mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-13 19:50:25 +03:00
3dfb57a35e
OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
669 lines
17 KiB
C
669 lines
17 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/fs/zfs.h>
|
|
|
|
/*
|
|
* Virtual device vector for mirroring.
|
|
*/
|
|
|
|
typedef struct mirror_child {
|
|
vdev_t *mc_vd;
|
|
uint64_t mc_offset;
|
|
int mc_error;
|
|
int mc_load;
|
|
uint8_t mc_tried;
|
|
uint8_t mc_skipped;
|
|
uint8_t mc_speculative;
|
|
} mirror_child_t;
|
|
|
|
typedef struct mirror_map {
|
|
int *mm_preferred;
|
|
int mm_preferred_cnt;
|
|
int mm_children;
|
|
boolean_t mm_replacing;
|
|
boolean_t mm_root;
|
|
mirror_child_t mm_child[];
|
|
} mirror_map_t;
|
|
|
|
static int vdev_mirror_shift = 21;
|
|
|
|
/*
|
|
* The load configuration settings below are tuned by default for
|
|
* the case where all devices are of the same rotational type.
|
|
*
|
|
* If there is a mixture of rotating and non-rotating media, setting
|
|
* zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
|
|
* as it will direct more reads to the non-rotating vdevs which are more likely
|
|
* to have a higher performance.
|
|
*/
|
|
|
|
/* Rotating media load calculation configuration. */
|
|
static int zfs_vdev_mirror_rotating_inc = 0;
|
|
static int zfs_vdev_mirror_rotating_seek_inc = 5;
|
|
static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
|
|
|
|
/* Non-rotating media load calculation configuration. */
|
|
static int zfs_vdev_mirror_non_rotating_inc = 0;
|
|
static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
|
|
|
|
static inline size_t
|
|
vdev_mirror_map_size(int children)
|
|
{
|
|
return (offsetof(mirror_map_t, mm_child[children]) +
|
|
sizeof (int) * children);
|
|
}
|
|
|
|
static inline mirror_map_t *
|
|
vdev_mirror_map_alloc(int children, boolean_t replacing, boolean_t root)
|
|
{
|
|
mirror_map_t *mm;
|
|
|
|
mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
|
|
mm->mm_children = children;
|
|
mm->mm_replacing = replacing;
|
|
mm->mm_root = root;
|
|
mm->mm_preferred = (int *)((uintptr_t)mm +
|
|
offsetof(mirror_map_t, mm_child[children]));
|
|
|
|
return (mm);
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_map_free(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm = zio->io_vsd;
|
|
|
|
kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
|
|
}
|
|
|
|
static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
|
|
vdev_mirror_map_free,
|
|
zio_vsd_default_cksum_report
|
|
};
|
|
|
|
static int
|
|
vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
|
|
{
|
|
uint64_t lastoffset;
|
|
int load;
|
|
|
|
/* All DVAs have equal weight at the root. */
|
|
if (mm->mm_root)
|
|
return (INT_MAX);
|
|
|
|
/*
|
|
* We don't return INT_MAX if the device is resilvering i.e.
|
|
* vdev_resilver_txg != 0 as when tested performance was slightly
|
|
* worse overall when resilvering with compared to without.
|
|
*/
|
|
|
|
/* Standard load based on pending queue length. */
|
|
load = vdev_queue_length(vd);
|
|
lastoffset = vdev_queue_lastoffset(vd);
|
|
|
|
if (vd->vdev_nonrot) {
|
|
/* Non-rotating media. */
|
|
if (lastoffset == zio_offset)
|
|
return (load + zfs_vdev_mirror_non_rotating_inc);
|
|
|
|
/*
|
|
* Apply a seek penalty even for non-rotating devices as
|
|
* sequential I/O's can be aggregated into fewer operations on
|
|
* the device, thus avoiding unnecessary per-command overhead
|
|
* and boosting performance.
|
|
*/
|
|
return (load + zfs_vdev_mirror_non_rotating_seek_inc);
|
|
}
|
|
|
|
/* Rotating media I/O's which directly follow the last I/O. */
|
|
if (lastoffset == zio_offset)
|
|
return (load + zfs_vdev_mirror_rotating_inc);
|
|
|
|
/*
|
|
* Apply half the seek increment to I/O's within seek offset
|
|
* of the last I/O queued to this vdev as they should incure less
|
|
* of a seek increment.
|
|
*/
|
|
if (ABS(lastoffset - zio_offset) <
|
|
zfs_vdev_mirror_rotating_seek_offset)
|
|
return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
|
|
|
|
/* Apply the full seek increment to all other I/O's. */
|
|
return (load + zfs_vdev_mirror_rotating_seek_inc);
|
|
}
|
|
|
|
/*
|
|
* Avoid inlining the function to keep vdev_mirror_io_start(), which
|
|
* is this functions only caller, as small as possible on the stack.
|
|
*/
|
|
noinline static mirror_map_t *
|
|
vdev_mirror_map_init(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm = NULL;
|
|
mirror_child_t *mc;
|
|
vdev_t *vd = zio->io_vd;
|
|
int c;
|
|
|
|
if (vd == NULL) {
|
|
dva_t *dva = zio->io_bp->blk_dva;
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE,
|
|
B_TRUE);
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mc = &mm->mm_child[c];
|
|
|
|
mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
|
|
mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
|
|
}
|
|
} else {
|
|
mm = vdev_mirror_map_alloc(vd->vdev_children,
|
|
(vd->vdev_ops == &vdev_replacing_ops ||
|
|
vd->vdev_ops == &vdev_spare_ops), B_FALSE);
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mc = &mm->mm_child[c];
|
|
mc->mc_vd = vd->vdev_child[c];
|
|
mc->mc_offset = zio->io_offset;
|
|
}
|
|
}
|
|
|
|
zio->io_vsd = mm;
|
|
zio->io_vsd_ops = &vdev_mirror_vsd_ops;
|
|
return (mm);
|
|
}
|
|
|
|
static int
|
|
vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
|
|
uint64_t *ashift)
|
|
{
|
|
int numerrors = 0;
|
|
int lasterror = 0;
|
|
int c;
|
|
|
|
if (vd->vdev_children == 0) {
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
vdev_open_children(vd);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
if (cvd->vdev_open_error) {
|
|
lasterror = cvd->vdev_open_error;
|
|
numerrors++;
|
|
continue;
|
|
}
|
|
|
|
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
|
|
*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
|
|
*ashift = MAX(*ashift, cvd->vdev_ashift);
|
|
}
|
|
|
|
if (numerrors == vd->vdev_children) {
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
|
|
return (lasterror);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_close(vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_close(vd->vdev_child[c]);
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_child_done(zio_t *zio)
|
|
{
|
|
mirror_child_t *mc = zio->io_private;
|
|
|
|
mc->mc_error = zio->io_error;
|
|
mc->mc_tried = 1;
|
|
mc->mc_skipped = 0;
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_scrub_done(zio_t *zio)
|
|
{
|
|
mirror_child_t *mc = zio->io_private;
|
|
|
|
if (zio->io_error == 0) {
|
|
zio_t *pio;
|
|
zio_link_t *zl = NULL;
|
|
|
|
mutex_enter(&zio->io_lock);
|
|
while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
|
|
mutex_enter(&pio->io_lock);
|
|
ASSERT3U(zio->io_size, >=, pio->io_size);
|
|
bcopy(zio->io_data, pio->io_data, pio->io_size);
|
|
mutex_exit(&pio->io_lock);
|
|
}
|
|
mutex_exit(&zio->io_lock);
|
|
}
|
|
|
|
zio_buf_free(zio->io_data, zio->io_size);
|
|
|
|
mc->mc_error = zio->io_error;
|
|
mc->mc_tried = 1;
|
|
mc->mc_skipped = 0;
|
|
}
|
|
|
|
/*
|
|
* Check the other, lower-index DVAs to see if they're on the same
|
|
* vdev as the child we picked. If they are, use them since they
|
|
* are likely to have been allocated from the primary metaslab in
|
|
* use at the time, and hence are more likely to have locality with
|
|
* single-copy data.
|
|
*/
|
|
static int
|
|
vdev_mirror_dva_select(zio_t *zio, int p)
|
|
{
|
|
dva_t *dva = zio->io_bp->blk_dva;
|
|
mirror_map_t *mm = zio->io_vsd;
|
|
int preferred;
|
|
int c;
|
|
|
|
preferred = mm->mm_preferred[p];
|
|
for (p--; p >= 0; p--) {
|
|
c = mm->mm_preferred[p];
|
|
if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
|
|
preferred = c;
|
|
}
|
|
return (preferred);
|
|
}
|
|
|
|
static int
|
|
vdev_mirror_preferred_child_randomize(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm = zio->io_vsd;
|
|
int p;
|
|
|
|
if (mm->mm_root) {
|
|
p = spa_get_random(mm->mm_preferred_cnt);
|
|
return (vdev_mirror_dva_select(zio, p));
|
|
}
|
|
|
|
/*
|
|
* To ensure we don't always favour the first matching vdev,
|
|
* which could lead to wear leveling issues on SSD's, we
|
|
* use the I/O offset as a pseudo random seed into the vdevs
|
|
* which have the lowest load.
|
|
*/
|
|
p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
|
|
return (mm->mm_preferred[p]);
|
|
}
|
|
|
|
/*
|
|
* Try to find a vdev whose DTL doesn't contain the block we want to read
|
|
* prefering vdevs based on determined load.
|
|
*
|
|
* Try to find a child whose DTL doesn't contain the block we want to read.
|
|
* If we can't, try the read on any vdev we haven't already tried.
|
|
*/
|
|
static int
|
|
vdev_mirror_child_select(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm = zio->io_vsd;
|
|
uint64_t txg = zio->io_txg;
|
|
int c, lowest_load;
|
|
|
|
ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
|
|
|
|
lowest_load = INT_MAX;
|
|
mm->mm_preferred_cnt = 0;
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mirror_child_t *mc;
|
|
|
|
mc = &mm->mm_child[c];
|
|
if (mc->mc_tried || mc->mc_skipped)
|
|
continue;
|
|
|
|
if (mc->mc_vd == NULL || !vdev_readable(mc->mc_vd)) {
|
|
mc->mc_error = SET_ERROR(ENXIO);
|
|
mc->mc_tried = 1; /* don't even try */
|
|
mc->mc_skipped = 1;
|
|
continue;
|
|
}
|
|
|
|
if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
|
|
mc->mc_error = SET_ERROR(ESTALE);
|
|
mc->mc_skipped = 1;
|
|
mc->mc_speculative = 1;
|
|
continue;
|
|
}
|
|
|
|
mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
|
|
if (mc->mc_load > lowest_load)
|
|
continue;
|
|
|
|
if (mc->mc_load < lowest_load) {
|
|
lowest_load = mc->mc_load;
|
|
mm->mm_preferred_cnt = 0;
|
|
}
|
|
mm->mm_preferred[mm->mm_preferred_cnt] = c;
|
|
mm->mm_preferred_cnt++;
|
|
}
|
|
|
|
if (mm->mm_preferred_cnt == 1) {
|
|
vdev_queue_register_lastoffset(
|
|
mm->mm_child[mm->mm_preferred[0]].mc_vd, zio);
|
|
return (mm->mm_preferred[0]);
|
|
}
|
|
|
|
if (mm->mm_preferred_cnt > 1) {
|
|
int c = vdev_mirror_preferred_child_randomize(zio);
|
|
|
|
vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd, zio);
|
|
return (c);
|
|
}
|
|
|
|
/*
|
|
* Every device is either missing or has this txg in its DTL.
|
|
* Look for any child we haven't already tried before giving up.
|
|
*/
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
if (!mm->mm_child[c].mc_tried) {
|
|
vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd,
|
|
zio);
|
|
return (c);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Every child failed. There's no place left to look.
|
|
*/
|
|
return (-1);
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_io_start(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm;
|
|
mirror_child_t *mc;
|
|
int c, children;
|
|
|
|
mm = vdev_mirror_map_init(zio);
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ) {
|
|
if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
|
|
/*
|
|
* For scrubbing reads we need to allocate a read
|
|
* buffer for each child and issue reads to all
|
|
* children. If any child succeeds, it will copy its
|
|
* data into zio->io_data in vdev_mirror_scrub_done.
|
|
*/
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mc = &mm->mm_child[c];
|
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
|
mc->mc_vd, mc->mc_offset,
|
|
zio_buf_alloc(zio->io_size), zio->io_size,
|
|
zio->io_type, zio->io_priority, 0,
|
|
vdev_mirror_scrub_done, mc));
|
|
}
|
|
zio_execute(zio);
|
|
return;
|
|
}
|
|
/*
|
|
* For normal reads just pick one child.
|
|
*/
|
|
c = vdev_mirror_child_select(zio);
|
|
children = (c >= 0);
|
|
} else {
|
|
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
|
|
|
|
/*
|
|
* Writes go to all children.
|
|
*/
|
|
c = 0;
|
|
children = mm->mm_children;
|
|
}
|
|
|
|
while (children--) {
|
|
mc = &mm->mm_child[c];
|
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
|
mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
|
|
zio->io_type, zio->io_priority, 0,
|
|
vdev_mirror_child_done, mc));
|
|
c++;
|
|
}
|
|
|
|
zio_execute(zio);
|
|
}
|
|
|
|
static int
|
|
vdev_mirror_worst_error(mirror_map_t *mm)
|
|
{
|
|
int c, error[2] = { 0, 0 };
|
|
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mirror_child_t *mc = &mm->mm_child[c];
|
|
int s = mc->mc_speculative;
|
|
error[s] = zio_worst_error(error[s], mc->mc_error);
|
|
}
|
|
|
|
return (error[0] ? error[0] : error[1]);
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_io_done(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm = zio->io_vsd;
|
|
mirror_child_t *mc;
|
|
int c;
|
|
int good_copies = 0;
|
|
int unexpected_errors = 0;
|
|
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mc = &mm->mm_child[c];
|
|
|
|
if (mc->mc_error) {
|
|
if (!mc->mc_skipped)
|
|
unexpected_errors++;
|
|
} else if (mc->mc_tried) {
|
|
good_copies++;
|
|
}
|
|
}
|
|
|
|
if (zio->io_type == ZIO_TYPE_WRITE) {
|
|
/*
|
|
* XXX -- for now, treat partial writes as success.
|
|
*
|
|
* Now that we support write reallocation, it would be better
|
|
* to treat partial failure as real failure unless there are
|
|
* no non-degraded top-level vdevs left, and not update DTLs
|
|
* if we intend to reallocate.
|
|
*/
|
|
/* XXPOLICY */
|
|
if (good_copies != mm->mm_children) {
|
|
/*
|
|
* Always require at least one good copy.
|
|
*
|
|
* For ditto blocks (io_vd == NULL), require
|
|
* all copies to be good.
|
|
*
|
|
* XXX -- for replacing vdevs, there's no great answer.
|
|
* If the old device is really dead, we may not even
|
|
* be able to access it -- so we only want to
|
|
* require good writes to the new device. But if
|
|
* the new device turns out to be flaky, we want
|
|
* to be able to detach it -- which requires all
|
|
* writes to the old device to have succeeded.
|
|
*/
|
|
if (good_copies == 0 || zio->io_vd == NULL)
|
|
zio->io_error = vdev_mirror_worst_error(mm);
|
|
}
|
|
return;
|
|
}
|
|
|
|
ASSERT(zio->io_type == ZIO_TYPE_READ);
|
|
|
|
/*
|
|
* If we don't have a good copy yet, keep trying other children.
|
|
*/
|
|
/* XXPOLICY */
|
|
if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
|
|
ASSERT(c >= 0 && c < mm->mm_children);
|
|
mc = &mm->mm_child[c];
|
|
zio_vdev_io_redone(zio);
|
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
|
mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
|
|
ZIO_TYPE_READ, zio->io_priority, 0,
|
|
vdev_mirror_child_done, mc));
|
|
return;
|
|
}
|
|
|
|
/* XXPOLICY */
|
|
if (good_copies == 0) {
|
|
zio->io_error = vdev_mirror_worst_error(mm);
|
|
ASSERT(zio->io_error != 0);
|
|
}
|
|
|
|
if (good_copies && spa_writeable(zio->io_spa) &&
|
|
(unexpected_errors ||
|
|
(zio->io_flags & ZIO_FLAG_RESILVER) ||
|
|
((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
|
|
/*
|
|
* Use the good data we have in hand to repair damaged children.
|
|
*/
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
/*
|
|
* Don't rewrite known good children.
|
|
* Not only is it unnecessary, it could
|
|
* actually be harmful: if the system lost
|
|
* power while rewriting the only good copy,
|
|
* there would be no good copies left!
|
|
*/
|
|
mc = &mm->mm_child[c];
|
|
|
|
if (mc->mc_error == 0) {
|
|
if (mc->mc_tried)
|
|
continue;
|
|
if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
|
|
!vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
|
|
zio->io_txg, 1))
|
|
continue;
|
|
mc->mc_error = SET_ERROR(ESTALE);
|
|
}
|
|
|
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
|
mc->mc_vd, mc->mc_offset,
|
|
zio->io_data, zio->io_size,
|
|
ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
|
|
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
|
|
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
|
|
{
|
|
if (faulted == vd->vdev_children)
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_NO_REPLICAS);
|
|
else if (degraded + faulted != 0)
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
|
|
else
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
|
|
}
|
|
|
|
vdev_ops_t vdev_mirror_ops = {
|
|
vdev_mirror_open,
|
|
vdev_mirror_close,
|
|
vdev_default_asize,
|
|
vdev_mirror_io_start,
|
|
vdev_mirror_io_done,
|
|
vdev_mirror_state_change,
|
|
NULL,
|
|
NULL,
|
|
VDEV_TYPE_MIRROR, /* name of this vdev type */
|
|
B_FALSE /* not a leaf vdev */
|
|
};
|
|
|
|
vdev_ops_t vdev_replacing_ops = {
|
|
vdev_mirror_open,
|
|
vdev_mirror_close,
|
|
vdev_default_asize,
|
|
vdev_mirror_io_start,
|
|
vdev_mirror_io_done,
|
|
vdev_mirror_state_change,
|
|
NULL,
|
|
NULL,
|
|
VDEV_TYPE_REPLACING, /* name of this vdev type */
|
|
B_FALSE /* not a leaf vdev */
|
|
};
|
|
|
|
vdev_ops_t vdev_spare_ops = {
|
|
vdev_mirror_open,
|
|
vdev_mirror_close,
|
|
vdev_default_asize,
|
|
vdev_mirror_io_start,
|
|
vdev_mirror_io_done,
|
|
vdev_mirror_state_change,
|
|
NULL,
|
|
NULL,
|
|
VDEV_TYPE_SPARE, /* name of this vdev type */
|
|
B_FALSE /* not a leaf vdev */
|
|
};
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
module_param(zfs_vdev_mirror_rotating_inc, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_inc,
|
|
"Rotating media load increment for non-seeking I/O's");
|
|
|
|
module_param(zfs_vdev_mirror_rotating_seek_inc, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_seek_inc,
|
|
"Rotating media load increment for seeking I/O's");
|
|
|
|
module_param(zfs_vdev_mirror_rotating_seek_offset, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_seek_offset,
|
|
"Offset in bytes from the last I/O which "
|
|
"triggers a reduced rotating media seek increment");
|
|
|
|
module_param(zfs_vdev_mirror_non_rotating_inc, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_mirror_non_rotating_inc,
|
|
"Non-rotating media load increment for non-seeking I/O's");
|
|
|
|
module_param(zfs_vdev_mirror_non_rotating_seek_inc, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_mirror_non_rotating_seek_inc,
|
|
"Non-rotating media load increment for seeking I/O's");
|
|
|
|
#endif
|