mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-17 18:11:00 +03:00
94d49e8f9b
This patch resolves a minor issue where an ASSERT in metaslab_passivate() that only applies to non weight-based metaslabs was erroneously applied to all metaslabs. Signed-off-by: Tom Caputi <tcaputi@datto.com>
3617 lines
102 KiB
C
3617 lines
102 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2016 by Delphix. All rights reserved.
|
|
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/space_map.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zfeature.h>
|
|
|
|
#define WITH_DF_BLOCK_ALLOCATOR
|
|
|
|
#define GANG_ALLOCATION(flags) \
|
|
((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
|
|
|
|
/*
|
|
* Metaslab granularity, in bytes. This is roughly similar to what would be
|
|
* referred to as the "stripe size" in traditional RAID arrays. In normal
|
|
* operation, we will try to write this amount of data to a top-level vdev
|
|
* before moving on to the next one.
|
|
*/
|
|
unsigned long metaslab_aliquot = 512 << 10;
|
|
|
|
uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
|
|
|
|
/*
|
|
* The in-core space map representation is more compact than its on-disk form.
|
|
* The zfs_condense_pct determines how much more compact the in-core
|
|
* space map representation must be before we compact it on-disk.
|
|
* Values should be greater than or equal to 100.
|
|
*/
|
|
int zfs_condense_pct = 200;
|
|
|
|
/*
|
|
* Condensing a metaslab is not guaranteed to actually reduce the amount of
|
|
* space used on disk. In particular, a space map uses data in increments of
|
|
* MAX(1 << ashift, space_map_blksz), so a metaslab might use the
|
|
* same number of blocks after condensing. Since the goal of condensing is to
|
|
* reduce the number of IOPs required to read the space map, we only want to
|
|
* condense when we can be sure we will reduce the number of blocks used by the
|
|
* space map. Unfortunately, we cannot precisely compute whether or not this is
|
|
* the case in metaslab_should_condense since we are holding ms_lock. Instead,
|
|
* we apply the following heuristic: do not condense a spacemap unless the
|
|
* uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
|
|
* blocks.
|
|
*/
|
|
int zfs_metaslab_condense_block_threshold = 4;
|
|
|
|
/*
|
|
* The zfs_mg_noalloc_threshold defines which metaslab groups should
|
|
* be eligible for allocation. The value is defined as a percentage of
|
|
* free space. Metaslab groups that have more free space than
|
|
* zfs_mg_noalloc_threshold are always eligible for allocations. Once
|
|
* a metaslab group's free space is less than or equal to the
|
|
* zfs_mg_noalloc_threshold the allocator will avoid allocating to that
|
|
* group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
|
|
* Once all groups in the pool reach zfs_mg_noalloc_threshold then all
|
|
* groups are allowed to accept allocations. Gang blocks are always
|
|
* eligible to allocate on any metaslab group. The default value of 0 means
|
|
* no metaslab group will be excluded based on this criterion.
|
|
*/
|
|
int zfs_mg_noalloc_threshold = 0;
|
|
|
|
/*
|
|
* Metaslab groups are considered eligible for allocations if their
|
|
* fragmenation metric (measured as a percentage) is less than or equal to
|
|
* zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
|
|
* then it will be skipped unless all metaslab groups within the metaslab
|
|
* class have also crossed this threshold.
|
|
*/
|
|
int zfs_mg_fragmentation_threshold = 85;
|
|
|
|
/*
|
|
* Allow metaslabs to keep their active state as long as their fragmentation
|
|
* percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
|
|
* active metaslab that exceeds this threshold will no longer keep its active
|
|
* status allowing better metaslabs to be selected.
|
|
*/
|
|
int zfs_metaslab_fragmentation_threshold = 70;
|
|
|
|
/*
|
|
* When set will load all metaslabs when pool is first opened.
|
|
*/
|
|
int metaslab_debug_load = 0;
|
|
|
|
/*
|
|
* When set will prevent metaslabs from being unloaded.
|
|
*/
|
|
int metaslab_debug_unload = 0;
|
|
|
|
/*
|
|
* Minimum size which forces the dynamic allocator to change
|
|
* it's allocation strategy. Once the space map cannot satisfy
|
|
* an allocation of this size then it switches to using more
|
|
* aggressive strategy (i.e search by size rather than offset).
|
|
*/
|
|
uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
|
|
|
|
/*
|
|
* The minimum free space, in percent, which must be available
|
|
* in a space map to continue allocations in a first-fit fashion.
|
|
* Once the space map's free space drops below this level we dynamically
|
|
* switch to using best-fit allocations.
|
|
*/
|
|
int metaslab_df_free_pct = 4;
|
|
|
|
/*
|
|
* Percentage of all cpus that can be used by the metaslab taskq.
|
|
*/
|
|
int metaslab_load_pct = 50;
|
|
|
|
/*
|
|
* Determines how many txgs a metaslab may remain loaded without having any
|
|
* allocations from it. As long as a metaslab continues to be used we will
|
|
* keep it loaded.
|
|
*/
|
|
int metaslab_unload_delay = TXG_SIZE * 2;
|
|
|
|
/*
|
|
* Max number of metaslabs per group to preload.
|
|
*/
|
|
int metaslab_preload_limit = SPA_DVAS_PER_BP;
|
|
|
|
/*
|
|
* Enable/disable preloading of metaslab.
|
|
*/
|
|
int metaslab_preload_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable fragmentation weighting on metaslabs.
|
|
*/
|
|
int metaslab_fragmentation_factor_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable lba weighting (i.e. outer tracks are given preference).
|
|
*/
|
|
int metaslab_lba_weighting_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable metaslab group biasing.
|
|
*/
|
|
int metaslab_bias_enabled = B_TRUE;
|
|
|
|
|
|
/*
|
|
* Enable/disable segment-based metaslab selection.
|
|
*/
|
|
int zfs_metaslab_segment_weight_enabled = B_TRUE;
|
|
|
|
/*
|
|
* When using segment-based metaslab selection, we will continue
|
|
* allocating from the active metaslab until we have exhausted
|
|
* zfs_metaslab_switch_threshold of its buckets.
|
|
*/
|
|
int zfs_metaslab_switch_threshold = 2;
|
|
|
|
/*
|
|
* Internal switch to enable/disable the metaslab allocation tracing
|
|
* facility.
|
|
*/
|
|
#ifdef _METASLAB_TRACING
|
|
boolean_t metaslab_trace_enabled = B_TRUE;
|
|
#endif
|
|
|
|
/*
|
|
* Maximum entries that the metaslab allocation tracing facility will keep
|
|
* in a given list when running in non-debug mode. We limit the number
|
|
* of entries in non-debug mode to prevent us from using up too much memory.
|
|
* The limit should be sufficiently large that we don't expect any allocation
|
|
* to every exceed this value. In debug mode, the system will panic if this
|
|
* limit is ever reached allowing for further investigation.
|
|
*/
|
|
#ifdef _METASLAB_TRACING
|
|
uint64_t metaslab_trace_max_entries = 5000;
|
|
#endif
|
|
|
|
static uint64_t metaslab_weight(metaslab_t *);
|
|
static void metaslab_set_fragmentation(metaslab_t *);
|
|
|
|
#ifdef _METASLAB_TRACING
|
|
kmem_cache_t *metaslab_alloc_trace_cache;
|
|
#endif
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab classes
|
|
* ==========================================================================
|
|
*/
|
|
metaslab_class_t *
|
|
metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
|
|
{
|
|
metaslab_class_t *mc;
|
|
|
|
mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
|
|
|
|
mc->mc_spa = spa;
|
|
mc->mc_rotor = NULL;
|
|
mc->mc_ops = ops;
|
|
mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
refcount_create_tracked(&mc->mc_alloc_slots);
|
|
|
|
return (mc);
|
|
}
|
|
|
|
void
|
|
metaslab_class_destroy(metaslab_class_t *mc)
|
|
{
|
|
ASSERT(mc->mc_rotor == NULL);
|
|
ASSERT(mc->mc_alloc == 0);
|
|
ASSERT(mc->mc_deferred == 0);
|
|
ASSERT(mc->mc_space == 0);
|
|
ASSERT(mc->mc_dspace == 0);
|
|
|
|
refcount_destroy(&mc->mc_alloc_slots);
|
|
mutex_destroy(&mc->mc_lock);
|
|
kmem_free(mc, sizeof (metaslab_class_t));
|
|
}
|
|
|
|
int
|
|
metaslab_class_validate(metaslab_class_t *mc)
|
|
{
|
|
metaslab_group_t *mg;
|
|
vdev_t *vd;
|
|
|
|
/*
|
|
* Must hold one of the spa_config locks.
|
|
*/
|
|
ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
|
|
spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
|
|
|
|
if ((mg = mc->mc_rotor) == NULL)
|
|
return (0);
|
|
|
|
do {
|
|
vd = mg->mg_vd;
|
|
ASSERT(vd->vdev_mg != NULL);
|
|
ASSERT3P(vd->vdev_top, ==, vd);
|
|
ASSERT3P(mg->mg_class, ==, mc);
|
|
ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
|
|
} while ((mg = mg->mg_next) != mc->mc_rotor);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
|
|
int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
|
|
{
|
|
atomic_add_64(&mc->mc_alloc, alloc_delta);
|
|
atomic_add_64(&mc->mc_deferred, defer_delta);
|
|
atomic_add_64(&mc->mc_space, space_delta);
|
|
atomic_add_64(&mc->mc_dspace, dspace_delta);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_alloc(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_alloc);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_deferred(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_deferred);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_space(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_space);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_dspace(metaslab_class_t *mc)
|
|
{
|
|
return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
|
|
}
|
|
|
|
void
|
|
metaslab_class_histogram_verify(metaslab_class_t *mc)
|
|
{
|
|
vdev_t *rvd = mc->mc_spa->spa_root_vdev;
|
|
uint64_t *mc_hist;
|
|
int i, c;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
|
|
return;
|
|
|
|
mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
|
|
KM_SLEEP);
|
|
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
/*
|
|
* Skip any holes, uninitialized top-levels, or
|
|
* vdevs that are not in this metalab class.
|
|
*/
|
|
if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
|
|
mg->mg_class != mc) {
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
|
|
mc_hist[i] += mg->mg_histogram[i];
|
|
}
|
|
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
|
|
VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
|
|
|
|
kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Calculate the metaslab class's fragmentation metric. The metric
|
|
* is weighted based on the space contribution of each metaslab group.
|
|
* The return value will be a number between 0 and 100 (inclusive), or
|
|
* ZFS_FRAG_INVALID if the metric has not been set. See comment above the
|
|
* zfs_frag_table for more information about the metric.
|
|
*/
|
|
uint64_t
|
|
metaslab_class_fragmentation(metaslab_class_t *mc)
|
|
{
|
|
vdev_t *rvd = mc->mc_spa->spa_root_vdev;
|
|
uint64_t fragmentation = 0;
|
|
int c;
|
|
|
|
spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
/*
|
|
* Skip any holes, uninitialized top-levels, or
|
|
* vdevs that are not in this metalab class.
|
|
*/
|
|
if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
|
|
mg->mg_class != mc) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If a metaslab group does not contain a fragmentation
|
|
* metric then just bail out.
|
|
*/
|
|
if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
|
|
spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
|
|
return (ZFS_FRAG_INVALID);
|
|
}
|
|
|
|
/*
|
|
* Determine how much this metaslab_group is contributing
|
|
* to the overall pool fragmentation metric.
|
|
*/
|
|
fragmentation += mg->mg_fragmentation *
|
|
metaslab_group_get_space(mg);
|
|
}
|
|
fragmentation /= metaslab_class_get_space(mc);
|
|
|
|
ASSERT3U(fragmentation, <=, 100);
|
|
spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
|
|
return (fragmentation);
|
|
}
|
|
|
|
/*
|
|
* Calculate the amount of expandable space that is available in
|
|
* this metaslab class. If a device is expanded then its expandable
|
|
* space will be the amount of allocatable space that is currently not
|
|
* part of this metaslab class.
|
|
*/
|
|
uint64_t
|
|
metaslab_class_expandable_space(metaslab_class_t *mc)
|
|
{
|
|
vdev_t *rvd = mc->mc_spa->spa_root_vdev;
|
|
uint64_t space = 0;
|
|
int c;
|
|
|
|
spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
|
|
mg->mg_class != mc) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Calculate if we have enough space to add additional
|
|
* metaslabs. We report the expandable space in terms
|
|
* of the metaslab size since that's the unit of expansion.
|
|
*/
|
|
space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
|
|
1ULL << tvd->vdev_ms_shift);
|
|
}
|
|
spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
|
|
return (space);
|
|
}
|
|
|
|
static int
|
|
metaslab_compare(const void *x1, const void *x2)
|
|
{
|
|
const metaslab_t *m1 = (const metaslab_t *)x1;
|
|
const metaslab_t *m2 = (const metaslab_t *)x2;
|
|
|
|
int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
|
|
|
|
return (AVL_CMP(m1->ms_start, m2->ms_start));
|
|
}
|
|
|
|
/*
|
|
* Verify that the space accounting on disk matches the in-core range_trees.
|
|
*/
|
|
void
|
|
metaslab_verify_space(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
uint64_t allocated = 0;
|
|
uint64_t sm_free_space, msp_free_space;
|
|
int t;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
|
|
return;
|
|
|
|
/*
|
|
* We can only verify the metaslab space when we're called
|
|
* from syncing context with a loaded metaslab that has an allocated
|
|
* space map. Calling this in non-syncing context does not
|
|
* provide a consistent view of the metaslab since we're performing
|
|
* allocations in the future.
|
|
*/
|
|
if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
|
|
!msp->ms_loaded)
|
|
return;
|
|
|
|
sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
|
|
space_map_alloc_delta(msp->ms_sm);
|
|
|
|
/*
|
|
* Account for future allocations since we would have already
|
|
* deducted that space from the ms_freetree.
|
|
*/
|
|
for (t = 0; t < TXG_CONCURRENT_STATES; t++) {
|
|
allocated +=
|
|
range_tree_space(msp->ms_alloctree[(txg + t) & TXG_MASK]);
|
|
}
|
|
|
|
msp_free_space = range_tree_space(msp->ms_tree) + allocated +
|
|
msp->ms_deferspace + range_tree_space(msp->ms_freedtree);
|
|
|
|
VERIFY3U(sm_free_space, ==, msp_free_space);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab groups
|
|
* ==========================================================================
|
|
*/
|
|
/*
|
|
* Update the allocatable flag and the metaslab group's capacity.
|
|
* The allocatable flag is set to true if the capacity is below
|
|
* the zfs_mg_noalloc_threshold or has a fragmentation value that is
|
|
* greater than zfs_mg_fragmentation_threshold. If a metaslab group
|
|
* transitions from allocatable to non-allocatable or vice versa then the
|
|
* metaslab group's class is updated to reflect the transition.
|
|
*/
|
|
static void
|
|
metaslab_group_alloc_update(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
boolean_t was_allocatable;
|
|
boolean_t was_initialized;
|
|
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
was_allocatable = mg->mg_allocatable;
|
|
was_initialized = mg->mg_initialized;
|
|
|
|
mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
|
|
(vs->vs_space + 1);
|
|
|
|
mutex_enter(&mc->mc_lock);
|
|
|
|
/*
|
|
* If the metaslab group was just added then it won't
|
|
* have any space until we finish syncing out this txg.
|
|
* At that point we will consider it initialized and available
|
|
* for allocations. We also don't consider non-activated
|
|
* metaslab groups (e.g. vdevs that are in the middle of being removed)
|
|
* to be initialized, because they can't be used for allocation.
|
|
*/
|
|
mg->mg_initialized = metaslab_group_initialized(mg);
|
|
if (!was_initialized && mg->mg_initialized) {
|
|
mc->mc_groups++;
|
|
} else if (was_initialized && !mg->mg_initialized) {
|
|
ASSERT3U(mc->mc_groups, >, 0);
|
|
mc->mc_groups--;
|
|
}
|
|
if (mg->mg_initialized)
|
|
mg->mg_no_free_space = B_FALSE;
|
|
|
|
/*
|
|
* A metaslab group is considered allocatable if it has plenty
|
|
* of free space or is not heavily fragmented. We only take
|
|
* fragmentation into account if the metaslab group has a valid
|
|
* fragmentation metric (i.e. a value between 0 and 100).
|
|
*/
|
|
mg->mg_allocatable = (mg->mg_activation_count > 0 &&
|
|
mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
|
|
(mg->mg_fragmentation == ZFS_FRAG_INVALID ||
|
|
mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
|
|
|
|
/*
|
|
* The mc_alloc_groups maintains a count of the number of
|
|
* groups in this metaslab class that are still above the
|
|
* zfs_mg_noalloc_threshold. This is used by the allocating
|
|
* threads to determine if they should avoid allocations to
|
|
* a given group. The allocator will avoid allocations to a group
|
|
* if that group has reached or is below the zfs_mg_noalloc_threshold
|
|
* and there are still other groups that are above the threshold.
|
|
* When a group transitions from allocatable to non-allocatable or
|
|
* vice versa we update the metaslab class to reflect that change.
|
|
* When the mc_alloc_groups value drops to 0 that means that all
|
|
* groups have reached the zfs_mg_noalloc_threshold making all groups
|
|
* eligible for allocations. This effectively means that all devices
|
|
* are balanced again.
|
|
*/
|
|
if (was_allocatable && !mg->mg_allocatable)
|
|
mc->mc_alloc_groups--;
|
|
else if (!was_allocatable && mg->mg_allocatable)
|
|
mc->mc_alloc_groups++;
|
|
mutex_exit(&mc->mc_lock);
|
|
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
metaslab_group_t *
|
|
metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
|
|
{
|
|
metaslab_group_t *mg;
|
|
|
|
mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
|
|
mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
avl_create(&mg->mg_metaslab_tree, metaslab_compare,
|
|
sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
|
|
mg->mg_vd = vd;
|
|
mg->mg_class = mc;
|
|
mg->mg_activation_count = 0;
|
|
mg->mg_initialized = B_FALSE;
|
|
mg->mg_no_free_space = B_TRUE;
|
|
refcount_create_tracked(&mg->mg_alloc_queue_depth);
|
|
|
|
mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
|
|
maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
|
|
|
|
return (mg);
|
|
}
|
|
|
|
void
|
|
metaslab_group_destroy(metaslab_group_t *mg)
|
|
{
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
/*
|
|
* We may have gone below zero with the activation count
|
|
* either because we never activated in the first place or
|
|
* because we're done, and possibly removing the vdev.
|
|
*/
|
|
ASSERT(mg->mg_activation_count <= 0);
|
|
|
|
taskq_destroy(mg->mg_taskq);
|
|
avl_destroy(&mg->mg_metaslab_tree);
|
|
mutex_destroy(&mg->mg_lock);
|
|
refcount_destroy(&mg->mg_alloc_queue_depth);
|
|
kmem_free(mg, sizeof (metaslab_group_t));
|
|
}
|
|
|
|
void
|
|
metaslab_group_activate(metaslab_group_t *mg)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
metaslab_group_t *mgprev, *mgnext;
|
|
|
|
ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
ASSERT(mc->mc_rotor != mg);
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
ASSERT(mg->mg_activation_count <= 0);
|
|
|
|
if (++mg->mg_activation_count <= 0)
|
|
return;
|
|
|
|
mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
|
|
metaslab_group_alloc_update(mg);
|
|
|
|
if ((mgprev = mc->mc_rotor) == NULL) {
|
|
mg->mg_prev = mg;
|
|
mg->mg_next = mg;
|
|
} else {
|
|
mgnext = mgprev->mg_next;
|
|
mg->mg_prev = mgprev;
|
|
mg->mg_next = mgnext;
|
|
mgprev->mg_next = mg;
|
|
mgnext->mg_prev = mg;
|
|
}
|
|
mc->mc_rotor = mg;
|
|
}
|
|
|
|
void
|
|
metaslab_group_passivate(metaslab_group_t *mg)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
metaslab_group_t *mgprev, *mgnext;
|
|
|
|
ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
if (--mg->mg_activation_count != 0) {
|
|
ASSERT(mc->mc_rotor != mg);
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
ASSERT(mg->mg_activation_count < 0);
|
|
return;
|
|
}
|
|
|
|
taskq_wait_outstanding(mg->mg_taskq, 0);
|
|
metaslab_group_alloc_update(mg);
|
|
|
|
mgprev = mg->mg_prev;
|
|
mgnext = mg->mg_next;
|
|
|
|
if (mg == mgnext) {
|
|
mc->mc_rotor = NULL;
|
|
} else {
|
|
mc->mc_rotor = mgnext;
|
|
mgprev->mg_next = mgnext;
|
|
mgnext->mg_prev = mgprev;
|
|
}
|
|
|
|
mg->mg_prev = NULL;
|
|
mg->mg_next = NULL;
|
|
}
|
|
|
|
boolean_t
|
|
metaslab_group_initialized(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
|
|
return (vs->vs_space != 0 && mg->mg_activation_count > 0);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_group_get_space(metaslab_group_t *mg)
|
|
{
|
|
return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
|
|
}
|
|
|
|
void
|
|
metaslab_group_histogram_verify(metaslab_group_t *mg)
|
|
{
|
|
uint64_t *mg_hist;
|
|
vdev_t *vd = mg->mg_vd;
|
|
uint64_t ashift = vd->vdev_ashift;
|
|
int i, m;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
|
|
return;
|
|
|
|
mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
|
|
KM_SLEEP);
|
|
|
|
ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
|
|
SPACE_MAP_HISTOGRAM_SIZE + ashift);
|
|
|
|
for (m = 0; m < vd->vdev_ms_count; m++) {
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
if (msp->ms_sm == NULL)
|
|
continue;
|
|
|
|
for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
|
|
mg_hist[i + ashift] +=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
}
|
|
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
|
|
VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
|
|
|
|
kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
uint64_t ashift = mg->mg_vd->vdev_ashift;
|
|
int i;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
if (msp->ms_sm == NULL)
|
|
return;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
mg->mg_histogram[i + ashift] +=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
mc->mc_histogram[i + ashift] +=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
}
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
uint64_t ashift = mg->mg_vd->vdev_ashift;
|
|
int i;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
if (msp->ms_sm == NULL)
|
|
return;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
ASSERT3U(mg->mg_histogram[i + ashift], >=,
|
|
msp->ms_sm->sm_phys->smp_histogram[i]);
|
|
ASSERT3U(mc->mc_histogram[i + ashift], >=,
|
|
msp->ms_sm->sm_phys->smp_histogram[i]);
|
|
|
|
mg->mg_histogram[i + ashift] -=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
mc->mc_histogram[i + ashift] -=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
}
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
ASSERT(msp->ms_group == NULL);
|
|
mutex_enter(&mg->mg_lock);
|
|
msp->ms_group = mg;
|
|
msp->ms_weight = 0;
|
|
avl_add(&mg->mg_metaslab_tree, msp);
|
|
mutex_exit(&mg->mg_lock);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_group_histogram_add(mg, msp);
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_group_histogram_remove(mg, msp);
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
ASSERT(msp->ms_group == mg);
|
|
avl_remove(&mg->mg_metaslab_tree, msp);
|
|
msp->ms_group = NULL;
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
|
|
{
|
|
/*
|
|
* Although in principle the weight can be any value, in
|
|
* practice we do not use values in the range [1, 511].
|
|
*/
|
|
ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
ASSERT(msp->ms_group == mg);
|
|
avl_remove(&mg->mg_metaslab_tree, msp);
|
|
msp->ms_weight = weight;
|
|
avl_add(&mg->mg_metaslab_tree, msp);
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
/*
|
|
* Calculate the fragmentation for a given metaslab group. We can use
|
|
* a simple average here since all metaslabs within the group must have
|
|
* the same size. The return value will be a value between 0 and 100
|
|
* (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
|
|
* group have a fragmentation metric.
|
|
*/
|
|
uint64_t
|
|
metaslab_group_fragmentation(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
uint64_t fragmentation = 0;
|
|
uint64_t valid_ms = 0;
|
|
int m;
|
|
|
|
for (m = 0; m < vd->vdev_ms_count; m++) {
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
|
|
continue;
|
|
|
|
valid_ms++;
|
|
fragmentation += msp->ms_fragmentation;
|
|
}
|
|
|
|
if (valid_ms <= vd->vdev_ms_count / 2)
|
|
return (ZFS_FRAG_INVALID);
|
|
|
|
fragmentation /= valid_ms;
|
|
ASSERT3U(fragmentation, <=, 100);
|
|
return (fragmentation);
|
|
}
|
|
|
|
/*
|
|
* Determine if a given metaslab group should skip allocations. A metaslab
|
|
* group should avoid allocations if its free capacity is less than the
|
|
* zfs_mg_noalloc_threshold or its fragmentation metric is greater than
|
|
* zfs_mg_fragmentation_threshold and there is at least one metaslab group
|
|
* that can still handle allocations. If the allocation throttle is enabled
|
|
* then we skip allocations to devices that have reached their maximum
|
|
* allocation queue depth unless the selected metaslab group is the only
|
|
* eligible group remaining.
|
|
*/
|
|
static boolean_t
|
|
metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
|
|
uint64_t psize)
|
|
{
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
|
|
/*
|
|
* We can only consider skipping this metaslab group if it's
|
|
* in the normal metaslab class and there are other metaslab
|
|
* groups to select from. Otherwise, we always consider it eligible
|
|
* for allocations.
|
|
*/
|
|
if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* If the metaslab group's mg_allocatable flag is set (see comments
|
|
* in metaslab_group_alloc_update() for more information) and
|
|
* the allocation throttle is disabled then allow allocations to this
|
|
* device. However, if the allocation throttle is enabled then
|
|
* check if we have reached our allocation limit (mg_alloc_queue_depth)
|
|
* to determine if we should allow allocations to this metaslab group.
|
|
* If all metaslab groups are no longer considered allocatable
|
|
* (mc_alloc_groups == 0) or we're trying to allocate the smallest
|
|
* gang block size then we allow allocations on this metaslab group
|
|
* regardless of the mg_allocatable or throttle settings.
|
|
*/
|
|
if (mg->mg_allocatable) {
|
|
metaslab_group_t *mgp;
|
|
int64_t qdepth;
|
|
uint64_t qmax = mg->mg_max_alloc_queue_depth;
|
|
|
|
if (!mc->mc_alloc_throttle_enabled)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* If this metaslab group does not have any free space, then
|
|
* there is no point in looking further.
|
|
*/
|
|
if (mg->mg_no_free_space)
|
|
return (B_FALSE);
|
|
|
|
qdepth = refcount_count(&mg->mg_alloc_queue_depth);
|
|
|
|
/*
|
|
* If this metaslab group is below its qmax or it's
|
|
* the only allocatable metasable group, then attempt
|
|
* to allocate from it.
|
|
*/
|
|
if (qdepth < qmax || mc->mc_alloc_groups == 1)
|
|
return (B_TRUE);
|
|
ASSERT3U(mc->mc_alloc_groups, >, 1);
|
|
|
|
/*
|
|
* Since this metaslab group is at or over its qmax, we
|
|
* need to determine if there are metaslab groups after this
|
|
* one that might be able to handle this allocation. This is
|
|
* racy since we can't hold the locks for all metaslab
|
|
* groups at the same time when we make this check.
|
|
*/
|
|
for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
|
|
qmax = mgp->mg_max_alloc_queue_depth;
|
|
|
|
qdepth = refcount_count(&mgp->mg_alloc_queue_depth);
|
|
|
|
/*
|
|
* If there is another metaslab group that
|
|
* might be able to handle the allocation, then
|
|
* we return false so that we skip this group.
|
|
*/
|
|
if (qdepth < qmax && !mgp->mg_no_free_space)
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* We didn't find another group to handle the allocation
|
|
* so we can't skip this metaslab group even though
|
|
* we are at or over our qmax.
|
|
*/
|
|
return (B_TRUE);
|
|
|
|
} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Range tree callbacks
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Comparison function for the private size-ordered tree. Tree is sorted
|
|
* by size, larger sizes at the end of the tree.
|
|
*/
|
|
static int
|
|
metaslab_rangesize_compare(const void *x1, const void *x2)
|
|
{
|
|
const range_seg_t *r1 = x1;
|
|
const range_seg_t *r2 = x2;
|
|
uint64_t rs_size1 = r1->rs_end - r1->rs_start;
|
|
uint64_t rs_size2 = r2->rs_end - r2->rs_start;
|
|
|
|
int cmp = AVL_CMP(rs_size1, rs_size2);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (AVL_CMP(r1->rs_start, r2->rs_start));
|
|
}
|
|
|
|
/*
|
|
* Create any block allocator specific components. The current allocators
|
|
* rely on using both a size-ordered range_tree_t and an array of uint64_t's.
|
|
*/
|
|
static void
|
|
metaslab_rt_create(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
ASSERT3P(rt->rt_arg, ==, msp);
|
|
ASSERT(msp->ms_tree == NULL);
|
|
|
|
avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
|
|
sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
|
|
}
|
|
|
|
/*
|
|
* Destroy the block allocator specific components.
|
|
*/
|
|
static void
|
|
metaslab_rt_destroy(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
ASSERT3P(rt->rt_arg, ==, msp);
|
|
ASSERT3P(msp->ms_tree, ==, rt);
|
|
ASSERT0(avl_numnodes(&msp->ms_size_tree));
|
|
|
|
avl_destroy(&msp->ms_size_tree);
|
|
}
|
|
|
|
static void
|
|
metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
ASSERT3P(rt->rt_arg, ==, msp);
|
|
ASSERT3P(msp->ms_tree, ==, rt);
|
|
VERIFY(!msp->ms_condensing);
|
|
avl_add(&msp->ms_size_tree, rs);
|
|
}
|
|
|
|
static void
|
|
metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
ASSERT3P(rt->rt_arg, ==, msp);
|
|
ASSERT3P(msp->ms_tree, ==, rt);
|
|
VERIFY(!msp->ms_condensing);
|
|
avl_remove(&msp->ms_size_tree, rs);
|
|
}
|
|
|
|
static void
|
|
metaslab_rt_vacate(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
ASSERT3P(rt->rt_arg, ==, msp);
|
|
ASSERT3P(msp->ms_tree, ==, rt);
|
|
|
|
/*
|
|
* Normally one would walk the tree freeing nodes along the way.
|
|
* Since the nodes are shared with the range trees we can avoid
|
|
* walking all nodes and just reinitialize the avl tree. The nodes
|
|
* will be freed by the range tree, so we don't want to free them here.
|
|
*/
|
|
avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
|
|
sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
|
|
}
|
|
|
|
static range_tree_ops_t metaslab_rt_ops = {
|
|
metaslab_rt_create,
|
|
metaslab_rt_destroy,
|
|
metaslab_rt_add,
|
|
metaslab_rt_remove,
|
|
metaslab_rt_vacate
|
|
};
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Common allocator routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Return the maximum contiguous segment within the metaslab.
|
|
*/
|
|
uint64_t
|
|
metaslab_block_maxsize(metaslab_t *msp)
|
|
{
|
|
avl_tree_t *t = &msp->ms_size_tree;
|
|
range_seg_t *rs;
|
|
|
|
if (t == NULL || (rs = avl_last(t)) == NULL)
|
|
return (0ULL);
|
|
|
|
return (rs->rs_end - rs->rs_start);
|
|
}
|
|
|
|
static range_seg_t *
|
|
metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
|
|
{
|
|
range_seg_t *rs, rsearch;
|
|
avl_index_t where;
|
|
|
|
rsearch.rs_start = start;
|
|
rsearch.rs_end = start + size;
|
|
|
|
rs = avl_find(t, &rsearch, &where);
|
|
if (rs == NULL) {
|
|
rs = avl_nearest(t, where, AVL_AFTER);
|
|
}
|
|
|
|
return (rs);
|
|
}
|
|
|
|
#if defined(WITH_FF_BLOCK_ALLOCATOR) || \
|
|
defined(WITH_DF_BLOCK_ALLOCATOR) || \
|
|
defined(WITH_CF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* This is a helper function that can be used by the allocator to find
|
|
* a suitable block to allocate. This will search the specified AVL
|
|
* tree looking for a block that matches the specified criteria.
|
|
*/
|
|
static uint64_t
|
|
metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
|
|
uint64_t align)
|
|
{
|
|
range_seg_t *rs = metaslab_block_find(t, *cursor, size);
|
|
|
|
while (rs != NULL) {
|
|
uint64_t offset = P2ROUNDUP(rs->rs_start, align);
|
|
|
|
if (offset + size <= rs->rs_end) {
|
|
*cursor = offset + size;
|
|
return (offset);
|
|
}
|
|
rs = AVL_NEXT(t, rs);
|
|
}
|
|
|
|
/*
|
|
* If we know we've searched the whole map (*cursor == 0), give up.
|
|
* Otherwise, reset the cursor to the beginning and try again.
|
|
*/
|
|
if (*cursor == 0)
|
|
return (-1ULL);
|
|
|
|
*cursor = 0;
|
|
return (metaslab_block_picker(t, cursor, size, align));
|
|
}
|
|
#endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_FF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* The first-fit block allocator
|
|
* ==========================================================================
|
|
*/
|
|
static uint64_t
|
|
metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
/*
|
|
* Find the largest power of 2 block size that evenly divides the
|
|
* requested size. This is used to try to allocate blocks with similar
|
|
* alignment from the same area of the metaslab (i.e. same cursor
|
|
* bucket) but it does not guarantee that other allocations sizes
|
|
* may exist in the same region.
|
|
*/
|
|
uint64_t align = size & -size;
|
|
uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
|
|
avl_tree_t *t = &msp->ms_tree->rt_root;
|
|
|
|
return (metaslab_block_picker(t, cursor, size, align));
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_ff_ops = {
|
|
metaslab_ff_alloc
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
|
|
#endif /* WITH_FF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_DF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* Dynamic block allocator -
|
|
* Uses the first fit allocation scheme until space get low and then
|
|
* adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
|
|
* and metaslab_df_free_pct to determine when to switch the allocation scheme.
|
|
* ==========================================================================
|
|
*/
|
|
static uint64_t
|
|
metaslab_df_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
/*
|
|
* Find the largest power of 2 block size that evenly divides the
|
|
* requested size. This is used to try to allocate blocks with similar
|
|
* alignment from the same area of the metaslab (i.e. same cursor
|
|
* bucket) but it does not guarantee that other allocations sizes
|
|
* may exist in the same region.
|
|
*/
|
|
uint64_t align = size & -size;
|
|
uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
|
|
range_tree_t *rt = msp->ms_tree;
|
|
avl_tree_t *t = &rt->rt_root;
|
|
uint64_t max_size = metaslab_block_maxsize(msp);
|
|
int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
|
|
|
|
if (max_size < size)
|
|
return (-1ULL);
|
|
|
|
/*
|
|
* If we're running low on space switch to using the size
|
|
* sorted AVL tree (best-fit).
|
|
*/
|
|
if (max_size < metaslab_df_alloc_threshold ||
|
|
free_pct < metaslab_df_free_pct) {
|
|
t = &msp->ms_size_tree;
|
|
*cursor = 0;
|
|
}
|
|
|
|
return (metaslab_block_picker(t, cursor, size, 1ULL));
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_df_ops = {
|
|
metaslab_df_alloc
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
|
|
#endif /* WITH_DF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_CF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* Cursor fit block allocator -
|
|
* Select the largest region in the metaslab, set the cursor to the beginning
|
|
* of the range and the cursor_end to the end of the range. As allocations
|
|
* are made advance the cursor. Continue allocating from the cursor until
|
|
* the range is exhausted and then find a new range.
|
|
* ==========================================================================
|
|
*/
|
|
static uint64_t
|
|
metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
range_tree_t *rt = msp->ms_tree;
|
|
avl_tree_t *t = &msp->ms_size_tree;
|
|
uint64_t *cursor = &msp->ms_lbas[0];
|
|
uint64_t *cursor_end = &msp->ms_lbas[1];
|
|
uint64_t offset = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
|
|
|
|
ASSERT3U(*cursor_end, >=, *cursor);
|
|
|
|
if ((*cursor + size) > *cursor_end) {
|
|
range_seg_t *rs;
|
|
|
|
rs = avl_last(&msp->ms_size_tree);
|
|
if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
|
|
return (-1ULL);
|
|
|
|
*cursor = rs->rs_start;
|
|
*cursor_end = rs->rs_end;
|
|
}
|
|
|
|
offset = *cursor;
|
|
*cursor += size;
|
|
|
|
return (offset);
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_cf_ops = {
|
|
metaslab_cf_alloc
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
|
|
#endif /* WITH_CF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_NDF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* New dynamic fit allocator -
|
|
* Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
|
|
* contiguous blocks. If no region is found then just use the largest segment
|
|
* that remains.
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
|
|
* to request from the allocator.
|
|
*/
|
|
uint64_t metaslab_ndf_clump_shift = 4;
|
|
|
|
static uint64_t
|
|
metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
avl_tree_t *t = &msp->ms_tree->rt_root;
|
|
avl_index_t where;
|
|
range_seg_t *rs, rsearch;
|
|
uint64_t hbit = highbit64(size);
|
|
uint64_t *cursor = &msp->ms_lbas[hbit - 1];
|
|
uint64_t max_size = metaslab_block_maxsize(msp);
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
|
|
|
|
if (max_size < size)
|
|
return (-1ULL);
|
|
|
|
rsearch.rs_start = *cursor;
|
|
rsearch.rs_end = *cursor + size;
|
|
|
|
rs = avl_find(t, &rsearch, &where);
|
|
if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
|
|
t = &msp->ms_size_tree;
|
|
|
|
rsearch.rs_start = 0;
|
|
rsearch.rs_end = MIN(max_size,
|
|
1ULL << (hbit + metaslab_ndf_clump_shift));
|
|
rs = avl_find(t, &rsearch, &where);
|
|
if (rs == NULL)
|
|
rs = avl_nearest(t, where, AVL_AFTER);
|
|
ASSERT(rs != NULL);
|
|
}
|
|
|
|
if ((rs->rs_end - rs->rs_start) >= size) {
|
|
*cursor = rs->rs_start + size;
|
|
return (rs->rs_start);
|
|
}
|
|
return (-1ULL);
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_ndf_ops = {
|
|
metaslab_ndf_alloc
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
|
|
#endif /* WITH_NDF_BLOCK_ALLOCATOR */
|
|
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslabs
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Wait for any in-progress metaslab loads to complete.
|
|
*/
|
|
void
|
|
metaslab_load_wait(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
while (msp->ms_loading) {
|
|
ASSERT(!msp->ms_loaded);
|
|
cv_wait(&msp->ms_load_cv, &msp->ms_lock);
|
|
}
|
|
}
|
|
|
|
int
|
|
metaslab_load(metaslab_t *msp)
|
|
{
|
|
int error = 0;
|
|
int t;
|
|
boolean_t success = B_FALSE;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(!msp->ms_loaded);
|
|
ASSERT(!msp->ms_loading);
|
|
|
|
msp->ms_loading = B_TRUE;
|
|
|
|
/*
|
|
* If the space map has not been allocated yet, then treat
|
|
* all the space in the metaslab as free and add it to the
|
|
* ms_tree.
|
|
*/
|
|
if (msp->ms_sm != NULL)
|
|
error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
|
|
else
|
|
range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
|
|
|
|
success = (error == 0);
|
|
msp->ms_loading = B_FALSE;
|
|
|
|
if (success) {
|
|
ASSERT3P(msp->ms_group, !=, NULL);
|
|
msp->ms_loaded = B_TRUE;
|
|
|
|
for (t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_walk(msp->ms_defertree[t],
|
|
range_tree_remove, msp->ms_tree);
|
|
}
|
|
msp->ms_max_size = metaslab_block_maxsize(msp);
|
|
}
|
|
cv_broadcast(&msp->ms_load_cv);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
metaslab_unload(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
range_tree_vacate(msp->ms_tree, NULL, NULL);
|
|
msp->ms_loaded = B_FALSE;
|
|
msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
|
|
msp->ms_max_size = 0;
|
|
}
|
|
|
|
int
|
|
metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
|
|
metaslab_t **msp)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
metaslab_t *ms;
|
|
int error;
|
|
|
|
ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
|
|
mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
|
|
ms->ms_id = id;
|
|
ms->ms_start = id << vd->vdev_ms_shift;
|
|
ms->ms_size = 1ULL << vd->vdev_ms_shift;
|
|
|
|
/*
|
|
* We only open space map objects that already exist. All others
|
|
* will be opened when we finally allocate an object for it.
|
|
*/
|
|
if (object != 0) {
|
|
error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
|
|
ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
|
|
|
|
if (error != 0) {
|
|
kmem_free(ms, sizeof (metaslab_t));
|
|
return (error);
|
|
}
|
|
|
|
ASSERT(ms->ms_sm != NULL);
|
|
}
|
|
|
|
/*
|
|
* We create the main range tree here, but we don't create the
|
|
* other range trees until metaslab_sync_done(). This serves
|
|
* two purposes: it allows metaslab_sync_done() to detect the
|
|
* addition of new space; and for debugging, it ensures that we'd
|
|
* data fault on any attempt to use this metaslab before it's ready.
|
|
*/
|
|
ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
|
|
metaslab_group_add(mg, ms);
|
|
|
|
metaslab_set_fragmentation(ms);
|
|
|
|
/*
|
|
* If we're opening an existing pool (txg == 0) or creating
|
|
* a new one (txg == TXG_INITIAL), all space is available now.
|
|
* If we're adding space to an existing pool, the new space
|
|
* does not become available until after this txg has synced.
|
|
* The metaslab's weight will also be initialized when we sync
|
|
* out this txg. This ensures that we don't attempt to allocate
|
|
* from it before we have initialized it completely.
|
|
*/
|
|
if (txg <= TXG_INITIAL)
|
|
metaslab_sync_done(ms, 0);
|
|
|
|
/*
|
|
* If metaslab_debug_load is set and we're initializing a metaslab
|
|
* that has an allocated space map object then load the its space
|
|
* map so that can verify frees.
|
|
*/
|
|
if (metaslab_debug_load && ms->ms_sm != NULL) {
|
|
mutex_enter(&ms->ms_lock);
|
|
VERIFY0(metaslab_load(ms));
|
|
mutex_exit(&ms->ms_lock);
|
|
}
|
|
|
|
if (txg != 0) {
|
|
vdev_dirty(vd, 0, NULL, txg);
|
|
vdev_dirty(vd, VDD_METASLAB, ms, txg);
|
|
}
|
|
|
|
*msp = ms;
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
metaslab_fini(metaslab_t *msp)
|
|
{
|
|
int t;
|
|
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
|
|
metaslab_group_remove(mg, msp);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
VERIFY(msp->ms_group == NULL);
|
|
vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
|
|
0, -msp->ms_size);
|
|
space_map_close(msp->ms_sm);
|
|
|
|
metaslab_unload(msp);
|
|
range_tree_destroy(msp->ms_tree);
|
|
range_tree_destroy(msp->ms_freeingtree);
|
|
range_tree_destroy(msp->ms_freedtree);
|
|
|
|
for (t = 0; t < TXG_SIZE; t++) {
|
|
range_tree_destroy(msp->ms_alloctree[t]);
|
|
}
|
|
|
|
for (t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_destroy(msp->ms_defertree[t]);
|
|
}
|
|
|
|
ASSERT0(msp->ms_deferspace);
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
cv_destroy(&msp->ms_load_cv);
|
|
mutex_destroy(&msp->ms_lock);
|
|
|
|
kmem_free(msp, sizeof (metaslab_t));
|
|
}
|
|
|
|
#define FRAGMENTATION_TABLE_SIZE 17
|
|
|
|
/*
|
|
* This table defines a segment size based fragmentation metric that will
|
|
* allow each metaslab to derive its own fragmentation value. This is done
|
|
* by calculating the space in each bucket of the spacemap histogram and
|
|
* multiplying that by the fragmetation metric in this table. Doing
|
|
* this for all buckets and dividing it by the total amount of free
|
|
* space in this metaslab (i.e. the total free space in all buckets) gives
|
|
* us the fragmentation metric. This means that a high fragmentation metric
|
|
* equates to most of the free space being comprised of small segments.
|
|
* Conversely, if the metric is low, then most of the free space is in
|
|
* large segments. A 10% change in fragmentation equates to approximately
|
|
* double the number of segments.
|
|
*
|
|
* This table defines 0% fragmented space using 16MB segments. Testing has
|
|
* shown that segments that are greater than or equal to 16MB do not suffer
|
|
* from drastic performance problems. Using this value, we derive the rest
|
|
* of the table. Since the fragmentation value is never stored on disk, it
|
|
* is possible to change these calculations in the future.
|
|
*/
|
|
int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
|
|
100, /* 512B */
|
|
100, /* 1K */
|
|
98, /* 2K */
|
|
95, /* 4K */
|
|
90, /* 8K */
|
|
80, /* 16K */
|
|
70, /* 32K */
|
|
60, /* 64K */
|
|
50, /* 128K */
|
|
40, /* 256K */
|
|
30, /* 512K */
|
|
20, /* 1M */
|
|
15, /* 2M */
|
|
10, /* 4M */
|
|
5, /* 8M */
|
|
0 /* 16M */
|
|
};
|
|
|
|
/*
|
|
* Calclate the metaslab's fragmentation metric. A return value
|
|
* of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
|
|
* not support this metric. Otherwise, the return value should be in the
|
|
* range [0, 100].
|
|
*/
|
|
static void
|
|
metaslab_set_fragmentation(metaslab_t *msp)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
uint64_t fragmentation = 0;
|
|
uint64_t total = 0;
|
|
boolean_t feature_enabled = spa_feature_is_enabled(spa,
|
|
SPA_FEATURE_SPACEMAP_HISTOGRAM);
|
|
int i;
|
|
|
|
if (!feature_enabled) {
|
|
msp->ms_fragmentation = ZFS_FRAG_INVALID;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A null space map means that the entire metaslab is free
|
|
* and thus is not fragmented.
|
|
*/
|
|
if (msp->ms_sm == NULL) {
|
|
msp->ms_fragmentation = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If this metaslab's space map has not been upgraded, flag it
|
|
* so that we upgrade next time we encounter it.
|
|
*/
|
|
if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
|
|
uint64_t txg = spa_syncing_txg(spa);
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
|
|
/*
|
|
* If we've reached the final dirty txg, then we must
|
|
* be shutting down the pool. We don't want to dirty
|
|
* any data past this point so skip setting the condense
|
|
* flag. We can retry this action the next time the pool
|
|
* is imported.
|
|
*/
|
|
if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
|
|
msp->ms_condense_wanted = B_TRUE;
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
|
|
spa_dbgmsg(spa, "txg %llu, requesting force condense: "
|
|
"ms_id %llu, vdev_id %llu", txg, msp->ms_id,
|
|
vd->vdev_id);
|
|
}
|
|
msp->ms_fragmentation = ZFS_FRAG_INVALID;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
uint64_t space = 0;
|
|
uint8_t shift = msp->ms_sm->sm_shift;
|
|
|
|
int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
|
|
FRAGMENTATION_TABLE_SIZE - 1);
|
|
|
|
if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
|
|
continue;
|
|
|
|
space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
|
|
total += space;
|
|
|
|
ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
|
|
fragmentation += space * zfs_frag_table[idx];
|
|
}
|
|
|
|
if (total > 0)
|
|
fragmentation /= total;
|
|
ASSERT3U(fragmentation, <=, 100);
|
|
|
|
msp->ms_fragmentation = fragmentation;
|
|
}
|
|
|
|
/*
|
|
* Compute a weight -- a selection preference value -- for the given metaslab.
|
|
* This is based on the amount of free space, the level of fragmentation,
|
|
* the LBA range, and whether the metaslab is loaded.
|
|
*/
|
|
static uint64_t
|
|
metaslab_space_weight(metaslab_t *msp)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
uint64_t weight, space;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(!vd->vdev_removing);
|
|
|
|
/*
|
|
* The baseline weight is the metaslab's free space.
|
|
*/
|
|
space = msp->ms_size - space_map_allocated(msp->ms_sm);
|
|
|
|
if (metaslab_fragmentation_factor_enabled &&
|
|
msp->ms_fragmentation != ZFS_FRAG_INVALID) {
|
|
/*
|
|
* Use the fragmentation information to inversely scale
|
|
* down the baseline weight. We need to ensure that we
|
|
* don't exclude this metaslab completely when it's 100%
|
|
* fragmented. To avoid this we reduce the fragmented value
|
|
* by 1.
|
|
*/
|
|
space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
|
|
|
|
/*
|
|
* If space < SPA_MINBLOCKSIZE, then we will not allocate from
|
|
* this metaslab again. The fragmentation metric may have
|
|
* decreased the space to something smaller than
|
|
* SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
|
|
* so that we can consume any remaining space.
|
|
*/
|
|
if (space > 0 && space < SPA_MINBLOCKSIZE)
|
|
space = SPA_MINBLOCKSIZE;
|
|
}
|
|
weight = space;
|
|
|
|
/*
|
|
* Modern disks have uniform bit density and constant angular velocity.
|
|
* Therefore, the outer recording zones are faster (higher bandwidth)
|
|
* than the inner zones by the ratio of outer to inner track diameter,
|
|
* which is typically around 2:1. We account for this by assigning
|
|
* higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
|
|
* In effect, this means that we'll select the metaslab with the most
|
|
* free bandwidth rather than simply the one with the most free space.
|
|
*/
|
|
if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
|
|
weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
|
|
ASSERT(weight >= space && weight <= 2 * space);
|
|
}
|
|
|
|
/*
|
|
* If this metaslab is one we're actively using, adjust its
|
|
* weight to make it preferable to any inactive metaslab so
|
|
* we'll polish it off. If the fragmentation on this metaslab
|
|
* has exceed our threshold, then don't mark it active.
|
|
*/
|
|
if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
|
|
msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
|
|
weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
}
|
|
|
|
WEIGHT_SET_SPACEBASED(weight);
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Return the weight of the specified metaslab, according to the segment-based
|
|
* weighting algorithm. The metaslab must be loaded. This function can
|
|
* be called within a sync pass since it relies only on the metaslab's
|
|
* range tree which is always accurate when the metaslab is loaded.
|
|
*/
|
|
static uint64_t
|
|
metaslab_weight_from_range_tree(metaslab_t *msp)
|
|
{
|
|
uint64_t weight = 0;
|
|
uint32_t segments = 0;
|
|
int i;
|
|
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
for (i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; i--) {
|
|
uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
|
|
int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
|
|
|
|
segments <<= 1;
|
|
segments += msp->ms_tree->rt_histogram[i];
|
|
|
|
/*
|
|
* The range tree provides more precision than the space map
|
|
* and must be downgraded so that all values fit within the
|
|
* space map's histogram. This allows us to compare loaded
|
|
* vs. unloaded metaslabs to determine which metaslab is
|
|
* considered "best".
|
|
*/
|
|
if (i > max_idx)
|
|
continue;
|
|
|
|
if (segments != 0) {
|
|
WEIGHT_SET_COUNT(weight, segments);
|
|
WEIGHT_SET_INDEX(weight, i);
|
|
WEIGHT_SET_ACTIVE(weight, 0);
|
|
break;
|
|
}
|
|
}
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Calculate the weight based on the on-disk histogram. This should only
|
|
* be called after a sync pass has completely finished since the on-disk
|
|
* information is updated in metaslab_sync().
|
|
*/
|
|
static uint64_t
|
|
metaslab_weight_from_spacemap(metaslab_t *msp)
|
|
{
|
|
uint64_t weight = 0;
|
|
int i;
|
|
|
|
for (i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
|
|
if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
|
|
WEIGHT_SET_COUNT(weight,
|
|
msp->ms_sm->sm_phys->smp_histogram[i]);
|
|
WEIGHT_SET_INDEX(weight, i +
|
|
msp->ms_sm->sm_shift);
|
|
WEIGHT_SET_ACTIVE(weight, 0);
|
|
break;
|
|
}
|
|
}
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Compute a segment-based weight for the specified metaslab. The weight
|
|
* is determined by highest bucket in the histogram. The information
|
|
* for the highest bucket is encoded into the weight value.
|
|
*/
|
|
static uint64_t
|
|
metaslab_segment_weight(metaslab_t *msp)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
uint64_t weight = 0;
|
|
uint8_t shift = mg->mg_vd->vdev_ashift;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* The metaslab is completely free.
|
|
*/
|
|
if (space_map_allocated(msp->ms_sm) == 0) {
|
|
int idx = highbit64(msp->ms_size) - 1;
|
|
int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
|
|
|
|
if (idx < max_idx) {
|
|
WEIGHT_SET_COUNT(weight, 1ULL);
|
|
WEIGHT_SET_INDEX(weight, idx);
|
|
} else {
|
|
WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
|
|
WEIGHT_SET_INDEX(weight, max_idx);
|
|
}
|
|
WEIGHT_SET_ACTIVE(weight, 0);
|
|
ASSERT(!WEIGHT_IS_SPACEBASED(weight));
|
|
|
|
return (weight);
|
|
}
|
|
|
|
ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
|
|
|
|
/*
|
|
* If the metaslab is fully allocated then just make the weight 0.
|
|
*/
|
|
if (space_map_allocated(msp->ms_sm) == msp->ms_size)
|
|
return (0);
|
|
/*
|
|
* If the metaslab is already loaded, then use the range tree to
|
|
* determine the weight. Otherwise, we rely on the space map information
|
|
* to generate the weight.
|
|
*/
|
|
if (msp->ms_loaded) {
|
|
weight = metaslab_weight_from_range_tree(msp);
|
|
} else {
|
|
weight = metaslab_weight_from_spacemap(msp);
|
|
}
|
|
|
|
/*
|
|
* If the metaslab was active the last time we calculated its weight
|
|
* then keep it active. We want to consume the entire region that
|
|
* is associated with this weight.
|
|
*/
|
|
if (msp->ms_activation_weight != 0 && weight != 0)
|
|
WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Determine if we should attempt to allocate from this metaslab. If the
|
|
* metaslab has a maximum size then we can quickly determine if the desired
|
|
* allocation size can be satisfied. Otherwise, if we're using segment-based
|
|
* weighting then we can determine the maximum allocation that this metaslab
|
|
* can accommodate based on the index encoded in the weight. If we're using
|
|
* space-based weights then rely on the entire weight (excluding the weight
|
|
* type bit).
|
|
*/
|
|
boolean_t
|
|
metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
|
|
{
|
|
boolean_t should_allocate;
|
|
|
|
if (msp->ms_max_size != 0)
|
|
return (msp->ms_max_size >= asize);
|
|
|
|
if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
|
|
/*
|
|
* The metaslab segment weight indicates segments in the
|
|
* range [2^i, 2^(i+1)), where i is the index in the weight.
|
|
* Since the asize might be in the middle of the range, we
|
|
* should attempt the allocation if asize < 2^(i+1).
|
|
*/
|
|
should_allocate = (asize <
|
|
1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
|
|
} else {
|
|
should_allocate = (asize <=
|
|
(msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
|
|
}
|
|
return (should_allocate);
|
|
}
|
|
static uint64_t
|
|
metaslab_weight(metaslab_t *msp)
|
|
{
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t weight;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* This vdev is in the process of being removed so there is nothing
|
|
* for us to do here.
|
|
*/
|
|
if (vd->vdev_removing) {
|
|
ASSERT0(space_map_allocated(msp->ms_sm));
|
|
ASSERT0(vd->vdev_ms_shift);
|
|
return (0);
|
|
}
|
|
|
|
metaslab_set_fragmentation(msp);
|
|
|
|
/*
|
|
* Update the maximum size if the metaslab is loaded. This will
|
|
* ensure that we get an accurate maximum size if newly freed space
|
|
* has been added back into the free tree.
|
|
*/
|
|
if (msp->ms_loaded)
|
|
msp->ms_max_size = metaslab_block_maxsize(msp);
|
|
|
|
/*
|
|
* Segment-based weighting requires space map histogram support.
|
|
*/
|
|
if (zfs_metaslab_segment_weight_enabled &&
|
|
spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
|
|
(msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
|
|
sizeof (space_map_phys_t))) {
|
|
weight = metaslab_segment_weight(msp);
|
|
} else {
|
|
weight = metaslab_space_weight(msp);
|
|
}
|
|
return (weight);
|
|
}
|
|
|
|
static int
|
|
metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
|
|
metaslab_load_wait(msp);
|
|
if (!msp->ms_loaded) {
|
|
int error = metaslab_load(msp);
|
|
if (error) {
|
|
metaslab_group_sort(msp->ms_group, msp, 0);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
msp->ms_activation_weight = msp->ms_weight;
|
|
metaslab_group_sort(msp->ms_group, msp,
|
|
msp->ms_weight | activation_weight);
|
|
}
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
metaslab_passivate(metaslab_t *msp, uint64_t weight)
|
|
{
|
|
ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
|
|
|
|
/*
|
|
* If size < SPA_MINBLOCKSIZE, then we will not allocate from
|
|
* this metaslab again. In that case, it had better be empty,
|
|
* or we would be leaving space on the table.
|
|
*/
|
|
ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
|
|
size >= SPA_MINBLOCKSIZE ||
|
|
range_tree_space(msp->ms_tree) == 0);
|
|
ASSERT0(weight & METASLAB_ACTIVE_MASK);
|
|
|
|
msp->ms_activation_weight = 0;
|
|
metaslab_group_sort(msp->ms_group, msp, weight);
|
|
ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
|
|
}
|
|
|
|
/*
|
|
* Segment-based metaslabs are activated once and remain active until
|
|
* we either fail an allocation attempt (similar to space-based metaslabs)
|
|
* or have exhausted the free space in zfs_metaslab_switch_threshold
|
|
* buckets since the metaslab was activated. This function checks to see
|
|
* if we've exhaused the zfs_metaslab_switch_threshold buckets in the
|
|
* metaslab and passivates it proactively. This will allow us to select a
|
|
* metaslab with a larger contiguous region, if any, remaining within this
|
|
* metaslab group. If we're in sync pass > 1, then we continue using this
|
|
* metaslab so that we don't dirty more block and cause more sync passes.
|
|
*/
|
|
void
|
|
metaslab_segment_may_passivate(metaslab_t *msp)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
uint64_t weight;
|
|
int activation_idx, current_idx;
|
|
|
|
if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
|
|
return;
|
|
|
|
/*
|
|
* Since we are in the middle of a sync pass, the most accurate
|
|
* information that is accessible to us is the in-core range tree
|
|
* histogram; calculate the new weight based on that information.
|
|
*/
|
|
weight = metaslab_weight_from_range_tree(msp);
|
|
activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
|
|
current_idx = WEIGHT_GET_INDEX(weight);
|
|
|
|
if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
|
|
metaslab_passivate(msp, weight);
|
|
}
|
|
|
|
static void
|
|
metaslab_preload(void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
|
|
ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_load_wait(msp);
|
|
if (!msp->ms_loaded)
|
|
(void) metaslab_load(msp);
|
|
msp->ms_selected_txg = spa_syncing_txg(spa);
|
|
mutex_exit(&msp->ms_lock);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_preload(metaslab_group_t *mg)
|
|
{
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
metaslab_t *msp;
|
|
avl_tree_t *t = &mg->mg_metaslab_tree;
|
|
int m = 0;
|
|
|
|
if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
|
|
taskq_wait_outstanding(mg->mg_taskq, 0);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
/*
|
|
* Load the next potential metaslabs
|
|
*/
|
|
for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
|
|
/*
|
|
* We preload only the maximum number of metaslabs specified
|
|
* by metaslab_preload_limit. If a metaslab is being forced
|
|
* to condense then we preload it too. This will ensure
|
|
* that force condensing happens in the next txg.
|
|
*/
|
|
if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
|
|
continue;
|
|
}
|
|
|
|
VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
|
|
msp, TQ_SLEEP) != TASKQID_INVALID);
|
|
}
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
/*
|
|
* Determine if the space map's on-disk footprint is past our tolerance
|
|
* for inefficiency. We would like to use the following criteria to make
|
|
* our decision:
|
|
*
|
|
* 1. The size of the space map object should not dramatically increase as a
|
|
* result of writing out the free space range tree.
|
|
*
|
|
* 2. The minimal on-disk space map representation is zfs_condense_pct/100
|
|
* times the size than the free space range tree representation
|
|
* (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
|
|
*
|
|
* 3. The on-disk size of the space map should actually decrease.
|
|
*
|
|
* Checking the first condition is tricky since we don't want to walk
|
|
* the entire AVL tree calculating the estimated on-disk size. Instead we
|
|
* use the size-ordered range tree in the metaslab and calculate the
|
|
* size required to write out the largest segment in our free tree. If the
|
|
* size required to represent that segment on disk is larger than the space
|
|
* map object then we avoid condensing this map.
|
|
*
|
|
* To determine the second criterion we use a best-case estimate and assume
|
|
* each segment can be represented on-disk as a single 64-bit entry. We refer
|
|
* to this best-case estimate as the space map's minimal form.
|
|
*
|
|
* Unfortunately, we cannot compute the on-disk size of the space map in this
|
|
* context because we cannot accurately compute the effects of compression, etc.
|
|
* Instead, we apply the heuristic described in the block comment for
|
|
* zfs_metaslab_condense_block_threshold - we only condense if the space used
|
|
* is greater than a threshold number of blocks.
|
|
*/
|
|
static boolean_t
|
|
metaslab_should_condense(metaslab_t *msp)
|
|
{
|
|
space_map_t *sm = msp->ms_sm;
|
|
range_seg_t *rs;
|
|
uint64_t size, entries, segsz, object_size, optimal_size, record_size;
|
|
dmu_object_info_t doi;
|
|
uint64_t vdev_blocksize = 1ULL << msp->ms_group->mg_vd->vdev_ashift;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
/*
|
|
* Use the ms_size_tree range tree, which is ordered by size, to
|
|
* obtain the largest segment in the free tree. We always condense
|
|
* metaslabs that are empty and metaslabs for which a condense
|
|
* request has been made.
|
|
*/
|
|
rs = avl_last(&msp->ms_size_tree);
|
|
if (rs == NULL || msp->ms_condense_wanted)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* Calculate the number of 64-bit entries this segment would
|
|
* require when written to disk. If this single segment would be
|
|
* larger on-disk than the entire current on-disk structure, then
|
|
* clearly condensing will increase the on-disk structure size.
|
|
*/
|
|
size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
|
|
entries = size / (MIN(size, SM_RUN_MAX));
|
|
segsz = entries * sizeof (uint64_t);
|
|
|
|
optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
|
|
object_size = space_map_length(msp->ms_sm);
|
|
|
|
dmu_object_info_from_db(sm->sm_dbuf, &doi);
|
|
record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
|
|
|
|
return (segsz <= object_size &&
|
|
object_size >= (optimal_size * zfs_condense_pct / 100) &&
|
|
object_size > zfs_metaslab_condense_block_threshold * record_size);
|
|
}
|
|
|
|
/*
|
|
* Condense the on-disk space map representation to its minimized form.
|
|
* The minimized form consists of a small number of allocations followed by
|
|
* the entries of the free range tree.
|
|
*/
|
|
static void
|
|
metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
range_tree_t *condense_tree;
|
|
space_map_t *sm = msp->ms_sm;
|
|
int t;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT3U(spa_sync_pass(spa), ==, 1);
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
|
|
spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
|
|
"spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
|
|
msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
|
|
msp->ms_group->mg_vd->vdev_spa->spa_name,
|
|
space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root),
|
|
msp->ms_condense_wanted ? "TRUE" : "FALSE");
|
|
|
|
msp->ms_condense_wanted = B_FALSE;
|
|
|
|
/*
|
|
* Create an range tree that is 100% allocated. We remove segments
|
|
* that have been freed in this txg, any deferred frees that exist,
|
|
* and any allocation in the future. Removing segments should be
|
|
* a relatively inexpensive operation since we expect these trees to
|
|
* have a small number of nodes.
|
|
*/
|
|
condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
|
|
range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
|
|
|
|
/*
|
|
* Remove what's been freed in this txg from the condense_tree.
|
|
* Since we're in sync_pass 1, we know that all the frees from
|
|
* this txg are in the freeingtree.
|
|
*/
|
|
range_tree_walk(msp->ms_freeingtree, range_tree_remove, condense_tree);
|
|
|
|
for (t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_walk(msp->ms_defertree[t],
|
|
range_tree_remove, condense_tree);
|
|
}
|
|
|
|
for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
|
|
range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
|
|
range_tree_remove, condense_tree);
|
|
}
|
|
|
|
/*
|
|
* We're about to drop the metaslab's lock thus allowing
|
|
* other consumers to change it's content. Set the
|
|
* metaslab's ms_condensing flag to ensure that
|
|
* allocations on this metaslab do not occur while we're
|
|
* in the middle of committing it to disk. This is only critical
|
|
* for the ms_tree as all other range trees use per txg
|
|
* views of their content.
|
|
*/
|
|
msp->ms_condensing = B_TRUE;
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
space_map_truncate(sm, tx);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* While we would ideally like to create a space map representation
|
|
* that consists only of allocation records, doing so can be
|
|
* prohibitively expensive because the in-core free tree can be
|
|
* large, and therefore computationally expensive to subtract
|
|
* from the condense_tree. Instead we sync out two trees, a cheap
|
|
* allocation only tree followed by the in-core free tree. While not
|
|
* optimal, this is typically close to optimal, and much cheaper to
|
|
* compute.
|
|
*/
|
|
space_map_write(sm, condense_tree, SM_ALLOC, tx);
|
|
range_tree_vacate(condense_tree, NULL, NULL);
|
|
range_tree_destroy(condense_tree);
|
|
|
|
space_map_write(sm, msp->ms_tree, SM_FREE, tx);
|
|
msp->ms_condensing = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Write a metaslab to disk in the context of the specified transaction group.
|
|
*/
|
|
void
|
|
metaslab_sync(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa_meta_objset(spa);
|
|
range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
|
|
dmu_tx_t *tx;
|
|
uint64_t object = space_map_object(msp->ms_sm);
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
/*
|
|
* This metaslab has just been added so there's no work to do now.
|
|
*/
|
|
if (msp->ms_freeingtree == NULL) {
|
|
ASSERT3P(alloctree, ==, NULL);
|
|
return;
|
|
}
|
|
|
|
ASSERT3P(alloctree, !=, NULL);
|
|
ASSERT3P(msp->ms_freeingtree, !=, NULL);
|
|
ASSERT3P(msp->ms_freedtree, !=, NULL);
|
|
|
|
/*
|
|
* Normally, we don't want to process a metaslab if there
|
|
* are no allocations or frees to perform. However, if the metaslab
|
|
* is being forced to condense and it's loaded, we need to let it
|
|
* through.
|
|
*/
|
|
if (range_tree_space(alloctree) == 0 &&
|
|
range_tree_space(msp->ms_freeingtree) == 0 &&
|
|
!(msp->ms_loaded && msp->ms_condense_wanted))
|
|
return;
|
|
|
|
|
|
VERIFY(txg <= spa_final_dirty_txg(spa));
|
|
|
|
/*
|
|
* The only state that can actually be changing concurrently with
|
|
* metaslab_sync() is the metaslab's ms_tree. No other thread can
|
|
* be modifying this txg's alloctree, freeingtree, freedtree, or
|
|
* space_map_phys_t. Therefore, we only hold ms_lock to satify
|
|
* space map ASSERTs. We drop it whenever we call into the DMU,
|
|
* because the DMU can call down to us (e.g. via zio_free()) at
|
|
* any time.
|
|
*/
|
|
|
|
tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
|
|
|
|
if (msp->ms_sm == NULL) {
|
|
uint64_t new_object;
|
|
|
|
new_object = space_map_alloc(mos, tx);
|
|
VERIFY3U(new_object, !=, 0);
|
|
|
|
VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
|
|
msp->ms_start, msp->ms_size, vd->vdev_ashift,
|
|
&msp->ms_lock));
|
|
ASSERT(msp->ms_sm != NULL);
|
|
}
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* Note: metaslab_condense() clears the space map's histogram.
|
|
* Therefore we must verify and remove this histogram before
|
|
* condensing.
|
|
*/
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
metaslab_group_histogram_remove(mg, msp);
|
|
|
|
if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
|
|
metaslab_should_condense(msp)) {
|
|
metaslab_condense(msp, txg, tx);
|
|
} else {
|
|
space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
|
|
space_map_write(msp->ms_sm, msp->ms_freeingtree, SM_FREE, tx);
|
|
}
|
|
|
|
if (msp->ms_loaded) {
|
|
int t;
|
|
|
|
/*
|
|
* When the space map is loaded, we have an accruate
|
|
* histogram in the range tree. This gives us an opportunity
|
|
* to bring the space map's histogram up-to-date so we clear
|
|
* it first before updating it.
|
|
*/
|
|
space_map_histogram_clear(msp->ms_sm);
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
|
|
|
|
/*
|
|
* Since we've cleared the histogram we need to add back
|
|
* any free space that has already been processed, plus
|
|
* any deferred space. This allows the on-disk histogram
|
|
* to accurately reflect all free space even if some space
|
|
* is not yet available for allocation (i.e. deferred).
|
|
*/
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_freedtree, tx);
|
|
|
|
/*
|
|
* Add back any deferred free space that has not been
|
|
* added back into the in-core free tree yet. This will
|
|
* ensure that we don't end up with a space map histogram
|
|
* that is completely empty unless the metaslab is fully
|
|
* allocated.
|
|
*/
|
|
for (t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
space_map_histogram_add(msp->ms_sm,
|
|
msp->ms_defertree[t], tx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Always add the free space from this sync pass to the space
|
|
* map histogram. We want to make sure that the on-disk histogram
|
|
* accounts for all free space. If the space map is not loaded,
|
|
* then we will lose some accuracy but will correct it the next
|
|
* time we load the space map.
|
|
*/
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_freeingtree, tx);
|
|
|
|
metaslab_group_histogram_add(mg, msp);
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
|
|
/*
|
|
* For sync pass 1, we avoid traversing this txg's free range tree
|
|
* and instead will just swap the pointers for freeingtree and
|
|
* freedtree. We can safely do this since the freed_tree is
|
|
* guaranteed to be empty on the initial pass.
|
|
*/
|
|
if (spa_sync_pass(spa) == 1) {
|
|
range_tree_swap(&msp->ms_freeingtree, &msp->ms_freedtree);
|
|
} else {
|
|
range_tree_vacate(msp->ms_freeingtree,
|
|
range_tree_add, msp->ms_freedtree);
|
|
}
|
|
range_tree_vacate(alloctree, NULL, NULL);
|
|
|
|
ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
|
|
ASSERT0(range_tree_space(msp->ms_alloctree[TXG_CLEAN(txg) & TXG_MASK]));
|
|
ASSERT0(range_tree_space(msp->ms_freeingtree));
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
if (object != space_map_object(msp->ms_sm)) {
|
|
object = space_map_object(msp->ms_sm);
|
|
dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
|
|
msp->ms_id, sizeof (uint64_t), &object, tx);
|
|
}
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
/*
|
|
* Called after a transaction group has completely synced to mark
|
|
* all of the metaslab's free space as usable.
|
|
*/
|
|
void
|
|
metaslab_sync_done(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
range_tree_t **defer_tree;
|
|
int64_t alloc_delta, defer_delta;
|
|
uint64_t free_space;
|
|
boolean_t defer_allowed = B_TRUE;
|
|
int t;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* If this metaslab is just becoming available, initialize its
|
|
* range trees and add its capacity to the vdev.
|
|
*/
|
|
if (msp->ms_freedtree == NULL) {
|
|
for (t = 0; t < TXG_SIZE; t++) {
|
|
ASSERT(msp->ms_alloctree[t] == NULL);
|
|
|
|
msp->ms_alloctree[t] = range_tree_create(NULL, msp,
|
|
&msp->ms_lock);
|
|
}
|
|
|
|
ASSERT3P(msp->ms_freeingtree, ==, NULL);
|
|
msp->ms_freeingtree = range_tree_create(NULL, msp,
|
|
&msp->ms_lock);
|
|
|
|
ASSERT3P(msp->ms_freedtree, ==, NULL);
|
|
msp->ms_freedtree = range_tree_create(NULL, msp,
|
|
&msp->ms_lock);
|
|
|
|
for (t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
ASSERT(msp->ms_defertree[t] == NULL);
|
|
|
|
msp->ms_defertree[t] = range_tree_create(NULL, msp,
|
|
&msp->ms_lock);
|
|
}
|
|
|
|
vdev_space_update(vd, 0, 0, msp->ms_size);
|
|
}
|
|
|
|
defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
|
|
|
|
free_space = metaslab_class_get_space(spa_normal_class(spa)) -
|
|
metaslab_class_get_alloc(spa_normal_class(spa));
|
|
if (free_space <= spa_get_slop_space(spa)) {
|
|
defer_allowed = B_FALSE;
|
|
}
|
|
|
|
defer_delta = 0;
|
|
alloc_delta = space_map_alloc_delta(msp->ms_sm);
|
|
if (defer_allowed) {
|
|
defer_delta = range_tree_space(msp->ms_freedtree) -
|
|
range_tree_space(*defer_tree);
|
|
} else {
|
|
defer_delta -= range_tree_space(*defer_tree);
|
|
}
|
|
|
|
vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
|
|
|
|
/*
|
|
* If there's a metaslab_load() in progress, wait for it to complete
|
|
* so that we have a consistent view of the in-core space map.
|
|
*/
|
|
metaslab_load_wait(msp);
|
|
|
|
/*
|
|
* Move the frees from the defer_tree back to the free
|
|
* range tree (if it's loaded). Swap the freed_tree and the
|
|
* defer_tree -- this is safe to do because we've just emptied out
|
|
* the defer_tree.
|
|
*/
|
|
range_tree_vacate(*defer_tree,
|
|
msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
|
|
if (defer_allowed) {
|
|
range_tree_swap(&msp->ms_freedtree, defer_tree);
|
|
} else {
|
|
range_tree_vacate(msp->ms_freedtree,
|
|
msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
|
|
}
|
|
|
|
space_map_update(msp->ms_sm);
|
|
|
|
msp->ms_deferspace += defer_delta;
|
|
ASSERT3S(msp->ms_deferspace, >=, 0);
|
|
ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
|
|
if (msp->ms_deferspace != 0) {
|
|
/*
|
|
* Keep syncing this metaslab until all deferred frees
|
|
* are back in circulation.
|
|
*/
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
|
|
}
|
|
|
|
/*
|
|
* Calculate the new weights before unloading any metaslabs.
|
|
* This will give us the most accurate weighting.
|
|
*/
|
|
metaslab_group_sort(mg, msp, metaslab_weight(msp));
|
|
|
|
/*
|
|
* If the metaslab is loaded and we've not tried to load or allocate
|
|
* from it in 'metaslab_unload_delay' txgs, then unload it.
|
|
*/
|
|
if (msp->ms_loaded &&
|
|
msp->ms_selected_txg + metaslab_unload_delay < txg) {
|
|
|
|
for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
|
|
VERIFY0(range_tree_space(
|
|
msp->ms_alloctree[(txg + t) & TXG_MASK]));
|
|
}
|
|
|
|
if (!metaslab_debug_unload)
|
|
metaslab_unload(msp);
|
|
}
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_sync_reassess(metaslab_group_t *mg)
|
|
{
|
|
metaslab_group_alloc_update(mg);
|
|
mg->mg_fragmentation = metaslab_group_fragmentation(mg);
|
|
|
|
/*
|
|
* Preload the next potential metaslabs
|
|
*/
|
|
metaslab_group_preload(mg);
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_distance(metaslab_t *msp, dva_t *dva)
|
|
{
|
|
uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
|
|
uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
|
|
uint64_t start = msp->ms_id;
|
|
|
|
if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
|
|
return (1ULL << 63);
|
|
|
|
if (offset < start)
|
|
return ((start - offset) << ms_shift);
|
|
if (offset > start)
|
|
return ((offset - start) << ms_shift);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab allocation tracing facility
|
|
* ==========================================================================
|
|
*/
|
|
#ifdef _METASLAB_TRACING
|
|
kstat_t *metaslab_trace_ksp;
|
|
kstat_named_t metaslab_trace_over_limit;
|
|
|
|
void
|
|
metaslab_alloc_trace_init(void)
|
|
{
|
|
ASSERT(metaslab_alloc_trace_cache == NULL);
|
|
metaslab_alloc_trace_cache = kmem_cache_create(
|
|
"metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
|
|
0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
|
|
"misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
|
|
if (metaslab_trace_ksp != NULL) {
|
|
metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
|
|
kstat_named_init(&metaslab_trace_over_limit,
|
|
"metaslab_trace_over_limit", KSTAT_DATA_UINT64);
|
|
kstat_install(metaslab_trace_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
metaslab_alloc_trace_fini(void)
|
|
{
|
|
if (metaslab_trace_ksp != NULL) {
|
|
kstat_delete(metaslab_trace_ksp);
|
|
metaslab_trace_ksp = NULL;
|
|
}
|
|
kmem_cache_destroy(metaslab_alloc_trace_cache);
|
|
metaslab_alloc_trace_cache = NULL;
|
|
}
|
|
|
|
/*
|
|
* Add an allocation trace element to the allocation tracing list.
|
|
*/
|
|
static void
|
|
metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
|
|
metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset)
|
|
{
|
|
metaslab_alloc_trace_t *mat;
|
|
|
|
if (!metaslab_trace_enabled)
|
|
return;
|
|
|
|
/*
|
|
* When the tracing list reaches its maximum we remove
|
|
* the second element in the list before adding a new one.
|
|
* By removing the second element we preserve the original
|
|
* entry as a clue to what allocations steps have already been
|
|
* performed.
|
|
*/
|
|
if (zal->zal_size == metaslab_trace_max_entries) {
|
|
metaslab_alloc_trace_t *mat_next;
|
|
#ifdef DEBUG
|
|
panic("too many entries in allocation list");
|
|
#endif
|
|
atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
|
|
zal->zal_size--;
|
|
mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
|
|
list_remove(&zal->zal_list, mat_next);
|
|
kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
|
|
}
|
|
|
|
mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
|
|
list_link_init(&mat->mat_list_node);
|
|
mat->mat_mg = mg;
|
|
mat->mat_msp = msp;
|
|
mat->mat_size = psize;
|
|
mat->mat_dva_id = dva_id;
|
|
mat->mat_offset = offset;
|
|
mat->mat_weight = 0;
|
|
|
|
if (msp != NULL)
|
|
mat->mat_weight = msp->ms_weight;
|
|
|
|
/*
|
|
* The list is part of the zio so locking is not required. Only
|
|
* a single thread will perform allocations for a given zio.
|
|
*/
|
|
list_insert_tail(&zal->zal_list, mat);
|
|
zal->zal_size++;
|
|
|
|
ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
|
|
}
|
|
|
|
void
|
|
metaslab_trace_init(zio_alloc_list_t *zal)
|
|
{
|
|
list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
|
|
offsetof(metaslab_alloc_trace_t, mat_list_node));
|
|
zal->zal_size = 0;
|
|
}
|
|
|
|
void
|
|
metaslab_trace_fini(zio_alloc_list_t *zal)
|
|
{
|
|
metaslab_alloc_trace_t *mat;
|
|
|
|
while ((mat = list_remove_head(&zal->zal_list)) != NULL)
|
|
kmem_cache_free(metaslab_alloc_trace_cache, mat);
|
|
list_destroy(&zal->zal_list);
|
|
zal->zal_size = 0;
|
|
}
|
|
#else
|
|
|
|
#define metaslab_trace_add(zal, mg, msp, psize, id, off)
|
|
|
|
void
|
|
metaslab_alloc_trace_init(void)
|
|
{
|
|
}
|
|
|
|
void
|
|
metaslab_alloc_trace_fini(void)
|
|
{
|
|
}
|
|
|
|
void
|
|
metaslab_trace_init(zio_alloc_list_t *zal)
|
|
{
|
|
}
|
|
|
|
void
|
|
metaslab_trace_fini(zio_alloc_list_t *zal)
|
|
{
|
|
}
|
|
|
|
#endif /* _METASLAB_TRACING */
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab block operations
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static void
|
|
metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags)
|
|
{
|
|
metaslab_group_t *mg;
|
|
|
|
if (!(flags & METASLAB_ASYNC_ALLOC) ||
|
|
flags & METASLAB_DONT_THROTTLE)
|
|
return;
|
|
|
|
mg = vdev_lookup_top(spa, vdev)->vdev_mg;
|
|
if (!mg->mg_class->mc_alloc_throttle_enabled)
|
|
return;
|
|
|
|
(void) refcount_add(&mg->mg_alloc_queue_depth, tag);
|
|
}
|
|
|
|
void
|
|
metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags)
|
|
{
|
|
metaslab_group_t *mg;
|
|
|
|
if (!(flags & METASLAB_ASYNC_ALLOC) ||
|
|
flags & METASLAB_DONT_THROTTLE)
|
|
return;
|
|
|
|
mg = vdev_lookup_top(spa, vdev)->vdev_mg;
|
|
if (!mg->mg_class->mc_alloc_throttle_enabled)
|
|
return;
|
|
|
|
(void) refcount_remove(&mg->mg_alloc_queue_depth, tag);
|
|
}
|
|
|
|
void
|
|
metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag)
|
|
{
|
|
#ifdef ZFS_DEBUG
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
int d;
|
|
|
|
for (d = 0; d < ndvas; d++) {
|
|
uint64_t vdev = DVA_GET_VDEV(&dva[d]);
|
|
metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
|
|
VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth, tag));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
|
|
{
|
|
uint64_t start;
|
|
range_tree_t *rt = msp->ms_tree;
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
|
|
start = mc->mc_ops->msop_alloc(msp, size);
|
|
if (start != -1ULL) {
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
|
|
VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
|
|
range_tree_remove(rt, start, size);
|
|
|
|
if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
|
|
vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
|
|
|
|
range_tree_add(msp->ms_alloctree[txg & TXG_MASK], start, size);
|
|
|
|
/* Track the last successful allocation */
|
|
msp->ms_alloc_txg = txg;
|
|
metaslab_verify_space(msp, txg);
|
|
}
|
|
|
|
/*
|
|
* Now that we've attempted the allocation we need to update the
|
|
* metaslab's maximum block size since it may have changed.
|
|
*/
|
|
msp->ms_max_size = metaslab_block_maxsize(msp);
|
|
return (start);
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
|
|
uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
|
|
{
|
|
metaslab_t *msp = NULL;
|
|
metaslab_t *search;
|
|
uint64_t offset = -1ULL;
|
|
uint64_t activation_weight;
|
|
uint64_t target_distance;
|
|
int i;
|
|
|
|
activation_weight = METASLAB_WEIGHT_PRIMARY;
|
|
for (i = 0; i < d; i++) {
|
|
if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
|
|
activation_weight = METASLAB_WEIGHT_SECONDARY;
|
|
break;
|
|
}
|
|
}
|
|
|
|
search = kmem_alloc(sizeof (*search), KM_SLEEP);
|
|
search->ms_weight = UINT64_MAX;
|
|
search->ms_start = 0;
|
|
for (;;) {
|
|
boolean_t was_active;
|
|
avl_tree_t *t = &mg->mg_metaslab_tree;
|
|
avl_index_t idx;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
|
|
/*
|
|
* Find the metaslab with the highest weight that is less
|
|
* than what we've already tried. In the common case, this
|
|
* means that we will examine each metaslab at most once.
|
|
* Note that concurrent callers could reorder metaslabs
|
|
* by activation/passivation once we have dropped the mg_lock.
|
|
* If a metaslab is activated by another thread, and we fail
|
|
* to allocate from the metaslab we have selected, we may
|
|
* not try the newly-activated metaslab, and instead activate
|
|
* another metaslab. This is not optimal, but generally
|
|
* does not cause any problems (a possible exception being
|
|
* if every metaslab is completely full except for the
|
|
* the newly-activated metaslab which we fail to examine).
|
|
*/
|
|
msp = avl_find(t, search, &idx);
|
|
if (msp == NULL)
|
|
msp = avl_nearest(t, idx, AVL_AFTER);
|
|
for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
|
|
|
|
if (!metaslab_should_allocate(msp, asize)) {
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_TOO_SMALL);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the selected metaslab is condensing, skip it.
|
|
*/
|
|
if (msp->ms_condensing)
|
|
continue;
|
|
|
|
was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
|
|
if (activation_weight == METASLAB_WEIGHT_PRIMARY)
|
|
break;
|
|
|
|
target_distance = min_distance +
|
|
(space_map_allocated(msp->ms_sm) != 0 ? 0 :
|
|
min_distance >> 1);
|
|
|
|
for (i = 0; i < d; i++) {
|
|
if (metaslab_distance(msp, &dva[i]) <
|
|
target_distance)
|
|
break;
|
|
}
|
|
if (i == d)
|
|
break;
|
|
}
|
|
mutex_exit(&mg->mg_lock);
|
|
if (msp == NULL) {
|
|
kmem_free(search, sizeof (*search));
|
|
return (-1ULL);
|
|
}
|
|
search->ms_weight = msp->ms_weight;
|
|
search->ms_start = msp->ms_start + 1;
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* Ensure that the metaslab we have selected is still
|
|
* capable of handling our request. It's possible that
|
|
* another thread may have changed the weight while we
|
|
* were blocked on the metaslab lock. We check the
|
|
* active status first to see if we need to reselect
|
|
* a new metaslab.
|
|
*/
|
|
if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
|
|
activation_weight == METASLAB_WEIGHT_PRIMARY) {
|
|
metaslab_passivate(msp,
|
|
msp->ms_weight & ~METASLAB_ACTIVE_MASK);
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
if (metaslab_activate(msp, activation_weight) != 0) {
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
msp->ms_selected_txg = txg;
|
|
|
|
/*
|
|
* Now that we have the lock, recheck to see if we should
|
|
* continue to use this metaslab for this allocation. The
|
|
* the metaslab is now loaded so metaslab_should_allocate() can
|
|
* accurately determine if the allocation attempt should
|
|
* proceed.
|
|
*/
|
|
if (!metaslab_should_allocate(msp, asize)) {
|
|
/* Passivate this metaslab and select a new one. */
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_TOO_SMALL);
|
|
goto next;
|
|
}
|
|
|
|
|
|
/*
|
|
* If this metaslab is currently condensing then pick again as
|
|
* we can't manipulate this metaslab until it's committed
|
|
* to disk.
|
|
*/
|
|
if (msp->ms_condensing) {
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_CONDENSING);
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
offset = metaslab_block_alloc(msp, asize, txg);
|
|
metaslab_trace_add(zal, mg, msp, asize, d, offset);
|
|
|
|
if (offset != -1ULL) {
|
|
/* Proactively passivate the metaslab, if needed */
|
|
metaslab_segment_may_passivate(msp);
|
|
break;
|
|
}
|
|
next:
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
/*
|
|
* We were unable to allocate from this metaslab so determine
|
|
* a new weight for this metaslab. Now that we have loaded
|
|
* the metaslab we can provide a better hint to the metaslab
|
|
* selector.
|
|
*
|
|
* For space-based metaslabs, we use the maximum block size.
|
|
* This information is only available when the metaslab
|
|
* is loaded and is more accurate than the generic free
|
|
* space weight that was calculated by metaslab_weight().
|
|
* This information allows us to quickly compare the maximum
|
|
* available allocation in the metaslab to the allocation
|
|
* size being requested.
|
|
*
|
|
* For segment-based metaslabs, determine the new weight
|
|
* based on the highest bucket in the range tree. We
|
|
* explicitly use the loaded segment weight (i.e. the range
|
|
* tree histogram) since it contains the space that is
|
|
* currently available for allocation and is accurate
|
|
* even within a sync pass.
|
|
*/
|
|
if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
|
|
uint64_t weight = metaslab_block_maxsize(msp);
|
|
WEIGHT_SET_SPACEBASED(weight);
|
|
metaslab_passivate(msp, weight);
|
|
} else {
|
|
metaslab_passivate(msp,
|
|
metaslab_weight_from_range_tree(msp));
|
|
}
|
|
|
|
/*
|
|
* We have just failed an allocation attempt, check
|
|
* that metaslab_should_allocate() agrees. Otherwise,
|
|
* we may end up in an infinite loop retrying the same
|
|
* metaslab.
|
|
*/
|
|
ASSERT(!metaslab_should_allocate(msp, asize));
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
kmem_free(search, sizeof (*search));
|
|
return (offset);
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
|
|
uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
|
|
{
|
|
uint64_t offset;
|
|
ASSERT(mg->mg_initialized);
|
|
|
|
offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
|
|
min_distance, dva, d);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
if (offset == -1ULL) {
|
|
mg->mg_failed_allocations++;
|
|
metaslab_trace_add(zal, mg, NULL, asize, d,
|
|
TRACE_GROUP_FAILURE);
|
|
if (asize == SPA_GANGBLOCKSIZE) {
|
|
/*
|
|
* This metaslab group was unable to allocate
|
|
* the minimum gang block size so it must be out of
|
|
* space. We must notify the allocation throttle
|
|
* to start skipping allocation attempts to this
|
|
* metaslab group until more space becomes available.
|
|
* Note: this failure cannot be caused by the
|
|
* allocation throttle since the allocation throttle
|
|
* is only responsible for skipping devices and
|
|
* not failing block allocations.
|
|
*/
|
|
mg->mg_no_free_space = B_TRUE;
|
|
}
|
|
}
|
|
mg->mg_allocations++;
|
|
mutex_exit(&mg->mg_lock);
|
|
return (offset);
|
|
}
|
|
|
|
/*
|
|
* If we have to write a ditto block (i.e. more than one DVA for a given BP)
|
|
* on the same vdev as an existing DVA of this BP, then try to allocate it
|
|
* at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
|
|
* existing DVAs.
|
|
*/
|
|
int ditto_same_vdev_distance_shift = 3;
|
|
|
|
/*
|
|
* Allocate a block for the specified i/o.
|
|
*/
|
|
static int
|
|
metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
|
|
dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
|
|
zio_alloc_list_t *zal)
|
|
{
|
|
metaslab_group_t *mg, *fast_mg, *rotor;
|
|
vdev_t *vd;
|
|
boolean_t try_hard = B_FALSE;
|
|
|
|
ASSERT(!DVA_IS_VALID(&dva[d]));
|
|
|
|
/*
|
|
* For testing, make some blocks above a certain size be gang blocks.
|
|
*/
|
|
if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) {
|
|
metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
/*
|
|
* Start at the rotor and loop through all mgs until we find something.
|
|
* Note that there's no locking on mc_rotor or mc_aliquot because
|
|
* nothing actually breaks if we miss a few updates -- we just won't
|
|
* allocate quite as evenly. It all balances out over time.
|
|
*
|
|
* If we are doing ditto or log blocks, try to spread them across
|
|
* consecutive vdevs. If we're forced to reuse a vdev before we've
|
|
* allocated all of our ditto blocks, then try and spread them out on
|
|
* that vdev as much as possible. If it turns out to not be possible,
|
|
* gradually lower our standards until anything becomes acceptable.
|
|
* Also, allocating on consecutive vdevs (as opposed to random vdevs)
|
|
* gives us hope of containing our fault domains to something we're
|
|
* able to reason about. Otherwise, any two top-level vdev failures
|
|
* will guarantee the loss of data. With consecutive allocation,
|
|
* only two adjacent top-level vdev failures will result in data loss.
|
|
*
|
|
* If we are doing gang blocks (hintdva is non-NULL), try to keep
|
|
* ourselves on the same vdev as our gang block header. That
|
|
* way, we can hope for locality in vdev_cache, plus it makes our
|
|
* fault domains something tractable.
|
|
*/
|
|
if (hintdva) {
|
|
vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
|
|
|
|
/*
|
|
* It's possible the vdev we're using as the hint no
|
|
* longer exists (i.e. removed). Consult the rotor when
|
|
* all else fails.
|
|
*/
|
|
if (vd != NULL) {
|
|
mg = vd->vdev_mg;
|
|
|
|
if (flags & METASLAB_HINTBP_AVOID &&
|
|
mg->mg_next != NULL)
|
|
mg = mg->mg_next;
|
|
} else {
|
|
mg = mc->mc_rotor;
|
|
}
|
|
} else if (d != 0) {
|
|
vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
|
|
mg = vd->vdev_mg->mg_next;
|
|
} else if (flags & METASLAB_FASTWRITE) {
|
|
mg = fast_mg = mc->mc_rotor;
|
|
|
|
do {
|
|
if (fast_mg->mg_vd->vdev_pending_fastwrite <
|
|
mg->mg_vd->vdev_pending_fastwrite)
|
|
mg = fast_mg;
|
|
} while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
|
|
|
|
} else {
|
|
mg = mc->mc_rotor;
|
|
}
|
|
|
|
/*
|
|
* If the hint put us into the wrong metaslab class, or into a
|
|
* metaslab group that has been passivated, just follow the rotor.
|
|
*/
|
|
if (mg->mg_class != mc || mg->mg_activation_count <= 0)
|
|
mg = mc->mc_rotor;
|
|
|
|
rotor = mg;
|
|
top:
|
|
do {
|
|
boolean_t allocatable;
|
|
uint64_t offset;
|
|
uint64_t distance, asize;
|
|
|
|
ASSERT(mg->mg_activation_count == 1);
|
|
vd = mg->mg_vd;
|
|
|
|
/*
|
|
* Don't allocate from faulted devices.
|
|
*/
|
|
if (try_hard) {
|
|
spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
|
|
allocatable = vdev_allocatable(vd);
|
|
spa_config_exit(spa, SCL_ZIO, FTAG);
|
|
} else {
|
|
allocatable = vdev_allocatable(vd);
|
|
}
|
|
|
|
/*
|
|
* Determine if the selected metaslab group is eligible
|
|
* for allocations. If we're ganging then don't allow
|
|
* this metaslab group to skip allocations since that would
|
|
* inadvertently return ENOSPC and suspend the pool
|
|
* even though space is still available.
|
|
*/
|
|
if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
|
|
allocatable = metaslab_group_allocatable(mg, rotor,
|
|
psize);
|
|
}
|
|
|
|
if (!allocatable) {
|
|
metaslab_trace_add(zal, mg, NULL, psize, d,
|
|
TRACE_NOT_ALLOCATABLE);
|
|
goto next;
|
|
}
|
|
|
|
ASSERT(mg->mg_initialized);
|
|
|
|
/*
|
|
* Avoid writing single-copy data to a failing,
|
|
* non-redundant vdev, unless we've already tried all
|
|
* other vdevs.
|
|
*/
|
|
if ((vd->vdev_stat.vs_write_errors > 0 ||
|
|
vd->vdev_state < VDEV_STATE_HEALTHY) &&
|
|
d == 0 && !try_hard && vd->vdev_children == 0) {
|
|
metaslab_trace_add(zal, mg, NULL, psize, d,
|
|
TRACE_VDEV_ERROR);
|
|
goto next;
|
|
}
|
|
|
|
ASSERT(mg->mg_class == mc);
|
|
|
|
/*
|
|
* If we don't need to try hard, then require that the
|
|
* block be 1/8th of the device away from any other DVAs
|
|
* in this BP. If we are trying hard, allow any offset
|
|
* to be used (distance=0).
|
|
*/
|
|
distance = 0;
|
|
if (!try_hard) {
|
|
distance = vd->vdev_asize >>
|
|
ditto_same_vdev_distance_shift;
|
|
if (distance <= (1ULL << vd->vdev_ms_shift))
|
|
distance = 0;
|
|
}
|
|
|
|
asize = vdev_psize_to_asize(vd, psize);
|
|
ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
|
|
|
|
offset = metaslab_group_alloc(mg, zal, asize, txg, distance,
|
|
dva, d);
|
|
|
|
if (offset != -1ULL) {
|
|
/*
|
|
* If we've just selected this metaslab group,
|
|
* figure out whether the corresponding vdev is
|
|
* over- or under-used relative to the pool,
|
|
* and set an allocation bias to even it out.
|
|
*
|
|
* Bias is also used to compensate for unequally
|
|
* sized vdevs so that space is allocated fairly.
|
|
*/
|
|
if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
int64_t vs_free = vs->vs_space - vs->vs_alloc;
|
|
int64_t mc_free = mc->mc_space - mc->mc_alloc;
|
|
int64_t ratio;
|
|
|
|
/*
|
|
* Calculate how much more or less we should
|
|
* try to allocate from this device during
|
|
* this iteration around the rotor.
|
|
*
|
|
* This basically introduces a zero-centered
|
|
* bias towards the devices with the most
|
|
* free space, while compensating for vdev
|
|
* size differences.
|
|
*
|
|
* Examples:
|
|
* vdev V1 = 16M/128M
|
|
* vdev V2 = 16M/128M
|
|
* ratio(V1) = 100% ratio(V2) = 100%
|
|
*
|
|
* vdev V1 = 16M/128M
|
|
* vdev V2 = 64M/128M
|
|
* ratio(V1) = 127% ratio(V2) = 72%
|
|
*
|
|
* vdev V1 = 16M/128M
|
|
* vdev V2 = 64M/512M
|
|
* ratio(V1) = 40% ratio(V2) = 160%
|
|
*/
|
|
ratio = (vs_free * mc->mc_alloc_groups * 100) /
|
|
(mc_free + 1);
|
|
mg->mg_bias = ((ratio - 100) *
|
|
(int64_t)mg->mg_aliquot) / 100;
|
|
} else if (!metaslab_bias_enabled) {
|
|
mg->mg_bias = 0;
|
|
}
|
|
|
|
if ((flags & METASLAB_FASTWRITE) ||
|
|
atomic_add_64_nv(&mc->mc_aliquot, asize) >=
|
|
mg->mg_aliquot + mg->mg_bias) {
|
|
mc->mc_rotor = mg->mg_next;
|
|
mc->mc_aliquot = 0;
|
|
}
|
|
|
|
DVA_SET_VDEV(&dva[d], vd->vdev_id);
|
|
DVA_SET_OFFSET(&dva[d], offset);
|
|
DVA_SET_GANG(&dva[d],
|
|
((flags & METASLAB_GANG_HEADER) ? 1 : 0));
|
|
DVA_SET_ASIZE(&dva[d], asize);
|
|
|
|
if (flags & METASLAB_FASTWRITE) {
|
|
atomic_add_64(&vd->vdev_pending_fastwrite,
|
|
psize);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
next:
|
|
mc->mc_rotor = mg->mg_next;
|
|
mc->mc_aliquot = 0;
|
|
} while ((mg = mg->mg_next) != rotor);
|
|
|
|
/*
|
|
* If we haven't tried hard, do so now.
|
|
*/
|
|
if (!try_hard) {
|
|
try_hard = B_TRUE;
|
|
goto top;
|
|
}
|
|
|
|
bzero(&dva[d], sizeof (dva_t));
|
|
|
|
metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
/*
|
|
* Free the block represented by DVA in the context of the specified
|
|
* transaction group.
|
|
*/
|
|
static void
|
|
metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
|
|
{
|
|
uint64_t vdev = DVA_GET_VDEV(dva);
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
vdev_t *vd;
|
|
metaslab_t *msp;
|
|
|
|
if (txg > spa_freeze_txg(spa))
|
|
return;
|
|
|
|
if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
|
|
(offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
|
|
zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
|
|
(u_longlong_t)vdev, (u_longlong_t)offset,
|
|
(u_longlong_t)size);
|
|
return;
|
|
}
|
|
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
if (DVA_GET_GANG(dva))
|
|
size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
if (now) {
|
|
range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
|
|
offset, size);
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY3U(offset, >=, msp->ms_start);
|
|
VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
|
|
VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
|
|
msp->ms_size);
|
|
VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
range_tree_add(msp->ms_tree, offset, size);
|
|
msp->ms_max_size = metaslab_block_maxsize(msp);
|
|
} else {
|
|
VERIFY3U(txg, ==, spa->spa_syncing_txg);
|
|
if (range_tree_space(msp->ms_freeingtree) == 0)
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg);
|
|
range_tree_add(msp->ms_freeingtree, offset, size);
|
|
}
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
/*
|
|
* Intent log support: upon opening the pool after a crash, notify the SPA
|
|
* of blocks that the intent log has allocated for immediate write, but
|
|
* which are still considered free by the SPA because the last transaction
|
|
* group didn't commit yet.
|
|
*/
|
|
static int
|
|
metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
|
|
{
|
|
uint64_t vdev = DVA_GET_VDEV(dva);
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
vdev_t *vd;
|
|
metaslab_t *msp;
|
|
int error = 0;
|
|
|
|
ASSERT(DVA_IS_VALID(dva));
|
|
|
|
if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
|
|
(offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
if (DVA_GET_GANG(dva))
|
|
size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
|
|
error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
|
|
|
|
if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
|
|
error = SET_ERROR(ENOENT);
|
|
|
|
if (error || txg == 0) { /* txg == 0 indicates dry run */
|
|
mutex_exit(&msp->ms_lock);
|
|
return (error);
|
|
}
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
|
|
range_tree_remove(msp->ms_tree, offset, size);
|
|
|
|
if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
|
|
if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg);
|
|
range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
|
|
}
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Reserve some allocation slots. The reservation system must be called
|
|
* before we call into the allocator. If there aren't any available slots
|
|
* then the I/O will be throttled until an I/O completes and its slots are
|
|
* freed up. The function returns true if it was successful in placing
|
|
* the reservation.
|
|
*/
|
|
boolean_t
|
|
metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio,
|
|
int flags)
|
|
{
|
|
uint64_t available_slots = 0;
|
|
uint64_t reserved_slots;
|
|
boolean_t slot_reserved = B_FALSE;
|
|
|
|
ASSERT(mc->mc_alloc_throttle_enabled);
|
|
mutex_enter(&mc->mc_lock);
|
|
|
|
reserved_slots = refcount_count(&mc->mc_alloc_slots);
|
|
if (reserved_slots < mc->mc_alloc_max_slots)
|
|
available_slots = mc->mc_alloc_max_slots - reserved_slots;
|
|
|
|
if (slots <= available_slots || GANG_ALLOCATION(flags)) {
|
|
int d;
|
|
|
|
/*
|
|
* We reserve the slots individually so that we can unreserve
|
|
* them individually when an I/O completes.
|
|
*/
|
|
for (d = 0; d < slots; d++) {
|
|
reserved_slots = refcount_add(&mc->mc_alloc_slots, zio);
|
|
}
|
|
zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
|
|
slot_reserved = B_TRUE;
|
|
}
|
|
|
|
mutex_exit(&mc->mc_lock);
|
|
return (slot_reserved);
|
|
}
|
|
|
|
void
|
|
metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio)
|
|
{
|
|
int d;
|
|
|
|
ASSERT(mc->mc_alloc_throttle_enabled);
|
|
mutex_enter(&mc->mc_lock);
|
|
for (d = 0; d < slots; d++) {
|
|
(void) refcount_remove(&mc->mc_alloc_slots, zio);
|
|
}
|
|
mutex_exit(&mc->mc_lock);
|
|
}
|
|
|
|
int
|
|
metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
|
|
int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
|
|
zio_alloc_list_t *zal, zio_t *zio)
|
|
{
|
|
dva_t *dva = bp->blk_dva;
|
|
dva_t *hintdva = hintbp->blk_dva;
|
|
int d, error = 0;
|
|
|
|
ASSERT(bp->blk_birth == 0);
|
|
ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
|
|
|
|
if (mc->mc_rotor == NULL) { /* no vdevs in this class */
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
|
|
ASSERT(BP_GET_NDVAS(bp) == 0);
|
|
ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
|
|
ASSERT3P(zal, !=, NULL);
|
|
|
|
for (d = 0; d < ndvas; d++) {
|
|
error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
|
|
txg, flags, zal);
|
|
if (error != 0) {
|
|
for (d--; d >= 0; d--) {
|
|
metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
|
|
metaslab_group_alloc_decrement(spa,
|
|
DVA_GET_VDEV(&dva[d]), zio, flags);
|
|
bzero(&dva[d], sizeof (dva_t));
|
|
}
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
return (error);
|
|
} else {
|
|
/*
|
|
* Update the metaslab group's queue depth
|
|
* based on the newly allocated dva.
|
|
*/
|
|
metaslab_group_alloc_increment(spa,
|
|
DVA_GET_VDEV(&dva[d]), zio, flags);
|
|
}
|
|
|
|
}
|
|
ASSERT(error == 0);
|
|
ASSERT(BP_GET_NDVAS(bp) == ndvas);
|
|
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
BP_SET_BIRTH(bp, txg, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int d, ndvas = BP_GET_NDVAS(bp);
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
|
|
|
|
spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < ndvas; d++)
|
|
metaslab_free_dva(spa, &dva[d], txg, now);
|
|
|
|
spa_config_exit(spa, SCL_FREE, FTAG);
|
|
}
|
|
|
|
int
|
|
metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
int d, error = 0;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
|
|
if (txg != 0) {
|
|
/*
|
|
* First do a dry run to make sure all DVAs are claimable,
|
|
* so we don't have to unwind from partial failures below.
|
|
*/
|
|
if ((error = metaslab_claim(spa, bp, 0)) != 0)
|
|
return (error);
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < ndvas; d++)
|
|
if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
|
|
break;
|
|
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
ASSERT(error == 0 || txg == 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
uint64_t psize = BP_GET_PSIZE(bp);
|
|
int d;
|
|
vdev_t *vd;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
ASSERT(psize > 0);
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < ndvas; d++) {
|
|
if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
|
|
continue;
|
|
atomic_add_64(&vd->vdev_pending_fastwrite, psize);
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
|
|
void
|
|
metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
uint64_t psize = BP_GET_PSIZE(bp);
|
|
int d;
|
|
vdev_t *vd;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
ASSERT(psize > 0);
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < ndvas; d++) {
|
|
if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
|
|
continue;
|
|
ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
|
|
atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
|
|
void
|
|
metaslab_check_free(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
int i, j;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
|
|
return;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
for (i = 0; i < BP_GET_NDVAS(bp); i++) {
|
|
uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev);
|
|
uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
|
|
uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
|
|
metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
if (msp->ms_loaded)
|
|
range_tree_verify(msp->ms_tree, offset, size);
|
|
|
|
range_tree_verify(msp->ms_freeingtree, offset, size);
|
|
range_tree_verify(msp->ms_freedtree, offset, size);
|
|
for (j = 0; j < TXG_DEFER_SIZE; j++)
|
|
range_tree_verify(msp->ms_defertree[j], offset, size);
|
|
}
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
/* CSTYLED */
|
|
module_param(metaslab_aliquot, ulong, 0644);
|
|
MODULE_PARM_DESC(metaslab_aliquot,
|
|
"allocation granularity (a.k.a. stripe size)");
|
|
|
|
module_param(metaslab_debug_load, int, 0644);
|
|
MODULE_PARM_DESC(metaslab_debug_load,
|
|
"load all metaslabs when pool is first opened");
|
|
|
|
module_param(metaslab_debug_unload, int, 0644);
|
|
MODULE_PARM_DESC(metaslab_debug_unload,
|
|
"prevent metaslabs from being unloaded");
|
|
|
|
module_param(metaslab_preload_enabled, int, 0644);
|
|
MODULE_PARM_DESC(metaslab_preload_enabled,
|
|
"preload potential metaslabs during reassessment");
|
|
|
|
module_param(zfs_mg_noalloc_threshold, int, 0644);
|
|
MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
|
|
"percentage of free space for metaslab group to allow allocation");
|
|
|
|
module_param(zfs_mg_fragmentation_threshold, int, 0644);
|
|
MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
|
|
"fragmentation for metaslab group to allow allocation");
|
|
|
|
module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
|
|
MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
|
|
"fragmentation for metaslab to allow allocation");
|
|
|
|
module_param(metaslab_fragmentation_factor_enabled, int, 0644);
|
|
MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
|
|
"use the fragmentation metric to prefer less fragmented metaslabs");
|
|
|
|
module_param(metaslab_lba_weighting_enabled, int, 0644);
|
|
MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
|
|
"prefer metaslabs with lower LBAs");
|
|
|
|
module_param(metaslab_bias_enabled, int, 0644);
|
|
MODULE_PARM_DESC(metaslab_bias_enabled,
|
|
"enable metaslab group biasing");
|
|
|
|
module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
|
|
MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
|
|
"enable segment-based metaslab selection");
|
|
|
|
module_param(zfs_metaslab_switch_threshold, int, 0644);
|
|
MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
|
|
"segment-based metaslab selection maximum buckets before switching");
|
|
#endif /* _KERNEL && HAVE_SPL */
|