mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-24 17:06:34 +03:00
a861aa2b9e
- Reduce size and comparison complexity of q_exts_by_size B-tree. Previous code used two 64-bit divisions and many other operations to compare two B-tree elements. It created enormous overhead. This implementation moves the math to the upper level and stores the score in the B-tree elements themselves. Since all that we need to store in that B-tree is the extent score and offset, those can fit into single 8 byte value instead of 24 bytes of q_exts_by_addr element and can be compared with single operation. - Better decouple secondary tree logic from main range_tree by moving rt_btree_ops and related functions into dsl_scan.c as ext_size_ops. Those functions are very small to worry about the code duplication and range_tree does not need to know details such as rt_btree_compare. - Instead of accounting number of pending bytes per pool, that needs atomic on global variable per block, account the number of non-empty per-vdev queues, that change much more rarely. - When extent scan is interrupted by TXG end, continue it in the next TXG instead of selecting next best extent. It allows to avoid leaving one truncated (and so likely not the best any more) extent each TXG. On top of some other optimizations this saves about 1.5 minutes out of 10 to scrub pool of 12 SSDs, storing 1.5TB of 4KB zvol blocks. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tom Caputi <caputit1@tcnj.edu> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored-By: iXsystems, Inc. Closes #13576
851 lines
24 KiB
C
851 lines
24 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
/*
|
|
* Copyright (c) 2013, 2019 by Delphix. All rights reserved.
|
|
* Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/range_tree.h>
|
|
|
|
/*
|
|
* Range trees are tree-based data structures that can be used to
|
|
* track free space or generally any space allocation information.
|
|
* A range tree keeps track of individual segments and automatically
|
|
* provides facilities such as adjacent extent merging and extent
|
|
* splitting in response to range add/remove requests.
|
|
*
|
|
* A range tree starts out completely empty, with no segments in it.
|
|
* Adding an allocation via range_tree_add to the range tree can either:
|
|
* 1) create a new extent
|
|
* 2) extend an adjacent extent
|
|
* 3) merge two adjacent extents
|
|
* Conversely, removing an allocation via range_tree_remove can:
|
|
* 1) completely remove an extent
|
|
* 2) shorten an extent (if the allocation was near one of its ends)
|
|
* 3) split an extent into two extents, in effect punching a hole
|
|
*
|
|
* A range tree is also capable of 'bridging' gaps when adding
|
|
* allocations. This is useful for cases when close proximity of
|
|
* allocations is an important detail that needs to be represented
|
|
* in the range tree. See range_tree_set_gap(). The default behavior
|
|
* is not to bridge gaps (i.e. the maximum allowed gap size is 0).
|
|
*
|
|
* In order to traverse a range tree, use either the range_tree_walk()
|
|
* or range_tree_vacate() functions.
|
|
*
|
|
* To obtain more accurate information on individual segment
|
|
* operations that the range tree performs "under the hood", you can
|
|
* specify a set of callbacks by passing a range_tree_ops_t structure
|
|
* to the range_tree_create function. Any callbacks that are non-NULL
|
|
* are then called at the appropriate times.
|
|
*
|
|
* The range tree code also supports a special variant of range trees
|
|
* that can bridge small gaps between segments. This kind of tree is used
|
|
* by the dsl scanning code to group I/Os into mostly sequential chunks to
|
|
* optimize disk performance. The code here attempts to do this with as
|
|
* little memory and computational overhead as possible. One limitation of
|
|
* this implementation is that segments of range trees with gaps can only
|
|
* support removing complete segments.
|
|
*/
|
|
|
|
static inline void
|
|
rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
|
|
{
|
|
ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
|
|
size_t size = 0;
|
|
switch (rt->rt_type) {
|
|
case RANGE_SEG32:
|
|
size = sizeof (range_seg32_t);
|
|
break;
|
|
case RANGE_SEG64:
|
|
size = sizeof (range_seg64_t);
|
|
break;
|
|
case RANGE_SEG_GAP:
|
|
size = sizeof (range_seg_gap_t);
|
|
break;
|
|
default:
|
|
VERIFY(0);
|
|
}
|
|
bcopy(src, dest, size);
|
|
}
|
|
|
|
void
|
|
range_tree_stat_verify(range_tree_t *rt)
|
|
{
|
|
range_seg_t *rs;
|
|
zfs_btree_index_t where;
|
|
uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
|
|
int i;
|
|
|
|
for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
|
|
rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
|
|
uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
|
|
int idx = highbit64(size) - 1;
|
|
|
|
hist[idx]++;
|
|
ASSERT3U(hist[idx], !=, 0);
|
|
}
|
|
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
if (hist[i] != rt->rt_histogram[i]) {
|
|
zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
|
|
i, hist, (u_longlong_t)hist[i],
|
|
(u_longlong_t)rt->rt_histogram[i]);
|
|
}
|
|
VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
|
|
{
|
|
uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
|
|
int idx = highbit64(size) - 1;
|
|
|
|
ASSERT(size != 0);
|
|
ASSERT3U(idx, <,
|
|
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
|
|
|
|
rt->rt_histogram[idx]++;
|
|
ASSERT3U(rt->rt_histogram[idx], !=, 0);
|
|
}
|
|
|
|
static void
|
|
range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
|
|
{
|
|
uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
|
|
int idx = highbit64(size) - 1;
|
|
|
|
ASSERT(size != 0);
|
|
ASSERT3U(idx, <,
|
|
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
|
|
|
|
ASSERT3U(rt->rt_histogram[idx], !=, 0);
|
|
rt->rt_histogram[idx]--;
|
|
}
|
|
|
|
static int
|
|
range_tree_seg32_compare(const void *x1, const void *x2)
|
|
{
|
|
const range_seg32_t *r1 = x1;
|
|
const range_seg32_t *r2 = x2;
|
|
|
|
ASSERT3U(r1->rs_start, <=, r1->rs_end);
|
|
ASSERT3U(r2->rs_start, <=, r2->rs_end);
|
|
|
|
return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
|
|
}
|
|
|
|
static int
|
|
range_tree_seg64_compare(const void *x1, const void *x2)
|
|
{
|
|
const range_seg64_t *r1 = x1;
|
|
const range_seg64_t *r2 = x2;
|
|
|
|
ASSERT3U(r1->rs_start, <=, r1->rs_end);
|
|
ASSERT3U(r2->rs_start, <=, r2->rs_end);
|
|
|
|
return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
|
|
}
|
|
|
|
static int
|
|
range_tree_seg_gap_compare(const void *x1, const void *x2)
|
|
{
|
|
const range_seg_gap_t *r1 = x1;
|
|
const range_seg_gap_t *r2 = x2;
|
|
|
|
ASSERT3U(r1->rs_start, <=, r1->rs_end);
|
|
ASSERT3U(r2->rs_start, <=, r2->rs_end);
|
|
|
|
return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
|
|
}
|
|
|
|
range_tree_t *
|
|
range_tree_create_gap(const range_tree_ops_t *ops, range_seg_type_t type,
|
|
void *arg, uint64_t start, uint64_t shift, uint64_t gap)
|
|
{
|
|
range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
|
|
|
|
ASSERT3U(shift, <, 64);
|
|
ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
|
|
size_t size;
|
|
int (*compare) (const void *, const void *);
|
|
switch (type) {
|
|
case RANGE_SEG32:
|
|
size = sizeof (range_seg32_t);
|
|
compare = range_tree_seg32_compare;
|
|
break;
|
|
case RANGE_SEG64:
|
|
size = sizeof (range_seg64_t);
|
|
compare = range_tree_seg64_compare;
|
|
break;
|
|
case RANGE_SEG_GAP:
|
|
size = sizeof (range_seg_gap_t);
|
|
compare = range_tree_seg_gap_compare;
|
|
break;
|
|
default:
|
|
panic("Invalid range seg type %d", type);
|
|
}
|
|
zfs_btree_create(&rt->rt_root, compare, size);
|
|
|
|
rt->rt_ops = ops;
|
|
rt->rt_gap = gap;
|
|
rt->rt_arg = arg;
|
|
rt->rt_type = type;
|
|
rt->rt_start = start;
|
|
rt->rt_shift = shift;
|
|
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
|
|
rt->rt_ops->rtop_create(rt, rt->rt_arg);
|
|
|
|
return (rt);
|
|
}
|
|
|
|
range_tree_t *
|
|
range_tree_create(const range_tree_ops_t *ops, range_seg_type_t type,
|
|
void *arg, uint64_t start, uint64_t shift)
|
|
{
|
|
return (range_tree_create_gap(ops, type, arg, start, shift, 0));
|
|
}
|
|
|
|
void
|
|
range_tree_destroy(range_tree_t *rt)
|
|
{
|
|
VERIFY0(rt->rt_space);
|
|
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
|
|
rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
|
|
|
|
zfs_btree_destroy(&rt->rt_root);
|
|
kmem_free(rt, sizeof (*rt));
|
|
}
|
|
|
|
void
|
|
range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
|
|
{
|
|
if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) {
|
|
zfs_panic_recover("zfs: attempting to decrease fill to or "
|
|
"below 0; probable double remove in segment [%llx:%llx]",
|
|
(longlong_t)rs_get_start(rs, rt),
|
|
(longlong_t)rs_get_end(rs, rt));
|
|
}
|
|
if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) -
|
|
rs_get_start(rs, rt)) {
|
|
zfs_panic_recover("zfs: attempting to increase fill beyond "
|
|
"max; probable double add in segment [%llx:%llx]",
|
|
(longlong_t)rs_get_start(rs, rt),
|
|
(longlong_t)rs_get_end(rs, rt));
|
|
}
|
|
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
|
|
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
|
|
rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
|
|
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
|
|
}
|
|
|
|
static void
|
|
range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
|
|
{
|
|
range_tree_t *rt = arg;
|
|
zfs_btree_index_t where;
|
|
range_seg_t *rs_before, *rs_after, *rs;
|
|
range_seg_max_t tmp, rsearch;
|
|
uint64_t end = start + size, gap = rt->rt_gap;
|
|
uint64_t bridge_size = 0;
|
|
boolean_t merge_before, merge_after;
|
|
|
|
ASSERT3U(size, !=, 0);
|
|
ASSERT3U(fill, <=, size);
|
|
ASSERT3U(start + size, >, start);
|
|
|
|
rs_set_start(&rsearch, rt, start);
|
|
rs_set_end(&rsearch, rt, end);
|
|
rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
|
|
|
|
/*
|
|
* If this is a gap-supporting range tree, it is possible that we
|
|
* are inserting into an existing segment. In this case simply
|
|
* bump the fill count and call the remove / add callbacks. If the
|
|
* new range will extend an existing segment, we remove the
|
|
* existing one, apply the new extent to it and re-insert it using
|
|
* the normal code paths.
|
|
*/
|
|
if (rs != NULL) {
|
|
if (gap == 0) {
|
|
zfs_panic_recover("zfs: adding existent segment to "
|
|
"range tree (offset=%llx size=%llx)",
|
|
(longlong_t)start, (longlong_t)size);
|
|
return;
|
|
}
|
|
uint64_t rstart = rs_get_start(rs, rt);
|
|
uint64_t rend = rs_get_end(rs, rt);
|
|
if (rstart <= start && rend >= end) {
|
|
range_tree_adjust_fill(rt, rs, fill);
|
|
return;
|
|
}
|
|
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
|
|
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
|
|
|
|
range_tree_stat_decr(rt, rs);
|
|
rt->rt_space -= rend - rstart;
|
|
|
|
fill += rs_get_fill(rs, rt);
|
|
start = MIN(start, rstart);
|
|
end = MAX(end, rend);
|
|
size = end - start;
|
|
|
|
zfs_btree_remove(&rt->rt_root, rs);
|
|
range_tree_add_impl(rt, start, size, fill);
|
|
return;
|
|
}
|
|
|
|
ASSERT3P(rs, ==, NULL);
|
|
|
|
/*
|
|
* Determine whether or not we will have to merge with our neighbors.
|
|
* If gap != 0, we might need to merge with our neighbors even if we
|
|
* aren't directly touching.
|
|
*/
|
|
zfs_btree_index_t where_before, where_after;
|
|
rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
|
|
rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
|
|
|
|
merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
|
|
start - gap);
|
|
merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
|
|
gap);
|
|
|
|
if (merge_before && gap != 0)
|
|
bridge_size += start - rs_get_end(rs_before, rt);
|
|
if (merge_after && gap != 0)
|
|
bridge_size += rs_get_start(rs_after, rt) - end;
|
|
|
|
if (merge_before && merge_after) {
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
|
|
rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
|
|
rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
|
|
}
|
|
|
|
range_tree_stat_decr(rt, rs_before);
|
|
range_tree_stat_decr(rt, rs_after);
|
|
|
|
rs_copy(rs_after, &tmp, rt);
|
|
uint64_t before_start = rs_get_start_raw(rs_before, rt);
|
|
uint64_t before_fill = rs_get_fill(rs_before, rt);
|
|
uint64_t after_fill = rs_get_fill(rs_after, rt);
|
|
zfs_btree_remove_idx(&rt->rt_root, &where_before);
|
|
|
|
/*
|
|
* We have to re-find the node because our old reference is
|
|
* invalid as soon as we do any mutating btree operations.
|
|
*/
|
|
rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
|
|
rs_set_start_raw(rs_after, rt, before_start);
|
|
rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
|
|
rs = rs_after;
|
|
} else if (merge_before) {
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
|
|
rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
|
|
|
|
range_tree_stat_decr(rt, rs_before);
|
|
|
|
uint64_t before_fill = rs_get_fill(rs_before, rt);
|
|
rs_set_end(rs_before, rt, end);
|
|
rs_set_fill(rs_before, rt, before_fill + fill);
|
|
rs = rs_before;
|
|
} else if (merge_after) {
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
|
|
rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
|
|
|
|
range_tree_stat_decr(rt, rs_after);
|
|
|
|
uint64_t after_fill = rs_get_fill(rs_after, rt);
|
|
rs_set_start(rs_after, rt, start);
|
|
rs_set_fill(rs_after, rt, after_fill + fill);
|
|
rs = rs_after;
|
|
} else {
|
|
rs = &tmp;
|
|
|
|
rs_set_start(rs, rt, start);
|
|
rs_set_end(rs, rt, end);
|
|
rs_set_fill(rs, rt, fill);
|
|
zfs_btree_add_idx(&rt->rt_root, rs, &where);
|
|
}
|
|
|
|
if (gap != 0) {
|
|
ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
|
|
rs_get_start(rs, rt));
|
|
} else {
|
|
ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
|
|
rs_get_start(rs, rt));
|
|
}
|
|
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
|
|
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
|
|
|
|
range_tree_stat_incr(rt, rs);
|
|
rt->rt_space += size + bridge_size;
|
|
}
|
|
|
|
void
|
|
range_tree_add(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
range_tree_add_impl(arg, start, size, size);
|
|
}
|
|
|
|
static void
|
|
range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
|
|
boolean_t do_fill)
|
|
{
|
|
zfs_btree_index_t where;
|
|
range_seg_t *rs;
|
|
range_seg_max_t rsearch, rs_tmp;
|
|
uint64_t end = start + size;
|
|
boolean_t left_over, right_over;
|
|
|
|
VERIFY3U(size, !=, 0);
|
|
VERIFY3U(size, <=, rt->rt_space);
|
|
if (rt->rt_type == RANGE_SEG64)
|
|
ASSERT3U(start + size, >, start);
|
|
|
|
rs_set_start(&rsearch, rt, start);
|
|
rs_set_end(&rsearch, rt, end);
|
|
rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
|
|
|
|
/* Make sure we completely overlap with someone */
|
|
if (rs == NULL) {
|
|
zfs_panic_recover("zfs: removing nonexistent segment from "
|
|
"range tree (offset=%llx size=%llx)",
|
|
(longlong_t)start, (longlong_t)size);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Range trees with gap support must only remove complete segments
|
|
* from the tree. This allows us to maintain accurate fill accounting
|
|
* and to ensure that bridged sections are not leaked. If we need to
|
|
* remove less than the full segment, we can only adjust the fill count.
|
|
*/
|
|
if (rt->rt_gap != 0) {
|
|
if (do_fill) {
|
|
if (rs_get_fill(rs, rt) == size) {
|
|
start = rs_get_start(rs, rt);
|
|
end = rs_get_end(rs, rt);
|
|
size = end - start;
|
|
} else {
|
|
range_tree_adjust_fill(rt, rs, -size);
|
|
return;
|
|
}
|
|
} else if (rs_get_start(rs, rt) != start ||
|
|
rs_get_end(rs, rt) != end) {
|
|
zfs_panic_recover("zfs: freeing partial segment of "
|
|
"gap tree (offset=%llx size=%llx) of "
|
|
"(offset=%llx size=%llx)",
|
|
(longlong_t)start, (longlong_t)size,
|
|
(longlong_t)rs_get_start(rs, rt),
|
|
(longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
|
|
rt));
|
|
return;
|
|
}
|
|
}
|
|
|
|
VERIFY3U(rs_get_start(rs, rt), <=, start);
|
|
VERIFY3U(rs_get_end(rs, rt), >=, end);
|
|
|
|
left_over = (rs_get_start(rs, rt) != start);
|
|
right_over = (rs_get_end(rs, rt) != end);
|
|
|
|
range_tree_stat_decr(rt, rs);
|
|
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
|
|
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
|
|
|
|
if (left_over && right_over) {
|
|
range_seg_max_t newseg;
|
|
rs_set_start(&newseg, rt, end);
|
|
rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
|
|
rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
|
|
range_tree_stat_incr(rt, &newseg);
|
|
|
|
// This modifies the buffer already inside the range tree
|
|
rs_set_end(rs, rt, start);
|
|
|
|
rs_copy(rs, &rs_tmp, rt);
|
|
if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
|
|
zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
|
|
else
|
|
zfs_btree_add(&rt->rt_root, &newseg);
|
|
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
|
|
rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
|
|
} else if (left_over) {
|
|
// This modifies the buffer already inside the range tree
|
|
rs_set_end(rs, rt, start);
|
|
rs_copy(rs, &rs_tmp, rt);
|
|
} else if (right_over) {
|
|
// This modifies the buffer already inside the range tree
|
|
rs_set_start(rs, rt, end);
|
|
rs_copy(rs, &rs_tmp, rt);
|
|
} else {
|
|
zfs_btree_remove_idx(&rt->rt_root, &where);
|
|
rs = NULL;
|
|
}
|
|
|
|
if (rs != NULL) {
|
|
/*
|
|
* The fill of the leftover segment will always be equal to
|
|
* the size, since we do not support removing partial segments
|
|
* of range trees with gaps.
|
|
*/
|
|
rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
|
|
rs_get_start_raw(rs, rt));
|
|
range_tree_stat_incr(rt, &rs_tmp);
|
|
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
|
|
rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
|
|
}
|
|
|
|
rt->rt_space -= size;
|
|
}
|
|
|
|
void
|
|
range_tree_remove(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
range_tree_remove_impl(arg, start, size, B_FALSE);
|
|
}
|
|
|
|
void
|
|
range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
|
|
{
|
|
range_tree_remove_impl(rt, start, size, B_TRUE);
|
|
}
|
|
|
|
void
|
|
range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
|
|
uint64_t newstart, uint64_t newsize)
|
|
{
|
|
int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
|
|
|
|
range_tree_stat_decr(rt, rs);
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
|
|
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
|
|
|
|
rs_set_start(rs, rt, newstart);
|
|
rs_set_end(rs, rt, newstart + newsize);
|
|
|
|
range_tree_stat_incr(rt, rs);
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
|
|
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
|
|
|
|
rt->rt_space += delta;
|
|
}
|
|
|
|
static range_seg_t *
|
|
range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
|
|
{
|
|
range_seg_max_t rsearch;
|
|
uint64_t end = start + size;
|
|
|
|
VERIFY(size != 0);
|
|
|
|
rs_set_start(&rsearch, rt, start);
|
|
rs_set_end(&rsearch, rt, end);
|
|
return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
|
|
}
|
|
|
|
range_seg_t *
|
|
range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
|
|
{
|
|
if (rt->rt_type == RANGE_SEG64)
|
|
ASSERT3U(start + size, >, start);
|
|
|
|
range_seg_t *rs = range_tree_find_impl(rt, start, size);
|
|
if (rs != NULL && rs_get_start(rs, rt) <= start &&
|
|
rs_get_end(rs, rt) >= start + size) {
|
|
return (rs);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
|
|
{
|
|
range_seg_t *rs = range_tree_find(rt, off, size);
|
|
if (rs != NULL)
|
|
panic("segment already in tree; rs=%p", (void *)rs);
|
|
}
|
|
|
|
boolean_t
|
|
range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
|
|
{
|
|
return (range_tree_find(rt, start, size) != NULL);
|
|
}
|
|
|
|
/*
|
|
* Returns the first subset of the given range which overlaps with the range
|
|
* tree. Returns true if there is a segment in the range, and false if there
|
|
* isn't.
|
|
*/
|
|
boolean_t
|
|
range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
|
|
uint64_t *ostart, uint64_t *osize)
|
|
{
|
|
if (rt->rt_type == RANGE_SEG64)
|
|
ASSERT3U(start + size, >, start);
|
|
|
|
range_seg_max_t rsearch;
|
|
rs_set_start(&rsearch, rt, start);
|
|
rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
|
|
|
|
zfs_btree_index_t where;
|
|
range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
|
|
if (rs != NULL) {
|
|
*ostart = start;
|
|
*osize = MIN(size, rs_get_end(rs, rt) - start);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
rs = zfs_btree_next(&rt->rt_root, &where, &where);
|
|
if (rs == NULL || rs_get_start(rs, rt) > start + size)
|
|
return (B_FALSE);
|
|
|
|
*ostart = rs_get_start(rs, rt);
|
|
*osize = MIN(start + size, rs_get_end(rs, rt)) -
|
|
rs_get_start(rs, rt);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Ensure that this range is not in the tree, regardless of whether
|
|
* it is currently in the tree.
|
|
*/
|
|
void
|
|
range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
|
|
{
|
|
range_seg_t *rs;
|
|
|
|
if (size == 0)
|
|
return;
|
|
|
|
if (rt->rt_type == RANGE_SEG64)
|
|
ASSERT3U(start + size, >, start);
|
|
|
|
while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
|
|
uint64_t free_start = MAX(rs_get_start(rs, rt), start);
|
|
uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
|
|
range_tree_remove(rt, free_start, free_end - free_start);
|
|
}
|
|
}
|
|
|
|
void
|
|
range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
|
|
{
|
|
range_tree_t *rt;
|
|
|
|
ASSERT0(range_tree_space(*rtdst));
|
|
ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
|
|
|
|
rt = *rtsrc;
|
|
*rtsrc = *rtdst;
|
|
*rtdst = rt;
|
|
}
|
|
|
|
void
|
|
range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
|
|
{
|
|
if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
|
|
rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
|
|
|
|
if (func != NULL) {
|
|
range_seg_t *rs;
|
|
zfs_btree_index_t *cookie = NULL;
|
|
|
|
while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
|
|
NULL) {
|
|
func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
|
|
rs_get_start(rs, rt));
|
|
}
|
|
} else {
|
|
zfs_btree_clear(&rt->rt_root);
|
|
}
|
|
|
|
bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
|
|
rt->rt_space = 0;
|
|
}
|
|
|
|
void
|
|
range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
|
|
{
|
|
zfs_btree_index_t where;
|
|
for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
|
|
rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
|
|
func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
|
|
rs_get_start(rs, rt));
|
|
}
|
|
}
|
|
|
|
range_seg_t *
|
|
range_tree_first(range_tree_t *rt)
|
|
{
|
|
return (zfs_btree_first(&rt->rt_root, NULL));
|
|
}
|
|
|
|
uint64_t
|
|
range_tree_space(range_tree_t *rt)
|
|
{
|
|
return (rt->rt_space);
|
|
}
|
|
|
|
uint64_t
|
|
range_tree_numsegs(range_tree_t *rt)
|
|
{
|
|
return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
|
|
}
|
|
|
|
boolean_t
|
|
range_tree_is_empty(range_tree_t *rt)
|
|
{
|
|
ASSERT(rt != NULL);
|
|
return (range_tree_space(rt) == 0);
|
|
}
|
|
|
|
/*
|
|
* Remove any overlapping ranges between the given segment [start, end)
|
|
* from removefrom. Add non-overlapping leftovers to addto.
|
|
*/
|
|
void
|
|
range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
|
|
range_tree_t *removefrom, range_tree_t *addto)
|
|
{
|
|
zfs_btree_index_t where;
|
|
range_seg_max_t starting_rs;
|
|
rs_set_start(&starting_rs, removefrom, start);
|
|
rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
|
|
removefrom) + 1);
|
|
|
|
range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
|
|
&starting_rs, &where);
|
|
|
|
if (curr == NULL)
|
|
curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
|
|
|
|
range_seg_t *next;
|
|
for (; curr != NULL; curr = next) {
|
|
if (start == end)
|
|
return;
|
|
VERIFY3U(start, <, end);
|
|
|
|
/* there is no overlap */
|
|
if (end <= rs_get_start(curr, removefrom)) {
|
|
range_tree_add(addto, start, end - start);
|
|
return;
|
|
}
|
|
|
|
uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
|
|
start);
|
|
uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
|
|
end);
|
|
uint64_t overlap_size = overlap_end - overlap_start;
|
|
ASSERT3S(overlap_size, >, 0);
|
|
range_seg_max_t rs;
|
|
rs_copy(curr, &rs, removefrom);
|
|
|
|
range_tree_remove(removefrom, overlap_start, overlap_size);
|
|
|
|
if (start < overlap_start)
|
|
range_tree_add(addto, start, overlap_start - start);
|
|
|
|
start = overlap_end;
|
|
next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
|
|
/*
|
|
* If we find something here, we only removed part of the
|
|
* curr segment. Either there's some left at the end
|
|
* because we've reached the end of the range we're removing,
|
|
* or there's some left at the start because we started
|
|
* partway through the range. Either way, we continue with
|
|
* the loop. If it's the former, we'll return at the start of
|
|
* the loop, and if it's the latter we'll see if there is more
|
|
* area to process.
|
|
*/
|
|
if (next != NULL) {
|
|
ASSERT(start == end || start == rs_get_end(&rs,
|
|
removefrom));
|
|
}
|
|
|
|
next = zfs_btree_next(&removefrom->rt_root, &where, &where);
|
|
}
|
|
VERIFY3P(curr, ==, NULL);
|
|
|
|
if (start != end) {
|
|
VERIFY3U(start, <, end);
|
|
range_tree_add(addto, start, end - start);
|
|
} else {
|
|
VERIFY3U(start, ==, end);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For each entry in rt, if it exists in removefrom, remove it
|
|
* from removefrom. Otherwise, add it to addto.
|
|
*/
|
|
void
|
|
range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
|
|
range_tree_t *addto)
|
|
{
|
|
zfs_btree_index_t where;
|
|
for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
|
|
rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
|
|
range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
|
|
rs_get_end(rs, rt), removefrom, addto);
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
range_tree_min(range_tree_t *rt)
|
|
{
|
|
range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
|
|
return (rs != NULL ? rs_get_start(rs, rt) : 0);
|
|
}
|
|
|
|
uint64_t
|
|
range_tree_max(range_tree_t *rt)
|
|
{
|
|
range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
|
|
return (rs != NULL ? rs_get_end(rs, rt) : 0);
|
|
}
|
|
|
|
uint64_t
|
|
range_tree_span(range_tree_t *rt)
|
|
{
|
|
return (range_tree_max(rt) - range_tree_min(rt));
|
|
}
|