1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-25 01:16:34 +03:00
mirror_zfs/module/os/linux/zfs/zpl_super.c
Brian Behlendorf 4352edaafb
Linux: Fix ZFS_ENTER/ZFS_EXIT/ZFS_VERFY_ZP usage
The ZFS_ENTER/ZFS_EXIT/ZFS_VERFY_ZP macros should not be used
in the Linux zpl_*.c source files.  They return a positive error
value which is correct for the common code, but not for the Linux
specific kernel code which expects a negative return value.  The
ZPL_ENTER/ZPL_EXIT/ZPL_VERFY_ZP macros should be used instead.

Furthermore, the ZPL_EXIT macro has been updated to not call the
zfs_exit_fs() function.  This prevents a possible deadlock which
can occur when a snapshot is automatically unmounted because the
zpl_show_devname() must never wait on in progress automatic
snapshot unmounts.

Reviewed-by: Adam Moss <c@yotes.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes  
Closes 
2020-11-14 10:19:00 -08:00

366 lines
8.5 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
*/
#include <sys/zfs_znode.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_ctldir.h>
#include <sys/zpl.h>
static struct inode *
zpl_inode_alloc(struct super_block *sb)
{
struct inode *ip;
VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0);
inode_set_iversion(ip, 1);
return (ip);
}
static void
zpl_inode_destroy(struct inode *ip)
{
ASSERT(atomic_read(&ip->i_count) == 0);
zfs_inode_destroy(ip);
}
/*
* Called from __mark_inode_dirty() to reflect that something in the
* inode has changed. We use it to ensure the znode system attributes
* are always strictly update to date with respect to the inode.
*/
#ifdef HAVE_DIRTY_INODE_WITH_FLAGS
static void
zpl_dirty_inode(struct inode *ip, int flags)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_dirty_inode(ip, flags);
spl_fstrans_unmark(cookie);
}
#else
static void
zpl_dirty_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_dirty_inode(ip, 0);
spl_fstrans_unmark(cookie);
}
#endif /* HAVE_DIRTY_INODE_WITH_FLAGS */
/*
* When ->drop_inode() is called its return value indicates if the
* inode should be evicted from the inode cache. If the inode is
* unhashed and has no links the default policy is to evict it
* immediately.
*
* The ->evict_inode() callback must minimally truncate the inode pages,
* and call clear_inode(). For 2.6.35 and later kernels this will
* simply update the inode state, with the sync occurring before the
* truncate in evict(). For earlier kernels clear_inode() maps to
* end_writeback() which is responsible for completing all outstanding
* write back. In either case, once this is done it is safe to cleanup
* any remaining inode specific data via zfs_inactive().
* remaining filesystem specific data.
*/
static void
zpl_evict_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
truncate_setsize(ip, 0);
clear_inode(ip);
zfs_inactive(ip);
spl_fstrans_unmark(cookie);
}
static void
zpl_put_super(struct super_block *sb)
{
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_umount(sb);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
}
static int
zpl_sync_fs(struct super_block *sb, int wait)
{
fstrans_cookie_t cookie;
cred_t *cr = CRED();
int error;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_sync(sb, wait, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_statfs(struct dentry *dentry, struct kstatfs *statp)
{
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_statvfs(dentry->d_inode, statp);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
/*
* If required by a 32-bit system call, dynamically scale the
* block size up to 16MiB and decrease the block counts. This
* allows for a maximum size of 64EiB to be reported. The file
* counts must be artificially capped at 2^32-1.
*/
if (unlikely(zpl_is_32bit_api())) {
while (statp->f_blocks > UINT32_MAX &&
statp->f_bsize < SPA_MAXBLOCKSIZE) {
statp->f_frsize <<= 1;
statp->f_bsize <<= 1;
statp->f_blocks >>= 1;
statp->f_bfree >>= 1;
statp->f_bavail >>= 1;
}
uint64_t usedobjs = statp->f_files - statp->f_ffree;
statp->f_ffree = MIN(statp->f_ffree, UINT32_MAX - usedobjs);
statp->f_files = statp->f_ffree + usedobjs;
}
return (error);
}
static int
zpl_remount_fs(struct super_block *sb, int *flags, char *data)
{
zfs_mnt_t zm = { .mnt_osname = NULL, .mnt_data = data };
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_remount(sb, flags, &zm);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
static int
__zpl_show_devname(struct seq_file *seq, zfsvfs_t *zfsvfs)
{
ZPL_ENTER(zfsvfs);
char *fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
dmu_objset_name(zfsvfs->z_os, fsname);
for (int i = 0; fsname[i] != 0; i++) {
/*
* Spaces in the dataset name must be converted to their
* octal escape sequence for getmntent(3) to correctly
* parse then fsname portion of /proc/self/mounts.
*/
if (fsname[i] == ' ') {
seq_puts(seq, "\\040");
} else {
seq_putc(seq, fsname[i]);
}
}
kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
ZPL_EXIT(zfsvfs);
return (0);
}
static int
zpl_show_devname(struct seq_file *seq, struct dentry *root)
{
return (__zpl_show_devname(seq, root->d_sb->s_fs_info));
}
static int
__zpl_show_options(struct seq_file *seq, zfsvfs_t *zfsvfs)
{
seq_printf(seq, ",%s",
zfsvfs->z_flags & ZSB_XATTR ? "xattr" : "noxattr");
#ifdef CONFIG_FS_POSIX_ACL
switch (zfsvfs->z_acl_type) {
case ZFS_ACLTYPE_POSIX:
seq_puts(seq, ",posixacl");
break;
default:
seq_puts(seq, ",noacl");
break;
}
#endif /* CONFIG_FS_POSIX_ACL */
return (0);
}
static int
zpl_show_options(struct seq_file *seq, struct dentry *root)
{
return (__zpl_show_options(seq, root->d_sb->s_fs_info));
}
static int
zpl_fill_super(struct super_block *sb, void *data, int silent)
{
zfs_mnt_t *zm = (zfs_mnt_t *)data;
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_domount(sb, zm, silent);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_test_super(struct super_block *s, void *data)
{
zfsvfs_t *zfsvfs = s->s_fs_info;
objset_t *os = data;
if (zfsvfs == NULL)
return (0);
return (os == zfsvfs->z_os);
}
static struct super_block *
zpl_mount_impl(struct file_system_type *fs_type, int flags, zfs_mnt_t *zm)
{
struct super_block *s;
objset_t *os;
int err;
err = dmu_objset_hold(zm->mnt_osname, FTAG, &os);
if (err)
return (ERR_PTR(-err));
/*
* The dsl pool lock must be released prior to calling sget().
* It is possible sget() may block on the lock in grab_super()
* while deactivate_super() holds that same lock and waits for
* a txg sync. If the dsl_pool lock is held over sget()
* this can prevent the pool sync and cause a deadlock.
*/
dsl_dataset_long_hold(dmu_objset_ds(os), FTAG);
dsl_pool_rele(dmu_objset_pool(os), FTAG);
s = sget(fs_type, zpl_test_super, set_anon_super, flags, os);
dsl_dataset_long_rele(dmu_objset_ds(os), FTAG);
dsl_dataset_rele(dmu_objset_ds(os), FTAG);
if (IS_ERR(s))
return (ERR_CAST(s));
if (s->s_root == NULL) {
err = zpl_fill_super(s, zm, flags & SB_SILENT ? 1 : 0);
if (err) {
deactivate_locked_super(s);
return (ERR_PTR(err));
}
s->s_flags |= SB_ACTIVE;
} else if ((flags ^ s->s_flags) & SB_RDONLY) {
deactivate_locked_super(s);
return (ERR_PTR(-EBUSY));
}
return (s);
}
static struct dentry *
zpl_mount(struct file_system_type *fs_type, int flags,
const char *osname, void *data)
{
zfs_mnt_t zm = { .mnt_osname = osname, .mnt_data = data };
struct super_block *sb = zpl_mount_impl(fs_type, flags, &zm);
if (IS_ERR(sb))
return (ERR_CAST(sb));
return (dget(sb->s_root));
}
static void
zpl_kill_sb(struct super_block *sb)
{
zfs_preumount(sb);
kill_anon_super(sb);
}
void
zpl_prune_sb(int64_t nr_to_scan, void *arg)
{
struct super_block *sb = (struct super_block *)arg;
int objects = 0;
(void) -zfs_prune(sb, nr_to_scan, &objects);
}
const struct super_operations zpl_super_operations = {
.alloc_inode = zpl_inode_alloc,
.destroy_inode = zpl_inode_destroy,
.dirty_inode = zpl_dirty_inode,
.write_inode = NULL,
.evict_inode = zpl_evict_inode,
.put_super = zpl_put_super,
.sync_fs = zpl_sync_fs,
.statfs = zpl_statfs,
.remount_fs = zpl_remount_fs,
.show_devname = zpl_show_devname,
.show_options = zpl_show_options,
.show_stats = NULL,
};
struct file_system_type zpl_fs_type = {
.owner = THIS_MODULE,
.name = ZFS_DRIVER,
.mount = zpl_mount,
.kill_sb = zpl_kill_sb,
};