mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-12 19:20:28 +03:00
79c76d5b65
By marking DMU transaction processing contexts with PF_FSTRANS we can revert the KM_PUSHPAGE -> KM_SLEEP changes. This brings us back in line with upstream. In some cases this means simply swapping the flags back. For others fnvlist_alloc() was replaced by nvlist_alloc(..., KM_PUSHPAGE) and must be reverted back to fnvlist_alloc() which assumes KM_SLEEP. The one place KM_PUSHPAGE is kept is when allocating ARC buffers which allows us to dip in to reserved memory. This is again the same as upstream. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
412 lines
9.6 KiB
C
412 lines
9.6 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
/*
|
|
* Copyright (c) 2013, 2014 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/range_tree.h>
|
|
|
|
static kmem_cache_t *range_seg_cache;
|
|
|
|
void
|
|
range_tree_init(void)
|
|
{
|
|
ASSERT(range_seg_cache == NULL);
|
|
range_seg_cache = kmem_cache_create("range_seg_cache",
|
|
sizeof (range_seg_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
}
|
|
|
|
void
|
|
range_tree_fini(void)
|
|
{
|
|
kmem_cache_destroy(range_seg_cache);
|
|
range_seg_cache = NULL;
|
|
}
|
|
|
|
void
|
|
range_tree_stat_verify(range_tree_t *rt)
|
|
{
|
|
range_seg_t *rs;
|
|
uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
|
|
int i;
|
|
|
|
for (rs = avl_first(&rt->rt_root); rs != NULL;
|
|
rs = AVL_NEXT(&rt->rt_root, rs)) {
|
|
uint64_t size = rs->rs_end - rs->rs_start;
|
|
int idx = highbit64(size) - 1;
|
|
|
|
hist[idx]++;
|
|
ASSERT3U(hist[idx], !=, 0);
|
|
}
|
|
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
if (hist[i] != rt->rt_histogram[i]) {
|
|
zfs_dbgmsg("i=%d, hist=%p, hist=%llu, rt_hist=%llu",
|
|
i, hist, hist[i], rt->rt_histogram[i]);
|
|
}
|
|
VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
|
|
{
|
|
uint64_t size = rs->rs_end - rs->rs_start;
|
|
int idx = highbit64(size) - 1;
|
|
|
|
ASSERT(size != 0);
|
|
ASSERT3U(idx, <,
|
|
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
|
|
|
|
ASSERT(MUTEX_HELD(rt->rt_lock));
|
|
rt->rt_histogram[idx]++;
|
|
ASSERT3U(rt->rt_histogram[idx], !=, 0);
|
|
}
|
|
|
|
static void
|
|
range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
|
|
{
|
|
uint64_t size = rs->rs_end - rs->rs_start;
|
|
int idx = highbit64(size) - 1;
|
|
|
|
ASSERT(size != 0);
|
|
ASSERT3U(idx, <,
|
|
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
|
|
|
|
ASSERT(MUTEX_HELD(rt->rt_lock));
|
|
ASSERT3U(rt->rt_histogram[idx], !=, 0);
|
|
rt->rt_histogram[idx]--;
|
|
}
|
|
|
|
/*
|
|
* NOTE: caller is responsible for all locking.
|
|
*/
|
|
static int
|
|
range_tree_seg_compare(const void *x1, const void *x2)
|
|
{
|
|
const range_seg_t *r1 = x1;
|
|
const range_seg_t *r2 = x2;
|
|
|
|
if (r1->rs_start < r2->rs_start) {
|
|
if (r1->rs_end > r2->rs_start)
|
|
return (0);
|
|
return (-1);
|
|
}
|
|
if (r1->rs_start > r2->rs_start) {
|
|
if (r1->rs_start < r2->rs_end)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
range_tree_t *
|
|
range_tree_create(range_tree_ops_t *ops, void *arg, kmutex_t *lp)
|
|
{
|
|
range_tree_t *rt;
|
|
|
|
rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
|
|
|
|
avl_create(&rt->rt_root, range_tree_seg_compare,
|
|
sizeof (range_seg_t), offsetof(range_seg_t, rs_node));
|
|
|
|
rt->rt_lock = lp;
|
|
rt->rt_ops = ops;
|
|
rt->rt_arg = arg;
|
|
|
|
if (rt->rt_ops != NULL)
|
|
rt->rt_ops->rtop_create(rt, rt->rt_arg);
|
|
|
|
return (rt);
|
|
}
|
|
|
|
void
|
|
range_tree_destroy(range_tree_t *rt)
|
|
{
|
|
VERIFY0(rt->rt_space);
|
|
|
|
if (rt->rt_ops != NULL)
|
|
rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
|
|
|
|
avl_destroy(&rt->rt_root);
|
|
kmem_free(rt, sizeof (*rt));
|
|
}
|
|
|
|
void
|
|
range_tree_add(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
range_tree_t *rt = arg;
|
|
avl_index_t where;
|
|
range_seg_t rsearch, *rs_before, *rs_after, *rs;
|
|
uint64_t end = start + size;
|
|
boolean_t merge_before, merge_after;
|
|
|
|
ASSERT(MUTEX_HELD(rt->rt_lock));
|
|
VERIFY(size != 0);
|
|
|
|
rsearch.rs_start = start;
|
|
rsearch.rs_end = end;
|
|
rs = avl_find(&rt->rt_root, &rsearch, &where);
|
|
|
|
if (rs != NULL && rs->rs_start <= start && rs->rs_end >= end) {
|
|
zfs_panic_recover("zfs: allocating allocated segment"
|
|
"(offset=%llu size=%llu)\n",
|
|
(longlong_t)start, (longlong_t)size);
|
|
return;
|
|
}
|
|
|
|
/* Make sure we don't overlap with either of our neighbors */
|
|
VERIFY(rs == NULL);
|
|
|
|
rs_before = avl_nearest(&rt->rt_root, where, AVL_BEFORE);
|
|
rs_after = avl_nearest(&rt->rt_root, where, AVL_AFTER);
|
|
|
|
merge_before = (rs_before != NULL && rs_before->rs_end == start);
|
|
merge_after = (rs_after != NULL && rs_after->rs_start == end);
|
|
|
|
if (merge_before && merge_after) {
|
|
avl_remove(&rt->rt_root, rs_before);
|
|
if (rt->rt_ops != NULL) {
|
|
rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
|
|
rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
|
|
}
|
|
|
|
range_tree_stat_decr(rt, rs_before);
|
|
range_tree_stat_decr(rt, rs_after);
|
|
|
|
rs_after->rs_start = rs_before->rs_start;
|
|
kmem_cache_free(range_seg_cache, rs_before);
|
|
rs = rs_after;
|
|
} else if (merge_before) {
|
|
if (rt->rt_ops != NULL)
|
|
rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
|
|
|
|
range_tree_stat_decr(rt, rs_before);
|
|
|
|
rs_before->rs_end = end;
|
|
rs = rs_before;
|
|
} else if (merge_after) {
|
|
if (rt->rt_ops != NULL)
|
|
rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
|
|
|
|
range_tree_stat_decr(rt, rs_after);
|
|
|
|
rs_after->rs_start = start;
|
|
rs = rs_after;
|
|
} else {
|
|
rs = kmem_cache_alloc(range_seg_cache, KM_SLEEP);
|
|
rs->rs_start = start;
|
|
rs->rs_end = end;
|
|
avl_insert(&rt->rt_root, rs, where);
|
|
}
|
|
|
|
if (rt->rt_ops != NULL)
|
|
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
|
|
|
|
range_tree_stat_incr(rt, rs);
|
|
rt->rt_space += size;
|
|
}
|
|
|
|
void
|
|
range_tree_remove(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
range_tree_t *rt = arg;
|
|
avl_index_t where;
|
|
range_seg_t rsearch, *rs, *newseg;
|
|
uint64_t end = start + size;
|
|
boolean_t left_over, right_over;
|
|
|
|
ASSERT(MUTEX_HELD(rt->rt_lock));
|
|
VERIFY3U(size, !=, 0);
|
|
VERIFY3U(size, <=, rt->rt_space);
|
|
|
|
rsearch.rs_start = start;
|
|
rsearch.rs_end = end;
|
|
rs = avl_find(&rt->rt_root, &rsearch, &where);
|
|
|
|
/* Make sure we completely overlap with someone */
|
|
if (rs == NULL) {
|
|
zfs_panic_recover("zfs: freeing free segment "
|
|
"(offset=%llu size=%llu)",
|
|
(longlong_t)start, (longlong_t)size);
|
|
return;
|
|
}
|
|
VERIFY3U(rs->rs_start, <=, start);
|
|
VERIFY3U(rs->rs_end, >=, end);
|
|
|
|
left_over = (rs->rs_start != start);
|
|
right_over = (rs->rs_end != end);
|
|
|
|
range_tree_stat_decr(rt, rs);
|
|
|
|
if (rt->rt_ops != NULL)
|
|
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
|
|
|
|
if (left_over && right_over) {
|
|
newseg = kmem_cache_alloc(range_seg_cache, KM_SLEEP);
|
|
newseg->rs_start = end;
|
|
newseg->rs_end = rs->rs_end;
|
|
range_tree_stat_incr(rt, newseg);
|
|
|
|
rs->rs_end = start;
|
|
|
|
avl_insert_here(&rt->rt_root, newseg, rs, AVL_AFTER);
|
|
if (rt->rt_ops != NULL)
|
|
rt->rt_ops->rtop_add(rt, newseg, rt->rt_arg);
|
|
} else if (left_over) {
|
|
rs->rs_end = start;
|
|
} else if (right_over) {
|
|
rs->rs_start = end;
|
|
} else {
|
|
avl_remove(&rt->rt_root, rs);
|
|
kmem_cache_free(range_seg_cache, rs);
|
|
rs = NULL;
|
|
}
|
|
|
|
if (rs != NULL) {
|
|
range_tree_stat_incr(rt, rs);
|
|
|
|
if (rt->rt_ops != NULL)
|
|
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
|
|
}
|
|
|
|
rt->rt_space -= size;
|
|
}
|
|
|
|
static range_seg_t *
|
|
range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
|
|
{
|
|
avl_index_t where;
|
|
range_seg_t rsearch;
|
|
uint64_t end = start + size;
|
|
|
|
ASSERT(MUTEX_HELD(rt->rt_lock));
|
|
VERIFY(size != 0);
|
|
|
|
rsearch.rs_start = start;
|
|
rsearch.rs_end = end;
|
|
return (avl_find(&rt->rt_root, &rsearch, &where));
|
|
}
|
|
|
|
static range_seg_t *
|
|
range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
|
|
{
|
|
range_seg_t *rs = range_tree_find_impl(rt, start, size);
|
|
if (rs != NULL && rs->rs_start <= start && rs->rs_end >= start + size)
|
|
return (rs);
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
range_tree_verify(range_tree_t *rt, uint64_t off, uint64_t size)
|
|
{
|
|
range_seg_t *rs;
|
|
|
|
mutex_enter(rt->rt_lock);
|
|
rs = range_tree_find(rt, off, size);
|
|
if (rs != NULL)
|
|
panic("freeing free block; rs=%p", (void *)rs);
|
|
mutex_exit(rt->rt_lock);
|
|
}
|
|
|
|
boolean_t
|
|
range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
|
|
{
|
|
return (range_tree_find(rt, start, size) != NULL);
|
|
}
|
|
|
|
/*
|
|
* Ensure that this range is not in the tree, regardless of whether
|
|
* it is currently in the tree.
|
|
*/
|
|
void
|
|
range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
|
|
{
|
|
range_seg_t *rs;
|
|
|
|
while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
|
|
uint64_t free_start = MAX(rs->rs_start, start);
|
|
uint64_t free_end = MIN(rs->rs_end, start + size);
|
|
range_tree_remove(rt, free_start, free_end - free_start);
|
|
}
|
|
}
|
|
|
|
void
|
|
range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
|
|
{
|
|
range_tree_t *rt;
|
|
|
|
ASSERT(MUTEX_HELD((*rtsrc)->rt_lock));
|
|
ASSERT0(range_tree_space(*rtdst));
|
|
ASSERT0(avl_numnodes(&(*rtdst)->rt_root));
|
|
|
|
rt = *rtsrc;
|
|
*rtsrc = *rtdst;
|
|
*rtdst = rt;
|
|
}
|
|
|
|
void
|
|
range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
|
|
{
|
|
range_seg_t *rs;
|
|
void *cookie = NULL;
|
|
|
|
ASSERT(MUTEX_HELD(rt->rt_lock));
|
|
|
|
if (rt->rt_ops != NULL)
|
|
rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
|
|
|
|
while ((rs = avl_destroy_nodes(&rt->rt_root, &cookie)) != NULL) {
|
|
if (func != NULL)
|
|
func(arg, rs->rs_start, rs->rs_end - rs->rs_start);
|
|
kmem_cache_free(range_seg_cache, rs);
|
|
}
|
|
|
|
bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
|
|
rt->rt_space = 0;
|
|
}
|
|
|
|
void
|
|
range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
|
|
{
|
|
range_seg_t *rs;
|
|
|
|
ASSERT(MUTEX_HELD(rt->rt_lock));
|
|
|
|
for (rs = avl_first(&rt->rt_root); rs; rs = AVL_NEXT(&rt->rt_root, rs))
|
|
func(arg, rs->rs_start, rs->rs_end - rs->rs_start);
|
|
}
|
|
|
|
uint64_t
|
|
range_tree_space(range_tree_t *rt)
|
|
{
|
|
return (rt->rt_space);
|
|
}
|