1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-17 05:27:11 +03:00
mirror_zfs/module/os/linux/spl/spl-proc.c
Rob Norris a83762b3f4 linux: remove kernel version checks for unsupported kernels
Following 2b069768a (), anything gated on a kernel version before
4.18 can be always included/excluded.

Sponsored-by: https://despairlabs.com/sponsor/
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Closes 
2024-09-19 15:43:44 -07:00

540 lines
13 KiB
C

/*
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
* Copyright (C) 2007 The Regents of the University of California.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* UCRL-CODE-235197
*
* This file is part of the SPL, Solaris Porting Layer.
*
* The SPL is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* The SPL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
*
* Solaris Porting Layer (SPL) Proc Implementation.
*/
/*
* Copyright (c) 2024, Rob Norris <robn@despairlabs.com>
*/
#include <sys/systeminfo.h>
#include <sys/kstat.h>
#include <sys/kmem.h>
#include <sys/kmem_cache.h>
#include <sys/vmem.h>
#include <sys/proc.h>
#include <linux/ctype.h>
#include <linux/kmod.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/version.h>
#include "zfs_gitrev.h"
#if defined(CONSTIFY_PLUGIN)
typedef struct ctl_table __no_const spl_ctl_table;
#else
typedef struct ctl_table spl_ctl_table;
#endif
#ifdef HAVE_PROC_HANDLER_CTL_TABLE_CONST
#define CONST_CTL_TABLE const struct ctl_table
#else
#define CONST_CTL_TABLE struct ctl_table
#endif
static unsigned long table_min = 0;
static unsigned long table_max = ~0;
static struct ctl_table_header *spl_header = NULL;
#ifndef HAVE_REGISTER_SYSCTL_TABLE
static struct ctl_table_header *spl_kmem = NULL;
static struct ctl_table_header *spl_kstat = NULL;
#endif
static struct proc_dir_entry *proc_spl = NULL;
static struct proc_dir_entry *proc_spl_kmem = NULL;
static struct proc_dir_entry *proc_spl_kmem_slab = NULL;
struct proc_dir_entry *proc_spl_kstat = NULL;
#ifdef DEBUG_KMEM
static int
proc_domemused(CONST_CTL_TABLE *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int rc = 0;
unsigned long val;
spl_ctl_table dummy = *table;
dummy.data = &val;
dummy.proc_handler = &proc_dointvec;
dummy.extra1 = &table_min;
dummy.extra2 = &table_max;
if (write) {
*ppos += *lenp;
} else {
#ifdef HAVE_ATOMIC64_T
val = atomic64_read((atomic64_t *)table->data);
#else
val = atomic_read((atomic_t *)table->data);
#endif /* HAVE_ATOMIC64_T */
rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos);
}
return (rc);
}
#endif /* DEBUG_KMEM */
static int
proc_doslab(CONST_CTL_TABLE *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int rc = 0;
unsigned long val = 0, mask;
spl_ctl_table dummy = *table;
spl_kmem_cache_t *skc = NULL;
dummy.data = &val;
dummy.proc_handler = &proc_dointvec;
dummy.extra1 = &table_min;
dummy.extra2 = &table_max;
if (write) {
*ppos += *lenp;
} else {
down_read(&spl_kmem_cache_sem);
mask = (unsigned long)table->data;
list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
/* Only use slabs of the correct kmem/vmem type */
if (!(skc->skc_flags & mask))
continue;
/* Sum the specified field for selected slabs */
switch (mask & (KMC_TOTAL | KMC_ALLOC | KMC_MAX)) {
case KMC_TOTAL:
val += skc->skc_slab_size * skc->skc_slab_total;
break;
case KMC_ALLOC:
val += skc->skc_obj_size * skc->skc_obj_alloc;
break;
case KMC_MAX:
val += skc->skc_obj_size * skc->skc_obj_max;
break;
}
}
up_read(&spl_kmem_cache_sem);
rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos);
}
return (rc);
}
static int
proc_dohostid(CONST_CTL_TABLE *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
char *end, str[32];
unsigned long hid;
spl_ctl_table dummy = *table;
dummy.data = str;
dummy.maxlen = sizeof (str) - 1;
if (!write)
snprintf(str, sizeof (str), "%lx",
(unsigned long) zone_get_hostid(NULL));
/* always returns 0 */
proc_dostring(&dummy, write, buffer, lenp, ppos);
if (write) {
/*
* We can't use proc_doulongvec_minmax() in the write
* case here because hostid, while a hex value, has no
* leading 0x, which confuses the helper function.
*/
hid = simple_strtoul(str, &end, 16);
if (str == end)
return (-EINVAL);
spl_hostid = hid;
}
return (0);
}
static void
slab_seq_show_headers(struct seq_file *f)
{
seq_printf(f,
"--------------------- cache ----------"
"--------------------------------------------- "
"----- slab ------ "
"---- object ----- "
"--- emergency ---\n");
seq_printf(f,
"name "
" flags size alloc slabsize objsize "
"total alloc max "
"total alloc max "
"dlock alloc max\n");
}
static int
slab_seq_show(struct seq_file *f, void *p)
{
spl_kmem_cache_t *skc = p;
ASSERT(skc->skc_magic == SKC_MAGIC);
if (skc->skc_flags & KMC_SLAB) {
/*
* This cache is backed by a generic Linux kmem cache which
* has its own accounting. For these caches we only track
* the number of active allocated objects that exist within
* the underlying Linux slabs. For the overall statistics of
* the underlying Linux cache please refer to /proc/slabinfo.
*/
spin_lock(&skc->skc_lock);
uint64_t objs_allocated =
percpu_counter_sum(&skc->skc_linux_alloc);
seq_printf(f, "%-36s ", skc->skc_name);
seq_printf(f, "0x%05lx %9s %9lu %8s %8u "
"%5s %5s %5s %5s %5lu %5s %5s %5s %5s\n",
(long unsigned)skc->skc_flags,
"-",
(long unsigned)(skc->skc_obj_size * objs_allocated),
"-",
(unsigned)skc->skc_obj_size,
"-", "-", "-", "-",
(long unsigned)objs_allocated,
"-", "-", "-", "-");
spin_unlock(&skc->skc_lock);
return (0);
}
spin_lock(&skc->skc_lock);
seq_printf(f, "%-36s ", skc->skc_name);
seq_printf(f, "0x%05lx %9lu %9lu %8u %8u "
"%5lu %5lu %5lu %5lu %5lu %5lu %5lu %5lu %5lu\n",
(long unsigned)skc->skc_flags,
(long unsigned)(skc->skc_slab_size * skc->skc_slab_total),
(long unsigned)(skc->skc_obj_size * skc->skc_obj_alloc),
(unsigned)skc->skc_slab_size,
(unsigned)skc->skc_obj_size,
(long unsigned)skc->skc_slab_total,
(long unsigned)skc->skc_slab_alloc,
(long unsigned)skc->skc_slab_max,
(long unsigned)skc->skc_obj_total,
(long unsigned)skc->skc_obj_alloc,
(long unsigned)skc->skc_obj_max,
(long unsigned)skc->skc_obj_deadlock,
(long unsigned)skc->skc_obj_emergency,
(long unsigned)skc->skc_obj_emergency_max);
spin_unlock(&skc->skc_lock);
return (0);
}
static void *
slab_seq_start(struct seq_file *f, loff_t *pos)
{
struct list_head *p;
loff_t n = *pos;
down_read(&spl_kmem_cache_sem);
if (!n)
slab_seq_show_headers(f);
p = spl_kmem_cache_list.next;
while (n--) {
p = p->next;
if (p == &spl_kmem_cache_list)
return (NULL);
}
return (list_entry(p, spl_kmem_cache_t, skc_list));
}
static void *
slab_seq_next(struct seq_file *f, void *p, loff_t *pos)
{
spl_kmem_cache_t *skc = p;
++*pos;
return ((skc->skc_list.next == &spl_kmem_cache_list) ?
NULL : list_entry(skc->skc_list.next, spl_kmem_cache_t, skc_list));
}
static void
slab_seq_stop(struct seq_file *f, void *v)
{
up_read(&spl_kmem_cache_sem);
}
static const struct seq_operations slab_seq_ops = {
.show = slab_seq_show,
.start = slab_seq_start,
.next = slab_seq_next,
.stop = slab_seq_stop,
};
static int
proc_slab_open(struct inode *inode, struct file *filp)
{
return (seq_open(filp, &slab_seq_ops));
}
static const kstat_proc_op_t proc_slab_operations = {
#ifdef HAVE_PROC_OPS_STRUCT
.proc_open = proc_slab_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_release = seq_release,
#else
.open = proc_slab_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
#endif
};
static struct ctl_table spl_kmem_table[] = {
#ifdef DEBUG_KMEM
{
.procname = "kmem_used",
.data = &kmem_alloc_used,
#ifdef HAVE_ATOMIC64_T
.maxlen = sizeof (atomic64_t),
#else
.maxlen = sizeof (atomic_t),
#endif /* HAVE_ATOMIC64_T */
.mode = 0444,
.proc_handler = &proc_domemused,
},
{
.procname = "kmem_max",
.data = &kmem_alloc_max,
.maxlen = sizeof (unsigned long),
.extra1 = &table_min,
.extra2 = &table_max,
.mode = 0444,
.proc_handler = &proc_doulongvec_minmax,
},
#endif /* DEBUG_KMEM */
{
.procname = "slab_kvmem_total",
.data = (void *)(KMC_KVMEM | KMC_TOTAL),
.maxlen = sizeof (unsigned long),
.extra1 = &table_min,
.extra2 = &table_max,
.mode = 0444,
.proc_handler = &proc_doslab,
},
{
.procname = "slab_kvmem_alloc",
.data = (void *)(KMC_KVMEM | KMC_ALLOC),
.maxlen = sizeof (unsigned long),
.extra1 = &table_min,
.extra2 = &table_max,
.mode = 0444,
.proc_handler = &proc_doslab,
},
{
.procname = "slab_kvmem_max",
.data = (void *)(KMC_KVMEM | KMC_MAX),
.maxlen = sizeof (unsigned long),
.extra1 = &table_min,
.extra2 = &table_max,
.mode = 0444,
.proc_handler = &proc_doslab,
},
{},
};
static struct ctl_table spl_kstat_table[] = {
{},
};
static struct ctl_table spl_table[] = {
/*
* NB No .strategy entries have been provided since
* sysctl(8) prefers to go via /proc for portability.
*/
{
.procname = "gitrev",
.data = (char *)ZFS_META_GITREV,
.maxlen = sizeof (ZFS_META_GITREV),
.mode = 0444,
.proc_handler = &proc_dostring,
},
{
.procname = "hostid",
.data = &spl_hostid,
.maxlen = sizeof (unsigned long),
.mode = 0644,
.proc_handler = &proc_dohostid,
},
#ifdef HAVE_REGISTER_SYSCTL_TABLE
{
.procname = "kmem",
.mode = 0555,
.child = spl_kmem_table,
},
{
.procname = "kstat",
.mode = 0555,
.child = spl_kstat_table,
},
#endif
{},
};
#ifdef HAVE_REGISTER_SYSCTL_TABLE
static struct ctl_table spl_dir[] = {
{
.procname = "spl",
.mode = 0555,
.child = spl_table,
},
{}
};
static struct ctl_table spl_root[] = {
{
.procname = "kernel",
.mode = 0555,
.child = spl_dir,
},
{}
};
#endif
static void spl_proc_cleanup(void)
{
remove_proc_entry("kstat", proc_spl);
remove_proc_entry("slab", proc_spl_kmem);
remove_proc_entry("kmem", proc_spl);
remove_proc_entry("spl", NULL);
#ifndef HAVE_REGISTER_SYSCTL_TABLE
if (spl_kstat) {
unregister_sysctl_table(spl_kstat);
spl_kstat = NULL;
}
if (spl_kmem) {
unregister_sysctl_table(spl_kmem);
spl_kmem = NULL;
}
#endif
if (spl_header) {
unregister_sysctl_table(spl_header);
spl_header = NULL;
}
}
#ifndef HAVE_REGISTER_SYSCTL_TABLE
/*
* Traditionally, struct ctl_table arrays have been terminated by an "empty"
* sentinel element (specifically, one with .procname == NULL).
*
* Linux 6.6 began migrating away from this, adding register_sysctl_sz() so
* that callers could provide the size directly, and redefining
* register_sysctl() to just call register_sysctl_sz() with the array size. It
* retained support for the terminating element so that existing callers would
* continue to work.
*
* Linux 6.11 removed support for the terminating element, instead interpreting
* it as a real malformed element, and rejecting it.
*
* In order to continue support older kernels, we retain the terminating
* sentinel element for our sysctl tables, but instead detect availability of
* register_sysctl_sz(). If it exists, we pass it the array size -1, stopping
* the kernel from trying to process the terminator. For pre-6.6 kernels that
* don't have register_sysctl_sz(), we just use register_sysctl(), which can
* handle the terminating element as it always has.
*/
#ifdef HAVE_REGISTER_SYSCTL_SZ
#define spl_proc_register_sysctl(p, t) \
register_sysctl_sz(p, t, ARRAY_SIZE(t)-1)
#else
#define spl_proc_register_sysctl(p, t) \
register_sysctl(p, t)
#endif
#endif
int
spl_proc_init(void)
{
int rc = 0;
#ifdef HAVE_REGISTER_SYSCTL_TABLE
spl_header = register_sysctl_table(spl_root);
if (spl_header == NULL)
return (-EUNATCH);
#else
spl_header = spl_proc_register_sysctl("kernel/spl", spl_table);
if (spl_header == NULL)
return (-EUNATCH);
spl_kmem = spl_proc_register_sysctl("kernel/spl/kmem", spl_kmem_table);
if (spl_kmem == NULL) {
rc = -EUNATCH;
goto out;
}
spl_kstat = spl_proc_register_sysctl("kernel/spl/kstat",
spl_kstat_table);
if (spl_kstat == NULL) {
rc = -EUNATCH;
goto out;
}
#endif
proc_spl = proc_mkdir("spl", NULL);
if (proc_spl == NULL) {
rc = -EUNATCH;
goto out;
}
proc_spl_kmem = proc_mkdir("kmem", proc_spl);
if (proc_spl_kmem == NULL) {
rc = -EUNATCH;
goto out;
}
proc_spl_kmem_slab = proc_create_data("slab", 0444, proc_spl_kmem,
&proc_slab_operations, NULL);
if (proc_spl_kmem_slab == NULL) {
rc = -EUNATCH;
goto out;
}
proc_spl_kstat = proc_mkdir("kstat", proc_spl);
if (proc_spl_kstat == NULL) {
rc = -EUNATCH;
goto out;
}
out:
if (rc)
spl_proc_cleanup();
return (rc);
}
void
spl_proc_fini(void)
{
spl_proc_cleanup();
}