mirror_zfs/module/os/freebsd/zfs/abd_os.c
Brian Atkinson b4e4cbeb20
Always validate checksums for Direct I/O reads
This fixes an oversight in the Direct I/O PR. There is nothing that
stops a process from manipulating the contents of a buffer for a
Direct I/O read while the I/O is in flight. This can lead checksum
verify failures. However, the disk contents are still correct, and this
would lead to false reporting of checksum validation failures.

To remedy this, all Direct I/O reads that have a checksum verification
failure are treated as suspicious. In the event a checksum validation
failure occurs for a Direct I/O read, then the I/O request will be
reissued though the ARC. This allows for actual validation to happen and
removes any possibility of the buffer being manipulated after the I/O
has been issued.

Just as with Direct I/O write checksum validation failures, Direct I/O
read checksum validation failures are reported though zpool status -d in
the DIO column. Also the zevent has been updated to have both:
1. dio_verify_wr -> Checksum verification failure for writes
2. dio_verify_rd -> Checksum verification failure for reads.
This allows for determining what I/O operation was the culprit for the
checksum verification failure. All DIO errors are reported only on the
top-level VDEV.

Even though FreeBSD can write protect pages (stable pages) it still has
the same issue as Linux with Direct I/O reads.

This commit updates the following:
1. Propogates checksum failures for reads all the way up to the
   top-level VDEV.
2. Reports errors through zpool status -d as DIO.
3. Has two zevents for checksum verify errors with Direct I/O. One for
   read and one for write.
4. Updates FreeBSD ABD code to also check for ABD_FLAG_FROM_PAGES and
   handle ABD buffer contents validation the same as Linux.
5. Updated manipulate_user_buffer.c to also manipulate a buffer while a
   Direct I/O read is taking place.
6. Adds a new ZTS test case dio_read_verify that stress tests the new
   code.
7. Updated man pages.
8. Added an IMPLY statement to zio_checksum_verify() to make sure that
   Direct I/O reads are not issued as speculative.
9. Removed self healing through mirror, raidz, and dRAID VDEVs for
   Direct I/O reads.

This issue was first observed when installing a Windows 11 VM on a ZFS
dataset with the dataset property direct set to always. The zpool
devices would report checksum failures, but running a subsequent zpool
scrub would not repair any data and report no errors.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Closes #16598
2024-10-09 12:28:08 -07:00

684 lines
19 KiB
C

/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
* Copyright (c) 2016 by Delphix. All rights reserved.
*/
/*
* See abd.c for a general overview of the arc buffered data (ABD).
*
* Using a large proportion of scattered ABDs decreases ARC fragmentation since
* when we are at the limit of allocatable space, using equal-size chunks will
* allow us to quickly reclaim enough space for a new large allocation (assuming
* it is also scattered).
*
* ABDs are allocated scattered by default unless the caller uses
* abd_alloc_linear() or zfs_abd_scatter_enabled is disabled.
*/
#include <sys/abd_impl.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/zio.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
#include <sys/vm.h>
typedef struct abd_stats {
kstat_named_t abdstat_struct_size;
kstat_named_t abdstat_scatter_cnt;
kstat_named_t abdstat_scatter_data_size;
kstat_named_t abdstat_scatter_chunk_waste;
kstat_named_t abdstat_linear_cnt;
kstat_named_t abdstat_linear_data_size;
} abd_stats_t;
static abd_stats_t abd_stats = {
/* Amount of memory occupied by all of the abd_t struct allocations */
{ "struct_size", KSTAT_DATA_UINT64 },
/*
* The number of scatter ABDs which are currently allocated, excluding
* ABDs which don't own their data (for instance the ones which were
* allocated through abd_get_offset()).
*/
{ "scatter_cnt", KSTAT_DATA_UINT64 },
/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
{ "scatter_data_size", KSTAT_DATA_UINT64 },
/*
* The amount of space wasted at the end of the last chunk across all
* scatter ABDs tracked by scatter_cnt.
*/
{ "scatter_chunk_waste", KSTAT_DATA_UINT64 },
/*
* The number of linear ABDs which are currently allocated, excluding
* ABDs which don't own their data (for instance the ones which were
* allocated through abd_get_offset() and abd_get_from_buf()). If an
* ABD takes ownership of its buf then it will become tracked.
*/
{ "linear_cnt", KSTAT_DATA_UINT64 },
/* Amount of data stored in all linear ABDs tracked by linear_cnt */
{ "linear_data_size", KSTAT_DATA_UINT64 },
};
struct {
wmsum_t abdstat_struct_size;
wmsum_t abdstat_scatter_cnt;
wmsum_t abdstat_scatter_data_size;
wmsum_t abdstat_scatter_chunk_waste;
wmsum_t abdstat_linear_cnt;
wmsum_t abdstat_linear_data_size;
} abd_sums;
/*
* zfs_abd_scatter_min_size is the minimum allocation size to use scatter
* ABD's for. Smaller allocations will use linear ABD's which use
* zio_[data_]buf_alloc().
*
* Scatter ABD's use at least one page each, so sub-page allocations waste
* some space when allocated as scatter (e.g. 2KB scatter allocation wastes
* half of each page). Using linear ABD's for small allocations means that
* they will be put on slabs which contain many allocations.
*
* Linear ABDs for multi-page allocations are easier to use, and in some cases
* it allows to avoid buffer copying. But allocation and especially free
* of multi-page linear ABDs are expensive operations due to KVA mapping and
* unmapping, and with time they cause KVA fragmentations.
*/
static size_t zfs_abd_scatter_min_size = PAGE_SIZE + 1;
SYSCTL_DECL(_vfs_zfs);
SYSCTL_INT(_vfs_zfs, OID_AUTO, abd_scatter_enabled, CTLFLAG_RWTUN,
&zfs_abd_scatter_enabled, 0, "Enable scattered ARC data buffers");
SYSCTL_ULONG(_vfs_zfs, OID_AUTO, abd_scatter_min_size, CTLFLAG_RWTUN,
&zfs_abd_scatter_min_size, 0, "Minimum size of scatter allocations.");
kmem_cache_t *abd_chunk_cache;
static kstat_t *abd_ksp;
/*
* We use a scattered SPA_MAXBLOCKSIZE sized ABD whose chunks are
* just a single zero'd page-sized buffer. This allows us to conserve
* memory by only using a single zero buffer for the scatter chunks.
*/
abd_t *abd_zero_scatter = NULL;
static uint_t
abd_chunkcnt_for_bytes(size_t size)
{
return ((size + PAGE_MASK) >> PAGE_SHIFT);
}
static inline uint_t
abd_scatter_chunkcnt(abd_t *abd)
{
ASSERT(!abd_is_linear(abd));
return (abd_chunkcnt_for_bytes(
ABD_SCATTER(abd).abd_offset + abd->abd_size));
}
boolean_t
abd_size_alloc_linear(size_t size)
{
return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
}
void
abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
{
uint_t n;
n = abd_scatter_chunkcnt(abd);
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
int waste = (n << PAGE_SHIFT) - abd->abd_size;
if (op == ABDSTAT_INCR) {
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
} else {
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
}
}
void
abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
{
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
if (op == ABDSTAT_INCR) {
ABDSTAT_BUMP(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
} else {
ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
}
}
void
abd_verify_scatter(abd_t *abd)
{
uint_t i, n;
/*
* There is no scatter linear pages in FreeBSD so there is
* an error if the ABD has been marked as a linear page.
*/
ASSERT(!abd_is_linear_page(abd));
ASSERT3U(ABD_SCATTER(abd).abd_offset, <, PAGE_SIZE);
n = abd_scatter_chunkcnt(abd);
for (i = 0; i < n; i++) {
ASSERT3P(ABD_SCATTER(abd).abd_chunks[i], !=, NULL);
}
}
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
uint_t i, n;
n = abd_chunkcnt_for_bytes(size);
for (i = 0; i < n; i++) {
ABD_SCATTER(abd).abd_chunks[i] =
kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE);
}
}
void
abd_free_chunks(abd_t *abd)
{
uint_t i, n;
/*
* Scatter ABDs may be constructed by abd_alloc_from_pages() from
* an array of pages. In which case they should not be freed.
*/
if (!abd_is_from_pages(abd)) {
n = abd_scatter_chunkcnt(abd);
for (i = 0; i < n; i++) {
kmem_cache_free(abd_chunk_cache,
ABD_SCATTER(abd).abd_chunks[i]);
}
}
}
abd_t *
abd_alloc_struct_impl(size_t size)
{
uint_t chunkcnt = abd_chunkcnt_for_bytes(size);
/*
* In the event we are allocating a gang ABD, the size passed in
* will be 0. We must make sure to set abd_size to the size of an
* ABD struct as opposed to an ABD scatter with 0 chunks. The gang
* ABD struct allocation accounts for an additional 24 bytes over
* a scatter ABD with 0 chunks.
*/
size_t abd_size = MAX(sizeof (abd_t),
offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]));
abd_t *abd = kmem_alloc(abd_size, KM_PUSHPAGE);
ASSERT3P(abd, !=, NULL);
ABDSTAT_INCR(abdstat_struct_size, abd_size);
return (abd);
}
void
abd_free_struct_impl(abd_t *abd)
{
uint_t chunkcnt = abd_is_linear(abd) || abd_is_gang(abd) ? 0 :
abd_scatter_chunkcnt(abd);
ssize_t size = MAX(sizeof (abd_t),
offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]));
kmem_free(abd, size);
ABDSTAT_INCR(abdstat_struct_size, -size);
}
/*
* Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where
* each chunk in the scatterlist will be set to the same area.
*/
_Static_assert(ZERO_REGION_SIZE >= PAGE_SIZE, "zero_region too small");
static void
abd_alloc_zero_scatter(void)
{
uint_t i, n;
n = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
for (i = 0; i < n; i++) {
ABD_SCATTER(abd_zero_scatter).abd_chunks[i] =
__DECONST(void *, zero_region);
}
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, PAGE_SIZE);
}
static void
abd_free_zero_scatter(void)
{
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGE_SIZE);
abd_free_struct(abd_zero_scatter);
abd_zero_scatter = NULL;
}
static int
abd_kstats_update(kstat_t *ksp, int rw)
{
abd_stats_t *as = ksp->ks_data;
if (rw == KSTAT_WRITE)
return (EACCES);
as->abdstat_struct_size.value.ui64 =
wmsum_value(&abd_sums.abdstat_struct_size);
as->abdstat_scatter_cnt.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_cnt);
as->abdstat_scatter_data_size.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_data_size);
as->abdstat_scatter_chunk_waste.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
as->abdstat_linear_cnt.value.ui64 =
wmsum_value(&abd_sums.abdstat_linear_cnt);
as->abdstat_linear_data_size.value.ui64 =
wmsum_value(&abd_sums.abdstat_linear_data_size);
return (0);
}
void
abd_init(void)
{
abd_chunk_cache = kmem_cache_create("abd_chunk", PAGE_SIZE, 0,
NULL, NULL, NULL, NULL, 0, KMC_NODEBUG | KMC_RECLAIMABLE);
wmsum_init(&abd_sums.abdstat_struct_size, 0);
wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (abd_ksp != NULL) {
abd_ksp->ks_data = &abd_stats;
abd_ksp->ks_update = abd_kstats_update;
kstat_install(abd_ksp);
}
abd_alloc_zero_scatter();
}
void
abd_fini(void)
{
abd_free_zero_scatter();
if (abd_ksp != NULL) {
kstat_delete(abd_ksp);
abd_ksp = NULL;
}
wmsum_fini(&abd_sums.abdstat_struct_size);
wmsum_fini(&abd_sums.abdstat_scatter_cnt);
wmsum_fini(&abd_sums.abdstat_scatter_data_size);
wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
wmsum_fini(&abd_sums.abdstat_linear_cnt);
wmsum_fini(&abd_sums.abdstat_linear_data_size);
kmem_cache_destroy(abd_chunk_cache);
abd_chunk_cache = NULL;
}
void
abd_free_linear_page(abd_t *abd)
{
ASSERT3P(abd->abd_u.abd_linear.sf, !=, NULL);
zfs_unmap_page(abd->abd_u.abd_linear.sf);
}
/*
* If we're going to use this ABD for doing I/O using the block layer, the
* consumer of the ABD data doesn't care if it's scattered or not, and we don't
* plan to store this ABD in memory for a long period of time, we should
* allocate the ABD type that requires the least data copying to do the I/O.
*
* Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os
* using a scatter/gather list we should switch to that and replace this call
* with vanilla abd_alloc().
*/
abd_t *
abd_alloc_for_io(size_t size, boolean_t is_metadata)
{
return (abd_alloc_linear(size, is_metadata));
}
static abd_t *
abd_get_offset_from_pages(abd_t *abd, abd_t *sabd, size_t chunkcnt,
size_t new_offset)
{
ASSERT(abd_is_from_pages(sabd));
/*
* Set the child child chunks to point at the parent chunks as
* the chunks are just pages and we don't want to copy them.
*/
size_t parent_offset = new_offset / PAGE_SIZE;
ASSERT3U(parent_offset, <, abd_scatter_chunkcnt(sabd));
for (int i = 0; i < chunkcnt; i++)
ABD_SCATTER(abd).abd_chunks[i] =
ABD_SCATTER(sabd).abd_chunks[parent_offset + i];
abd->abd_flags |= ABD_FLAG_FROM_PAGES;
return (abd);
}
abd_t *
abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
size_t size)
{
abd_verify(sabd);
ASSERT3U(off, <=, sabd->abd_size);
size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
size_t chunkcnt = abd_chunkcnt_for_bytes(
(new_offset & PAGE_MASK) + size);
ASSERT3U(chunkcnt, <=, abd_scatter_chunkcnt(sabd));
/*
* If an abd struct is provided, it is only the minimum size. If we
* need additional chunks, we need to allocate a new struct.
*/
if (abd != NULL &&
offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]) >
sizeof (abd_t)) {
abd = NULL;
}
if (abd == NULL)
abd = abd_alloc_struct(chunkcnt << PAGE_SHIFT);
/*
* Even if this buf is filesystem metadata, we only track that
* if we own the underlying data buffer, which is not true in
* this case. Therefore, we don't ever use ABD_FLAG_META here.
*/
ABD_SCATTER(abd).abd_offset = new_offset & PAGE_MASK;
if (abd_is_from_pages(sabd)) {
return (abd_get_offset_from_pages(abd, sabd, chunkcnt,
new_offset));
}
/* Copy the scatterlist starting at the correct offset */
(void) memcpy(&ABD_SCATTER(abd).abd_chunks,
&ABD_SCATTER(sabd).abd_chunks[new_offset >> PAGE_SHIFT],
chunkcnt * sizeof (void *));
return (abd);
}
/*
* Allocate a scatter ABD structure from user pages.
*/
abd_t *
abd_alloc_from_pages(vm_page_t *pages, unsigned long offset, uint64_t size)
{
VERIFY3U(size, <=, DMU_MAX_ACCESS);
ASSERT3U(offset, <, PAGE_SIZE);
ASSERT3P(pages, !=, NULL);
abd_t *abd = abd_alloc_struct(size);
abd->abd_flags |= ABD_FLAG_OWNER | ABD_FLAG_FROM_PAGES;
abd->abd_size = size;
if ((offset + size) <= PAGE_SIZE) {
/*
* There is only a single page worth of data, so we will just
* use a linear ABD. We have to make sure to take into account
* the offset though. In all other cases our offset will be 0
* as we are always PAGE_SIZE aligned.
*/
abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_LINEAR_PAGE;
ABD_LINEAR_BUF(abd) = (char *)zfs_map_page(pages[0],
&abd->abd_u.abd_linear.sf) + offset;
} else {
ABD_SCATTER(abd).abd_offset = offset;
ASSERT0(ABD_SCATTER(abd).abd_offset);
/*
* Setting the ABD's abd_chunks to point to the user pages.
*/
for (int i = 0; i < abd_chunkcnt_for_bytes(size); i++)
ABD_SCATTER(abd).abd_chunks[i] = pages[i];
}
return (abd);
}
/*
* Initialize the abd_iter.
*/
void
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
{
ASSERT(!abd_is_gang(abd));
abd_verify(abd);
memset(aiter, 0, sizeof (struct abd_iter));
aiter->iter_abd = abd;
}
/*
* This is just a helper function to see if we have exhausted the
* abd_iter and reached the end.
*/
boolean_t
abd_iter_at_end(struct abd_iter *aiter)
{
return (aiter->iter_pos == aiter->iter_abd->abd_size);
}
/*
* Advance the iterator by a certain amount. Cannot be called when a chunk is
* in use. This can be safely called when the aiter has already exhausted, in
* which case this does nothing.
*/
void
abd_iter_advance(struct abd_iter *aiter, size_t amount)
{
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
/* There's nothing left to advance to, so do nothing */
if (abd_iter_at_end(aiter))
return;
aiter->iter_pos += amount;
}
/*
* Map the current chunk into aiter. This can be safely called when the aiter
* has already exhausted, in which case this does nothing.
*/
void
abd_iter_map(struct abd_iter *aiter)
{
void *paddr;
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
/* There's nothing left to iterate over, so do nothing */
if (abd_iter_at_end(aiter))
return;
abd_t *abd = aiter->iter_abd;
size_t offset = aiter->iter_pos;
if (abd_is_linear(abd)) {
aiter->iter_mapsize = abd->abd_size - offset;
paddr = ABD_LINEAR_BUF(abd);
} else if (abd_is_from_pages(abd)) {
aiter->sf = NULL;
offset += ABD_SCATTER(abd).abd_offset;
size_t index = offset / PAGE_SIZE;
offset &= PAGE_MASK;
aiter->iter_mapsize = MIN(PAGE_SIZE - offset,
abd->abd_size - aiter->iter_pos);
paddr = zfs_map_page(
ABD_SCATTER(aiter->iter_abd).abd_chunks[index],
&aiter->sf);
} else {
offset += ABD_SCATTER(abd).abd_offset;
paddr = ABD_SCATTER(abd).abd_chunks[offset >> PAGE_SHIFT];
offset &= PAGE_MASK;
aiter->iter_mapsize = MIN(PAGE_SIZE - offset,
abd->abd_size - aiter->iter_pos);
}
aiter->iter_mapaddr = (char *)paddr + offset;
}
/*
* Unmap the current chunk from aiter. This can be safely called when the aiter
* has already exhausted, in which case this does nothing.
*/
void
abd_iter_unmap(struct abd_iter *aiter)
{
if (!abd_iter_at_end(aiter)) {
ASSERT3P(aiter->iter_mapaddr, !=, NULL);
ASSERT3U(aiter->iter_mapsize, >, 0);
}
if (abd_is_from_pages(aiter->iter_abd) &&
!abd_is_linear_page(aiter->iter_abd)) {
ASSERT3P(aiter->sf, !=, NULL);
zfs_unmap_page(aiter->sf);
}
aiter->iter_mapaddr = NULL;
aiter->iter_mapsize = 0;
}
void
abd_cache_reap_now(void)
{
kmem_cache_reap_soon(abd_chunk_cache);
}
/*
* Borrow a raw buffer from an ABD without copying the contents of the ABD
* into the buffer. If the ABD is scattered, this will alloate a raw buffer
* whose contents are undefined. To copy over the existing data in the ABD, use
* abd_borrow_buf_copy() instead.
*/
void *
abd_borrow_buf(abd_t *abd, size_t n)
{
void *buf;
abd_verify(abd);
ASSERT3U(abd->abd_size, >=, 0);
if (abd_is_linear(abd)) {
buf = abd_to_buf(abd);
} else {
buf = zio_buf_alloc(n);
}
#ifdef ZFS_DEBUG
(void) zfs_refcount_add_many(&abd->abd_children, n, buf);
#endif
return (buf);
}
void *
abd_borrow_buf_copy(abd_t *abd, size_t n)
{
void *buf = abd_borrow_buf(abd, n);
if (!abd_is_linear(abd)) {
abd_copy_to_buf(buf, abd, n);
}
return (buf);
}
/*
* Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
* not change the contents of the ABD. If you want any changes you made to
* buf to be copied back to abd, use abd_return_buf_copy() instead. If the
* ABD is not constructed from user pages from Direct I/O then an ASSERT
* checks to make sure the contents of the buffer have not changed since it was
* borrowed. We can not ASSERT the contents of the buffer have not changed if
* it is composed of user pages. While Direct I/O write pages are placed under
* write protection and can not be changed, this is not the case for Direct I/O
* reads. The pages of a Direct I/O read could be manipulated at any time.
* Checksum verifications in the ZIO pipeline check for this issue and handle
* it by returning an error on checksum verification failure.
*/
void
abd_return_buf(abd_t *abd, void *buf, size_t n)
{
abd_verify(abd);
ASSERT3U(abd->abd_size, >=, n);
#ifdef ZFS_DEBUG
(void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
#endif
if (abd_is_from_pages(abd)) {
if (!abd_is_linear_page(abd))
zio_buf_free(buf, n);
} else if (abd_is_linear(abd)) {
ASSERT3P(buf, ==, abd_to_buf(abd));
} else if (abd_is_gang(abd)) {
#ifdef ZFS_DEBUG
/*
* We have to be careful with gang ABD's that we do not ASSERT
* for any ABD's that contain user pages from Direct I/O. See
* the comment above about Direct I/O read buffers possibly
* being manipulated. In order to handle this, we jsut iterate
* through the gang ABD and only verify ABD's that are not from
* user pages.
*/
void *cmp_buf = buf;
for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
cabd != NULL;
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
if (!abd_is_from_pages(cabd)) {
ASSERT0(abd_cmp_buf(cabd, cmp_buf,
cabd->abd_size));
}
cmp_buf = (char *)cmp_buf + cabd->abd_size;
}
#endif
zio_buf_free(buf, n);
} else {
ASSERT0(abd_cmp_buf(abd, buf, n));
zio_buf_free(buf, n);
}
}
void
abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
{
if (!abd_is_linear(abd)) {
abd_copy_from_buf(abd, buf, n);
}
abd_return_buf(abd, buf, n);
}