mirror_zfs/module/os/linux/zfs/abd_os.c
Alexander Motin 415882d228 Avoid small buffer copying on write
It is wrong for arc_write_ready() to use zfs_abd_scatter_enabled to
decide whether to reallocate/copy the buffer, because the answer is
OS-specific and depends on the buffer size.  Instead of that use
abd_size_alloc_linear(), moved into public header.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes #12425
2022-07-26 10:10:37 -07:00

1156 lines
32 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
* Copyright (c) 2019 by Delphix. All rights reserved.
*/
/*
* See abd.c for a general overview of the arc buffered data (ABD).
*
* Linear buffers act exactly like normal buffers and are always mapped into the
* kernel's virtual memory space, while scattered ABD data chunks are allocated
* as physical pages and then mapped in only while they are actually being
* accessed through one of the abd_* library functions. Using scattered ABDs
* provides several benefits:
*
* (1) They avoid use of kmem_*, preventing performance problems where running
* kmem_reap on very large memory systems never finishes and causes
* constant TLB shootdowns.
*
* (2) Fragmentation is less of an issue since when we are at the limit of
* allocatable space, we won't have to search around for a long free
* hole in the VA space for large ARC allocations. Each chunk is mapped in
* individually, so even if we are using HIGHMEM (see next point) we
* wouldn't need to worry about finding a contiguous address range.
*
* (3) If we are not using HIGHMEM, then all physical memory is always
* mapped into the kernel's address space, so we also avoid the map /
* unmap costs on each ABD access.
*
* If we are not using HIGHMEM, scattered buffers which have only one chunk
* can be treated as linear buffers, because they are contiguous in the
* kernel's virtual address space. See abd_alloc_chunks() for details.
*/
#include <sys/abd_impl.h>
#include <sys/param.h>
#include <sys/zio.h>
#include <sys/arc.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
#ifdef _KERNEL
#include <linux/kmap_compat.h>
#include <linux/scatterlist.h>
#else
#define MAX_ORDER 1
#endif
typedef struct abd_stats {
kstat_named_t abdstat_struct_size;
kstat_named_t abdstat_linear_cnt;
kstat_named_t abdstat_linear_data_size;
kstat_named_t abdstat_scatter_cnt;
kstat_named_t abdstat_scatter_data_size;
kstat_named_t abdstat_scatter_chunk_waste;
kstat_named_t abdstat_scatter_orders[MAX_ORDER];
kstat_named_t abdstat_scatter_page_multi_chunk;
kstat_named_t abdstat_scatter_page_multi_zone;
kstat_named_t abdstat_scatter_page_alloc_retry;
kstat_named_t abdstat_scatter_sg_table_retry;
} abd_stats_t;
static abd_stats_t abd_stats = {
/* Amount of memory occupied by all of the abd_t struct allocations */
{ "struct_size", KSTAT_DATA_UINT64 },
/*
* The number of linear ABDs which are currently allocated, excluding
* ABDs which don't own their data (for instance the ones which were
* allocated through abd_get_offset() and abd_get_from_buf()). If an
* ABD takes ownership of its buf then it will become tracked.
*/
{ "linear_cnt", KSTAT_DATA_UINT64 },
/* Amount of data stored in all linear ABDs tracked by linear_cnt */
{ "linear_data_size", KSTAT_DATA_UINT64 },
/*
* The number of scatter ABDs which are currently allocated, excluding
* ABDs which don't own their data (for instance the ones which were
* allocated through abd_get_offset()).
*/
{ "scatter_cnt", KSTAT_DATA_UINT64 },
/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
{ "scatter_data_size", KSTAT_DATA_UINT64 },
/*
* The amount of space wasted at the end of the last chunk across all
* scatter ABDs tracked by scatter_cnt.
*/
{ "scatter_chunk_waste", KSTAT_DATA_UINT64 },
/*
* The number of compound allocations of a given order. These
* allocations are spread over all currently allocated ABDs, and
* act as a measure of memory fragmentation.
*/
{ { "scatter_order_N", KSTAT_DATA_UINT64 } },
/*
* The number of scatter ABDs which contain multiple chunks.
* ABDs are preferentially allocated from the minimum number of
* contiguous multi-page chunks, a single chunk is optimal.
*/
{ "scatter_page_multi_chunk", KSTAT_DATA_UINT64 },
/*
* The number of scatter ABDs which are split across memory zones.
* ABDs are preferentially allocated using pages from a single zone.
*/
{ "scatter_page_multi_zone", KSTAT_DATA_UINT64 },
/*
* The total number of retries encountered when attempting to
* allocate the pages to populate the scatter ABD.
*/
{ "scatter_page_alloc_retry", KSTAT_DATA_UINT64 },
/*
* The total number of retries encountered when attempting to
* allocate the sg table for an ABD.
*/
{ "scatter_sg_table_retry", KSTAT_DATA_UINT64 },
};
struct {
wmsum_t abdstat_struct_size;
wmsum_t abdstat_linear_cnt;
wmsum_t abdstat_linear_data_size;
wmsum_t abdstat_scatter_cnt;
wmsum_t abdstat_scatter_data_size;
wmsum_t abdstat_scatter_chunk_waste;
wmsum_t abdstat_scatter_orders[MAX_ORDER];
wmsum_t abdstat_scatter_page_multi_chunk;
wmsum_t abdstat_scatter_page_multi_zone;
wmsum_t abdstat_scatter_page_alloc_retry;
wmsum_t abdstat_scatter_sg_table_retry;
} abd_sums;
#define abd_for_each_sg(abd, sg, n, i) \
for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
/*
* zfs_abd_scatter_min_size is the minimum allocation size to use scatter
* ABD's. Smaller allocations will use linear ABD's which uses
* zio_[data_]buf_alloc().
*
* Scatter ABD's use at least one page each, so sub-page allocations waste
* some space when allocated as scatter (e.g. 2KB scatter allocation wastes
* half of each page). Using linear ABD's for small allocations means that
* they will be put on slabs which contain many allocations. This can
* improve memory efficiency, but it also makes it much harder for ARC
* evictions to actually free pages, because all the buffers on one slab need
* to be freed in order for the slab (and underlying pages) to be freed.
* Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
* possible for them to actually waste more memory than scatter (one page per
* buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
*
* Spill blocks are typically 512B and are heavily used on systems running
* selinux with the default dnode size and the `xattr=sa` property set.
*
* By default we use linear allocations for 512B and 1KB, and scatter
* allocations for larger (1.5KB and up).
*/
int zfs_abd_scatter_min_size = 512 * 3;
/*
* We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
* just a single zero'd page. This allows us to conserve memory by
* only using a single zero page for the scatterlist.
*/
abd_t *abd_zero_scatter = NULL;
struct page;
/*
* _KERNEL - Will point to ZERO_PAGE if it is available or it will be
* an allocated zero'd PAGESIZE buffer.
* Userspace - Will be an allocated zero'ed PAGESIZE buffer.
*
* abd_zero_page is assigned to each of the pages of abd_zero_scatter.
*/
static struct page *abd_zero_page = NULL;
static kmem_cache_t *abd_cache = NULL;
static kstat_t *abd_ksp;
static uint_t
abd_chunkcnt_for_bytes(size_t size)
{
return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
}
abd_t *
abd_alloc_struct_impl(size_t size)
{
/*
* In Linux we do not use the size passed in during ABD
* allocation, so we just ignore it.
*/
abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
ASSERT3P(abd, !=, NULL);
ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
return (abd);
}
void
abd_free_struct_impl(abd_t *abd)
{
kmem_cache_free(abd_cache, abd);
ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
}
#ifdef _KERNEL
/*
* Mark zfs data pages so they can be excluded from kernel crash dumps
*/
#ifdef _LP64
#define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E
static inline void
abd_mark_zfs_page(struct page *page)
{
get_page(page);
SetPagePrivate(page);
set_page_private(page, ABD_FILE_CACHE_PAGE);
}
static inline void
abd_unmark_zfs_page(struct page *page)
{
set_page_private(page, 0UL);
ClearPagePrivate(page);
put_page(page);
}
#else
#define abd_mark_zfs_page(page)
#define abd_unmark_zfs_page(page)
#endif /* _LP64 */
#ifndef CONFIG_HIGHMEM
#ifndef __GFP_RECLAIM
#define __GFP_RECLAIM __GFP_WAIT
#endif
/*
* The goal is to minimize fragmentation by preferentially populating ABDs
* with higher order compound pages from a single zone. Allocation size is
* progressively decreased until it can be satisfied without performing
* reclaim or compaction. When necessary this function will degenerate to
* allocating individual pages and allowing reclaim to satisfy allocations.
*/
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
struct list_head pages;
struct sg_table table;
struct scatterlist *sg;
struct page *page, *tmp_page = NULL;
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
int nr_pages = abd_chunkcnt_for_bytes(size);
int chunks = 0, zones = 0;
size_t remaining_size;
int nid = NUMA_NO_NODE;
int alloc_pages = 0;
INIT_LIST_HEAD(&pages);
while (alloc_pages < nr_pages) {
unsigned chunk_pages;
int order;
order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
chunk_pages = (1U << order);
page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
if (page == NULL) {
if (order == 0) {
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
schedule_timeout_interruptible(1);
} else {
max_order = MAX(0, order - 1);
}
continue;
}
list_add_tail(&page->lru, &pages);
if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
zones++;
nid = page_to_nid(page);
ABDSTAT_BUMP(abdstat_scatter_orders[order]);
chunks++;
alloc_pages += chunk_pages;
}
ASSERT3S(alloc_pages, ==, nr_pages);
while (sg_alloc_table(&table, chunks, gfp)) {
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
schedule_timeout_interruptible(1);
}
sg = table.sgl;
remaining_size = size;
list_for_each_entry_safe(page, tmp_page, &pages, lru) {
size_t sg_size = MIN(PAGESIZE << compound_order(page),
remaining_size);
sg_set_page(sg, page, sg_size, 0);
abd_mark_zfs_page(page);
remaining_size -= sg_size;
sg = sg_next(sg);
list_del(&page->lru);
}
/*
* These conditions ensure that a possible transformation to a linear
* ABD would be valid.
*/
ASSERT(!PageHighMem(sg_page(table.sgl)));
ASSERT0(ABD_SCATTER(abd).abd_offset);
if (table.nents == 1) {
/*
* Since there is only one entry, this ABD can be represented
* as a linear buffer. All single-page (4K) ABD's can be
* represented this way. Some multi-page ABD's can also be
* represented this way, if we were able to allocate a single
* "chunk" (higher-order "page" which represents a power-of-2
* series of physically-contiguous pages). This is often the
* case for 2-page (8K) ABD's.
*
* Representing a single-entry scatter ABD as a linear ABD
* has the performance advantage of avoiding the copy (and
* allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
* A performance increase of around 5% has been observed for
* ARC-cached reads (of small blocks which can take advantage
* of this).
*
* Note that this optimization is only possible because the
* pages are always mapped into the kernel's address space.
* This is not the case for highmem pages, so the
* optimization can not be made there.
*/
abd->abd_flags |= ABD_FLAG_LINEAR;
abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
abd->abd_u.abd_linear.abd_sgl = table.sgl;
ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
} else if (table.nents > 1) {
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
if (zones) {
ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
}
ABD_SCATTER(abd).abd_sgl = table.sgl;
ABD_SCATTER(abd).abd_nents = table.nents;
}
}
#else
/*
* Allocate N individual pages to construct a scatter ABD. This function
* makes no attempt to request contiguous pages and requires the minimal
* number of kernel interfaces. It's designed for maximum compatibility.
*/
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
struct scatterlist *sg = NULL;
struct sg_table table;
struct page *page;
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
int nr_pages = abd_chunkcnt_for_bytes(size);
int i = 0;
while (sg_alloc_table(&table, nr_pages, gfp)) {
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
schedule_timeout_interruptible(1);
}
ASSERT3U(table.nents, ==, nr_pages);
ABD_SCATTER(abd).abd_sgl = table.sgl;
ABD_SCATTER(abd).abd_nents = nr_pages;
abd_for_each_sg(abd, sg, nr_pages, i) {
while ((page = __page_cache_alloc(gfp)) == NULL) {
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
schedule_timeout_interruptible(1);
}
ABDSTAT_BUMP(abdstat_scatter_orders[0]);
sg_set_page(sg, page, PAGESIZE, 0);
abd_mark_zfs_page(page);
}
if (nr_pages > 1) {
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
}
}
#endif /* !CONFIG_HIGHMEM */
/*
* This must be called if any of the sg_table allocation functions
* are called.
*/
static void
abd_free_sg_table(abd_t *abd)
{
struct sg_table table;
table.sgl = ABD_SCATTER(abd).abd_sgl;
table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
sg_free_table(&table);
}
void
abd_free_chunks(abd_t *abd)
{
struct scatterlist *sg = NULL;
struct page *page;
int nr_pages = ABD_SCATTER(abd).abd_nents;
int order, i = 0;
if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
abd_for_each_sg(abd, sg, nr_pages, i) {
page = sg_page(sg);
abd_unmark_zfs_page(page);
order = compound_order(page);
__free_pages(page, order);
ASSERT3U(sg->length, <=, PAGE_SIZE << order);
ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
}
abd_free_sg_table(abd);
}
/*
* Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
* the scatterlist will be set to the zero'd out buffer abd_zero_page.
*/
static void
abd_alloc_zero_scatter(void)
{
struct scatterlist *sg = NULL;
struct sg_table table;
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
int i = 0;
#if defined(HAVE_ZERO_PAGE_GPL_ONLY)
gfp_t gfp_zero_page = gfp | __GFP_ZERO;
while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
schedule_timeout_interruptible(1);
}
abd_mark_zfs_page(abd_zero_page);
#else
abd_zero_page = ZERO_PAGE(0);
#endif /* HAVE_ZERO_PAGE_GPL_ONLY */
while (sg_alloc_table(&table, nr_pages, gfp)) {
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
schedule_timeout_interruptible(1);
}
ASSERT3U(table.nents, ==, nr_pages);
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
}
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
}
#else /* _KERNEL */
#ifndef PAGE_SHIFT
#define PAGE_SHIFT (highbit64(PAGESIZE)-1)
#endif
#define zfs_kmap_atomic(chunk) ((void *)chunk)
#define zfs_kunmap_atomic(addr) do { (void)(addr); } while (0)
#define local_irq_save(flags) do { (void)(flags); } while (0)
#define local_irq_restore(flags) do { (void)(flags); } while (0)
#define nth_page(pg, i) \
((struct page *)((void *)(pg) + (i) * PAGESIZE))
struct scatterlist {
struct page *page;
int length;
int end;
};
static void
sg_init_table(struct scatterlist *sg, int nr)
{
memset(sg, 0, nr * sizeof (struct scatterlist));
sg[nr - 1].end = 1;
}
/*
* This must be called if any of the sg_table allocation functions
* are called.
*/
static void
abd_free_sg_table(abd_t *abd)
{
int nents = ABD_SCATTER(abd).abd_nents;
vmem_free(ABD_SCATTER(abd).abd_sgl,
nents * sizeof (struct scatterlist));
}
#define for_each_sg(sgl, sg, nr, i) \
for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
static inline void
sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
unsigned int offset)
{
/* currently we don't use offset */
ASSERT(offset == 0);
sg->page = page;
sg->length = len;
}
static inline struct page *
sg_page(struct scatterlist *sg)
{
return (sg->page);
}
static inline struct scatterlist *
sg_next(struct scatterlist *sg)
{
if (sg->end)
return (NULL);
return (sg + 1);
}
void
abd_alloc_chunks(abd_t *abd, size_t size)
{
unsigned nr_pages = abd_chunkcnt_for_bytes(size);
struct scatterlist *sg;
int i;
ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
sizeof (struct scatterlist), KM_SLEEP);
sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
abd_for_each_sg(abd, sg, nr_pages, i) {
struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
sg_set_page(sg, p, PAGESIZE, 0);
}
ABD_SCATTER(abd).abd_nents = nr_pages;
}
void
abd_free_chunks(abd_t *abd)
{
int i, n = ABD_SCATTER(abd).abd_nents;
struct scatterlist *sg;
abd_for_each_sg(abd, sg, n, i) {
for (int j = 0; j < sg->length; j += PAGESIZE) {
struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT);
umem_free(p, PAGESIZE);
}
}
abd_free_sg_table(abd);
}
static void
abd_alloc_zero_scatter(void)
{
unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
struct scatterlist *sg;
int i;
abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
memset(abd_zero_page, 0, PAGESIZE);
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
sizeof (struct scatterlist), KM_SLEEP);
sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
}
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
}
#endif /* _KERNEL */
boolean_t
abd_size_alloc_linear(size_t size)
{
return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
}
void
abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
{
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
if (op == ABDSTAT_INCR) {
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
} else {
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
}
}
void
abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
{
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
if (op == ABDSTAT_INCR) {
ABDSTAT_BUMP(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
} else {
ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
}
}
void
abd_verify_scatter(abd_t *abd)
{
size_t n;
int i = 0;
struct scatterlist *sg = NULL;
ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
ABD_SCATTER(abd).abd_sgl->length);
n = ABD_SCATTER(abd).abd_nents;
abd_for_each_sg(abd, sg, n, i) {
ASSERT3P(sg_page(sg), !=, NULL);
}
}
static void
abd_free_zero_scatter(void)
{
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
abd_free_sg_table(abd_zero_scatter);
abd_free_struct(abd_zero_scatter);
abd_zero_scatter = NULL;
ASSERT3P(abd_zero_page, !=, NULL);
#if defined(_KERNEL)
#if defined(HAVE_ZERO_PAGE_GPL_ONLY)
abd_unmark_zfs_page(abd_zero_page);
__free_page(abd_zero_page);
#endif /* HAVE_ZERO_PAGE_GPL_ONLY */
#else
umem_free(abd_zero_page, PAGESIZE);
#endif /* _KERNEL */
}
static int
abd_kstats_update(kstat_t *ksp, int rw)
{
abd_stats_t *as = ksp->ks_data;
if (rw == KSTAT_WRITE)
return (EACCES);
as->abdstat_struct_size.value.ui64 =
wmsum_value(&abd_sums.abdstat_struct_size);
as->abdstat_linear_cnt.value.ui64 =
wmsum_value(&abd_sums.abdstat_linear_cnt);
as->abdstat_linear_data_size.value.ui64 =
wmsum_value(&abd_sums.abdstat_linear_data_size);
as->abdstat_scatter_cnt.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_cnt);
as->abdstat_scatter_data_size.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_data_size);
as->abdstat_scatter_chunk_waste.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
for (int i = 0; i < MAX_ORDER; i++) {
as->abdstat_scatter_orders[i].value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
}
as->abdstat_scatter_page_multi_chunk.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
as->abdstat_scatter_page_multi_zone.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
as->abdstat_scatter_page_alloc_retry.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
as->abdstat_scatter_sg_table_retry.value.ui64 =
wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
return (0);
}
void
abd_init(void)
{
int i;
abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
0, NULL, NULL, NULL, NULL, NULL, 0);
wmsum_init(&abd_sums.abdstat_struct_size, 0);
wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
for (i = 0; i < MAX_ORDER; i++)
wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (abd_ksp != NULL) {
for (i = 0; i < MAX_ORDER; i++) {
snprintf(abd_stats.abdstat_scatter_orders[i].name,
KSTAT_STRLEN, "scatter_order_%d", i);
abd_stats.abdstat_scatter_orders[i].data_type =
KSTAT_DATA_UINT64;
}
abd_ksp->ks_data = &abd_stats;
abd_ksp->ks_update = abd_kstats_update;
kstat_install(abd_ksp);
}
abd_alloc_zero_scatter();
}
void
abd_fini(void)
{
abd_free_zero_scatter();
if (abd_ksp != NULL) {
kstat_delete(abd_ksp);
abd_ksp = NULL;
}
wmsum_fini(&abd_sums.abdstat_struct_size);
wmsum_fini(&abd_sums.abdstat_linear_cnt);
wmsum_fini(&abd_sums.abdstat_linear_data_size);
wmsum_fini(&abd_sums.abdstat_scatter_cnt);
wmsum_fini(&abd_sums.abdstat_scatter_data_size);
wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
for (int i = 0; i < MAX_ORDER; i++)
wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
if (abd_cache) {
kmem_cache_destroy(abd_cache);
abd_cache = NULL;
}
}
void
abd_free_linear_page(abd_t *abd)
{
/* Transform it back into a scatter ABD for freeing */
struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
abd->abd_flags &= ~ABD_FLAG_LINEAR;
abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
ABD_SCATTER(abd).abd_nents = 1;
ABD_SCATTER(abd).abd_offset = 0;
ABD_SCATTER(abd).abd_sgl = sg;
abd_free_chunks(abd);
abd_update_scatter_stats(abd, ABDSTAT_DECR);
}
/*
* If we're going to use this ABD for doing I/O using the block layer, the
* consumer of the ABD data doesn't care if it's scattered or not, and we don't
* plan to store this ABD in memory for a long period of time, we should
* allocate the ABD type that requires the least data copying to do the I/O.
*
* On Linux the optimal thing to do would be to use abd_get_offset() and
* construct a new ABD which shares the original pages thereby eliminating
* the copy. But for the moment a new linear ABD is allocated until this
* performance optimization can be implemented.
*/
abd_t *
abd_alloc_for_io(size_t size, boolean_t is_metadata)
{
return (abd_alloc(size, is_metadata));
}
abd_t *
abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
size_t size)
{
int i = 0;
struct scatterlist *sg = NULL;
abd_verify(sabd);
ASSERT3U(off, <=, sabd->abd_size);
size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
if (abd == NULL)
abd = abd_alloc_struct(0);
/*
* Even if this buf is filesystem metadata, we only track that
* if we own the underlying data buffer, which is not true in
* this case. Therefore, we don't ever use ABD_FLAG_META here.
*/
abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
if (new_offset < sg->length)
break;
new_offset -= sg->length;
}
ABD_SCATTER(abd).abd_sgl = sg;
ABD_SCATTER(abd).abd_offset = new_offset;
ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
return (abd);
}
/*
* Initialize the abd_iter.
*/
void
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
{
ASSERT(!abd_is_gang(abd));
abd_verify(abd);
aiter->iter_abd = abd;
aiter->iter_mapaddr = NULL;
aiter->iter_mapsize = 0;
aiter->iter_pos = 0;
if (abd_is_linear(abd)) {
aiter->iter_offset = 0;
aiter->iter_sg = NULL;
} else {
aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
}
}
/*
* This is just a helper function to see if we have exhausted the
* abd_iter and reached the end.
*/
boolean_t
abd_iter_at_end(struct abd_iter *aiter)
{
return (aiter->iter_pos == aiter->iter_abd->abd_size);
}
/*
* Advance the iterator by a certain amount. Cannot be called when a chunk is
* in use. This can be safely called when the aiter has already exhausted, in
* which case this does nothing.
*/
void
abd_iter_advance(struct abd_iter *aiter, size_t amount)
{
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
/* There's nothing left to advance to, so do nothing */
if (abd_iter_at_end(aiter))
return;
aiter->iter_pos += amount;
aiter->iter_offset += amount;
if (!abd_is_linear(aiter->iter_abd)) {
while (aiter->iter_offset >= aiter->iter_sg->length) {
aiter->iter_offset -= aiter->iter_sg->length;
aiter->iter_sg = sg_next(aiter->iter_sg);
if (aiter->iter_sg == NULL) {
ASSERT0(aiter->iter_offset);
break;
}
}
}
}
/*
* Map the current chunk into aiter. This can be safely called when the aiter
* has already exhausted, in which case this does nothing.
*/
void
abd_iter_map(struct abd_iter *aiter)
{
void *paddr;
size_t offset = 0;
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
/* There's nothing left to iterate over, so do nothing */
if (abd_iter_at_end(aiter))
return;
if (abd_is_linear(aiter->iter_abd)) {
ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
offset = aiter->iter_offset;
aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
paddr = ABD_LINEAR_BUF(aiter->iter_abd);
} else {
offset = aiter->iter_offset;
aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
aiter->iter_abd->abd_size - aiter->iter_pos);
paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg));
}
aiter->iter_mapaddr = (char *)paddr + offset;
}
/*
* Unmap the current chunk from aiter. This can be safely called when the aiter
* has already exhausted, in which case this does nothing.
*/
void
abd_iter_unmap(struct abd_iter *aiter)
{
/* There's nothing left to unmap, so do nothing */
if (abd_iter_at_end(aiter))
return;
if (!abd_is_linear(aiter->iter_abd)) {
/* LINTED E_FUNC_SET_NOT_USED */
zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset);
}
ASSERT3P(aiter->iter_mapaddr, !=, NULL);
ASSERT3U(aiter->iter_mapsize, >, 0);
aiter->iter_mapaddr = NULL;
aiter->iter_mapsize = 0;
}
void
abd_cache_reap_now(void)
{
}
#if defined(_KERNEL)
/*
* bio_nr_pages for ABD.
* @off is the offset in @abd
*/
unsigned long
abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
{
unsigned long pos;
if (abd_is_gang(abd)) {
unsigned long count = 0;
for (abd_t *cabd = abd_gang_get_offset(abd, &off);
cabd != NULL && size != 0;
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
ASSERT3U(off, <, cabd->abd_size);
int mysize = MIN(size, cabd->abd_size - off);
count += abd_nr_pages_off(cabd, mysize, off);
size -= mysize;
off = 0;
}
return (count);
}
if (abd_is_linear(abd))
pos = (unsigned long)abd_to_buf(abd) + off;
else
pos = ABD_SCATTER(abd).abd_offset + off;
return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
(pos >> PAGE_SHIFT));
}
static unsigned int
bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
{
unsigned int offset, size, i;
struct page *page;
offset = offset_in_page(buf_ptr);
for (i = 0; i < bio->bi_max_vecs; i++) {
size = PAGE_SIZE - offset;
if (bio_size <= 0)
break;
if (size > bio_size)
size = bio_size;
if (is_vmalloc_addr(buf_ptr))
page = vmalloc_to_page(buf_ptr);
else
page = virt_to_page(buf_ptr);
/*
* Some network related block device uses tcp_sendpage, which
* doesn't behave well when using 0-count page, this is a
* safety net to catch them.
*/
ASSERT3S(page_count(page), >, 0);
if (bio_add_page(bio, page, size, offset) != size)
break;
buf_ptr += size;
bio_size -= size;
offset = 0;
}
return (bio_size);
}
/*
* bio_map for gang ABD.
*/
static unsigned int
abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
unsigned int io_size, size_t off)
{
ASSERT(abd_is_gang(abd));
for (abd_t *cabd = abd_gang_get_offset(abd, &off);
cabd != NULL;
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
ASSERT3U(off, <, cabd->abd_size);
int size = MIN(io_size, cabd->abd_size - off);
int remainder = abd_bio_map_off(bio, cabd, size, off);
io_size -= (size - remainder);
if (io_size == 0 || remainder > 0)
return (io_size);
off = 0;
}
ASSERT0(io_size);
return (io_size);
}
/*
* bio_map for ABD.
* @off is the offset in @abd
* Remaining IO size is returned
*/
unsigned int
abd_bio_map_off(struct bio *bio, abd_t *abd,
unsigned int io_size, size_t off)
{
struct abd_iter aiter;
ASSERT3U(io_size, <=, abd->abd_size - off);
if (abd_is_linear(abd))
return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
ASSERT(!abd_is_linear(abd));
if (abd_is_gang(abd))
return (abd_gang_bio_map_off(bio, abd, io_size, off));
abd_iter_init(&aiter, abd);
abd_iter_advance(&aiter, off);
for (int i = 0; i < bio->bi_max_vecs; i++) {
struct page *pg;
size_t len, sgoff, pgoff;
struct scatterlist *sg;
if (io_size <= 0)
break;
sg = aiter.iter_sg;
sgoff = aiter.iter_offset;
pgoff = sgoff & (PAGESIZE - 1);
len = MIN(io_size, PAGESIZE - pgoff);
ASSERT(len > 0);
pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
if (bio_add_page(bio, pg, len, pgoff) != len)
break;
io_size -= len;
abd_iter_advance(&aiter, len);
}
return (io_size);
}
/* Tunable Parameters */
module_param(zfs_abd_scatter_enabled, int, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_enabled,
"Toggle whether ABD allocations must be linear.");
module_param(zfs_abd_scatter_min_size, int, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_min_size,
"Minimum size of scatter allocations.");
/* CSTYLED */
module_param(zfs_abd_scatter_max_order, uint, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_max_order,
"Maximum order allocation used for a scatter ABD.");
#endif