mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-05-10 10:48:27 +03:00

This commit adds tests that ensure that the ICP crypto_encrypt() and crypto_decrypt() produce the correct results for all implementations available on this platform. The actual ZTS scripts are simple drivers for the crypto_test program in it's "correctness" mode. This mode takes a file full of test vectors (inputs and expected outputs), runs them, and checks that the results are expected. It will run the tests for each implementation of the algorithm provided by the ICP. The test vectors are taken from Project Wycheproof, which provides a huge number of tests, including exercising many edge cases and common implementation mistakes. These tests are provided are JSON files, so a program is included here to convert them into a simpler line-based format for crypto_test to consume. crypto_test also has a "performance" mode, which will run simple benchmarks against all implementations provded by the ICP and output them for comparison. This is not used by ZTS, but is available to assist with development of new implementations of the underlying primitives. Thanks-to: Joel Low <joel@joelsplace.sg> Sponsored-by: https://despairlabs.com/sponsor/ Signed-off-by: Rob Norris <robn@despairlabs.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de> Reviewed-by: Attila Fülöp <attila@fueloep.org>
1247 lines
30 KiB
C
1247 lines
30 KiB
C
/*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright (c) 2025, Rob Norris <robn@despairlabs.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* This is a userspace test driver for the ICP. It has two modes:
|
|
*
|
|
* "correctness" (-c <testfile>):
|
|
* Load a file full of test vectors. For each implementation of the named
|
|
* algorithm, loop over the tests, and run encrypt and decrypt with the
|
|
* provided parameters and confirm they either do (result=valid) or do not
|
|
* (result=invalid) succeed.
|
|
*
|
|
* "performance" (-p <alg>)
|
|
* For each implementation of the named algorithm, run 1000 rounds of
|
|
* encrypt() on a range of power-2 sizes of input data from 2^10 (1K) to
|
|
* 2^19 (512K).
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <getopt.h>
|
|
|
|
#include <sys/crypto/icp.h>
|
|
#include <sys/crypto/api.h>
|
|
|
|
/* for zfs_nicenum, zfs_nicebytes */
|
|
#include <libzutil.h>
|
|
|
|
/* ========== */
|
|
|
|
/* types and data for both modes */
|
|
|
|
/* valid test algorithms */
|
|
typedef enum {
|
|
ALG_NONE,
|
|
ALG_AES_GCM,
|
|
ALG_AES_CCM,
|
|
} crypto_test_alg_t;
|
|
|
|
/*
|
|
* Generally the ICP expects zero-length data to still require a valid
|
|
* (non-NULL) pointer, even though it will never read from it. This is a
|
|
* convenient valid item for tjat case.
|
|
*/
|
|
static uint8_t val_empty[1] = {0};
|
|
|
|
/* Strings for error returns */
|
|
static const char *crypto_errstr[] = {
|
|
[CRYPTO_SUCCESS] = "CRYPTO_SUCCESS",
|
|
[CRYPTO_HOST_MEMORY] = "CRYPTO_HOST_MEMORY",
|
|
[CRYPTO_FAILED] = "CRYPTO_FAILED",
|
|
[CRYPTO_ARGUMENTS_BAD] = "CRYPTO_ARGUMENTS_BAD",
|
|
[CRYPTO_DATA_LEN_RANGE] = "CRYPTO_DATA_LEN_RANGE",
|
|
[CRYPTO_ENCRYPTED_DATA_LEN_RANGE] = "CRYPTO_ENCRYPTED_DATA_LEN_RANGE",
|
|
[CRYPTO_KEY_SIZE_RANGE] = "CRYPTO_KEY_SIZE_RANGE",
|
|
[CRYPTO_KEY_TYPE_INCONSISTENT] = "CRYPTO_KEY_TYPE_INCONSISTENT",
|
|
[CRYPTO_MECHANISM_INVALID] = "CRYPTO_MECHANISM_INVALID",
|
|
[CRYPTO_MECHANISM_PARAM_INVALID] = "CRYPTO_MECHANISM_PARAM_INVALID",
|
|
[CRYPTO_SIGNATURE_INVALID] = "CRYPTO_SIGNATURE_INVALID",
|
|
[CRYPTO_BUFFER_TOO_SMALL] = "CRYPTO_BUFFER_TOO_SMALL",
|
|
[CRYPTO_NOT_SUPPORTED] = "CRYPTO_NOT_SUPPORTED",
|
|
[CRYPTO_INVALID_CONTEXT] = "CRYPTO_INVALID_CONTEXT",
|
|
[CRYPTO_INVALID_MAC] = "CRYPTO_INVALID_MAC",
|
|
[CRYPTO_MECH_NOT_SUPPORTED] = "CRYPTO_MECH_NOT_SUPPORTED",
|
|
[CRYPTO_INVALID_PROVIDER_ID] = "CRYPTO_INVALID_PROVIDER_ID",
|
|
[CRYPTO_BUSY] = "CRYPTO_BUSY",
|
|
[CRYPTO_UNKNOWN_PROVIDER] = "CRYPTO_UNKNOWN_PROVIDER",
|
|
};
|
|
|
|
/* what to output; driven by -v switch */
|
|
typedef enum {
|
|
OUT_SUMMARY,
|
|
OUT_FAIL,
|
|
OUT_ALL,
|
|
} crypto_test_outmode_t;
|
|
|
|
|
|
/* ========== */
|
|
|
|
/* types and data for correctness tests */
|
|
|
|
/* most ICP inputs are separate val & len */
|
|
typedef struct {
|
|
uint8_t *val;
|
|
size_t len;
|
|
} crypto_test_val_t;
|
|
|
|
/* tests can be expected to pass (valid) or expected to fail (invalid) */
|
|
typedef enum {
|
|
RS_NONE = 0,
|
|
RS_VALID,
|
|
RS_INVALID,
|
|
} crypto_test_result_t;
|
|
|
|
/* a single test, loaded from the test file */
|
|
typedef struct crypto_test crypto_test_t;
|
|
struct crypto_test {
|
|
crypto_test_t *next; /* ptr to next test */
|
|
char *fileloc; /* file:line of test in file */
|
|
crypto_test_alg_t alg; /* alg, for convenience */
|
|
|
|
/* id, comment and flags are for output */
|
|
uint64_t id;
|
|
char *comment;
|
|
char *flags;
|
|
|
|
/*
|
|
* raw test params. these are hex strings in the test file, which
|
|
* we convert on load.
|
|
*/
|
|
crypto_test_val_t iv;
|
|
crypto_test_val_t key;
|
|
crypto_test_val_t msg;
|
|
crypto_test_val_t ct;
|
|
crypto_test_val_t aad;
|
|
crypto_test_val_t tag;
|
|
|
|
/* expected result */
|
|
crypto_test_result_t result;
|
|
};
|
|
|
|
/* ========== */
|
|
|
|
/* test file loader */
|
|
|
|
/*
|
|
* helper; split a 'key: value\n' line into separate key and value. original
|
|
* line is modified; \0 will be inserted at end of key and end of value.
|
|
*/
|
|
static boolean_t
|
|
split_kv(char *line, char **kp, char **vp)
|
|
{
|
|
char *c = strstr(line, ":");
|
|
if (c == NULL)
|
|
return (B_FALSE);
|
|
|
|
|
|
*c++ = '\0';
|
|
while (*c == ' ')
|
|
c++;
|
|
|
|
char *v = c;
|
|
c = strchr(v, '\n');
|
|
if (c != NULL) {
|
|
*c++ = '\0';
|
|
if (*c != '\0')
|
|
return (B_FALSE);
|
|
}
|
|
|
|
*kp = line;
|
|
*vp = v;
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* helper; parse decimal number to uint64
|
|
*/
|
|
static boolean_t
|
|
parse_num(char *v, uint64_t *np)
|
|
{
|
|
char *c = NULL;
|
|
errno = 0;
|
|
uint64_t n = strtoull(v, &c, 10);
|
|
if (*v == '\0' || *c != '\0' || errno != 0 ||
|
|
n >= UINT32_MAX || n == 0)
|
|
return (B_FALSE);
|
|
*np = n;
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* load tests from the test file. returns a linked list of tests, and the
|
|
* test algorithm in *algp.
|
|
*/
|
|
static crypto_test_t *
|
|
load_tests(const char *filepath, crypto_test_alg_t *algp)
|
|
{
|
|
crypto_test_t *tests = NULL, *tail = NULL;
|
|
char *buf = NULL;
|
|
size_t buflen = 0;
|
|
FILE *fh = NULL;
|
|
|
|
if ((fh = fopen(filepath, "r")) == NULL) {
|
|
fprintf(stderr, "E: couldn't open %s: %s\n",
|
|
filepath, strerror(errno));
|
|
goto err;
|
|
}
|
|
|
|
/* extract the filename part from the path, for nicer output */
|
|
const char *filename = &filepath[strlen(filepath)-1];
|
|
while (filename != filepath) {
|
|
if (*filename == '/') {
|
|
filename++;
|
|
break;
|
|
}
|
|
filename--;
|
|
}
|
|
|
|
int lineno = 0;
|
|
|
|
crypto_test_alg_t alg = ALG_NONE;
|
|
uint64_t ntests = 0;
|
|
crypto_test_t *test = NULL;
|
|
uint64_t ncommitted = 0;
|
|
|
|
char *k, *v;
|
|
|
|
ssize_t nread;
|
|
while ((nread = getline(&buf, &buflen, fh)) != -1 || errno == 0) {
|
|
/* track line number for output and for test->fileloc */
|
|
lineno++;
|
|
|
|
if (nread < 2 && test != NULL) {
|
|
/*
|
|
* blank line or end of file; close out any test in
|
|
* progress and commit it.
|
|
*/
|
|
if (test->id == 0 ||
|
|
test->iv.val == NULL ||
|
|
test->key.val == NULL ||
|
|
test->msg.val == NULL ||
|
|
test->ct.val == NULL ||
|
|
test->aad.val == NULL ||
|
|
test->tag.val == NULL ||
|
|
test->result == RS_NONE) {
|
|
fprintf(stderr, "E: incomplete test [%s:%d]\n",
|
|
filename, lineno);
|
|
goto err;
|
|
}
|
|
|
|
/* commit the test, ie, add it to the list */
|
|
if (tail == NULL)
|
|
tests = tail = test;
|
|
else {
|
|
tail->next = test;
|
|
tail = test;
|
|
}
|
|
ncommitted++;
|
|
|
|
test = NULL;
|
|
}
|
|
|
|
if (nread == -1)
|
|
/* end of file and tests finished, done */
|
|
break;
|
|
|
|
if (nread < 2 && ncommitted == 0) {
|
|
/*
|
|
* blank line after header, make sure the header is
|
|
* complete.
|
|
*/
|
|
if (alg == ALG_NONE || ntests == 0) {
|
|
fprintf(stderr, "E: incomplete header "
|
|
"[%s:%d]\n", filename, lineno);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (nread < 2) {
|
|
/*
|
|
* blank line and the header is committed, and no
|
|
* current test, so the next test will start on the
|
|
* next line.
|
|
*/
|
|
test = calloc(1, sizeof (crypto_test_t));
|
|
int len = strlen(filename) + 10;
|
|
test->fileloc = calloc(len, 1);
|
|
snprintf(test->fileloc, len, "%s:%d",
|
|
filename, lineno+1);
|
|
test->alg = alg;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* must be a k:v line. if there is a current test, then this
|
|
* line is part of it, otherwise it's a header line
|
|
*/
|
|
if (!split_kv(buf, &k, &v)) {
|
|
fprintf(stderr, "E: malformed line [%s:%d]\n",
|
|
filename, lineno);
|
|
goto err;
|
|
}
|
|
|
|
if (test == NULL) {
|
|
/* no current test, so a header key */
|
|
|
|
/*
|
|
* typical header:
|
|
*
|
|
* algorithm: AES-GCM
|
|
* tests: 316
|
|
*/
|
|
if (strcmp(k, "algorithm") == 0) {
|
|
if (alg != ALG_NONE)
|
|
goto err_dup_key;
|
|
if (strcmp(v, "AES-GCM") == 0)
|
|
alg = ALG_AES_GCM;
|
|
else if (strcmp(v, "AES-CCM") == 0)
|
|
alg = ALG_AES_CCM;
|
|
else {
|
|
fprintf(stderr,
|
|
"E: unknown algorithm [%s:%d]: "
|
|
"%s\n", filename, lineno, v);
|
|
goto err;
|
|
}
|
|
} else if (strcmp(k, "tests") == 0) {
|
|
if (ntests > 0)
|
|
goto err_dup_key;
|
|
if (!parse_num(v, &ntests)) {
|
|
fprintf(stderr,
|
|
"E: invalid number of tests "
|
|
"[%s:%d]: %s\n", filename, lineno,
|
|
v);
|
|
goto err;
|
|
}
|
|
} else {
|
|
fprintf(stderr, "E: unknown header key "
|
|
"[%s:%d]: %s\n", filename, lineno, k);
|
|
goto err;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* test key */
|
|
|
|
/*
|
|
* typical test:
|
|
*
|
|
* id: 48
|
|
* comment: Flipped bit 63 in tag
|
|
* flags: ModifiedTag
|
|
* iv: 505152535455565758595a5b
|
|
* key: 000102030405060708090a0b0c0d0e0f
|
|
* msg: 202122232425262728292a2b2c2d2e2f
|
|
* ct: eb156d081ed6b6b55f4612f021d87b39
|
|
* aad:
|
|
* tag: d8847dbc326a066988c77ad3863e6083
|
|
* result: invalid
|
|
*/
|
|
if (strcmp(k, "id") == 0) {
|
|
if (test->id > 0)
|
|
goto err_dup_key;
|
|
if (!parse_num(v, &test->id)) {
|
|
fprintf(stderr,
|
|
"E: invalid test id [%s:%d]: %s\n",
|
|
filename, lineno, v);
|
|
goto err;
|
|
}
|
|
continue;
|
|
} else if (strcmp(k, "comment") == 0) {
|
|
if (test->comment != NULL)
|
|
goto err_dup_key;
|
|
test->comment = strdup(v);
|
|
continue;
|
|
} else if (strcmp(k, "flags") == 0) {
|
|
if (test->flags != NULL)
|
|
goto err_dup_key;
|
|
test->flags = strdup(v);
|
|
continue;
|
|
} else if (strcmp(k, "result") == 0) {
|
|
if (test->result != RS_NONE)
|
|
goto err_dup_key;
|
|
if (strcmp(v, "valid") == 0)
|
|
test->result = RS_VALID;
|
|
else if (strcmp(v, "invalid") == 0)
|
|
test->result = RS_INVALID;
|
|
else {
|
|
fprintf(stderr,
|
|
"E: unknown test result [%s:%d]: %s\n",
|
|
filename, lineno, v);
|
|
goto err;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* for the test param keys, we set up a pointer to the right
|
|
* field in the test struct, and then work through that
|
|
* pointer.
|
|
*/
|
|
crypto_test_val_t *vp = NULL;
|
|
if (strcmp(buf, "iv") == 0)
|
|
vp = &test->iv;
|
|
else if (strcmp(buf, "key") == 0)
|
|
vp = &test->key;
|
|
else if (strcmp(buf, "msg") == 0)
|
|
vp = &test->msg;
|
|
else if (strcmp(buf, "ct") == 0)
|
|
vp = &test->ct;
|
|
else if (strcmp(buf, "aad") == 0)
|
|
vp = &test->aad;
|
|
else if (strcmp(buf, "tag") == 0)
|
|
vp = &test->tag;
|
|
else {
|
|
fprintf(stderr, "E: unknown key [%s:%d]: %s\n",
|
|
filename, lineno, buf);
|
|
goto err;
|
|
}
|
|
|
|
if (vp->val != NULL)
|
|
goto err_dup_key;
|
|
|
|
/* sanity; these are hex bytes so must be two chars per byte. */
|
|
size_t vlen = strlen(v);
|
|
if ((vlen & 1) == 1) {
|
|
fprintf(stderr, "E: value length not even "
|
|
"[%s:%d]: %s\n", filename, lineno, buf);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* zero-length params are allowed, but ICP requires a non-NULL
|
|
* value pointer, so we give it one and also use that as
|
|
* a marker for us to know that we've filled this value.
|
|
*/
|
|
if (vlen == 0) {
|
|
vp->val = val_empty;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* convert incoming value from hex to raw. allocate space
|
|
* half as long as the length, then loop the chars and
|
|
* convert from ascii to 4-bit values, shifting or or-ing
|
|
* as appropriate.
|
|
*/
|
|
vp->len = vlen/2;
|
|
vp->val = calloc(vp->len, 1);
|
|
|
|
for (int i = 0; i < vlen; i++) {
|
|
char c = v[i];
|
|
if (!((c >= '0' && c <= '9') ||
|
|
(c >= 'a' && c <= 'f'))) {
|
|
fprintf(stderr, "E: invalid hex char "
|
|
"[%s:%d]: %c\n", filename, lineno, c);
|
|
goto err;
|
|
}
|
|
|
|
uint8_t n = ((c <= '9') ? (c-0x30) : (c-0x57)) & 0xf;
|
|
if ((i & 1) == 0)
|
|
vp->val[i/2] = n << 4;
|
|
else
|
|
vp->val[i/2] |= n;
|
|
}
|
|
}
|
|
|
|
if (errno != 0) {
|
|
fprintf(stderr, "E: couldn't read %s: %s\n",
|
|
filepath, strerror(errno));
|
|
goto err;
|
|
}
|
|
|
|
free(buf);
|
|
fclose(fh);
|
|
|
|
if (tests == NULL)
|
|
fprintf(stderr, "E: no tests in %s\n", filepath);
|
|
|
|
*algp = alg;
|
|
return (tests);
|
|
|
|
/*
|
|
* jump target for duplicate key error. this is so common that it's easier
|
|
* to just have a single error point.
|
|
*/
|
|
err_dup_key:
|
|
fprintf(stderr, "E: duplicate key [%s:%d]: %s\n", filename, lineno, k);
|
|
|
|
err:
|
|
if (buf != NULL)
|
|
free(buf);
|
|
if (fh != NULL)
|
|
fclose(fh);
|
|
|
|
/*
|
|
* XXX we should probably free all the tests here, but the test file
|
|
* is generated and this is a one-shot program, so it's really
|
|
* not worth the effort today
|
|
*/
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/* ========== */
|
|
|
|
/* ICP algorithm implementation selection */
|
|
|
|
/*
|
|
* It's currently not really possible to query the ICP for which
|
|
* implementations it supports. Also, not all GCM implementations work
|
|
* with all AES implementations. For now, we keep a hardcoded list of
|
|
* valid combinations.
|
|
*/
|
|
static const char *aes_impl[] = {
|
|
"generic",
|
|
"x86_64",
|
|
"aesni",
|
|
};
|
|
|
|
static const char *aes_gcm_impl[][2] = {
|
|
{ "generic", "generic" },
|
|
{ "x86_64", "generic" },
|
|
{ "aesni", "generic" },
|
|
{ "generic", "pclmulqdq" },
|
|
{ "x86_64", "pclmulqdq" },
|
|
{ "aesni", "pclmulqdq" },
|
|
{ "x86_64", "avx" },
|
|
{ "aesni", "avx" },
|
|
};
|
|
|
|
/* signature of function to call after setting implementation params */
|
|
typedef void (*alg_cb_t)(const char *alginfo, void *arg);
|
|
|
|
/* loop over each AES-CCM implementation */
|
|
static void
|
|
foreach_aes_ccm(alg_cb_t cb, void *arg, crypto_test_outmode_t outmode)
|
|
{
|
|
char alginfo[64];
|
|
|
|
for (int i = 0; i < ARRAY_SIZE(aes_impl); i++) {
|
|
snprintf(alginfo, sizeof (alginfo), "AES-CCM [%s]",
|
|
aes_impl[i]);
|
|
|
|
int err = -aes_impl_set(aes_impl[i]);
|
|
if (err != 0 && outmode != OUT_SUMMARY)
|
|
printf("W: %s couldn't enable AES impl '%s': %s\n",
|
|
alginfo, aes_impl[i], strerror(err));
|
|
|
|
cb(alginfo, (err == 0) ? arg : NULL);
|
|
}
|
|
}
|
|
|
|
/* loop over each AES-GCM implementation */
|
|
static void
|
|
foreach_aes_gcm(alg_cb_t cb, void *arg, crypto_test_outmode_t outmode)
|
|
{
|
|
char alginfo[64];
|
|
|
|
for (int i = 0; i < ARRAY_SIZE(aes_gcm_impl); i++) {
|
|
const char *aes_impl = aes_gcm_impl[i][0];
|
|
const char *gcm_impl = aes_gcm_impl[i][1];
|
|
|
|
snprintf(alginfo, sizeof (alginfo), "AES-GCM [%s+%s]",
|
|
aes_impl, gcm_impl);
|
|
|
|
int err = -aes_impl_set(aes_impl);
|
|
if (err != 0 && outmode != OUT_SUMMARY)
|
|
printf("W: %s couldn't enable AES impl '%s': %s\n",
|
|
alginfo, aes_impl, strerror(err));
|
|
|
|
if (err == 0) {
|
|
err = -gcm_impl_set(gcm_impl);
|
|
if (err != 0 && outmode != OUT_SUMMARY) {
|
|
printf("W: %s couldn't enable "
|
|
"GCM impl '%s': %s\n",
|
|
alginfo, gcm_impl, strerror(err));
|
|
}
|
|
}
|
|
|
|
cb(alginfo, (err == 0) ? arg : NULL);
|
|
}
|
|
}
|
|
|
|
/* ========== */
|
|
|
|
/* ICP lowlevel drivers */
|
|
|
|
/*
|
|
* initialise the mechanism (algorithm description) with the wanted parameters
|
|
* for the next operation.
|
|
*
|
|
* mech must be allocated and mech->cm_params point to space large enough
|
|
* to hold the parameters for the given algorithm.
|
|
*
|
|
* decrypt is true if setting up for decryption, false for encryption.
|
|
*/
|
|
static void
|
|
init_mech(crypto_mechanism_t *mech, crypto_test_alg_t alg,
|
|
uint8_t *iv, size_t ivlen,
|
|
uint8_t *aad, size_t aadlen,
|
|
size_t msglen, size_t taglen,
|
|
boolean_t decrypt)
|
|
{
|
|
switch (alg) {
|
|
case ALG_AES_GCM: {
|
|
mech->cm_type = crypto_mech2id(SUN_CKM_AES_GCM);
|
|
mech->cm_param_len = sizeof (CK_AES_GCM_PARAMS);
|
|
CK_AES_GCM_PARAMS *p = (CK_AES_GCM_PARAMS *)mech->cm_param;
|
|
p->pIv = (uchar_t *)iv;
|
|
p->ulIvLen = ivlen;
|
|
p->ulIvBits = ivlen << 3;
|
|
p->pAAD = aad;
|
|
p->ulAADLen = aadlen;
|
|
p->ulTagBits = taglen << 3;
|
|
break;
|
|
}
|
|
case ALG_AES_CCM: {
|
|
mech->cm_type = crypto_mech2id(SUN_CKM_AES_CCM);
|
|
mech->cm_param_len = sizeof (CK_AES_CCM_PARAMS);
|
|
CK_AES_CCM_PARAMS *p = (CK_AES_CCM_PARAMS *)mech->cm_param;
|
|
p->nonce = iv;
|
|
p->ulNonceSize = ivlen;
|
|
p->authData = aad;
|
|
p->ulAuthDataSize = aadlen;
|
|
p->ulMACSize = taglen;
|
|
/*
|
|
* ICP CCM needs the MAC len in the data size for decrypt,
|
|
* even if the buffer isn't that big.
|
|
*/
|
|
p->ulDataSize = msglen + (decrypt ? taglen : 0);
|
|
break;
|
|
}
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call crypto_encrypt() with the given inputs.
|
|
*
|
|
* mech: previously initialised by init_mech
|
|
* key, keylen: raw data and length of key
|
|
* msg, msglen: raw data and length of message
|
|
* out, outlen: buffer to write output to (min msglen+taglen)
|
|
* usecp: if not NULL, recieves microseconds in crypto_encrypt()
|
|
*/
|
|
static int
|
|
encrypt_one(crypto_mechanism_t *mech,
|
|
const uint8_t *key, size_t keylen,
|
|
const uint8_t *msg, size_t msglen,
|
|
uint8_t *out, size_t outlen,
|
|
uint64_t *usecp)
|
|
{
|
|
crypto_key_t k = {
|
|
.ck_data = (uint8_t *)key,
|
|
.ck_length = keylen << 3,
|
|
};
|
|
|
|
crypto_data_t i = {
|
|
.cd_format = CRYPTO_DATA_RAW,
|
|
.cd_offset = 0,
|
|
.cd_length = msglen,
|
|
.cd_raw = {
|
|
.iov_base = (char *)msg,
|
|
.iov_len = msglen,
|
|
},
|
|
};
|
|
|
|
crypto_data_t o = {
|
|
.cd_format = CRYPTO_DATA_RAW,
|
|
.cd_offset = 0,
|
|
.cd_length = outlen,
|
|
.cd_raw = {
|
|
.iov_base = (char *)out,
|
|
.iov_len = outlen,
|
|
},
|
|
};
|
|
|
|
struct timeval start, end, diff;
|
|
if (usecp != NULL)
|
|
gettimeofday(&start, NULL);
|
|
|
|
int rv = crypto_encrypt(mech, &i, &k, NULL, &o);
|
|
|
|
if (usecp != NULL) {
|
|
gettimeofday(&end, NULL);
|
|
timersub(&end, &start, &diff);
|
|
*usecp =
|
|
((uint64_t)diff.tv_sec) * 1000000 + (uint64_t)diff.tv_usec;
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* call crypto_decrypt() with the given inputs.
|
|
*
|
|
* mech: previously initialised by init_mech
|
|
* key, keylen: raw data and length of key
|
|
* ct, ctlen: raw data and length of ciphertext
|
|
* tag, taglen: raw data and length of tag (MAC)
|
|
* out, outlen: buffer to write output to (min ctlen)
|
|
* usecp: if not NULL, recieves microseconds in crypto_decrypt()
|
|
*/
|
|
static int
|
|
decrypt_one(crypto_mechanism_t *mech,
|
|
const uint8_t *key, size_t keylen,
|
|
const uint8_t *ct, size_t ctlen,
|
|
const uint8_t *tag, size_t taglen,
|
|
uint8_t *out, size_t outlen,
|
|
uint64_t *usecp)
|
|
{
|
|
uint8_t inbuf[1024];
|
|
|
|
crypto_key_t k = {
|
|
.ck_data = (uint8_t *)key,
|
|
.ck_length = keylen << 3,
|
|
};
|
|
|
|
memcpy(inbuf, ct, ctlen);
|
|
memcpy(inbuf + ctlen, tag, taglen);
|
|
crypto_data_t i = {
|
|
.cd_format = CRYPTO_DATA_RAW,
|
|
.cd_offset = 0,
|
|
.cd_length = ctlen + taglen,
|
|
.cd_raw = {
|
|
.iov_base = (char *)inbuf,
|
|
.iov_len = ctlen + taglen,
|
|
},
|
|
};
|
|
|
|
crypto_data_t o = {
|
|
.cd_format = CRYPTO_DATA_RAW,
|
|
.cd_offset = 0,
|
|
.cd_length = outlen,
|
|
.cd_raw = {
|
|
.iov_base = (char *)out,
|
|
.iov_len = outlen
|
|
},
|
|
};
|
|
|
|
struct timeval start, end, diff;
|
|
if (usecp != NULL)
|
|
gettimeofday(&start, NULL);
|
|
|
|
int rv = crypto_decrypt(mech, &i, &k, NULL, &o);
|
|
|
|
if (usecp != NULL) {
|
|
gettimeofday(&end, NULL);
|
|
timersub(&start, &end, &diff);
|
|
*usecp =
|
|
((uint64_t)diff.tv_sec) * 1000000 + (uint64_t)diff.tv_usec;
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/* ========== */
|
|
|
|
/* correctness tests */
|
|
|
|
/*
|
|
* helper; dump the provided data as hex, with a string prefix
|
|
*/
|
|
static void
|
|
hexdump(const char *str, const uint8_t *src, uint_t len)
|
|
{
|
|
printf("%12s:", str);
|
|
int i = 0;
|
|
while (i < len) {
|
|
if (i % 4 == 0)
|
|
printf(" ");
|
|
printf("%02x", src[i]);
|
|
i++;
|
|
if (i % 16 == 0 && i < len) {
|
|
printf("\n");
|
|
if (i < len)
|
|
printf(" ");
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
/*
|
|
* analyse test result and on failure, print useful output for debugging.
|
|
*
|
|
* test: the test we ran
|
|
* encrypt_rv: return value from crypto_encrypt()
|
|
* encrypt_buf: the output buffer from crypto_encrypt()
|
|
* decrypt_rv: return value from crypto_decrypt()
|
|
* decrypt_buf: the output buffer from crypto_decrypt()
|
|
* outmode: output mode (summary, fail, all)
|
|
*/
|
|
static boolean_t
|
|
test_result(const crypto_test_t *test, int encrypt_rv, uint8_t *encrypt_buf,
|
|
int decrypt_rv, uint8_t *decrypt_buf, crypto_test_outmode_t outmode)
|
|
{
|
|
boolean_t ct_match = B_FALSE, tag_match = B_FALSE, msg_match = B_FALSE;
|
|
boolean_t encrypt_pass = B_FALSE, decrypt_pass = B_FALSE;
|
|
boolean_t pass = B_FALSE;
|
|
|
|
/* check if the encrypt output matches the expected ciphertext */
|
|
if (memcmp(encrypt_buf, test->ct.val, test->msg.len) == 0)
|
|
ct_match = B_TRUE;
|
|
|
|
/*
|
|
* check if the tag at the end of the encrypt output matches the
|
|
* expected tag
|
|
*/
|
|
if (memcmp(encrypt_buf + test->msg.len, test->tag.val,
|
|
test->tag.len) == 0)
|
|
tag_match = B_TRUE;
|
|
|
|
/* check if the decrypt output matches the expected plaintext */
|
|
if (memcmp(decrypt_buf, test->msg.val, test->msg.len) == 0)
|
|
msg_match = B_TRUE;
|
|
|
|
if (test->result == RS_VALID) {
|
|
/*
|
|
* a "valid" test is where the params describe an
|
|
* encrypt/decrypt cycle that should succeed. we consider
|
|
* these to have passed the test if crypto_encrypt() and
|
|
* crypto_decrypt() return success, and the output data
|
|
* matches the expected values from the test params.
|
|
*/
|
|
if (encrypt_rv == CRYPTO_SUCCESS) {
|
|
if (ct_match && tag_match)
|
|
encrypt_pass = B_TRUE;
|
|
}
|
|
if (decrypt_rv == CRYPTO_SUCCESS) {
|
|
if (msg_match)
|
|
decrypt_pass = B_TRUE;
|
|
}
|
|
} else {
|
|
/*
|
|
* an "invalid" test is where the params describe an
|
|
* encrypt/decrypt cycle that should _not_ succeed.
|
|
*
|
|
* for decrypt, we only need to check the result from
|
|
* crypto_decrypt(), because decrypt checks the the tag (MAC)
|
|
* as part of its operation.
|
|
*
|
|
* for encrypt, the tag (MAC) is an output of the encryption
|
|
* function, so if encryption succeeds, we have to check that
|
|
* the returned tag matches the expected tag.
|
|
*/
|
|
if (encrypt_rv != CRYPTO_SUCCESS || !tag_match)
|
|
encrypt_pass = B_TRUE;
|
|
if (decrypt_rv != CRYPTO_SUCCESS)
|
|
decrypt_pass = B_TRUE;
|
|
}
|
|
|
|
/* the test as a whole passed if both encrypt and decrypt passed */
|
|
pass = (encrypt_pass && decrypt_pass);
|
|
|
|
/* if the test passed we may not have to output anything */
|
|
if (outmode == OUT_SUMMARY || (outmode == OUT_FAIL && pass))
|
|
return (pass);
|
|
|
|
/* print summary of test result */
|
|
printf("%s[%lu]: encrypt=%s decrypt=%s\n", test->fileloc, test->id,
|
|
encrypt_pass ? "PASS" : "FAIL",
|
|
decrypt_pass ? "PASS" : "FAIL");
|
|
|
|
if (!pass) {
|
|
/*
|
|
* if the test didn't pass, print any comment or flags field
|
|
* from the test params, which if present can help
|
|
* understanding what the ICP did wrong
|
|
*/
|
|
if (test->comment != NULL)
|
|
printf(" comment: %s\n", test->comment);
|
|
if (test->flags != NULL)
|
|
printf(" flags: %s\n", test->flags);
|
|
}
|
|
|
|
if (!encrypt_pass) {
|
|
/* encrypt failed */
|
|
|
|
/* print return value from crypto_encrypt() */
|
|
printf(" encrypt rv = 0x%02x [%s]\n", encrypt_rv,
|
|
crypto_errstr[encrypt_rv] ?
|
|
crypto_errstr[encrypt_rv] : "???");
|
|
|
|
/* print mismatched ciphertext */
|
|
if (!ct_match) {
|
|
printf(" ciphertexts don't match:\n");
|
|
hexdump("got", encrypt_buf, test->msg.len);
|
|
hexdump("expected", test->ct.val, test->msg.len);
|
|
}
|
|
|
|
/* print mistmatched tag (MAC) */
|
|
if (!tag_match) {
|
|
printf(" tags don't match:\n");
|
|
hexdump("got", encrypt_buf + test->msg.len,
|
|
test->tag.len);
|
|
hexdump("expected", test->tag.val, test->tag.len);
|
|
}
|
|
}
|
|
|
|
if (!decrypt_pass) {
|
|
/* decrypt failed */
|
|
|
|
/* print return value from crypto_decrypt() */
|
|
printf(" decrypt rv = 0x%02x [%s]\n", decrypt_rv,
|
|
crypto_errstr[decrypt_rv] ?
|
|
crypto_errstr[decrypt_rv] : "???");
|
|
|
|
/* print mismatched plaintext */
|
|
if (!msg_match) {
|
|
printf(" plaintexts don't match:\n");
|
|
hexdump("got", decrypt_buf, test->msg.len);
|
|
hexdump("expected", test->msg.val, test->msg.len);
|
|
}
|
|
}
|
|
|
|
if (!pass)
|
|
printf("\n");
|
|
|
|
return (pass);
|
|
}
|
|
|
|
/*
|
|
* run the given list of tests.
|
|
*
|
|
* alginfo: a prefix for the test summary, showing the ICP algo implementation
|
|
* in use for this run.
|
|
* tests: first test in test list
|
|
* outmode: output mode, passed to test_result()
|
|
*/
|
|
static int
|
|
run_tests(const char *alginfo, const crypto_test_t *tests,
|
|
crypto_test_outmode_t outmode)
|
|
{
|
|
int ntests = 0, npass = 0;
|
|
|
|
/*
|
|
* allocate space for the mechanism description, and alg-specific
|
|
* params, and hook them up.
|
|
*/
|
|
crypto_mechanism_t mech = {};
|
|
union {
|
|
CK_AES_GCM_PARAMS gcm;
|
|
CK_AES_CCM_PARAMS ccm;
|
|
} params = {};
|
|
mech.cm_param = (caddr_t)¶ms;
|
|
|
|
/* space for encrypt/decrypt output */
|
|
uint8_t encrypt_buf[1024];
|
|
uint8_t decrypt_buf[1024];
|
|
|
|
for (const crypto_test_t *test = tests; test != NULL;
|
|
test = test->next) {
|
|
ntests++;
|
|
|
|
/* setup mechanism description for encrypt, then encrypt */
|
|
init_mech(&mech, test->alg, test->iv.val, test->iv.len,
|
|
test->aad.val, test->aad.len, test->msg.len, test->tag.len,
|
|
B_FALSE);
|
|
int encrypt_rv = encrypt_one(&mech,
|
|
test->key.val, test->key.len,
|
|
test->msg.val, test->msg.len,
|
|
encrypt_buf, test->msg.len + test->tag.len, NULL);
|
|
|
|
/* setup mechanism description for decrypt, then decrypt */
|
|
init_mech(&mech, test->alg, test->iv.val, test->iv.len,
|
|
test->aad.val, test->aad.len, test->msg.len, test->tag.len,
|
|
B_TRUE);
|
|
int decrypt_rv = decrypt_one(&mech,
|
|
test->key.val, test->key.len,
|
|
test->ct.val, test->ct.len,
|
|
test->tag.val, test->tag.len,
|
|
decrypt_buf, test->ct.len, NULL);
|
|
|
|
/* consider results and if it passed, count it */
|
|
if (test_result(test, encrypt_rv, encrypt_buf,
|
|
decrypt_rv, decrypt_buf, outmode))
|
|
npass++;
|
|
}
|
|
|
|
printf("%s: tests=%d: passed=%d failed=%d\n",
|
|
alginfo, ntests, npass, ntests-npass);
|
|
|
|
return (ntests != npass);
|
|
}
|
|
|
|
/* args for run_test_alg_cb */
|
|
typedef struct {
|
|
crypto_test_t *tests;
|
|
crypto_test_outmode_t outmode;
|
|
int failed;
|
|
} run_test_alg_args_t;
|
|
|
|
/* per-alg-impl function for correctness test runs */
|
|
static void
|
|
run_test_alg_cb(const char *alginfo, void *arg)
|
|
{
|
|
if (arg == NULL) {
|
|
printf("%s: [not supported on this platform]\n", alginfo);
|
|
return;
|
|
}
|
|
run_test_alg_args_t *args = arg;
|
|
args->failed += run_tests(alginfo, args->tests, args->outmode);
|
|
}
|
|
|
|
/* main function for correctness tests */
|
|
static int
|
|
runtests_main(const char *filename, crypto_test_outmode_t outmode)
|
|
{
|
|
crypto_test_alg_t alg = ALG_NONE;
|
|
crypto_test_t *tests = load_tests(filename, &alg);
|
|
if (tests == NULL)
|
|
return (1);
|
|
|
|
icp_init();
|
|
|
|
run_test_alg_args_t args = {
|
|
.tests = tests,
|
|
.outmode = outmode,
|
|
.failed = 0,
|
|
};
|
|
|
|
switch (alg) {
|
|
case ALG_AES_CCM:
|
|
foreach_aes_ccm(run_test_alg_cb, &args, outmode);
|
|
break;
|
|
case ALG_AES_GCM:
|
|
foreach_aes_gcm(run_test_alg_cb, &args, outmode);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
icp_fini();
|
|
|
|
return (args.failed);
|
|
}
|
|
|
|
/* ========== */
|
|
|
|
/* performance tests */
|
|
|
|
/* helper; fill the given buffer with random data */
|
|
static int
|
|
fill_random(uint8_t *v, size_t sz)
|
|
{
|
|
int fd = open("/dev/urandom", O_RDONLY);
|
|
if (fd < 0)
|
|
return (errno);
|
|
|
|
while (sz > 0) {
|
|
ssize_t r = read(fd, v, sz);
|
|
if (r < 0) {
|
|
close(fd);
|
|
return (errno);
|
|
}
|
|
v += r;
|
|
sz -= r;
|
|
}
|
|
|
|
close(fd);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* args for perf_alg_cb */
|
|
typedef struct {
|
|
crypto_test_alg_t alg;
|
|
uint8_t *msg;
|
|
uint8_t *out;
|
|
uint8_t key[32];
|
|
uint8_t iv[12];
|
|
} perf_alg_args_t;
|
|
|
|
#define PERF_MSG_SHIFT_MIN (10) /* min test size 2^10 == 1K */
|
|
#define PERF_MSG_SHIFT_MAX (19) /* max test size 2^19 == 512K */
|
|
#define PERF_ROUNDS (1000) /* 1000 rounds per test */
|
|
|
|
/* per-alg-impl function for performance test runs */
|
|
static void
|
|
perf_alg_cb(const char *alginfo, void *arg)
|
|
{
|
|
char buf[10];
|
|
printf("%-28s", alginfo);
|
|
|
|
if (arg == NULL) {
|
|
printf("[not supported on this platform]\n");
|
|
return;
|
|
}
|
|
|
|
perf_alg_args_t *args = arg;
|
|
|
|
/* space for mechanism description */
|
|
crypto_mechanism_t mech = {};
|
|
union {
|
|
CK_AES_GCM_PARAMS gcm;
|
|
CK_AES_CCM_PARAMS ccm;
|
|
} params = {};
|
|
mech.cm_param = (caddr_t)¶ms;
|
|
|
|
/* loop for each power-2 input size */
|
|
for (int i = PERF_MSG_SHIFT_MIN; i <= PERF_MSG_SHIFT_MAX; i++) {
|
|
/* size of input */
|
|
size_t sz = 1<<i;
|
|
|
|
/* initialise mechanism */
|
|
init_mech(&mech, args->alg, args->iv, sizeof (args->iv),
|
|
val_empty, 0, sz, 16, B_FALSE);
|
|
|
|
/* run N rounds and accumulate total time */
|
|
uint64_t total = 0;
|
|
for (int round = 0; round < PERF_ROUNDS; round++) {
|
|
uint64_t usec;
|
|
encrypt_one(&mech, args->key, sizeof (args->key),
|
|
args->msg, sz, args->out, sz+16, &usec);
|
|
total += usec;
|
|
}
|
|
|
|
/*
|
|
* print avg time per round. zfs_nicetime expects nanoseconds,
|
|
* so we multiply first
|
|
*/
|
|
zfs_nicetime((total*1000)/PERF_ROUNDS, buf, sizeof (buf));
|
|
printf(" %5s", buf);
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
/* main function for performance tests */
|
|
static int
|
|
perf_main(const char *algname, crypto_test_outmode_t outmode)
|
|
{
|
|
perf_alg_args_t args;
|
|
|
|
if (strcmp(algname, "AES-CCM") == 0)
|
|
args.alg = ALG_AES_CCM;
|
|
else if (strcmp(algname, "AES-GCM") == 0)
|
|
args.alg = ALG_AES_GCM;
|
|
else {
|
|
fprintf(stderr, "E: unknown algorithm: %s\n", algname);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* test runs are often slow, but the very first ones won't be. by
|
|
* disabling buffering, we can display results immediately, and
|
|
* the user quickly gets an idea of what to expect
|
|
*/
|
|
setvbuf(stdout, NULL, _IONBF, 0);
|
|
|
|
/* allocate random data for encrypt input */
|
|
size_t maxsz = (1<<PERF_MSG_SHIFT_MAX);
|
|
args.msg = malloc(maxsz);
|
|
VERIFY0(fill_random(args.msg, maxsz));
|
|
|
|
/* allocate space for output, +16 bytes for tag */
|
|
args.out = malloc(maxsz+16);
|
|
|
|
/* fill key and iv */
|
|
VERIFY0(fill_random(args.key, sizeof (args.key)));
|
|
VERIFY0(fill_random(args.iv, sizeof (args.iv)));
|
|
|
|
icp_init();
|
|
|
|
/* print header */
|
|
char buf[10];
|
|
printf("avg encrypt (%4d rounds) ", PERF_ROUNDS);
|
|
for (int i = PERF_MSG_SHIFT_MIN; i <= PERF_MSG_SHIFT_MAX; i++) {
|
|
zfs_nicebytes(1<<i, buf, sizeof (buf));
|
|
printf(" %5s", buf);
|
|
}
|
|
printf("\n");
|
|
|
|
/* loop over all implementations of the wanted algorithm */
|
|
switch (args.alg) {
|
|
case ALG_AES_CCM:
|
|
foreach_aes_ccm(perf_alg_cb, &args, outmode);
|
|
break;
|
|
case ALG_AES_GCM:
|
|
foreach_aes_gcm(perf_alg_cb, &args, outmode);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
icp_fini();
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* ========== */
|
|
|
|
/* main entry */
|
|
|
|
static void
|
|
usage(void)
|
|
{
|
|
fprintf(stderr,
|
|
"usage: crypto_test [-v] < -c <testfile> | -p <alg> >\n");
|
|
exit(1);
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
crypto_test_outmode_t outmode = OUT_SUMMARY;
|
|
const char *filename = NULL;
|
|
const char *algname = NULL;
|
|
|
|
int c;
|
|
while ((c = getopt(argc, argv, "c:p:v")) != -1) {
|
|
switch (c) {
|
|
case 'c':
|
|
filename = optarg;
|
|
break;
|
|
case 'p':
|
|
algname = optarg;
|
|
break;
|
|
case 'v':
|
|
outmode = (outmode == OUT_SUMMARY) ? OUT_FAIL : OUT_ALL;
|
|
break;
|
|
case '?':
|
|
usage();
|
|
}
|
|
}
|
|
|
|
argc -= optind;
|
|
argv += optind;
|
|
|
|
if (filename != NULL && algname != NULL) {
|
|
fprintf(stderr, "E: can't use -c and -p together\n");
|
|
usage();
|
|
}
|
|
|
|
if (argc != 0)
|
|
usage();
|
|
|
|
if (filename)
|
|
return (runtests_main(filename, outmode));
|
|
|
|
return (perf_main(algname, outmode));
|
|
}
|