|
|
|
|
/* encrypt and store the keys along with the IV and MAC */
|
|
VERIFY0(zio_crypt_key_wrap(&dck->dck_wkey->wk_key, key, iv, mac,
|
|
keydata, hmac_keydata));
|
|
|
|
/* update the ZAP with the obtained values */
|
|
dsl_crypto_key_sync_impl(tx->tx_pool->dp_meta_objset, dck->dck_obj,
|
|
key->zk_crypt, wkey->wk_ddobj, key->zk_guid, iv, mac, keydata,
|
|
hmac_keydata, wkey->wk_keyformat, wkey->wk_salt, wkey->wk_iters,
|
|
tx);
|
|
}
|
|
|
|
typedef struct spa_keystore_change_key_args {
|
|
const char *skcka_dsname;
|
|
dsl_crypto_params_t *skcka_cp;
|
|
} spa_keystore_change_key_args_t;
|
|
|
|
static int
|
|
spa_keystore_change_key_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
int ret;
|
|
dsl_dir_t *dd = NULL;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
spa_keystore_change_key_args_t *skcka = arg;
|
|
dsl_crypto_params_t *dcp = skcka->skcka_cp;
|
|
uint64_t rddobj;
|
|
|
|
/* check for the encryption feature */
|
|
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
|
|
ret = SET_ERROR(ENOTSUP);
|
|
goto error;
|
|
}
|
|
|
|
/* check for valid key change command */
|
|
if (dcp->cp_cmd != DCP_CMD_NEW_KEY &&
|
|
dcp->cp_cmd != DCP_CMD_INHERIT &&
|
|
dcp->cp_cmd != DCP_CMD_FORCE_NEW_KEY &&
|
|
dcp->cp_cmd != DCP_CMD_FORCE_INHERIT) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* hold the dd */
|
|
ret = dsl_dir_hold(dp, skcka->skcka_dsname, FTAG, &dd, NULL);
|
|
if (ret != 0) {
|
|
dd = NULL;
|
|
goto error;
|
|
}
|
|
|
|
/* verify that the dataset is encrypted */
|
|
if (dd->dd_crypto_obj == 0) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* clones must always use their origin's key */
|
|
if (dsl_dir_is_clone(dd)) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* lookup the ddobj we are inheriting the keylocation from */
|
|
ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* Handle inheritance */
|
|
if (dcp->cp_cmd == DCP_CMD_INHERIT ||
|
|
dcp->cp_cmd == DCP_CMD_FORCE_INHERIT) {
|
|
/* no other encryption params should be given */
|
|
if (dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
|
|
dcp->cp_keylocation != NULL ||
|
|
dcp->cp_wkey != NULL) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* check that this is an encryption root */
|
|
if (dd->dd_object != rddobj) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* check that the parent is encrypted */
|
|
if (dd->dd_parent->dd_crypto_obj == 0) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* if we are rewrapping check that both keys are loaded */
|
|
if (dcp->cp_cmd == DCP_CMD_INHERIT) {
|
|
ret = dmu_objset_check_wkey_loaded(dd);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = dmu_objset_check_wkey_loaded(dd->dd_parent);
|
|
if (ret != 0)
|
|
goto error;
|
|
}
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
/* handle forcing an encryption root without rewrapping */
|
|
if (dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY) {
|
|
/* no other encryption params should be given */
|
|
if (dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
|
|
dcp->cp_keylocation != NULL ||
|
|
dcp->cp_wkey != NULL) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* check that this is not an encryption root */
|
|
if (dd->dd_object == rddobj) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
/* crypt cannot be changed after creation */
|
|
if (dcp->cp_crypt != ZIO_CRYPT_INHERIT) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* we are not inheritting our parent's wkey so we need one ourselves */
|
|
if (dcp->cp_wkey == NULL) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* check for a valid keyformat for the new wrapping key */
|
|
if (dcp->cp_wkey->wk_keyformat >= ZFS_KEYFORMAT_FORMATS ||
|
|
dcp->cp_wkey->wk_keyformat == ZFS_KEYFORMAT_NONE) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* If this dataset is not currently an encryption root we need a new
|
|
* keylocation for this dataset's new wrapping key. Otherwise we can
|
|
* just keep the one we already had.
|
|
*/
|
|
if (dd->dd_object != rddobj && dcp->cp_keylocation == NULL) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* check that the keylocation is valid if it is not NULL */
|
|
if (dcp->cp_keylocation != NULL &&
|
|
!zfs_prop_valid_keylocation(dcp->cp_keylocation, B_TRUE)) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
|
|
/* passphrases require pbkdf2 salt and iters */
|
|
if (dcp->cp_wkey->wk_keyformat == ZFS_KEYFORMAT_PASSPHRASE) {
|
|
if (dcp->cp_wkey->wk_salt == 0 ||
|
|
dcp->cp_wkey->wk_iters < MIN_PBKDF2_ITERATIONS) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
} else {
|
|
if (dcp->cp_wkey->wk_salt != 0 || dcp->cp_wkey->wk_iters != 0) {
|
|
ret = SET_ERROR(EINVAL);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* make sure the dd's wkey is loaded */
|
|
ret = dmu_objset_check_wkey_loaded(dd);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
|
|
return (0);
|
|
|
|
error:
|
|
if (dd != NULL)
|
|
dsl_dir_rele(dd, FTAG);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* This function deals with the intricacies of updating wrapping
|
|
* key references and encryption roots recursively in the event
|
|
* of a call to 'zfs change-key' or 'zfs promote'. The 'skip'
|
|
* parameter should always be set to B_FALSE when called
|
|
* externally.
|
|
*/
|
|
static void
|
|
spa_keystore_change_key_sync_impl(uint64_t rddobj, uint64_t ddobj,
|
|
uint64_t new_rddobj, dsl_wrapping_key_t *wkey, boolean_t skip,
|
|
dmu_tx_t *tx)
|
|
{
|
|
int ret;
|
|
zap_cursor_t *zc;
|
|
zap_attribute_t *za;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd = NULL;
|
|
dsl_crypto_key_t *dck = NULL;
|
|
uint64_t curr_rddobj;
|
|
|
|
ASSERT(RW_WRITE_HELD(&dp->dp_spa->spa_keystore.sk_wkeys_lock));
|
|
|
|
/* hold the dd */
|
|
VERIFY0(dsl_dir_hold_obj(dp, ddobj, NULL, FTAG, &dd));
|
|
|
|
/* ignore special dsl dirs */
|
|
if (dd->dd_myname[0] == '$' || dd->dd_myname[0] == '%') {
|
|
dsl_dir_rele(dd, FTAG);
|
|
return;
|
|
}
|
|
|
|
ret = dsl_dir_get_encryption_root_ddobj(dd, &curr_rddobj);
|
|
VERIFY(ret == 0 || ret == ENOENT);
|
|
|
|
/*
|
|
* Stop recursing if this dsl dir didn't inherit from the root
|
|
* or if this dd is a clone.
|
|
*/
|
|
if (ret == ENOENT ||
|
|
(!skip && (curr_rddobj != rddobj || dsl_dir_is_clone(dd)))) {
|
|
dsl_dir_rele(dd, FTAG);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we don't have a wrapping key just update the dck to reflect the
|
|
* new encryption root. Otherwise rewrap the entire dck and re-sync it
|
|
* to disk. If skip is set, we don't do any of this work.
|
|
*/
|
|
if (!skip) {
|
|
if (wkey == NULL) {
|
|
VERIFY0(zap_update(dp->dp_meta_objset,
|
|
dd->dd_crypto_obj,
|
|
DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1,
|
|
&new_rddobj, tx));
|
|
} else {
|
|
VERIFY0(spa_keystore_dsl_key_hold_dd(dp->dp_spa, dd,
|
|
FTAG, &dck));
|
|
dsl_wrapping_key_hold(wkey, dck);
|
|
dsl_wrapping_key_rele(dck->dck_wkey, dck);
|
|
dck->dck_wkey = wkey;
|
|
dsl_crypto_key_sync(dck, tx);
|
|
spa_keystore_dsl_key_rele(dp->dp_spa, dck, FTAG);
|
|
}
|
|
}
|
|
|
|
zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
|
|
za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
|
|
|
|
/* Recurse into all child dsl dirs. */
|
|
for (zap_cursor_init(zc, dp->dp_meta_objset,
|
|
dsl_dir_phys(dd)->dd_child_dir_zapobj);
|
|
zap_cursor_retrieve(zc, za) == 0;
|
|
zap_cursor_advance(zc)) {
|
|
spa_keystore_change_key_sync_impl(rddobj,
|
|
za->za_first_integer, new_rddobj, wkey, B_FALSE, tx);
|
|
}
|
|
zap_cursor_fini(zc);
|
|
|
|
/*
|
|
* Recurse into all dsl dirs of clones. We utilize the skip parameter
|
|
* here so that we don't attempt to process the clones directly. This
|
|
* is because the clone and its origin share the same dck, which has
|
|
* already been updated.
|
|
*/
|
|
for (zap_cursor_init(zc, dp->dp_meta_objset,
|
|
dsl_dir_phys(dd)->dd_clones);
|
|
zap_cursor_retrieve(zc, za) == 0;
|
|
zap_cursor_advance(zc)) {
|
|
dsl_dataset_t *clone;
|
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp, za->za_first_integer,
|
|
FTAG, &clone));
|
|
spa_keystore_change_key_sync_impl(rddobj,
|
|
clone->ds_dir->dd_object, new_rddobj, wkey, B_TRUE, tx);
|
|
dsl_dataset_rele(clone, FTAG);
|
|
}
|
|
zap_cursor_fini(zc);
|
|
|
|
kmem_free(za, sizeof (zap_attribute_t));
|
|
kmem_free(zc, sizeof (zap_cursor_t));
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
}
|
|
|
|
static void
|
|
spa_keystore_change_key_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dsl_dataset_t *ds;
|
|
avl_index_t where;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
spa_t *spa = dp->dp_spa;
|
|
spa_keystore_change_key_args_t *skcka = arg;
|
|
dsl_crypto_params_t *dcp = skcka->skcka_cp;
|
|
dsl_wrapping_key_t *wkey = NULL, *found_wkey;
|
|
dsl_wrapping_key_t wkey_search;
|
|
char *keylocation = dcp->cp_keylocation;
|
|
uint64_t rddobj, new_rddobj;
|
|
|
|
/* create and initialize the wrapping key */
|
|
VERIFY0(dsl_dataset_hold(dp, skcka->skcka_dsname, FTAG, &ds));
|
|
ASSERT(!ds->ds_is_snapshot);
|
|
|
|
if (dcp->cp_cmd == DCP_CMD_NEW_KEY ||
|
|
dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY) {
|
|
/*
|
|
* We are changing to a new wkey. Set additional properties
|
|
* which can be sent along with this ioctl. Note that this
|
|
* command can set keylocation even if it can't normally be
|
|
* set via 'zfs set' due to a non-local keylocation.
|
|
*/
|
|
if (dcp->cp_cmd == DCP_CMD_NEW_KEY) {
|
|
wkey = dcp->cp_wkey;
|
|
wkey->wk_ddobj = ds->ds_dir->dd_object;
|
|
} else {
|
|
keylocation = "prompt";
|
|
}
|
|
|
|
if (keylocation != NULL) {
|
|
dsl_prop_set_sync_impl(ds,
|
|
zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
|
|
ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1,
|
|
keylocation, tx);
|
|
}
|
|
|
|
VERIFY0(dsl_dir_get_encryption_root_ddobj(ds->ds_dir, &rddobj));
|
|
new_rddobj = ds->ds_dir->dd_object;
|
|
} else {
|
|
/*
|
|
* We are inheritting the parent's wkey. Unset any local
|
|
* keylocation and grab a reference to the wkey.
|
|
*/
|
|
if (dcp->cp_cmd == DCP_CMD_INHERIT) {
|
|
VERIFY0(spa_keystore_wkey_hold_dd(spa,
|
|
ds->ds_dir->dd_parent, FTAG, &wkey));
|
|
}
|
|
|
|
dsl_prop_set_sync_impl(ds,
|
|
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), ZPROP_SRC_NONE,
|
|
0, 0, NULL, tx);
|
|
|
|
rddobj = ds->ds_dir->dd_object;
|
|
VERIFY0(dsl_dir_get_encryption_root_ddobj(ds->ds_dir->dd_parent,
|
|
&new_rddobj));
|
|
}
|
|
|
|
if (wkey == NULL) {
|
|
ASSERT(dcp->cp_cmd == DCP_CMD_FORCE_INHERIT ||
|
|
dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY);
|
|
}
|
|
|
|
rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
|
|
|
|
/* recurse through all children and rewrap their keys */
|
|
spa_keystore_change_key_sync_impl(rddobj, ds->ds_dir->dd_object,
|
|
new_rddobj, wkey, B_FALSE, tx);
|
|
|
|
/*
|
|
* All references to the old wkey should be released now (if it
|
|
* existed). Replace the wrapping key.
|
|
*/
|
|
wkey_search.wk_ddobj = ds->ds_dir->dd_object;
|
|
found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &wkey_search, NULL);
|
|
if (found_wkey != NULL) {
|
|
ASSERT0(zfs_refcount_count(&found_wkey->wk_refcnt));
|
|
avl_remove(&spa->spa_keystore.sk_wkeys, found_wkey);
|
|
dsl_wrapping_key_free(found_wkey);
|
|
}
|
|
|
|
if (dcp->cp_cmd == DCP_CMD_NEW_KEY) {
|
|
avl_find(&spa->spa_keystore.sk_wkeys, wkey, &where);
|
|
avl_insert(&spa->spa_keystore.sk_wkeys, wkey, where);
|
|
} else if (wkey != NULL) {
|
|
dsl_wrapping_key_rele(wkey, FTAG);
|
|
}
|
|
|
|
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
|
|
int
|
|
spa_keystore_change_key(const char *dsname, dsl_crypto_params_t *dcp)
|
|
{
|
|
spa_keystore_change_key_args_t skcka;
|
|
|
|
/* initialize the args struct */
|
|
skcka.skcka_dsname = dsname;
|
|
skcka.skcka_cp = dcp;
|
|
|
|
/*
|
|
* Perform the actual work in syncing context. The blocks modified
|
|
* here could be calculated but it would require holding the pool
|
|
* lock and traversing all of the datasets that will have their keys
|
|
* changed.
|
|
*/
|
|
return (dsl_sync_task(dsname, spa_keystore_change_key_check,
|
|
spa_keystore_change_key_sync, &skcka, 15,
|
|
ZFS_SPACE_CHECK_RESERVED));
|
|
}
|
|
|
|
int
|
|
dsl_dir_rename_crypt_check(dsl_dir_t *dd, dsl_dir_t *newparent)
|
|
{
|
|
int ret;
|
|
uint64_t curr_rddobj, parent_rddobj;
|
|
|
|
if (dd->dd_crypto_obj == 0)
|
|
return (0);
|
|
|
|
ret = dsl_dir_get_encryption_root_ddobj(dd, &curr_rddobj);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/*
|
|
* if this is not an encryption root, we must make sure we are not
|
|
* moving dd to a new encryption root
|
|
*/
|
|
if (dd->dd_object != curr_rddobj) {
|
|
ret = dsl_dir_get_encryption_root_ddobj(newparent,
|
|
&parent_rddobj);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
if (parent_rddobj != curr_rddobj) {
|
|
ret = SET_ERROR(EACCES);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
error:
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Check to make sure that a promote from targetdd to origindd will not require
|
|
* any key rewraps.
|
|
*/
|
|
int
|
|
dsl_dataset_promote_crypt_check(dsl_dir_t *target, dsl_dir_t *origin)
|
|
{
|
|
int ret;
|
|
uint64_t rddobj, op_rddobj, tp_rddobj;
|
|
|
|
/* If the dataset is not encrypted we don't need to check anything */
|
|
if (origin->dd_crypto_obj == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* If we are not changing the first origin snapshot in a chain
|
|
* the encryption root won't change either.
|
|
*/
|
|
if (dsl_dir_is_clone(origin))
|
|
return (0);
|
|
|
|
/*
|
|
* If the origin is the encryption root we will update
|
|
* the DSL Crypto Key to point to the target instead.
|
|
*/
|
|
ret = dsl_dir_get_encryption_root_ddobj(origin, &rddobj);
|
|
if (ret != 0)
|
|
return (ret);
|
|
|
|
if (rddobj == origin->dd_object)
|
|
return (0);
|
|
|
|
/*
|
|
* The origin is inheriting its encryption root from its parent.
|
|
* Check that the parent of the target has the same encryption root.
|
|
*/
|
|
ret = dsl_dir_get_encryption_root_ddobj(origin->dd_parent, &op_rddobj);
|
|
if (ret == ENOENT)
|
|
return (SET_ERROR(EACCES));
|
|
else if (ret != 0)
|
|
return (ret);
|
|
|
|
ret = dsl_dir_get_encryption_root_ddobj(target->dd_parent, &tp_rddobj);
|
|
if (ret == ENOENT)
|
|
return (SET_ERROR(EACCES));
|
|
else if (ret != 0)
|
|
return (ret);
|
|
|
|
if (op_rddobj != tp_rddobj)
|
|
return (SET_ERROR(EACCES));
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dsl_dataset_promote_crypt_sync(dsl_dir_t *target, dsl_dir_t *origin,
|
|
dmu_tx_t *tx)
|
|
{
|
|
uint64_t rddobj;
|
|
dsl_pool_t *dp = target->dd_pool;
|
|
dsl_dataset_t *targetds;
|
|
dsl_dataset_t *originds;
|
|
char *keylocation;
|
|
|
|
if (origin->dd_crypto_obj == 0)
|
|
return;
|
|
if (dsl_dir_is_clone(origin))
|
|
return;
|
|
|
|
VERIFY0(dsl_dir_get_encryption_root_ddobj(origin, &rddobj));
|
|
|
|
if (rddobj != origin->dd_object)
|
|
return;
|
|
|
|
/*
|
|
* If the target is being promoted to the encryption root update the
|
|
* DSL Crypto Key and keylocation to reflect that. We also need to
|
|
* update the DSL Crypto Keys of all children inheritting their
|
|
* encryption root to point to the new target. Otherwise, the check
|
|
* function ensured that the encryption root will not change.
|
|
*/
|
|
keylocation = kmem_alloc(ZAP_MAXVALUELEN, KM_SLEEP);
|
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
|
dsl_dir_phys(target)->dd_head_dataset_obj, FTAG, &targetds));
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
|
dsl_dir_phys(origin)->dd_head_dataset_obj, FTAG, &originds));
|
|
|
|
VERIFY0(dsl_prop_get_dd(origin, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
|
|
1, ZAP_MAXVALUELEN, keylocation, NULL, B_FALSE));
|
|
dsl_prop_set_sync_impl(targetds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
|
|
ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1, keylocation, tx);
|
|
dsl_prop_set_sync_impl(originds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
|
|
ZPROP_SRC_NONE, 0, 0, NULL, tx);
|
|
|
|
rw_enter(&dp->dp_spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
|
|
spa_keystore_change_key_sync_impl(rddobj, origin->dd_object,
|
|
target->dd_object, NULL, B_FALSE, tx);
|
|
rw_exit(&dp->dp_spa->spa_keystore.sk_wkeys_lock);
|
|
|
|
dsl_dataset_rele(targetds, FTAG);
|
|
dsl_dataset_rele(originds, FTAG);
|
|
kmem_free(keylocation, ZAP_MAXVALUELEN);
|
|
}
|
|
|
|
int
|
|
dmu_objset_create_crypt_check(dsl_dir_t *parentdd, dsl_crypto_params_t *dcp,
|
|
boolean_t *will_encrypt)
|
|
{
|
|
int ret;
|
|
uint64_t pcrypt, crypt;
|
|
dsl_crypto_params_t dummy_dcp = { 0 };
|
|
|
|
if (will_encrypt != NULL)
|
|
*will_encrypt = B_FALSE;
|
|
|
|
if (dcp == NULL)
|
|
dcp = &dummy_dcp;
|
|
|
|
if (dcp->cp_cmd != DCP_CMD_NONE)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (parentdd != NULL) {
|
|
ret = dsl_dir_get_crypt(parentdd, &pcrypt);
|
|
if (ret != 0)
|
|
return (ret);
|
|
} else {
|
|
pcrypt = ZIO_CRYPT_OFF;
|
|
}
|
|
|
|
crypt = (dcp->cp_crypt == ZIO_CRYPT_INHERIT) ? pcrypt : dcp->cp_crypt;
|
|
|
|
ASSERT3U(pcrypt, !=, ZIO_CRYPT_INHERIT);
|
|
ASSERT3U(crypt, !=, ZIO_CRYPT_INHERIT);
|
|
|
|
/* check for valid dcp with no encryption (inherited or local) */
|
|
if (crypt == ZIO_CRYPT_OFF) {
|
|
/* Must not specify encryption params */
|
|
if (dcp->cp_wkey != NULL ||
|
|
(dcp->cp_keylocation != NULL &&
|
|
strcmp(dcp->cp_keylocation, "none") != 0))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
return (0);
|
|
}
|
|
|
|
if (will_encrypt != NULL)
|
|
*will_encrypt = B_TRUE;
|
|
|
|
/*
|
|
* We will now definitely be encrypting. Check the feature flag. When
|
|
* creating the pool the caller will check this for us since we won't
|
|
* technically have the feature activated yet.
|
|
*/
|
|
if (parentdd != NULL &&
|
|
!spa_feature_is_enabled(parentdd->dd_pool->dp_spa,
|
|
SPA_FEATURE_ENCRYPTION)) {
|
|
return (SET_ERROR(EOPNOTSUPP));
|
|
}
|
|
|
|
/* Check for errata #4 (encryption enabled, bookmark_v2 disabled) */
|
|
if (parentdd != NULL &&
|
|
!spa_feature_is_enabled(parentdd->dd_pool->dp_spa,
|
|
SPA_FEATURE_BOOKMARK_V2)) {
|
|
return (SET_ERROR(EOPNOTSUPP));
|
|
}
|
|
|
|
/* handle inheritance */
|
|
if (dcp->cp_wkey == NULL) {
|
|
ASSERT3P(parentdd, !=, NULL);
|
|
|
|
/* key must be fully unspecified */
|
|
if (dcp->cp_keylocation != NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* parent must have a key to inherit */
|
|
if (pcrypt == ZIO_CRYPT_OFF)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* check for parent key */
|
|
ret = dmu_objset_check_wkey_loaded(parentdd);
|
|
if (ret != 0)
|
|
return (ret);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* At this point we should have a fully specified key. Check location */
|
|
if (dcp->cp_keylocation == NULL ||
|
|
!zfs_prop_valid_keylocation(dcp->cp_keylocation, B_TRUE))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Must have fully specified keyformat */
|
|
switch (dcp->cp_wkey->wk_keyformat) {
|
|
case ZFS_KEYFORMAT_HEX:
|
|
case ZFS_KEYFORMAT_RAW:
|
|
/* requires no pbkdf2 iters and salt */
|
|
if (dcp->cp_wkey->wk_salt != 0 || dcp->cp_wkey->wk_iters != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
break;
|
|
case ZFS_KEYFORMAT_PASSPHRASE:
|
|
/* requires pbkdf2 iters and salt */
|
|
if (dcp->cp_wkey->wk_salt == 0 ||
|
|
dcp->cp_wkey->wk_iters < MIN_PBKDF2_ITERATIONS)
|
|
return (SET_ERROR(EINVAL));
|
|
break;
|
|
case ZFS_KEYFORMAT_NONE:
|
|
default:
|
|
/* keyformat must be specified and valid */
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dsl_dataset_create_crypt_sync(uint64_t dsobj, dsl_dir_t *dd,
|
|
dsl_dataset_t *origin, dsl_crypto_params_t *dcp, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = dd->dd_pool;
|
|
uint64_t crypt;
|
|
dsl_wrapping_key_t *wkey;
|
|
|
|
/* clones always use their origin's wrapping key */
|
|
if (dsl_dir_is_clone(dd)) {
|
|
ASSERT3P(dcp, ==, NULL);
|
|
|
|
/*
|
|
* If this is an encrypted clone we just need to clone the
|
|
* dck into dd. Zapify the dd so we can do that.
|
|
*/
|
|
if (origin->ds_dir->dd_crypto_obj != 0) {
|
|
dmu_buf_will_dirty(dd->dd_dbuf, tx);
|
|
dsl_dir_zapify(dd, tx);
|
|
|
|
dd->dd_crypto_obj =
|
|
dsl_crypto_key_clone_sync(origin->ds_dir, tx);
|
|
VERIFY0(zap_add(dp->dp_meta_objset, dd->dd_object,
|
|
DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1,
|
|
&dd->dd_crypto_obj, tx));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A NULL dcp at this point indicates this is the origin dataset
|
|
* which does not have an objset to encrypt. Raw receives will handle
|
|
* encryption separately later. In both cases we can simply return.
|
|
*/
|
|
if (dcp == NULL || dcp->cp_cmd == DCP_CMD_RAW_RECV)
|
|
return;
|
|
|
|
crypt = dcp->cp_crypt;
|
|
wkey = dcp->cp_wkey;
|
|
|
|
/* figure out the effective crypt */
|
|
if (crypt == ZIO_CRYPT_INHERIT && dd->dd_parent != NULL)
|
|
VERIFY0(dsl_dir_get_crypt(dd->dd_parent, &crypt));
|
|
|
|
/* if we aren't doing encryption just return */
|
|
if (crypt == ZIO_CRYPT_OFF || crypt == ZIO_CRYPT_INHERIT)
|
|
return;
|
|
|
|
/* zapify the dd so that we can add the crypto key obj to it */
|
|
dmu_buf_will_dirty(dd->dd_dbuf, tx);
|
|
dsl_dir_zapify(dd, tx);
|
|
|
|
/* use the new key if given or inherit from the parent */
|
|
if (wkey == NULL) {
|
|
VERIFY0(spa_keystore_wkey_hold_dd(dp->dp_spa,
|
|
dd->dd_parent, FTAG, &wkey));
|
|
} else {
|
|
wkey->wk_ddobj = dd->dd_object;
|
|
}
|
|
|
|
ASSERT3P(wkey, !=, NULL);
|
|
|
|
/* Create or clone the DSL crypto key and activate the feature */
|
|
dd->dd_crypto_obj = dsl_crypto_key_create_sync(crypt, wkey, tx);
|
|
VERIFY0(zap_add(dp->dp_meta_objset, dd->dd_object,
|
|
DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1, &dd->dd_crypto_obj,
|
|
tx));
|
|
dsl_dataset_activate_feature(dsobj, SPA_FEATURE_ENCRYPTION,
|
|
(void *)B_TRUE, tx);
|
|
|
|
/*
|
|
* If we inherited the wrapping key we release our reference now.
|
|
* Otherwise, this is a new key and we need to load it into the
|
|
* keystore.
|
|
*/
|
|
if (dcp->cp_wkey == NULL) {
|
|
dsl_wrapping_key_rele(wkey, FTAG);
|
|
} else {
|
|
VERIFY0(spa_keystore_load_wkey_impl(dp->dp_spa, wkey));
|
|
}
|
|
}
|
|
|
|
typedef struct dsl_crypto_recv_key_arg {
|
|
uint64_t dcrka_dsobj;
|
|
uint64_t dcrka_fromobj;
|
|
dmu_objset_type_t dcrka_ostype;
|
|
nvlist_t *dcrka_nvl;
|
|
boolean_t dcrka_do_key;
|
|
} dsl_crypto_recv_key_arg_t;
|
|
|
|
static int
|
|
dsl_crypto_recv_raw_objset_check(dsl_dataset_t *ds, dsl_dataset_t *fromds,
|
|
dmu_objset_type_t ostype, nvlist_t *nvl, dmu_tx_t *tx)
|
|
{
|
|
int ret;
|
|
objset_t *os;
|
|
dnode_t *mdn;
|
|
uint8_t *buf = NULL;
|
|
uint_t len;
|
|
uint64_t intval, nlevels, blksz, ibs;
|
|
uint64_t nblkptr, maxblkid;
|
|
|
|
if (ostype != DMU_OST_ZFS && ostype != DMU_OST_ZVOL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* raw receives also need info about the structure of the metadnode */
|
|
ret = nvlist_lookup_uint64(nvl, "mdn_compress", &intval);
|
|
if (ret != 0 || intval >= ZIO_COMPRESS_LEGACY_FUNCTIONS)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = nvlist_lookup_uint64(nvl, "mdn_checksum", &intval);
|
|
if (ret != 0 || intval >= ZIO_CHECKSUM_LEGACY_FUNCTIONS)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = nvlist_lookup_uint64(nvl, "mdn_nlevels", &nlevels);
|
|
if (ret != 0 || nlevels > DN_MAX_LEVELS)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = nvlist_lookup_uint64(nvl, "mdn_blksz", &blksz);
|
|
if (ret != 0 || blksz < SPA_MINBLOCKSIZE)
|
|
return (SET_ERROR(EINVAL));
|
|
else if (blksz > spa_maxblocksize(tx->tx_pool->dp_spa))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
ret = nvlist_lookup_uint64(nvl, "mdn_indblkshift", &ibs);
|
|
if (ret != 0 || ibs < DN_MIN_INDBLKSHIFT || ibs > DN_MAX_INDBLKSHIFT)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
ret = nvlist_lookup_uint64(nvl, "mdn_nblkptr", &nblkptr);
|
|
if (ret != 0 || nblkptr != DN_MAX_NBLKPTR)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
ret = nvlist_lookup_uint64(nvl, "mdn_maxblkid", &maxblkid);
|
|
if (ret != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = nvlist_lookup_uint8_array(nvl, "portable_mac", &buf, &len);
|
|
if (ret != 0 || len != ZIO_OBJSET_MAC_LEN)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = dmu_objset_from_ds(ds, &os);
|
|
if (ret != 0)
|
|
return (ret);
|
|
|
|
mdn = DMU_META_DNODE(os);
|
|
|
|
/*
|
|
* If we already created the objset, make sure its unchangeable
|
|
* properties match the ones received in the nvlist.
|
|
*/
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
|
if (!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) &&
|
|
(mdn->dn_nlevels != nlevels || mdn->dn_datablksz != blksz ||
|
|
mdn->dn_indblkshift != ibs || mdn->dn_nblkptr != nblkptr)) {
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
|
|
/*
|
|
* Check that the ivset guid of the fromds matches the one from the
|
|
* send stream. Older versions of the encryption code did not have
|
|
* an ivset guid on the from dataset and did not send one in the
|
|
* stream. For these streams we provide the
|
|
* zfs_disable_ivset_guid_check tunable to allow these datasets to
|
|
* be received with a generated ivset guid.
|
|
*/
|
|
if (fromds != NULL && !zfs_disable_ivset_guid_check) {
|
|
uint64_t from_ivset_guid = 0;
|
|
intval = 0;
|
|
|
|
(void) nvlist_lookup_uint64(nvl, "from_ivset_guid", &intval);
|
|
(void) zap_lookup(tx->tx_pool->dp_meta_objset,
|
|
fromds->ds_object, DS_FIELD_IVSET_GUID,
|
|
sizeof (from_ivset_guid), 1, &from_ivset_guid);
|
|
|
|
if (intval == 0 || from_ivset_guid == 0)
|
|
return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISSING));
|
|
|
|
if (intval != from_ivset_guid)
|
|
return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISMATCH));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dsl_crypto_recv_raw_objset_sync(dsl_dataset_t *ds, dmu_objset_type_t ostype,
|
|
nvlist_t *nvl, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = tx->tx_pool;
|
|
objset_t *os;
|
|
dnode_t *mdn;
|
|
zio_t *zio;
|
|
uint8_t *portable_mac;
|
|
uint_t len;
|
|
uint64_t compress, checksum, nlevels, blksz, ibs, maxblkid;
|
|
boolean_t newds = B_FALSE;
|
|
|
|
VERIFY0(dmu_objset_from_ds(ds, &os));
|
|
mdn = DMU_META_DNODE(os);
|
|
|
|
/*
|
|
* Fetch the values we need from the nvlist. "to_ivset_guid" must
|
|
* be set on the snapshot, which doesn't exist yet. The receive
|
|
* code will take care of this for us later.
|
|
*/
|
|
compress = fnvlist_lookup_uint64(nvl, "mdn_compress");
|
|
checksum = fnvlist_lookup_uint64(nvl, "mdn_checksum");
|
|
nlevels = fnvlist_lookup_uint64(nvl, "mdn_nlevels");
|
|
blksz = fnvlist_lookup_uint64(nvl, "mdn_blksz");
|
|
ibs = fnvlist_lookup_uint64(nvl, "mdn_indblkshift");
|
|
maxblkid = fnvlist_lookup_uint64(nvl, "mdn_maxblkid");
|
|
VERIFY0(nvlist_lookup_uint8_array(nvl, "portable_mac", &portable_mac,
|
|
&len));
|
|
|
|
/* if we haven't created an objset for the ds yet, do that now */
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
|
if (BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
|
|
(void) dmu_objset_create_impl_dnstats(dp->dp_spa, ds,
|
|
dsl_dataset_get_blkptr(ds), ostype, nlevels, blksz,
|
|
ibs, tx);
|
|
newds = B_TRUE;
|
|
}
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
|
|
/*
|
|
* Set the portable MAC. The local MAC will always be zero since the
|
|
* incoming data will all be portable and user accounting will be
|
|
* deferred until the next mount. Afterwards, flag the os to be
|
|
* written out raw next time.
|
|
*/
|
|
arc_release(os->os_phys_buf, &os->os_phys_buf);
|
|
bcopy(portable_mac, os->os_phys->os_portable_mac, ZIO_OBJSET_MAC_LEN);
|
|
os->os_phys->os_flags &= ~OBJSET_FLAG_USERACCOUNTING_COMPLETE;
|
|
os->os_phys->os_flags &= ~OBJSET_FLAG_USEROBJACCOUNTING_COMPLETE;
|
|
os->os_flags = os->os_phys->os_flags;
|
|
bzero(os->os_phys->os_local_mac, ZIO_OBJSET_MAC_LEN);
|
|
os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
|
|
|
|
/* set metadnode compression and checksum */
|
|
mdn->dn_compress = compress;
|
|
mdn->dn_checksum = checksum;
|
|
|
|
rw_enter(&mdn->dn_struct_rwlock, RW_WRITER);
|
|
dnode_new_blkid(mdn, maxblkid, tx, B_FALSE, B_TRUE);
|
|
rw_exit(&mdn->dn_struct_rwlock);
|
|
|
|
/*
|
|
* We can't normally dirty the dataset in syncing context unless
|
|
* we are creating a new dataset. In this case, we perform a
|
|
* pseudo txg sync here instead.
|
|
*/
|
|
if (newds) {
|
|
dsl_dataset_dirty(ds, tx);
|
|
} else {
|
|
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
|
dsl_dataset_sync(ds, zio, tx);
|
|
VERIFY0(zio_wait(zio));
|
|
|
|
/* dsl_dataset_sync_done will drop this reference. */
|
|
dmu_buf_add_ref(ds->ds_dbuf, ds);
|
|
dsl_dataset_sync_done(ds, tx);
|
|
}
|
|
}
|
|
|
|
int
|
|
dsl_crypto_recv_raw_key_check(dsl_dataset_t *ds, nvlist_t *nvl, dmu_tx_t *tx)
|
|
{
|
|
int ret;
|
|
objset_t *mos = tx->tx_pool->dp_meta_objset;
|
|
uint8_t *buf = NULL;
|
|
uint_t len;
|
|
uint64_t intval, key_guid, version;
|
|
boolean_t is_passphrase = B_FALSE;
|
|
|
|
ASSERT(dsl_dataset_phys(ds)->ds_flags & DS_FLAG_INCONSISTENT);
|
|
|
|
/*
|
|
* Read and check all the encryption values from the nvlist. We need
|
|
* all of the fields of a DSL Crypto Key, as well as a fully specified
|
|
* wrapping key.
|
|
*/
|
|
ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE, &intval);
|
|
if (ret != 0 || intval >= ZIO_CRYPT_FUNCTIONS ||
|
|
intval <= ZIO_CRYPT_OFF)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_GUID, &intval);
|
|
if (ret != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* If this is an incremental receive make sure the given key guid
|
|
* matches the one we already have.
|
|
*/
|
|
if (ds->ds_dir->dd_crypto_obj != 0) {
|
|
ret = zap_lookup(mos, ds->ds_dir->dd_crypto_obj,
|
|
DSL_CRYPTO_KEY_GUID, 8, 1, &key_guid);
|
|
if (ret != 0)
|
|
return (ret);
|
|
if (intval != key_guid)
|
|
return (SET_ERROR(EACCES));
|
|
}
|
|
|
|
ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
|
|
&buf, &len);
|
|
if (ret != 0 || len != MASTER_KEY_MAX_LEN)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
|
|
&buf, &len);
|
|
if (ret != 0 || len != SHA512_HMAC_KEYLEN)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_IV, &buf, &len);
|
|
if (ret != 0 || len != WRAPPING_IV_LEN)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, &buf, &len);
|
|
if (ret != 0 || len != WRAPPING_MAC_LEN)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* We don't support receiving old on-disk formats. The version 0
|
|
* implementation protected several fields in an objset that were
|
|
* not always portable during a raw receive. As a result, we call
|
|
* the old version an on-disk errata #3.
|
|
*/
|
|
ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_VERSION, &version);
|
|
if (ret != 0 || version != ZIO_CRYPT_KEY_CURRENT_VERSION)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT),
|
|
&intval);
|
|
if (ret != 0 || intval >= ZFS_KEYFORMAT_FORMATS ||
|
|
intval == ZFS_KEYFORMAT_NONE)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
is_passphrase = (intval == ZFS_KEYFORMAT_PASSPHRASE);
|
|
|
|
/*
|
|
* for raw receives we allow any number of pbkdf2iters since there
|
|
* won't be a chance for the user to change it.
|
|
*/
|
|
ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
|
|
&intval);
|
|
if (ret != 0 || (is_passphrase == (intval == 0)))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
|
|
&intval);
|
|
if (ret != 0 || (is_passphrase == (intval == 0)))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dsl_crypto_recv_raw_key_sync(dsl_dataset_t *ds, nvlist_t *nvl, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = tx->tx_pool;
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
dsl_dir_t *dd = ds->ds_dir;
|
|
uint_t len;
|
|
uint64_t rddobj, one = 1;
|
|
uint8_t *keydata, *hmac_keydata, *iv, *mac;
|
|
uint64_t crypt, key_guid, keyformat, iters, salt;
|
|
uint64_t version = ZIO_CRYPT_KEY_CURRENT_VERSION;
|
|
char *keylocation = "prompt";
|
|
|
|
/* lookup the values we need to create the DSL Crypto Key */
|
|
crypt = fnvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE);
|
|
key_guid = fnvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_GUID);
|
|
keyformat = fnvlist_lookup_uint64(nvl,
|
|
zfs_prop_to_name(ZFS_PROP_KEYFORMAT));
|
|
iters = fnvlist_lookup_uint64(nvl,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS));
|
|
salt = fnvlist_lookup_uint64(nvl,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT));
|
|
VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
|
|
&keydata, &len));
|
|
VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
|
|
&hmac_keydata, &len));
|
|
VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_IV, &iv, &len));
|
|
VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, &mac, &len));
|
|
|
|
/* if this is a new dataset setup the DSL Crypto Key. */
|
|
if (dd->dd_crypto_obj == 0) {
|
|
/* zapify the dsl dir so we can add the key object to it */
|
|
dmu_buf_will_dirty(dd->dd_dbuf, tx);
|
|
dsl_dir_zapify(dd, tx);
|
|
|
|
/* create the DSL Crypto Key on disk and activate the feature */
|
|
dd->dd_crypto_obj = zap_create(mos,
|
|
DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
|
|
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
|
|
dd->dd_crypto_obj, DSL_CRYPTO_KEY_REFCOUNT,
|
|
sizeof (uint64_t), 1, &one, tx));
|
|
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
|
|
dd->dd_crypto_obj, DSL_CRYPTO_KEY_VERSION,
|
|
sizeof (uint64_t), 1, &version, tx));
|
|
|
|
dsl_dataset_activate_feature(ds->ds_object,
|
|
SPA_FEATURE_ENCRYPTION, (void *)B_TRUE, tx);
|
|
ds->ds_feature[SPA_FEATURE_ENCRYPTION] = (void *)B_TRUE;
|
|
|
|
/* save the dd_crypto_obj on disk */
|
|
VERIFY0(zap_add(mos, dd->dd_object, DD_FIELD_CRYPTO_KEY_OBJ,
|
|
sizeof (uint64_t), 1, &dd->dd_crypto_obj, tx));
|
|
|
|
/*
|
|
* Set the keylocation to prompt by default. If keylocation
|
|
* has been provided via the properties, this will be overridden
|
|
* later.
|
|
*/
|
|
dsl_prop_set_sync_impl(ds,
|
|
zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
|
|
ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1,
|
|
keylocation, tx);
|
|
|
|
rddobj = dd->dd_object;
|
|
} else {
|
|
VERIFY0(dsl_dir_get_encryption_root_ddobj(dd, &rddobj));
|
|
}
|
|
|
|
/* sync the key data to the ZAP object on disk */
|
|
dsl_crypto_key_sync_impl(mos, dd->dd_crypto_obj, crypt,
|
|
rddobj, key_guid, iv, mac, keydata, hmac_keydata, keyformat, salt,
|
|
iters, tx);
|
|
}
|
|
|
|
static int
|
|
dsl_crypto_recv_key_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
int ret;
|
|
dsl_crypto_recv_key_arg_t *dcrka = arg;
|
|
dsl_dataset_t *ds = NULL, *fromds = NULL;
|
|
|
|
ret = dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_dsobj,
|
|
FTAG, &ds);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
if (dcrka->dcrka_fromobj != 0) {
|
|
ret = dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_fromobj,
|
|
FTAG, &fromds);
|
|
if (ret != 0)
|
|
goto out;
|
|
}
|
|
|
|
ret = dsl_crypto_recv_raw_objset_check(ds, fromds,
|
|
dcrka->dcrka_ostype, dcrka->dcrka_nvl, tx);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* We run this check even if we won't be doing this part of
|
|
* the receive now so that we don't make the user wait until
|
|
* the receive finishes to fail.
|
|
*/
|
|
ret = dsl_crypto_recv_raw_key_check(ds, dcrka->dcrka_nvl, tx);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
out:
|
|
if (ds != NULL)
|
|
dsl_dataset_rele(ds, FTAG);
|
|
if (fromds != NULL)
|
|
dsl_dataset_rele(fromds, FTAG);
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
dsl_crypto_recv_key_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dsl_crypto_recv_key_arg_t *dcrka = arg;
|
|
dsl_dataset_t *ds;
|
|
|
|
VERIFY0(dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_dsobj,
|
|
FTAG, &ds));
|
|
dsl_crypto_recv_raw_objset_sync(ds, dcrka->dcrka_ostype,
|
|
dcrka->dcrka_nvl, tx);
|
|
if (dcrka->dcrka_do_key)
|
|
dsl_crypto_recv_raw_key_sync(ds, dcrka->dcrka_nvl, tx);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
|
|
/*
|
|
* This function is used to sync an nvlist representing a DSL Crypto Key and
|
|
* the associated encryption parameters. The key will be written exactly as is
|
|
* without wrapping it.
|
|
*/
|
|
int
|
|
dsl_crypto_recv_raw(const char *poolname, uint64_t dsobj, uint64_t fromobj,
|
|
dmu_objset_type_t ostype, nvlist_t *nvl, boolean_t do_key)
|
|
{
|
|
dsl_crypto_recv_key_arg_t dcrka;
|
|
|
|
dcrka.dcrka_dsobj = dsobj;
|
|
dcrka.dcrka_fromobj = fromobj;
|
|
dcrka.dcrka_ostype = ostype;
|
|
dcrka.dcrka_nvl = nvl;
|
|
dcrka.dcrka_do_key = do_key;
|
|
|
|
return (dsl_sync_task(poolname, dsl_crypto_recv_key_check,
|
|
dsl_crypto_recv_key_sync, &dcrka, 1, ZFS_SPACE_CHECK_NORMAL));
|
|
}
|
|
|
|
int
|
|
dsl_crypto_populate_key_nvlist(objset_t *os, uint64_t from_ivset_guid,
|
|
nvlist_t **nvl_out)
|
|
{
|
|
int ret;
|
|
dsl_dataset_t *ds = os->os_dsl_dataset;
|
|
dnode_t *mdn;
|
|
uint64_t rddobj;
|
|
nvlist_t *nvl = NULL;
|
|
uint64_t dckobj = ds->ds_dir->dd_crypto_obj;
|
|
dsl_dir_t *rdd = NULL;
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
uint64_t crypt = 0, key_guid = 0, format = 0;
|
|
uint64_t iters = 0, salt = 0, version = 0;
|
|
uint64_t to_ivset_guid = 0;
|
|
uint8_t raw_keydata[MASTER_KEY_MAX_LEN];
|
|
uint8_t raw_hmac_keydata[SHA512_HMAC_KEYLEN];
|
|
uint8_t iv[WRAPPING_IV_LEN];
|
|
uint8_t mac[WRAPPING_MAC_LEN];
|
|
|
|
ASSERT(dckobj != 0);
|
|
|
|
mdn = DMU_META_DNODE(os);
|
|
|
|
nvl = fnvlist_alloc();
|
|
|
|
/* lookup values from the DSL Crypto Key */
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
|
|
&crypt);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &key_guid);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
|
|
MASTER_KEY_MAX_LEN, raw_keydata);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
|
|
SHA512_HMAC_KEYLEN, raw_hmac_keydata);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
|
|
iv);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
|
|
mac);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* see zfs_disable_ivset_guid_check tunable for errata info */
|
|
ret = zap_lookup(mos, ds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
|
|
&to_ivset_guid);
|
|
if (ret != 0)
|
|
ASSERT3U(dp->dp_spa->spa_errata, !=, 0);
|
|
|
|
/*
|
|
* We don't support raw sends of legacy on-disk formats. See the
|
|
* comment in dsl_crypto_recv_key_check() for details.
|
|
*/
|
|
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_VERSION, 8, 1, &version);
|
|
if (ret != 0 || version != ZIO_CRYPT_KEY_CURRENT_VERSION) {
|
|
dp->dp_spa->spa_errata = ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
|
|
ret = SET_ERROR(ENOTSUP);
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Lookup wrapping key properties. An early version of the code did
|
|
* not correctly add these values to the wrapping key or the DSL
|
|
* Crypto Key on disk for non encryption roots, so to be safe we
|
|
* always take the slightly circuitous route of looking it up from
|
|
* the encryption root's key.
|
|
*/
|
|
ret = dsl_dir_get_encryption_root_ddobj(ds->ds_dir, &rddobj);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
dsl_pool_config_enter(dp, FTAG);
|
|
|
|
ret = dsl_dir_hold_obj(dp, rddobj, NULL, FTAG, &rdd);
|
|
if (ret != 0)
|
|
goto error_unlock;
|
|
|
|
ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
|
|
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &format);
|
|
if (ret != 0)
|
|
goto error_unlock;
|
|
|
|
if (format == ZFS_KEYFORMAT_PASSPHRASE) {
|
|
ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters);
|
|
if (ret != 0)
|
|
goto error_unlock;
|
|
|
|
ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt);
|
|
if (ret != 0)
|
|
goto error_unlock;
|
|
}
|
|
|
|
dsl_dir_rele(rdd, FTAG);
|
|
dsl_pool_config_exit(dp, FTAG);
|
|
|
|
fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE, crypt);
|
|
fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_GUID, key_guid);
|
|
fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_VERSION, version);
|
|
VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
|
|
raw_keydata, MASTER_KEY_MAX_LEN));
|
|
VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
|
|
raw_hmac_keydata, SHA512_HMAC_KEYLEN));
|
|
VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_IV, iv,
|
|
WRAPPING_IV_LEN));
|
|
VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, mac,
|
|
WRAPPING_MAC_LEN));
|
|
VERIFY0(nvlist_add_uint8_array(nvl, "portable_mac",
|
|
os->os_phys->os_portable_mac, ZIO_OBJSET_MAC_LEN));
|
|
fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), format);
|
|
fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), iters);
|
|
fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), salt);
|
|
fnvlist_add_uint64(nvl, "mdn_checksum", mdn->dn_checksum);
|
|
fnvlist_add_uint64(nvl, "mdn_compress", mdn->dn_compress);
|
|
fnvlist_add_uint64(nvl, "mdn_nlevels", mdn->dn_nlevels);
|
|
fnvlist_add_uint64(nvl, "mdn_blksz", mdn->dn_datablksz);
|
|
fnvlist_add_uint64(nvl, "mdn_indblkshift", mdn->dn_indblkshift);
|
|
fnvlist_add_uint64(nvl, "mdn_nblkptr", mdn->dn_nblkptr);
|
|
fnvlist_add_uint64(nvl, "mdn_maxblkid", mdn->dn_maxblkid);
|
|
fnvlist_add_uint64(nvl, "to_ivset_guid", to_ivset_guid);
|
|
fnvlist_add_uint64(nvl, "from_ivset_guid", from_ivset_guid);
|
|
|
|
*nvl_out = nvl;
|
|
return (0);
|
|
|
|
error_unlock:
|
|
dsl_pool_config_exit(dp, FTAG);
|
|
error:
|
|
if (rdd != NULL)
|
|
dsl_dir_rele(rdd, FTAG);
|
|
nvlist_free(nvl);
|
|
|
|
*nvl_out = NULL;
|
|
return (ret);
|
|
}
|
|
|
|
uint64_t
|
|
dsl_crypto_key_create_sync(uint64_t crypt, dsl_wrapping_key_t *wkey,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dsl_crypto_key_t dck;
|
|
uint64_t version = ZIO_CRYPT_KEY_CURRENT_VERSION;
|
|
uint64_t one = 1ULL;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
|
|
ASSERT3U(crypt, >, ZIO_CRYPT_OFF);
|
|
|
|
/* create the DSL Crypto Key ZAP object */
|
|
dck.dck_obj = zap_create(tx->tx_pool->dp_meta_objset,
|
|
DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
|
|
|
|
/* fill in the key (on the stack) and sync it to disk */
|
|
dck.dck_wkey = wkey;
|
|
VERIFY0(zio_crypt_key_init(crypt, &dck.dck_key));
|
|
|
|
dsl_crypto_key_sync(&dck, tx);
|
|
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dck.dck_obj,
|
|
DSL_CRYPTO_KEY_REFCOUNT, sizeof (uint64_t), 1, &one, tx));
|
|
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dck.dck_obj,
|
|
DSL_CRYPTO_KEY_VERSION, sizeof (uint64_t), 1, &version, tx));
|
|
|
|
zio_crypt_key_destroy(&dck.dck_key);
|
|
bzero(&dck.dck_key, sizeof (zio_crypt_key_t));
|
|
|
|
return (dck.dck_obj);
|
|
}
|
|
|
|
uint64_t
|
|
dsl_crypto_key_clone_sync(dsl_dir_t *origindd, dmu_tx_t *tx)
|
|
{
|
|
objset_t *mos = tx->tx_pool->dp_meta_objset;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
VERIFY0(zap_increment(mos, origindd->dd_crypto_obj,
|
|
DSL_CRYPTO_KEY_REFCOUNT, 1, tx));
|
|
|
|
return (origindd->dd_crypto_obj);
|
|
}
|
|
|
|
void
|
|
dsl_crypto_key_destroy_sync(uint64_t dckobj, dmu_tx_t *tx)
|
|
{
|
|
objset_t *mos = tx->tx_pool->dp_meta_objset;
|
|
uint64_t refcnt;
|
|
|
|
/* Decrement the refcount, destroy if this is the last reference */
|
|
VERIFY0(zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_REFCOUNT,
|
|
sizeof (uint64_t), 1, &refcnt));
|
|
|
|
if (refcnt != 1) {
|
|
VERIFY0(zap_increment(mos, dckobj, DSL_CRYPTO_KEY_REFCOUNT,
|
|
-1, tx));
|
|
} else {
|
|
VERIFY0(zap_destroy(mos, dckobj, tx));
|
|
}
|
|
}
|
|
|
|
void
|
|
dsl_dataset_crypt_stats(dsl_dataset_t *ds, nvlist_t *nv)
|
|
{
|
|
uint64_t intval;
|
|
dsl_dir_t *dd = ds->ds_dir;
|
|
dsl_dir_t *enc_root;
|
|
char buf[ZFS_MAX_DATASET_NAME_LEN];
|
|
|
|
if (dd->dd_crypto_obj == 0)
|
|
return;
|
|
|
|
intval = dsl_dataset_get_keystatus(dd);
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEYSTATUS, intval);
|
|
|
|
if (dsl_dir_get_crypt(dd, &intval) == 0)
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_ENCRYPTION, intval);
|
|
if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
|
|
DSL_CRYPTO_KEY_GUID, 8, 1, &intval) == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEY_GUID, intval);
|
|
}
|
|
if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
|
|
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &intval) == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEYFORMAT, intval);
|
|
}
|
|
if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &intval) == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_PBKDF2_SALT, intval);
|
|
}
|
|
if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
|
|
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &intval) == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_PBKDF2_ITERS, intval);
|
|
}
|
|
if (zap_lookup(dd->dd_pool->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_IVSET_GUID, 8, 1, &intval) == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_IVSET_GUID, intval);
|
|
}
|
|
|
|
if (dsl_dir_get_encryption_root_ddobj(dd, &intval) == 0) {
|
|
if (dsl_dir_hold_obj(dd->dd_pool, intval, NULL, FTAG,
|
|
&enc_root) == 0) {
|
|
dsl_dir_name(enc_root, buf);
|
|
dsl_dir_rele(enc_root, FTAG);
|
|
dsl_prop_nvlist_add_string(nv,
|
|
ZFS_PROP_ENCRYPTION_ROOT, buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
spa_crypt_get_salt(spa_t *spa, uint64_t dsobj, uint8_t *salt)
|
|
{
|
|
int ret;
|
|
dsl_crypto_key_t *dck = NULL;
|
|
|
|
/* look up the key from the spa's keystore */
|
|
ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zio_crypt_key_get_salt(&dck->dck_key, salt);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
spa_keystore_dsl_key_rele(spa, dck, FTAG);
|
|
return (0);
|
|
|
|
error:
|
|
if (dck != NULL)
|
|
spa_keystore_dsl_key_rele(spa, dck, FTAG);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Objset blocks are a special case for MAC generation. These blocks have 2
|
|
* 256-bit MACs which are embedded within the block itself, rather than a
|
|
* single 128 bit MAC. As a result, this function handles encoding and decoding
|
|
* the MACs on its own, unlike other functions in this file.
|
|
*/
|
|
int
|
|
spa_do_crypt_objset_mac_abd(boolean_t generate, spa_t *spa, uint64_t dsobj,
|
|
abd_t *abd, uint_t datalen, boolean_t byteswap)
|
|
{
|
|
int ret;
|
|
dsl_crypto_key_t *dck = NULL;
|
|
void *buf = abd_borrow_buf_copy(abd, datalen);
|
|
objset_phys_t *osp = buf;
|
|
uint8_t portable_mac[ZIO_OBJSET_MAC_LEN];
|
|
uint8_t local_mac[ZIO_OBJSET_MAC_LEN];
|
|
|
|
/* look up the key from the spa's keystore */
|
|
ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* calculate both HMACs */
|
|
ret = zio_crypt_do_objset_hmacs(&dck->dck_key, buf, datalen,
|
|
byteswap, portable_mac, local_mac);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
spa_keystore_dsl_key_rele(spa, dck, FTAG);
|
|
|
|
/* if we are generating encode the HMACs in the objset_phys_t */
|
|
if (generate) {
|
|
bcopy(portable_mac, osp->os_portable_mac, ZIO_OBJSET_MAC_LEN);
|
|
bcopy(local_mac, osp->os_local_mac, ZIO_OBJSET_MAC_LEN);
|
|
abd_return_buf_copy(abd, buf, datalen);
|
|
return (0);
|
|
}
|
|
|
|
if (bcmp(portable_mac, osp->os_portable_mac, ZIO_OBJSET_MAC_LEN) != 0 ||
|
|
bcmp(local_mac, osp->os_local_mac, ZIO_OBJSET_MAC_LEN) != 0) {
|
|
abd_return_buf(abd, buf, datalen);
|
|
return (SET_ERROR(ECKSUM));
|
|
}
|
|
|
|
abd_return_buf(abd, buf, datalen);
|
|
|
|
return (0);
|
|
|
|
error:
|
|
if (dck != NULL)
|
|
spa_keystore_dsl_key_rele(spa, dck, FTAG);
|
|
abd_return_buf(abd, buf, datalen);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
spa_do_crypt_mac_abd(boolean_t generate, spa_t *spa, uint64_t dsobj, abd_t *abd,
|
|
uint_t datalen, uint8_t *mac)
|
|
{
|
|
int ret;
|
|
dsl_crypto_key_t *dck = NULL;
|
|
uint8_t *buf = abd_borrow_buf_copy(abd, datalen);
|
|
uint8_t digestbuf[ZIO_DATA_MAC_LEN];
|
|
|
|
/* look up the key from the spa's keystore */
|
|
ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
/* perform the hmac */
|
|
ret = zio_crypt_do_hmac(&dck->dck_key, buf, datalen,
|
|
digestbuf, ZIO_DATA_MAC_LEN);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
abd_return_buf(abd, buf, datalen);
|
|
spa_keystore_dsl_key_rele(spa, dck, FTAG);
|
|
|
|
/*
|
|
* Truncate and fill in mac buffer if we were asked to generate a MAC.
|
|
* Otherwise verify that the MAC matched what we expected.
|
|
*/
|
|
if (generate) {
|
|
bcopy(digestbuf, mac, ZIO_DATA_MAC_LEN);
|
|
return (0);
|
|
}
|
|
|
|
if (bcmp(digestbuf, mac, ZIO_DATA_MAC_LEN) != 0)
|
|
return (SET_ERROR(ECKSUM));
|
|
|
|
return (0);
|
|
|
|
error:
|
|
if (dck != NULL)
|
|
spa_keystore_dsl_key_rele(spa, dck, FTAG);
|
|
abd_return_buf(abd, buf, datalen);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* This function serves as a multiplexer for encryption and decryption of
|
|
* all blocks (except the L2ARC). For encryption, it will populate the IV,
|
|
* salt, MAC, and cabd (the ciphertext). On decryption it will simply use
|
|
* these fields to populate pabd (the plaintext).
|
|
*/
|
|
int
|
|
spa_do_crypt_abd(boolean_t encrypt, spa_t *spa, const zbookmark_phys_t *zb,
|
|
dmu_object_type_t ot, boolean_t dedup, boolean_t bswap, uint8_t *salt,
|
|
uint8_t *iv, uint8_t *mac, uint_t datalen, abd_t *pabd, abd_t *cabd,
|
|
boolean_t *no_crypt)
|
|
{
|
|
int ret;
|
|
dsl_crypto_key_t *dck = NULL;
|
|
uint8_t *plainbuf = NULL, *cipherbuf = NULL;
|
|
|
|
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
|
|
|
|
/* look up the key from the spa's keystore */
|
|
ret = spa_keystore_lookup_key(spa, zb->zb_objset, FTAG, &dck);
|
|
if (ret != 0) {
|
|
ret = SET_ERROR(EACCES);
|
|
return (ret);
|
|
}
|
|
|
|
if (encrypt) {
|
|
plainbuf = abd_borrow_buf_copy(pabd, datalen);
|
|
cipherbuf = abd_borrow_buf(cabd, datalen);
|
|
} else {
|
|
plainbuf = abd_borrow_buf(pabd, datalen);
|
|
cipherbuf = abd_borrow_buf_copy(cabd, datalen);
|
|
}
|
|
|
|
/*
|
|
* Both encryption and decryption functions need a salt for key
|
|
* generation and an IV. When encrypting a non-dedup block, we
|
|
* generate the salt and IV randomly to be stored by the caller. Dedup
|
|
* blocks perform a (more expensive) HMAC of the plaintext to obtain
|
|
* the salt and the IV. ZIL blocks have their salt and IV generated
|
|
* at allocation time in zio_alloc_zil(). On decryption, we simply use
|
|
* the provided values.
|
|
*/
|
|
if (encrypt && ot != DMU_OT_INTENT_LOG && !dedup) {
|
|
ret = zio_crypt_key_get_salt(&dck->dck_key, salt);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
ret = zio_crypt_generate_iv(iv);
|
|
if (ret != 0)
|
|
goto error;
|
|
} else if (encrypt && dedup) {
|
|
ret = zio_crypt_generate_iv_salt_dedup(&dck->dck_key,
|
|
plainbuf, datalen, iv, salt);
|
|
if (ret != 0)
|
|
goto error;
|
|
}
|
|
|
|
/* call lower level function to perform encryption / decryption */
|
|
ret = zio_do_crypt_data(encrypt, &dck->dck_key, ot, bswap, salt, iv,
|
|
mac, datalen, plainbuf, cipherbuf, no_crypt);
|
|
|
|
/*
|
|
* Handle injected decryption faults. Unfortunately, we cannot inject
|
|
* faults for dnode blocks because we might trigger the panic in
|
|
* dbuf_prepare_encrypted_dnode_leaf(), which exists because syncing
|
|
* context is not prepared to handle malicious decryption failures.
|
|
*/
|
|
if (zio_injection_enabled && !encrypt && ot != DMU_OT_DNODE && ret == 0)
|
|
ret = zio_handle_decrypt_injection(spa, zb, ot, ECKSUM);
|
|
if (ret != 0)
|
|
goto error;
|
|
|
|
if (encrypt) {
|
|
abd_return_buf(pabd, plainbuf, datalen);
|
|
abd_return_buf_copy(cabd, cipherbuf, datalen);
|
|
} else {
|
|
abd_return_buf_copy(pabd, plainbuf, datalen);
|
|
abd_return_buf(cabd, cipherbuf, datalen);
|
|
}
|
|
|
|
spa_keystore_dsl_key_rele(spa, dck, FTAG);
|
|
|
|
return (0);
|
|
|
|
error:
|
|
if (encrypt) {
|
|
/* zero out any state we might have changed while encrypting */
|
|
bzero(salt, ZIO_DATA_SALT_LEN);
|
|
bzero(iv, ZIO_DATA_IV_LEN);
|
|
bzero(mac, ZIO_DATA_MAC_LEN);
|
|
abd_return_buf(pabd, plainbuf, datalen);
|
|
abd_return_buf_copy(cabd, cipherbuf, datalen);
|
|
} else {
|
|
abd_return_buf_copy(pabd, plainbuf, datalen);
|
|
abd_return_buf(cabd, cipherbuf, datalen);
|
|
}
|
|
|
|
spa_keystore_dsl_key_rele(spa, dck, FTAG);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, disable_ivset_guid_check, INT, ZMOD_RW,
|
|
"Set to allow raw receives without IVset guids");
|