mirror of
				https://git.proxmox.com/git/mirror_zfs.git
				synced 2025-10-26 18:05:04 +03:00 
			
		
		
		
	Sponsored-by: https://despairlabs.com/sponsor/ Signed-off-by: Rob Norris <robn@despairlabs.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
		
			
				
	
	
		
			905 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			905 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: CDDL-1.0
 | 
						|
/*
 | 
						|
 * CDDL HEADER START
 | 
						|
 *
 | 
						|
 * The contents of this file are subject to the terms of the
 | 
						|
 * Common Development and Distribution License (the "License").
 | 
						|
 * You may not use this file except in compliance with the License.
 | 
						|
 *
 | 
						|
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | 
						|
 * or https://opensource.org/licenses/CDDL-1.0.
 | 
						|
 * See the License for the specific language governing permissions
 | 
						|
 * and limitations under the License.
 | 
						|
 *
 | 
						|
 * When distributing Covered Code, include this CDDL HEADER in each
 | 
						|
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | 
						|
 * If applicable, add the following below this CDDL HEADER, with the
 | 
						|
 * fields enclosed by brackets "[]" replaced with your own identifying
 | 
						|
 * information: Portions Copyright [yyyy] [name of copyright owner]
 | 
						|
 *
 | 
						|
 * CDDL HEADER END
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
 | 
						|
 * Use is subject to license terms.
 | 
						|
 */
 | 
						|
 | 
						|
#include <sys/zfs_context.h>
 | 
						|
#include <modes/modes.h>
 | 
						|
#include <sys/crypto/common.h>
 | 
						|
#include <sys/crypto/impl.h>
 | 
						|
 | 
						|
#ifdef HAVE_EFFICIENT_UNALIGNED_ACCESS
 | 
						|
#include <sys/byteorder.h>
 | 
						|
#define	UNALIGNED_POINTERS_PERMITTED
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Encrypt multiple blocks of data in CCM mode.  Decrypt for CCM mode
 | 
						|
 * is done in another function.
 | 
						|
 */
 | 
						|
int
 | 
						|
ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
 | 
						|
    crypto_data_t *out, size_t block_size,
 | 
						|
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 | 
						|
    void (*copy_block)(uint8_t *, uint8_t *),
 | 
						|
    void (*xor_block)(uint8_t *, uint8_t *))
 | 
						|
{
 | 
						|
	size_t remainder = length;
 | 
						|
	size_t need = 0;
 | 
						|
	uint8_t *datap = (uint8_t *)data;
 | 
						|
	uint8_t *blockp;
 | 
						|
	uint8_t *lastp;
 | 
						|
	void *iov_or_mp;
 | 
						|
	offset_t offset;
 | 
						|
	uint8_t *out_data_1;
 | 
						|
	uint8_t *out_data_2;
 | 
						|
	size_t out_data_1_len;
 | 
						|
	uint64_t counter;
 | 
						|
	uint8_t *mac_buf;
 | 
						|
 | 
						|
	if (length + ctx->ccm_remainder_len < block_size) {
 | 
						|
		/* accumulate bytes here and return */
 | 
						|
		memcpy((uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
 | 
						|
		    datap,
 | 
						|
		    length);
 | 
						|
		ctx->ccm_remainder_len += length;
 | 
						|
		ctx->ccm_copy_to = datap;
 | 
						|
		return (CRYPTO_SUCCESS);
 | 
						|
	}
 | 
						|
 | 
						|
	crypto_init_ptrs(out, &iov_or_mp, &offset);
 | 
						|
 | 
						|
	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
 | 
						|
 | 
						|
	do {
 | 
						|
		/* Unprocessed data from last call. */
 | 
						|
		if (ctx->ccm_remainder_len > 0) {
 | 
						|
			need = block_size - ctx->ccm_remainder_len;
 | 
						|
 | 
						|
			if (need > remainder)
 | 
						|
				return (CRYPTO_DATA_LEN_RANGE);
 | 
						|
 | 
						|
			memcpy(&((uint8_t *)ctx->ccm_remainder)
 | 
						|
			    [ctx->ccm_remainder_len], datap, need);
 | 
						|
 | 
						|
			blockp = (uint8_t *)ctx->ccm_remainder;
 | 
						|
		} else {
 | 
						|
			blockp = datap;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * do CBC MAC
 | 
						|
		 *
 | 
						|
		 * XOR the previous cipher block current clear block.
 | 
						|
		 * mac_buf always contain previous cipher block.
 | 
						|
		 */
 | 
						|
		xor_block(blockp, mac_buf);
 | 
						|
		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 | 
						|
 | 
						|
		/* ccm_cb is the counter block */
 | 
						|
		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
 | 
						|
		    (uint8_t *)ctx->ccm_tmp);
 | 
						|
 | 
						|
		lastp = (uint8_t *)ctx->ccm_tmp;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Increment counter. Counter bits are confined
 | 
						|
		 * to the bottom 64 bits of the counter block.
 | 
						|
		 */
 | 
						|
#ifdef _ZFS_LITTLE_ENDIAN
 | 
						|
		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
 | 
						|
		counter = htonll(counter + 1);
 | 
						|
#else
 | 
						|
		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
 | 
						|
		counter++;
 | 
						|
#endif	/* _ZFS_LITTLE_ENDIAN */
 | 
						|
		counter &= ctx->ccm_counter_mask;
 | 
						|
		ctx->ccm_cb[1] =
 | 
						|
		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * XOR encrypted counter block with the current clear block.
 | 
						|
		 */
 | 
						|
		xor_block(blockp, lastp);
 | 
						|
 | 
						|
		ctx->ccm_processed_data_len += block_size;
 | 
						|
 | 
						|
		crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
 | 
						|
		    &out_data_1_len, &out_data_2, block_size);
 | 
						|
 | 
						|
		/* copy block to where it belongs */
 | 
						|
		if (out_data_1_len == block_size) {
 | 
						|
			copy_block(lastp, out_data_1);
 | 
						|
		} else {
 | 
						|
			memcpy(out_data_1, lastp, out_data_1_len);
 | 
						|
			if (out_data_2 != NULL) {
 | 
						|
				memcpy(out_data_2,
 | 
						|
				    lastp + out_data_1_len,
 | 
						|
				    block_size - out_data_1_len);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* update offset */
 | 
						|
		out->cd_offset += block_size;
 | 
						|
 | 
						|
		/* Update pointer to next block of data to be processed. */
 | 
						|
		if (ctx->ccm_remainder_len != 0) {
 | 
						|
			datap += need;
 | 
						|
			ctx->ccm_remainder_len = 0;
 | 
						|
		} else {
 | 
						|
			datap += block_size;
 | 
						|
		}
 | 
						|
 | 
						|
		remainder = (size_t)&data[length] - (size_t)datap;
 | 
						|
 | 
						|
		/* Incomplete last block. */
 | 
						|
		if (remainder > 0 && remainder < block_size) {
 | 
						|
			memcpy(ctx->ccm_remainder, datap, remainder);
 | 
						|
			ctx->ccm_remainder_len = remainder;
 | 
						|
			ctx->ccm_copy_to = datap;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		ctx->ccm_copy_to = NULL;
 | 
						|
 | 
						|
	} while (remainder > 0);
 | 
						|
 | 
						|
out:
 | 
						|
	return (CRYPTO_SUCCESS);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
 | 
						|
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
 | 
						|
{
 | 
						|
	uint64_t counter;
 | 
						|
	uint8_t *counterp, *mac_buf;
 | 
						|
	int i;
 | 
						|
 | 
						|
	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
 | 
						|
 | 
						|
	/* first counter block start with index 0 */
 | 
						|
	counter = 0;
 | 
						|
	ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
 | 
						|
 | 
						|
	counterp = (uint8_t *)ctx->ccm_tmp;
 | 
						|
	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
 | 
						|
 | 
						|
	/* calculate XOR of MAC with first counter block */
 | 
						|
	for (i = 0; i < ctx->ccm_mac_len; i++) {
 | 
						|
		ccm_mac[i] = mac_buf[i] ^ counterp[i];
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
 | 
						|
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 | 
						|
    void (*xor_block)(uint8_t *, uint8_t *))
 | 
						|
{
 | 
						|
	uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL;
 | 
						|
	void *iov_or_mp;
 | 
						|
	offset_t offset;
 | 
						|
	uint8_t *out_data_1;
 | 
						|
	uint8_t *out_data_2;
 | 
						|
	size_t out_data_1_len;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
 | 
						|
		return (CRYPTO_DATA_LEN_RANGE);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When we get here, the number of bytes of payload processed
 | 
						|
	 * plus whatever data remains, if any,
 | 
						|
	 * should be the same as the number of bytes that's being
 | 
						|
	 * passed in the argument during init time.
 | 
						|
	 */
 | 
						|
	if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
 | 
						|
	    != (ctx->ccm_data_len)) {
 | 
						|
		return (CRYPTO_DATA_LEN_RANGE);
 | 
						|
	}
 | 
						|
 | 
						|
	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
 | 
						|
 | 
						|
	if (ctx->ccm_remainder_len > 0) {
 | 
						|
 | 
						|
		/* ccm_mac_input_buf is not used for encryption */
 | 
						|
		macp = (uint8_t *)ctx->ccm_mac_input_buf;
 | 
						|
		memset(macp, 0, block_size);
 | 
						|
 | 
						|
		/* copy remainder to temporary buffer */
 | 
						|
		memcpy(macp, ctx->ccm_remainder, ctx->ccm_remainder_len);
 | 
						|
 | 
						|
		/* calculate the CBC MAC */
 | 
						|
		xor_block(macp, mac_buf);
 | 
						|
		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 | 
						|
 | 
						|
		/* calculate the counter mode */
 | 
						|
		lastp = (uint8_t *)ctx->ccm_tmp;
 | 
						|
		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
 | 
						|
 | 
						|
		/* XOR with counter block */
 | 
						|
		for (i = 0; i < ctx->ccm_remainder_len; i++) {
 | 
						|
			macp[i] ^= lastp[i];
 | 
						|
		}
 | 
						|
		ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the CCM MAC */
 | 
						|
	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
 | 
						|
	calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
 | 
						|
 | 
						|
	crypto_init_ptrs(out, &iov_or_mp, &offset);
 | 
						|
	crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
 | 
						|
	    &out_data_1_len, &out_data_2,
 | 
						|
	    ctx->ccm_remainder_len + ctx->ccm_mac_len);
 | 
						|
 | 
						|
	if (ctx->ccm_remainder_len > 0) {
 | 
						|
		/* copy temporary block to where it belongs */
 | 
						|
		if (out_data_2 == NULL) {
 | 
						|
			/* everything will fit in out_data_1 */
 | 
						|
			memcpy(out_data_1, macp, ctx->ccm_remainder_len);
 | 
						|
			memcpy(out_data_1 + ctx->ccm_remainder_len, ccm_mac_p,
 | 
						|
			    ctx->ccm_mac_len);
 | 
						|
		} else {
 | 
						|
			if (out_data_1_len < ctx->ccm_remainder_len) {
 | 
						|
				size_t data_2_len_used;
 | 
						|
 | 
						|
				memcpy(out_data_1, macp, out_data_1_len);
 | 
						|
 | 
						|
				data_2_len_used = ctx->ccm_remainder_len
 | 
						|
				    - out_data_1_len;
 | 
						|
 | 
						|
				memcpy(out_data_2,
 | 
						|
				    (uint8_t *)macp + out_data_1_len,
 | 
						|
				    data_2_len_used);
 | 
						|
				memcpy(out_data_2 + data_2_len_used,
 | 
						|
				    ccm_mac_p,
 | 
						|
				    ctx->ccm_mac_len);
 | 
						|
			} else {
 | 
						|
				memcpy(out_data_1, macp, out_data_1_len);
 | 
						|
				if (out_data_1_len == ctx->ccm_remainder_len) {
 | 
						|
					/* mac will be in out_data_2 */
 | 
						|
					memcpy(out_data_2, ccm_mac_p,
 | 
						|
					    ctx->ccm_mac_len);
 | 
						|
				} else {
 | 
						|
					size_t len_not_used = out_data_1_len -
 | 
						|
					    ctx->ccm_remainder_len;
 | 
						|
					/*
 | 
						|
					 * part of mac in will be in
 | 
						|
					 * out_data_1, part of the mac will be
 | 
						|
					 * in out_data_2
 | 
						|
					 */
 | 
						|
					memcpy(out_data_1 +
 | 
						|
					    ctx->ccm_remainder_len,
 | 
						|
					    ccm_mac_p, len_not_used);
 | 
						|
					memcpy(out_data_2,
 | 
						|
					    ccm_mac_p + len_not_used,
 | 
						|
					    ctx->ccm_mac_len - len_not_used);
 | 
						|
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/* copy block to where it belongs */
 | 
						|
		memcpy(out_data_1, ccm_mac_p, out_data_1_len);
 | 
						|
		if (out_data_2 != NULL) {
 | 
						|
			memcpy(out_data_2, ccm_mac_p + out_data_1_len,
 | 
						|
			    block_size - out_data_1_len);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
 | 
						|
	ctx->ccm_remainder_len = 0;
 | 
						|
	return (CRYPTO_SUCCESS);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This will only deal with decrypting the last block of the input that
 | 
						|
 * might not be a multiple of block length.
 | 
						|
 */
 | 
						|
static void
 | 
						|
ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
 | 
						|
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
 | 
						|
{
 | 
						|
	uint8_t *datap, *outp, *counterp;
 | 
						|
	int i;
 | 
						|
 | 
						|
	datap = (uint8_t *)ctx->ccm_remainder;
 | 
						|
	outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
 | 
						|
 | 
						|
	counterp = (uint8_t *)ctx->ccm_tmp;
 | 
						|
	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
 | 
						|
 | 
						|
	/* XOR with counter block */
 | 
						|
	for (i = 0; i < ctx->ccm_remainder_len; i++) {
 | 
						|
		outp[i] = datap[i] ^ counterp[i];
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This will decrypt the cipher text.  However, the plaintext won't be
 | 
						|
 * returned to the caller.  It will be returned when decrypt_final() is
 | 
						|
 * called if the MAC matches
 | 
						|
 */
 | 
						|
int
 | 
						|
ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
 | 
						|
    crypto_data_t *out, size_t block_size,
 | 
						|
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 | 
						|
    void (*copy_block)(uint8_t *, uint8_t *),
 | 
						|
    void (*xor_block)(uint8_t *, uint8_t *))
 | 
						|
{
 | 
						|
	(void) out;
 | 
						|
	size_t remainder = length;
 | 
						|
	size_t need = 0;
 | 
						|
	uint8_t *datap = (uint8_t *)data;
 | 
						|
	uint8_t *blockp;
 | 
						|
	uint8_t *cbp;
 | 
						|
	uint64_t counter;
 | 
						|
	size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
 | 
						|
	uint8_t *resultp;
 | 
						|
 | 
						|
 | 
						|
	pm_len = ctx->ccm_processed_mac_len;
 | 
						|
 | 
						|
	if (pm_len > 0) {
 | 
						|
		uint8_t *tmp;
 | 
						|
		/*
 | 
						|
		 * all ciphertext has been processed, just waiting for
 | 
						|
		 * part of the value of the mac
 | 
						|
		 */
 | 
						|
		if ((pm_len + length) > ctx->ccm_mac_len) {
 | 
						|
			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
 | 
						|
		}
 | 
						|
		tmp = (uint8_t *)ctx->ccm_mac_input_buf;
 | 
						|
 | 
						|
		memcpy(tmp + pm_len, datap, length);
 | 
						|
 | 
						|
		ctx->ccm_processed_mac_len += length;
 | 
						|
		return (CRYPTO_SUCCESS);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we decrypt the given data, what total amount of data would
 | 
						|
	 * have been decrypted?
 | 
						|
	 */
 | 
						|
	pd_len = ctx->ccm_processed_data_len;
 | 
						|
	total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
 | 
						|
 | 
						|
	if (total_decrypted_len >
 | 
						|
	    (ctx->ccm_data_len + ctx->ccm_mac_len)) {
 | 
						|
		return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
 | 
						|
	}
 | 
						|
 | 
						|
	pt_len = ctx->ccm_data_len;
 | 
						|
 | 
						|
	if (total_decrypted_len > pt_len) {
 | 
						|
		/*
 | 
						|
		 * part of the input will be the MAC, need to isolate that
 | 
						|
		 * to be dealt with later.  The left-over data in
 | 
						|
		 * ccm_remainder_len from last time will not be part of the
 | 
						|
		 * MAC.  Otherwise, it would have already been taken out
 | 
						|
		 * when this call is made last time.
 | 
						|
		 */
 | 
						|
		size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
 | 
						|
 | 
						|
		mac_len = length - pt_part;
 | 
						|
 | 
						|
		ctx->ccm_processed_mac_len = mac_len;
 | 
						|
		memcpy(ctx->ccm_mac_input_buf, data + pt_part, mac_len);
 | 
						|
 | 
						|
		if (pt_part + ctx->ccm_remainder_len < block_size) {
 | 
						|
			/*
 | 
						|
			 * since this is last of the ciphertext, will
 | 
						|
			 * just decrypt with it here
 | 
						|
			 */
 | 
						|
			memcpy(&((uint8_t *)ctx->ccm_remainder)
 | 
						|
			    [ctx->ccm_remainder_len], datap, pt_part);
 | 
						|
			ctx->ccm_remainder_len += pt_part;
 | 
						|
			ccm_decrypt_incomplete_block(ctx, encrypt_block);
 | 
						|
			ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
 | 
						|
			ctx->ccm_remainder_len = 0;
 | 
						|
			return (CRYPTO_SUCCESS);
 | 
						|
		} else {
 | 
						|
			/* let rest of the code handle this */
 | 
						|
			length = pt_part;
 | 
						|
		}
 | 
						|
	} else if (length + ctx->ccm_remainder_len < block_size) {
 | 
						|
		/* accumulate bytes here and return */
 | 
						|
		memcpy((uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
 | 
						|
		    datap,
 | 
						|
		    length);
 | 
						|
		ctx->ccm_remainder_len += length;
 | 
						|
		ctx->ccm_copy_to = datap;
 | 
						|
		return (CRYPTO_SUCCESS);
 | 
						|
	}
 | 
						|
 | 
						|
	do {
 | 
						|
		/* Unprocessed data from last call. */
 | 
						|
		if (ctx->ccm_remainder_len > 0) {
 | 
						|
			need = block_size - ctx->ccm_remainder_len;
 | 
						|
 | 
						|
			if (need > remainder)
 | 
						|
				return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
 | 
						|
 | 
						|
			memcpy(&((uint8_t *)ctx->ccm_remainder)
 | 
						|
			    [ctx->ccm_remainder_len], datap, need);
 | 
						|
 | 
						|
			blockp = (uint8_t *)ctx->ccm_remainder;
 | 
						|
		} else {
 | 
						|
			blockp = datap;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Calculate the counter mode, ccm_cb is the counter block */
 | 
						|
		cbp = (uint8_t *)ctx->ccm_tmp;
 | 
						|
		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Increment counter.
 | 
						|
		 * Counter bits are confined to the bottom 64 bits
 | 
						|
		 */
 | 
						|
#ifdef _ZFS_LITTLE_ENDIAN
 | 
						|
		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
 | 
						|
		counter = htonll(counter + 1);
 | 
						|
#else
 | 
						|
		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
 | 
						|
		counter++;
 | 
						|
#endif	/* _ZFS_LITTLE_ENDIAN */
 | 
						|
		counter &= ctx->ccm_counter_mask;
 | 
						|
		ctx->ccm_cb[1] =
 | 
						|
		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
 | 
						|
 | 
						|
		/* XOR with the ciphertext */
 | 
						|
		xor_block(blockp, cbp);
 | 
						|
 | 
						|
		/* Copy the plaintext to the "holding buffer" */
 | 
						|
		resultp = (uint8_t *)ctx->ccm_pt_buf +
 | 
						|
		    ctx->ccm_processed_data_len;
 | 
						|
		copy_block(cbp, resultp);
 | 
						|
 | 
						|
		ctx->ccm_processed_data_len += block_size;
 | 
						|
 | 
						|
		ctx->ccm_lastp = blockp;
 | 
						|
 | 
						|
		/* Update pointer to next block of data to be processed. */
 | 
						|
		if (ctx->ccm_remainder_len != 0) {
 | 
						|
			datap += need;
 | 
						|
			ctx->ccm_remainder_len = 0;
 | 
						|
		} else {
 | 
						|
			datap += block_size;
 | 
						|
		}
 | 
						|
 | 
						|
		remainder = (size_t)&data[length] - (size_t)datap;
 | 
						|
 | 
						|
		/* Incomplete last block */
 | 
						|
		if (remainder > 0 && remainder < block_size) {
 | 
						|
			memcpy(ctx->ccm_remainder, datap, remainder);
 | 
						|
			ctx->ccm_remainder_len = remainder;
 | 
						|
			ctx->ccm_copy_to = datap;
 | 
						|
			if (ctx->ccm_processed_mac_len > 0) {
 | 
						|
				/*
 | 
						|
				 * not expecting anymore ciphertext, just
 | 
						|
				 * compute plaintext for the remaining input
 | 
						|
				 */
 | 
						|
				ccm_decrypt_incomplete_block(ctx,
 | 
						|
				    encrypt_block);
 | 
						|
				ctx->ccm_processed_data_len += remainder;
 | 
						|
				ctx->ccm_remainder_len = 0;
 | 
						|
			}
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		ctx->ccm_copy_to = NULL;
 | 
						|
 | 
						|
	} while (remainder > 0);
 | 
						|
 | 
						|
out:
 | 
						|
	return (CRYPTO_SUCCESS);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
 | 
						|
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 | 
						|
    void (*copy_block)(uint8_t *, uint8_t *),
 | 
						|
    void (*xor_block)(uint8_t *, uint8_t *))
 | 
						|
{
 | 
						|
	size_t mac_remain, pt_len;
 | 
						|
	uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
 | 
						|
	int rv;
 | 
						|
 | 
						|
	pt_len = ctx->ccm_data_len;
 | 
						|
 | 
						|
	/* Make sure output buffer can fit all of the plaintext */
 | 
						|
	if (out->cd_length < pt_len) {
 | 
						|
		return (CRYPTO_DATA_LEN_RANGE);
 | 
						|
	}
 | 
						|
 | 
						|
	pt = ctx->ccm_pt_buf;
 | 
						|
	mac_remain = ctx->ccm_processed_data_len;
 | 
						|
	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
 | 
						|
 | 
						|
	macp = (uint8_t *)ctx->ccm_tmp;
 | 
						|
 | 
						|
	while (mac_remain > 0) {
 | 
						|
		if (mac_remain < block_size) {
 | 
						|
			memset(macp, 0, block_size);
 | 
						|
			memcpy(macp, pt, mac_remain);
 | 
						|
			mac_remain = 0;
 | 
						|
		} else {
 | 
						|
			copy_block(pt, macp);
 | 
						|
			mac_remain -= block_size;
 | 
						|
			pt += block_size;
 | 
						|
		}
 | 
						|
 | 
						|
		/* calculate the CBC MAC */
 | 
						|
		xor_block(macp, mac_buf);
 | 
						|
		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the CCM MAC */
 | 
						|
	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
 | 
						|
	calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
 | 
						|
 | 
						|
	/* compare the input CCM MAC value with what we calculated */
 | 
						|
	if (memcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
 | 
						|
		/* They don't match */
 | 
						|
		return (CRYPTO_INVALID_MAC);
 | 
						|
	} else {
 | 
						|
		rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
 | 
						|
		if (rv != CRYPTO_SUCCESS)
 | 
						|
			return (rv);
 | 
						|
		out->cd_offset += pt_len;
 | 
						|
	}
 | 
						|
	return (CRYPTO_SUCCESS);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
 | 
						|
{
 | 
						|
	size_t macSize, nonceSize;
 | 
						|
	uint8_t q;
 | 
						|
	uint64_t maxValue;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check the length of the MAC.  The only valid
 | 
						|
	 * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
 | 
						|
	 */
 | 
						|
	macSize = ccm_param->ulMACSize;
 | 
						|
	if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
 | 
						|
		return (CRYPTO_MECHANISM_PARAM_INVALID);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check the nonce length.  Valid values are 7, 8, 9, 10, 11, 12, 13 */
 | 
						|
	nonceSize = ccm_param->ulNonceSize;
 | 
						|
	if ((nonceSize < 7) || (nonceSize > 13)) {
 | 
						|
		return (CRYPTO_MECHANISM_PARAM_INVALID);
 | 
						|
	}
 | 
						|
 | 
						|
	/* q is the length of the field storing the length, in bytes */
 | 
						|
	q = (uint8_t)((15 - nonceSize) & 0xFF);
 | 
						|
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If it is decrypt, need to make sure size of ciphertext is at least
 | 
						|
	 * bigger than MAC len
 | 
						|
	 */
 | 
						|
	if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
 | 
						|
		return (CRYPTO_MECHANISM_PARAM_INVALID);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check to make sure the length of the payload is within the
 | 
						|
	 * range of values allowed by q
 | 
						|
	 */
 | 
						|
	if (q < 8) {
 | 
						|
		maxValue = (1ULL << (q * 8)) - 1;
 | 
						|
	} else {
 | 
						|
		maxValue = ULONG_MAX;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ccm_param->ulDataSize > maxValue) {
 | 
						|
		return (CRYPTO_MECHANISM_PARAM_INVALID);
 | 
						|
	}
 | 
						|
	return (CRYPTO_SUCCESS);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Format the first block used in CBC-MAC (B0) and the initial counter
 | 
						|
 * block based on formatting functions and counter generation functions
 | 
						|
 * specified in RFC 3610 and NIST publication 800-38C, appendix A
 | 
						|
 *
 | 
						|
 * b0 is the first block used in CBC-MAC
 | 
						|
 * cb0 is the first counter block
 | 
						|
 *
 | 
						|
 * It's assumed that the arguments b0 and cb0 are preallocated AES blocks
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void
 | 
						|
ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
 | 
						|
    ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
 | 
						|
{
 | 
						|
	uint64_t payloadSize;
 | 
						|
	uint8_t t, q, have_adata = 0;
 | 
						|
	size_t limit;
 | 
						|
	int i, j, k;
 | 
						|
	uint64_t mask = 0;
 | 
						|
	uint8_t *cb;
 | 
						|
 | 
						|
	q = (uint8_t)((15 - nonceSize) & 0xFF);
 | 
						|
	t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
 | 
						|
 | 
						|
	/* Construct the first octet of b0 */
 | 
						|
	if (authDataSize > 0) {
 | 
						|
		have_adata = 1;
 | 
						|
	}
 | 
						|
	b0[0] = (have_adata << 6) | (((t - 2)  / 2) << 3) | (q - 1);
 | 
						|
 | 
						|
	/* copy the nonce value into b0 */
 | 
						|
	memcpy(&(b0[1]), nonce, nonceSize);
 | 
						|
 | 
						|
	/* store the length of the payload into b0 */
 | 
						|
	memset(&(b0[1+nonceSize]), 0, q);
 | 
						|
 | 
						|
	payloadSize = aes_ctx->ccm_data_len;
 | 
						|
	limit = MIN(8, q);
 | 
						|
 | 
						|
	for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
 | 
						|
		b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
 | 
						|
	}
 | 
						|
 | 
						|
	/* format the counter block */
 | 
						|
 | 
						|
	cb = (uint8_t *)aes_ctx->ccm_cb;
 | 
						|
 | 
						|
	cb[0] = 0x07 & (q-1); /* first byte */
 | 
						|
 | 
						|
	/* copy the nonce value into the counter block */
 | 
						|
	memcpy(&(cb[1]), nonce, nonceSize);
 | 
						|
 | 
						|
	memset(&(cb[1+nonceSize]), 0, q);
 | 
						|
 | 
						|
	/* Create the mask for the counter field based on the size of nonce */
 | 
						|
	q <<= 3;
 | 
						|
	while (q-- > 0) {
 | 
						|
		mask |= (1ULL << q);
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef _ZFS_LITTLE_ENDIAN
 | 
						|
	mask = htonll(mask);
 | 
						|
#endif
 | 
						|
	aes_ctx->ccm_counter_mask = mask;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * During calculation, we start using counter block 1, we will
 | 
						|
	 * set it up right here.
 | 
						|
	 * We can just set the last byte to have the value 1, because
 | 
						|
	 * even with the biggest nonce of 13, the last byte of the
 | 
						|
	 * counter block will be used for the counter value.
 | 
						|
	 */
 | 
						|
	cb[15] = 0x01;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Encode the length of the associated data as
 | 
						|
 * specified in RFC 3610 and NIST publication 800-38C, appendix A
 | 
						|
 */
 | 
						|
static void
 | 
						|
encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
 | 
						|
{
 | 
						|
#ifdef UNALIGNED_POINTERS_PERMITTED
 | 
						|
	uint32_t	*lencoded_ptr;
 | 
						|
#ifdef _LP64
 | 
						|
	uint64_t	*llencoded_ptr;
 | 
						|
#endif
 | 
						|
#endif	/* UNALIGNED_POINTERS_PERMITTED */
 | 
						|
 | 
						|
	if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
 | 
						|
		/* 0 < a < (2^16-2^8) */
 | 
						|
		*encoded_len = 2;
 | 
						|
		encoded[0] = (auth_data_len & 0xff00) >> 8;
 | 
						|
		encoded[1] = auth_data_len & 0xff;
 | 
						|
 | 
						|
	} else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
 | 
						|
	    (auth_data_len < (1ULL << 31))) {
 | 
						|
		/* (2^16-2^8) <= a < 2^32 */
 | 
						|
		*encoded_len = 6;
 | 
						|
		encoded[0] = 0xff;
 | 
						|
		encoded[1] = 0xfe;
 | 
						|
#ifdef UNALIGNED_POINTERS_PERMITTED
 | 
						|
		lencoded_ptr = (uint32_t *)&encoded[2];
 | 
						|
		*lencoded_ptr = htonl(auth_data_len);
 | 
						|
#else
 | 
						|
		encoded[2] = (auth_data_len & 0xff000000) >> 24;
 | 
						|
		encoded[3] = (auth_data_len & 0xff0000) >> 16;
 | 
						|
		encoded[4] = (auth_data_len & 0xff00) >> 8;
 | 
						|
		encoded[5] = auth_data_len & 0xff;
 | 
						|
#endif	/* UNALIGNED_POINTERS_PERMITTED */
 | 
						|
 | 
						|
#ifdef _LP64
 | 
						|
	} else {
 | 
						|
		/* 2^32 <= a < 2^64 */
 | 
						|
		*encoded_len = 10;
 | 
						|
		encoded[0] = 0xff;
 | 
						|
		encoded[1] = 0xff;
 | 
						|
#ifdef UNALIGNED_POINTERS_PERMITTED
 | 
						|
		llencoded_ptr = (uint64_t *)&encoded[2];
 | 
						|
		*llencoded_ptr = htonl(auth_data_len);
 | 
						|
#else
 | 
						|
		encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
 | 
						|
		encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
 | 
						|
		encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
 | 
						|
		encoded[5] = (auth_data_len & 0xff00000000) >> 32;
 | 
						|
		encoded[6] = (auth_data_len & 0xff000000) >> 24;
 | 
						|
		encoded[7] = (auth_data_len & 0xff0000) >> 16;
 | 
						|
		encoded[8] = (auth_data_len & 0xff00) >> 8;
 | 
						|
		encoded[9] = auth_data_len & 0xff;
 | 
						|
#endif	/* UNALIGNED_POINTERS_PERMITTED */
 | 
						|
#endif	/* _LP64 */
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
 | 
						|
    unsigned char *auth_data, size_t auth_data_len, size_t block_size,
 | 
						|
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 | 
						|
    void (*xor_block)(uint8_t *, uint8_t *))
 | 
						|
{
 | 
						|
	uint8_t *mac_buf, *datap, *ivp, *authp;
 | 
						|
	size_t remainder, processed;
 | 
						|
	uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
 | 
						|
	size_t encoded_a_len = 0;
 | 
						|
 | 
						|
	mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Format the 1st block for CBC-MAC and construct the
 | 
						|
	 * 1st counter block.
 | 
						|
	 *
 | 
						|
	 * aes_ctx->ccm_iv is used for storing the counter block
 | 
						|
	 * mac_buf will store b0 at this time.
 | 
						|
	 */
 | 
						|
	ccm_format_initial_blocks(nonce, nonce_len,
 | 
						|
	    auth_data_len, mac_buf, ctx);
 | 
						|
 | 
						|
	/* The IV for CBC MAC for AES CCM mode is always zero */
 | 
						|
	ivp = (uint8_t *)ctx->ccm_tmp;
 | 
						|
	memset(ivp, 0, block_size);
 | 
						|
 | 
						|
	xor_block(ivp, mac_buf);
 | 
						|
 | 
						|
	/* encrypt the nonce */
 | 
						|
	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 | 
						|
 | 
						|
	/* take care of the associated data, if any */
 | 
						|
	if (auth_data_len == 0) {
 | 
						|
		return (CRYPTO_SUCCESS);
 | 
						|
	}
 | 
						|
 | 
						|
	encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
 | 
						|
 | 
						|
	remainder = auth_data_len;
 | 
						|
 | 
						|
	/* 1st block: it contains encoded associated data, and some data */
 | 
						|
	authp = (uint8_t *)ctx->ccm_tmp;
 | 
						|
	memset(authp, 0, block_size);
 | 
						|
	memcpy(authp, encoded_a, encoded_a_len);
 | 
						|
	processed = block_size - encoded_a_len;
 | 
						|
	if (processed > auth_data_len) {
 | 
						|
		/* in case auth_data is very small */
 | 
						|
		processed = auth_data_len;
 | 
						|
	}
 | 
						|
	memcpy(authp+encoded_a_len, auth_data, processed);
 | 
						|
	/* xor with previous buffer */
 | 
						|
	xor_block(authp, mac_buf);
 | 
						|
	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 | 
						|
	remainder -= processed;
 | 
						|
	if (remainder == 0) {
 | 
						|
		/* a small amount of associated data, it's all done now */
 | 
						|
		return (CRYPTO_SUCCESS);
 | 
						|
	}
 | 
						|
 | 
						|
	do {
 | 
						|
		if (remainder < block_size) {
 | 
						|
			/*
 | 
						|
			 * There's not a block full of data, pad rest of
 | 
						|
			 * buffer with zero
 | 
						|
			 */
 | 
						|
			memset(authp, 0, block_size);
 | 
						|
			memcpy(authp, &(auth_data[processed]), remainder);
 | 
						|
			datap = (uint8_t *)authp;
 | 
						|
			remainder = 0;
 | 
						|
		} else {
 | 
						|
			datap = (uint8_t *)(&(auth_data[processed]));
 | 
						|
			processed += block_size;
 | 
						|
			remainder -= block_size;
 | 
						|
		}
 | 
						|
 | 
						|
		xor_block(datap, mac_buf);
 | 
						|
		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
 | 
						|
 | 
						|
	} while (remainder > 0);
 | 
						|
 | 
						|
	return (CRYPTO_SUCCESS);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The following function should be call at encrypt or decrypt init time
 | 
						|
 * for AES CCM mode.
 | 
						|
 */
 | 
						|
int
 | 
						|
ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
 | 
						|
    boolean_t is_encrypt_init, size_t block_size,
 | 
						|
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
 | 
						|
    void (*xor_block)(uint8_t *, uint8_t *))
 | 
						|
{
 | 
						|
	int rv;
 | 
						|
	CK_AES_CCM_PARAMS *ccm_param;
 | 
						|
 | 
						|
	if (param != NULL) {
 | 
						|
		ccm_param = (CK_AES_CCM_PARAMS *)param;
 | 
						|
 | 
						|
		if ((rv = ccm_validate_args(ccm_param,
 | 
						|
		    is_encrypt_init)) != 0) {
 | 
						|
			return (rv);
 | 
						|
		}
 | 
						|
 | 
						|
		ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
 | 
						|
		if (is_encrypt_init) {
 | 
						|
			ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
 | 
						|
		} else {
 | 
						|
			ccm_ctx->ccm_data_len =
 | 
						|
			    ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
 | 
						|
			ccm_ctx->ccm_processed_mac_len = 0;
 | 
						|
		}
 | 
						|
		ccm_ctx->ccm_processed_data_len = 0;
 | 
						|
 | 
						|
		ccm_ctx->ccm_flags |= CCM_MODE;
 | 
						|
	} else {
 | 
						|
		return (CRYPTO_MECHANISM_PARAM_INVALID);
 | 
						|
	}
 | 
						|
 | 
						|
	if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
 | 
						|
	    ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
 | 
						|
	    encrypt_block, xor_block) != 0) {
 | 
						|
		return (CRYPTO_MECHANISM_PARAM_INVALID);
 | 
						|
	}
 | 
						|
	if (!is_encrypt_init) {
 | 
						|
		/* allocate buffer for storing decrypted plaintext */
 | 
						|
		ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len,
 | 
						|
		    kmflag);
 | 
						|
		if (ccm_ctx->ccm_pt_buf == NULL) {
 | 
						|
			rv = CRYPTO_HOST_MEMORY;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (rv);
 | 
						|
}
 | 
						|
 | 
						|
void *
 | 
						|
ccm_alloc_ctx(int kmflag)
 | 
						|
{
 | 
						|
	ccm_ctx_t *ccm_ctx;
 | 
						|
 | 
						|
	if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
 | 
						|
		return (NULL);
 | 
						|
 | 
						|
	ccm_ctx->ccm_flags = CCM_MODE;
 | 
						|
	return (ccm_ctx);
 | 
						|
}
 |