mirror_zfs/module/zfs/arc.c
Brian Behlendorf 1cdb86cba2 Handle block pointers with a corrupt logical size
Commit 5f6d0b6 was originally added to gracefully handle block
pointers with a damaged logical size.  However, it incorrectly
assumed that all passed arc_done_func_t could handle a NULL
arc_buf_t.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4069
Closes #4080
2015-12-15 16:11:44 -08:00

7088 lines
207 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, Joyent, Inc. All rights reserved.
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
* Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
*/
/*
* DVA-based Adjustable Replacement Cache
*
* While much of the theory of operation used here is
* based on the self-tuning, low overhead replacement cache
* presented by Megiddo and Modha at FAST 2003, there are some
* significant differences:
*
* 1. The Megiddo and Modha model assumes any page is evictable.
* Pages in its cache cannot be "locked" into memory. This makes
* the eviction algorithm simple: evict the last page in the list.
* This also make the performance characteristics easy to reason
* about. Our cache is not so simple. At any given moment, some
* subset of the blocks in the cache are un-evictable because we
* have handed out a reference to them. Blocks are only evictable
* when there are no external references active. This makes
* eviction far more problematic: we choose to evict the evictable
* blocks that are the "lowest" in the list.
*
* There are times when it is not possible to evict the requested
* space. In these circumstances we are unable to adjust the cache
* size. To prevent the cache growing unbounded at these times we
* implement a "cache throttle" that slows the flow of new data
* into the cache until we can make space available.
*
* 2. The Megiddo and Modha model assumes a fixed cache size.
* Pages are evicted when the cache is full and there is a cache
* miss. Our model has a variable sized cache. It grows with
* high use, but also tries to react to memory pressure from the
* operating system: decreasing its size when system memory is
* tight.
*
* 3. The Megiddo and Modha model assumes a fixed page size. All
* elements of the cache are therefore exactly the same size. So
* when adjusting the cache size following a cache miss, its simply
* a matter of choosing a single page to evict. In our model, we
* have variable sized cache blocks (rangeing from 512 bytes to
* 128K bytes). We therefore choose a set of blocks to evict to make
* space for a cache miss that approximates as closely as possible
* the space used by the new block.
*
* See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
* by N. Megiddo & D. Modha, FAST 2003
*/
/*
* The locking model:
*
* A new reference to a cache buffer can be obtained in two
* ways: 1) via a hash table lookup using the DVA as a key,
* or 2) via one of the ARC lists. The arc_read() interface
* uses method 1, while the internal arc algorithms for
* adjusting the cache use method 2. We therefore provide two
* types of locks: 1) the hash table lock array, and 2) the
* arc list locks.
*
* Buffers do not have their own mutexes, rather they rely on the
* hash table mutexes for the bulk of their protection (i.e. most
* fields in the arc_buf_hdr_t are protected by these mutexes).
*
* buf_hash_find() returns the appropriate mutex (held) when it
* locates the requested buffer in the hash table. It returns
* NULL for the mutex if the buffer was not in the table.
*
* buf_hash_remove() expects the appropriate hash mutex to be
* already held before it is invoked.
*
* Each arc state also has a mutex which is used to protect the
* buffer list associated with the state. When attempting to
* obtain a hash table lock while holding an arc list lock you
* must use: mutex_tryenter() to avoid deadlock. Also note that
* the active state mutex must be held before the ghost state mutex.
*
* Arc buffers may have an associated eviction callback function.
* This function will be invoked prior to removing the buffer (e.g.
* in arc_do_user_evicts()). Note however that the data associated
* with the buffer may be evicted prior to the callback. The callback
* must be made with *no locks held* (to prevent deadlock). Additionally,
* the users of callbacks must ensure that their private data is
* protected from simultaneous callbacks from arc_clear_callback()
* and arc_do_user_evicts().
*
* It as also possible to register a callback which is run when the
* arc_meta_limit is reached and no buffers can be safely evicted. In
* this case the arc user should drop a reference on some arc buffers so
* they can be reclaimed and the arc_meta_limit honored. For example,
* when using the ZPL each dentry holds a references on a znode. These
* dentries must be pruned before the arc buffer holding the znode can
* be safely evicted.
*
* Note that the majority of the performance stats are manipulated
* with atomic operations.
*
* The L2ARC uses the l2ad_mtx on each vdev for the following:
*
* - L2ARC buflist creation
* - L2ARC buflist eviction
* - L2ARC write completion, which walks L2ARC buflists
* - ARC header destruction, as it removes from L2ARC buflists
* - ARC header release, as it removes from L2ARC buflists
*/
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/zio_compress.h>
#include <sys/zfs_context.h>
#include <sys/arc.h>
#include <sys/refcount.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/dsl_pool.h>
#include <sys/multilist.h>
#ifdef _KERNEL
#include <sys/vmsystm.h>
#include <vm/anon.h>
#include <sys/fs/swapnode.h>
#include <sys/zpl.h>
#include <linux/mm_compat.h>
#endif
#include <sys/callb.h>
#include <sys/kstat.h>
#include <sys/dmu_tx.h>
#include <zfs_fletcher.h>
#include <sys/arc_impl.h>
#include <sys/trace_arc.h>
#ifndef _KERNEL
/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
boolean_t arc_watch = B_FALSE;
#endif
static kmutex_t arc_reclaim_lock;
static kcondvar_t arc_reclaim_thread_cv;
static boolean_t arc_reclaim_thread_exit;
static kcondvar_t arc_reclaim_waiters_cv;
static kmutex_t arc_user_evicts_lock;
static kcondvar_t arc_user_evicts_cv;
static boolean_t arc_user_evicts_thread_exit;
/*
* The number of headers to evict in arc_evict_state_impl() before
* dropping the sublist lock and evicting from another sublist. A lower
* value means we're more likely to evict the "correct" header (i.e. the
* oldest header in the arc state), but comes with higher overhead
* (i.e. more invocations of arc_evict_state_impl()).
*/
int zfs_arc_evict_batch_limit = 10;
/*
* The number of sublists used for each of the arc state lists. If this
* is not set to a suitable value by the user, it will be configured to
* the number of CPUs on the system in arc_init().
*/
int zfs_arc_num_sublists_per_state = 0;
/* number of seconds before growing cache again */
static int arc_grow_retry = 5;
/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
int zfs_arc_overflow_shift = 8;
/* shift of arc_c for calculating both min and max arc_p */
static int arc_p_min_shift = 4;
/* log2(fraction of arc to reclaim) */
static int arc_shrink_shift = 7;
/*
* log2(fraction of ARC which must be free to allow growing).
* I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
* when reading a new block into the ARC, we will evict an equal-sized block
* from the ARC.
*
* This must be less than arc_shrink_shift, so that when we shrink the ARC,
* we will still not allow it to grow.
*/
int arc_no_grow_shift = 5;
/*
* minimum lifespan of a prefetch block in clock ticks
* (initialized in arc_init())
*/
static int arc_min_prefetch_lifespan;
/*
* If this percent of memory is free, don't throttle.
*/
int arc_lotsfree_percent = 10;
static int arc_dead;
/*
* The arc has filled available memory and has now warmed up.
*/
static boolean_t arc_warm;
/*
* These tunables are for performance analysis.
*/
unsigned long zfs_arc_max = 0;
unsigned long zfs_arc_min = 0;
unsigned long zfs_arc_meta_limit = 0;
unsigned long zfs_arc_meta_min = 0;
int zfs_arc_grow_retry = 0;
int zfs_arc_shrink_shift = 0;
int zfs_arc_p_min_shift = 0;
int zfs_disable_dup_eviction = 0;
int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
/*
* These tunables are Linux specific
*/
unsigned long zfs_arc_sys_free = 0;
int zfs_arc_min_prefetch_lifespan = 0;
int zfs_arc_p_aggressive_disable = 1;
int zfs_arc_p_dampener_disable = 1;
int zfs_arc_meta_prune = 10000;
int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
int zfs_arc_meta_adjust_restarts = 4096;
int zfs_arc_lotsfree_percent = 10;
/* The 6 states: */
static arc_state_t ARC_anon;
static arc_state_t ARC_mru;
static arc_state_t ARC_mru_ghost;
static arc_state_t ARC_mfu;
static arc_state_t ARC_mfu_ghost;
static arc_state_t ARC_l2c_only;
typedef struct arc_stats {
kstat_named_t arcstat_hits;
kstat_named_t arcstat_misses;
kstat_named_t arcstat_demand_data_hits;
kstat_named_t arcstat_demand_data_misses;
kstat_named_t arcstat_demand_metadata_hits;
kstat_named_t arcstat_demand_metadata_misses;
kstat_named_t arcstat_prefetch_data_hits;
kstat_named_t arcstat_prefetch_data_misses;
kstat_named_t arcstat_prefetch_metadata_hits;
kstat_named_t arcstat_prefetch_metadata_misses;
kstat_named_t arcstat_mru_hits;
kstat_named_t arcstat_mru_ghost_hits;
kstat_named_t arcstat_mfu_hits;
kstat_named_t arcstat_mfu_ghost_hits;
kstat_named_t arcstat_deleted;
/*
* Number of buffers that could not be evicted because the hash lock
* was held by another thread. The lock may not necessarily be held
* by something using the same buffer, since hash locks are shared
* by multiple buffers.
*/
kstat_named_t arcstat_mutex_miss;
/*
* Number of buffers skipped because they have I/O in progress, are
* indrect prefetch buffers that have not lived long enough, or are
* not from the spa we're trying to evict from.
*/
kstat_named_t arcstat_evict_skip;
/*
* Number of times arc_evict_state() was unable to evict enough
* buffers to reach its target amount.
*/
kstat_named_t arcstat_evict_not_enough;
kstat_named_t arcstat_evict_l2_cached;
kstat_named_t arcstat_evict_l2_eligible;
kstat_named_t arcstat_evict_l2_ineligible;
kstat_named_t arcstat_evict_l2_skip;
kstat_named_t arcstat_hash_elements;
kstat_named_t arcstat_hash_elements_max;
kstat_named_t arcstat_hash_collisions;
kstat_named_t arcstat_hash_chains;
kstat_named_t arcstat_hash_chain_max;
kstat_named_t arcstat_p;
kstat_named_t arcstat_c;
kstat_named_t arcstat_c_min;
kstat_named_t arcstat_c_max;
kstat_named_t arcstat_size;
/*
* Number of bytes consumed by internal ARC structures necessary
* for tracking purposes; these structures are not actually
* backed by ARC buffers. This includes arc_buf_hdr_t structures
* (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
* caches), and arc_buf_t structures (allocated via arc_buf_t
* cache).
*/
kstat_named_t arcstat_hdr_size;
/*
* Number of bytes consumed by ARC buffers of type equal to
* ARC_BUFC_DATA. This is generally consumed by buffers backing
* on disk user data (e.g. plain file contents).
*/
kstat_named_t arcstat_data_size;
/*
* Number of bytes consumed by ARC buffers of type equal to
* ARC_BUFC_METADATA. This is generally consumed by buffers
* backing on disk data that is used for internal ZFS
* structures (e.g. ZAP, dnode, indirect blocks, etc).
*/
kstat_named_t arcstat_metadata_size;
/*
* Number of bytes consumed by various buffers and structures
* not actually backed with ARC buffers. This includes bonus
* buffers (allocated directly via zio_buf_* functions),
* dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
* cache), and dnode_t structures (allocated via dnode_t cache).
*/
kstat_named_t arcstat_other_size;
/*
* Total number of bytes consumed by ARC buffers residing in the
* arc_anon state. This includes *all* buffers in the arc_anon
* state; e.g. data, metadata, evictable, and unevictable buffers
* are all included in this value.
*/
kstat_named_t arcstat_anon_size;
/*
* Number of bytes consumed by ARC buffers that meet the
* following criteria: backing buffers of type ARC_BUFC_DATA,
* residing in the arc_anon state, and are eligible for eviction
* (e.g. have no outstanding holds on the buffer).
*/
kstat_named_t arcstat_anon_evictable_data;
/*
* Number of bytes consumed by ARC buffers that meet the
* following criteria: backing buffers of type ARC_BUFC_METADATA,
* residing in the arc_anon state, and are eligible for eviction
* (e.g. have no outstanding holds on the buffer).
*/
kstat_named_t arcstat_anon_evictable_metadata;
/*
* Total number of bytes consumed by ARC buffers residing in the
* arc_mru state. This includes *all* buffers in the arc_mru
* state; e.g. data, metadata, evictable, and unevictable buffers
* are all included in this value.
*/
kstat_named_t arcstat_mru_size;
/*
* Number of bytes consumed by ARC buffers that meet the
* following criteria: backing buffers of type ARC_BUFC_DATA,
* residing in the arc_mru state, and are eligible for eviction
* (e.g. have no outstanding holds on the buffer).
*/
kstat_named_t arcstat_mru_evictable_data;
/*
* Number of bytes consumed by ARC buffers that meet the
* following criteria: backing buffers of type ARC_BUFC_METADATA,
* residing in the arc_mru state, and are eligible for eviction
* (e.g. have no outstanding holds on the buffer).
*/
kstat_named_t arcstat_mru_evictable_metadata;
/*
* Total number of bytes that *would have been* consumed by ARC
* buffers in the arc_mru_ghost state. The key thing to note
* here, is the fact that this size doesn't actually indicate
* RAM consumption. The ghost lists only consist of headers and
* don't actually have ARC buffers linked off of these headers.
* Thus, *if* the headers had associated ARC buffers, these
* buffers *would have* consumed this number of bytes.
*/
kstat_named_t arcstat_mru_ghost_size;
/*
* Number of bytes that *would have been* consumed by ARC
* buffers that are eligible for eviction, of type
* ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
*/
kstat_named_t arcstat_mru_ghost_evictable_data;
/*
* Number of bytes that *would have been* consumed by ARC
* buffers that are eligible for eviction, of type
* ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
*/
kstat_named_t arcstat_mru_ghost_evictable_metadata;
/*
* Total number of bytes consumed by ARC buffers residing in the
* arc_mfu state. This includes *all* buffers in the arc_mfu
* state; e.g. data, metadata, evictable, and unevictable buffers
* are all included in this value.
*/
kstat_named_t arcstat_mfu_size;
/*
* Number of bytes consumed by ARC buffers that are eligible for
* eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
* state.
*/
kstat_named_t arcstat_mfu_evictable_data;
/*
* Number of bytes consumed by ARC buffers that are eligible for
* eviction, of type ARC_BUFC_METADATA, and reside in the
* arc_mfu state.
*/
kstat_named_t arcstat_mfu_evictable_metadata;
/*
* Total number of bytes that *would have been* consumed by ARC
* buffers in the arc_mfu_ghost state. See the comment above
* arcstat_mru_ghost_size for more details.
*/
kstat_named_t arcstat_mfu_ghost_size;
/*
* Number of bytes that *would have been* consumed by ARC
* buffers that are eligible for eviction, of type
* ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
*/
kstat_named_t arcstat_mfu_ghost_evictable_data;
/*
* Number of bytes that *would have been* consumed by ARC
* buffers that are eligible for eviction, of type
* ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
*/
kstat_named_t arcstat_mfu_ghost_evictable_metadata;
kstat_named_t arcstat_l2_hits;
kstat_named_t arcstat_l2_misses;
kstat_named_t arcstat_l2_feeds;
kstat_named_t arcstat_l2_rw_clash;
kstat_named_t arcstat_l2_read_bytes;
kstat_named_t arcstat_l2_write_bytes;
kstat_named_t arcstat_l2_writes_sent;
kstat_named_t arcstat_l2_writes_done;
kstat_named_t arcstat_l2_writes_error;
kstat_named_t arcstat_l2_writes_lock_retry;
kstat_named_t arcstat_l2_evict_lock_retry;
kstat_named_t arcstat_l2_evict_reading;
kstat_named_t arcstat_l2_evict_l1cached;
kstat_named_t arcstat_l2_free_on_write;
kstat_named_t arcstat_l2_cdata_free_on_write;
kstat_named_t arcstat_l2_abort_lowmem;
kstat_named_t arcstat_l2_cksum_bad;
kstat_named_t arcstat_l2_io_error;
kstat_named_t arcstat_l2_size;
kstat_named_t arcstat_l2_asize;
kstat_named_t arcstat_l2_hdr_size;
kstat_named_t arcstat_l2_compress_successes;
kstat_named_t arcstat_l2_compress_zeros;
kstat_named_t arcstat_l2_compress_failures;
kstat_named_t arcstat_memory_throttle_count;
kstat_named_t arcstat_duplicate_buffers;
kstat_named_t arcstat_duplicate_buffers_size;
kstat_named_t arcstat_duplicate_reads;
kstat_named_t arcstat_memory_direct_count;
kstat_named_t arcstat_memory_indirect_count;
kstat_named_t arcstat_no_grow;
kstat_named_t arcstat_tempreserve;
kstat_named_t arcstat_loaned_bytes;
kstat_named_t arcstat_prune;
kstat_named_t arcstat_meta_used;
kstat_named_t arcstat_meta_limit;
kstat_named_t arcstat_meta_max;
kstat_named_t arcstat_meta_min;
kstat_named_t arcstat_need_free;
kstat_named_t arcstat_sys_free;
} arc_stats_t;
static arc_stats_t arc_stats = {
{ "hits", KSTAT_DATA_UINT64 },
{ "misses", KSTAT_DATA_UINT64 },
{ "demand_data_hits", KSTAT_DATA_UINT64 },
{ "demand_data_misses", KSTAT_DATA_UINT64 },
{ "demand_metadata_hits", KSTAT_DATA_UINT64 },
{ "demand_metadata_misses", KSTAT_DATA_UINT64 },
{ "prefetch_data_hits", KSTAT_DATA_UINT64 },
{ "prefetch_data_misses", KSTAT_DATA_UINT64 },
{ "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
{ "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
{ "mru_hits", KSTAT_DATA_UINT64 },
{ "mru_ghost_hits", KSTAT_DATA_UINT64 },
{ "mfu_hits", KSTAT_DATA_UINT64 },
{ "mfu_ghost_hits", KSTAT_DATA_UINT64 },
{ "deleted", KSTAT_DATA_UINT64 },
{ "mutex_miss", KSTAT_DATA_UINT64 },
{ "evict_skip", KSTAT_DATA_UINT64 },
{ "evict_not_enough", KSTAT_DATA_UINT64 },
{ "evict_l2_cached", KSTAT_DATA_UINT64 },
{ "evict_l2_eligible", KSTAT_DATA_UINT64 },
{ "evict_l2_ineligible", KSTAT_DATA_UINT64 },
{ "evict_l2_skip", KSTAT_DATA_UINT64 },
{ "hash_elements", KSTAT_DATA_UINT64 },
{ "hash_elements_max", KSTAT_DATA_UINT64 },
{ "hash_collisions", KSTAT_DATA_UINT64 },
{ "hash_chains", KSTAT_DATA_UINT64 },
{ "hash_chain_max", KSTAT_DATA_UINT64 },
{ "p", KSTAT_DATA_UINT64 },
{ "c", KSTAT_DATA_UINT64 },
{ "c_min", KSTAT_DATA_UINT64 },
{ "c_max", KSTAT_DATA_UINT64 },
{ "size", KSTAT_DATA_UINT64 },
{ "hdr_size", KSTAT_DATA_UINT64 },
{ "data_size", KSTAT_DATA_UINT64 },
{ "metadata_size", KSTAT_DATA_UINT64 },
{ "other_size", KSTAT_DATA_UINT64 },
{ "anon_size", KSTAT_DATA_UINT64 },
{ "anon_evictable_data", KSTAT_DATA_UINT64 },
{ "anon_evictable_metadata", KSTAT_DATA_UINT64 },
{ "mru_size", KSTAT_DATA_UINT64 },
{ "mru_evictable_data", KSTAT_DATA_UINT64 },
{ "mru_evictable_metadata", KSTAT_DATA_UINT64 },
{ "mru_ghost_size", KSTAT_DATA_UINT64 },
{ "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
{ "mfu_size", KSTAT_DATA_UINT64 },
{ "mfu_evictable_data", KSTAT_DATA_UINT64 },
{ "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
{ "mfu_ghost_size", KSTAT_DATA_UINT64 },
{ "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
{ "l2_hits", KSTAT_DATA_UINT64 },
{ "l2_misses", KSTAT_DATA_UINT64 },
{ "l2_feeds", KSTAT_DATA_UINT64 },
{ "l2_rw_clash", KSTAT_DATA_UINT64 },
{ "l2_read_bytes", KSTAT_DATA_UINT64 },
{ "l2_write_bytes", KSTAT_DATA_UINT64 },
{ "l2_writes_sent", KSTAT_DATA_UINT64 },
{ "l2_writes_done", KSTAT_DATA_UINT64 },
{ "l2_writes_error", KSTAT_DATA_UINT64 },
{ "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
{ "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
{ "l2_evict_reading", KSTAT_DATA_UINT64 },
{ "l2_evict_l1cached", KSTAT_DATA_UINT64 },
{ "l2_free_on_write", KSTAT_DATA_UINT64 },
{ "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
{ "l2_abort_lowmem", KSTAT_DATA_UINT64 },
{ "l2_cksum_bad", KSTAT_DATA_UINT64 },
{ "l2_io_error", KSTAT_DATA_UINT64 },
{ "l2_size", KSTAT_DATA_UINT64 },
{ "l2_asize", KSTAT_DATA_UINT64 },
{ "l2_hdr_size", KSTAT_DATA_UINT64 },
{ "l2_compress_successes", KSTAT_DATA_UINT64 },
{ "l2_compress_zeros", KSTAT_DATA_UINT64 },
{ "l2_compress_failures", KSTAT_DATA_UINT64 },
{ "memory_throttle_count", KSTAT_DATA_UINT64 },
{ "duplicate_buffers", KSTAT_DATA_UINT64 },
{ "duplicate_buffers_size", KSTAT_DATA_UINT64 },
{ "duplicate_reads", KSTAT_DATA_UINT64 },
{ "memory_direct_count", KSTAT_DATA_UINT64 },
{ "memory_indirect_count", KSTAT_DATA_UINT64 },
{ "arc_no_grow", KSTAT_DATA_UINT64 },
{ "arc_tempreserve", KSTAT_DATA_UINT64 },
{ "arc_loaned_bytes", KSTAT_DATA_UINT64 },
{ "arc_prune", KSTAT_DATA_UINT64 },
{ "arc_meta_used", KSTAT_DATA_UINT64 },
{ "arc_meta_limit", KSTAT_DATA_UINT64 },
{ "arc_meta_max", KSTAT_DATA_UINT64 },
{ "arc_meta_min", KSTAT_DATA_UINT64 },
{ "arc_need_free", KSTAT_DATA_UINT64 },
{ "arc_sys_free", KSTAT_DATA_UINT64 }
};
#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
#define ARCSTAT_INCR(stat, val) \
atomic_add_64(&arc_stats.stat.value.ui64, (val))
#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
#define ARCSTAT_MAX(stat, val) { \
uint64_t m; \
while ((val) > (m = arc_stats.stat.value.ui64) && \
(m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
continue; \
}
#define ARCSTAT_MAXSTAT(stat) \
ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
/*
* We define a macro to allow ARC hits/misses to be easily broken down by
* two separate conditions, giving a total of four different subtypes for
* each of hits and misses (so eight statistics total).
*/
#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
if (cond1) { \
if (cond2) { \
ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
} else { \
ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
} \
} else { \
if (cond2) { \
ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
} else { \
ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
} \
}
kstat_t *arc_ksp;
static arc_state_t *arc_anon;
static arc_state_t *arc_mru;
static arc_state_t *arc_mru_ghost;
static arc_state_t *arc_mfu;
static arc_state_t *arc_mfu_ghost;
static arc_state_t *arc_l2c_only;
/*
* There are several ARC variables that are critical to export as kstats --
* but we don't want to have to grovel around in the kstat whenever we wish to
* manipulate them. For these variables, we therefore define them to be in
* terms of the statistic variable. This assures that we are not introducing
* the possibility of inconsistency by having shadow copies of the variables,
* while still allowing the code to be readable.
*/
#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
#define arc_no_grow ARCSTAT(arcstat_no_grow)
#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
#define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
#define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
#define L2ARC_IS_VALID_COMPRESS(_c_) \
((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
static list_t arc_prune_list;
static kmutex_t arc_prune_mtx;
static taskq_t *arc_prune_taskq;
static arc_buf_t *arc_eviction_list;
static arc_buf_hdr_t arc_eviction_hdr;
#define GHOST_STATE(state) \
((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
(state) == arc_l2c_only)
#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
#define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
#define HDR_L2_READING(hdr) \
(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
#define HDR_ISTYPE_METADATA(hdr) \
((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
/*
* Other sizes
*/
#define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
/*
* Hash table routines
*/
#define HT_LOCK_ALIGN 64
#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
struct ht_lock {
kmutex_t ht_lock;
#ifdef _KERNEL
unsigned char pad[HT_LOCK_PAD];
#endif
};
#define BUF_LOCKS 8192
typedef struct buf_hash_table {
uint64_t ht_mask;
arc_buf_hdr_t **ht_table;
struct ht_lock ht_locks[BUF_LOCKS];
} buf_hash_table_t;
static buf_hash_table_t buf_hash_table;
#define BUF_HASH_INDEX(spa, dva, birth) \
(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
#define HDR_LOCK(hdr) \
(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
uint64_t zfs_crc64_table[256];
/*
* Level 2 ARC
*/
#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
#define L2ARC_HEADROOM 2 /* num of writes */
/*
* If we discover during ARC scan any buffers to be compressed, we boost
* our headroom for the next scanning cycle by this percentage multiple.
*/
#define L2ARC_HEADROOM_BOOST 200
#define L2ARC_FEED_SECS 1 /* caching interval secs */
#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
/*
* Used to distinguish headers that are being process by
* l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
* address. This can happen when the header is added to the l2arc's list
* of buffers to write in the first stage of l2arc_write_buffers(), but
* has not yet been written out which happens in the second stage of
* l2arc_write_buffers().
*/
#define L2ARC_ADDR_UNSET ((uint64_t)(-1))
#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
/* L2ARC Performance Tunables */
unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
int l2arc_nocompress = B_FALSE; /* don't compress bufs */
int l2arc_feed_again = B_TRUE; /* turbo warmup */
int l2arc_norw = B_FALSE; /* no reads during writes */
/*
* L2ARC Internals
*/
static list_t L2ARC_dev_list; /* device list */
static list_t *l2arc_dev_list; /* device list pointer */
static kmutex_t l2arc_dev_mtx; /* device list mutex */
static l2arc_dev_t *l2arc_dev_last; /* last device used */
static list_t L2ARC_free_on_write; /* free after write buf list */
static list_t *l2arc_free_on_write; /* free after write list ptr */
static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
static uint64_t l2arc_ndev; /* number of devices */
typedef struct l2arc_read_callback {
arc_buf_t *l2rcb_buf; /* read buffer */
spa_t *l2rcb_spa; /* spa */
blkptr_t l2rcb_bp; /* original blkptr */
zbookmark_phys_t l2rcb_zb; /* original bookmark */
int l2rcb_flags; /* original flags */
enum zio_compress l2rcb_compress; /* applied compress */
} l2arc_read_callback_t;
typedef struct l2arc_data_free {
/* protected by l2arc_free_on_write_mtx */
void *l2df_data;
size_t l2df_size;
void (*l2df_func)(void *, size_t);
list_node_t l2df_list_node;
} l2arc_data_free_t;
static kmutex_t l2arc_feed_thr_lock;
static kcondvar_t l2arc_feed_thr_cv;
static uint8_t l2arc_thread_exit;
static void arc_get_data_buf(arc_buf_t *);
static void arc_access(arc_buf_hdr_t *, kmutex_t *);
static boolean_t arc_is_overflowing(void);
static void arc_buf_watch(arc_buf_t *);
static void arc_tuning_update(void);
static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
static void l2arc_read_done(zio_t *);
static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
static uint64_t
buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
{
uint8_t *vdva = (uint8_t *)dva;
uint64_t crc = -1ULL;
int i;
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
for (i = 0; i < sizeof (dva_t); i++)
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
crc ^= (spa>>8) ^ birth;
return (crc);
}
#define BUF_EMPTY(buf) \
((buf)->b_dva.dva_word[0] == 0 && \
(buf)->b_dva.dva_word[1] == 0)
#define BUF_EQUAL(spa, dva, birth, buf) \
((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
((buf)->b_birth == birth) && ((buf)->b_spa == spa)
static void
buf_discard_identity(arc_buf_hdr_t *hdr)
{
hdr->b_dva.dva_word[0] = 0;
hdr->b_dva.dva_word[1] = 0;
hdr->b_birth = 0;
}
static arc_buf_hdr_t *
buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
{
const dva_t *dva = BP_IDENTITY(bp);
uint64_t birth = BP_PHYSICAL_BIRTH(bp);
uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
arc_buf_hdr_t *hdr;
mutex_enter(hash_lock);
for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
hdr = hdr->b_hash_next) {
if (BUF_EQUAL(spa, dva, birth, hdr)) {
*lockp = hash_lock;
return (hdr);
}
}
mutex_exit(hash_lock);
*lockp = NULL;
return (NULL);
}
/*
* Insert an entry into the hash table. If there is already an element
* equal to elem in the hash table, then the already existing element
* will be returned and the new element will not be inserted.
* Otherwise returns NULL.
* If lockp == NULL, the caller is assumed to already hold the hash lock.
*/
static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
{
uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
arc_buf_hdr_t *fhdr;
uint32_t i;
ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
ASSERT(hdr->b_birth != 0);
ASSERT(!HDR_IN_HASH_TABLE(hdr));
if (lockp != NULL) {
*lockp = hash_lock;
mutex_enter(hash_lock);
} else {
ASSERT(MUTEX_HELD(hash_lock));
}
for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
fhdr = fhdr->b_hash_next, i++) {
if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
return (fhdr);
}
hdr->b_hash_next = buf_hash_table.ht_table[idx];
buf_hash_table.ht_table[idx] = hdr;
hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
/* collect some hash table performance data */
if (i > 0) {
ARCSTAT_BUMP(arcstat_hash_collisions);
if (i == 1)
ARCSTAT_BUMP(arcstat_hash_chains);
ARCSTAT_MAX(arcstat_hash_chain_max, i);
}
ARCSTAT_BUMP(arcstat_hash_elements);
ARCSTAT_MAXSTAT(arcstat_hash_elements);
return (NULL);
}
static void
buf_hash_remove(arc_buf_hdr_t *hdr)
{
arc_buf_hdr_t *fhdr, **hdrp;
uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
ASSERT(HDR_IN_HASH_TABLE(hdr));
hdrp = &buf_hash_table.ht_table[idx];
while ((fhdr = *hdrp) != hdr) {
ASSERT(fhdr != NULL);
hdrp = &fhdr->b_hash_next;
}
*hdrp = hdr->b_hash_next;
hdr->b_hash_next = NULL;
hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
/* collect some hash table performance data */
ARCSTAT_BUMPDOWN(arcstat_hash_elements);
if (buf_hash_table.ht_table[idx] &&
buf_hash_table.ht_table[idx]->b_hash_next == NULL)
ARCSTAT_BUMPDOWN(arcstat_hash_chains);
}
/*
* Global data structures and functions for the buf kmem cache.
*/
static kmem_cache_t *hdr_full_cache;
static kmem_cache_t *hdr_l2only_cache;
static kmem_cache_t *buf_cache;
static void
buf_fini(void)
{
int i;
#if defined(_KERNEL) && defined(HAVE_SPL)
/*
* Large allocations which do not require contiguous pages
* should be using vmem_free() in the linux kernel\
*/
vmem_free(buf_hash_table.ht_table,
(buf_hash_table.ht_mask + 1) * sizeof (void *));
#else
kmem_free(buf_hash_table.ht_table,
(buf_hash_table.ht_mask + 1) * sizeof (void *));
#endif
for (i = 0; i < BUF_LOCKS; i++)
mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
kmem_cache_destroy(hdr_full_cache);
kmem_cache_destroy(hdr_l2only_cache);
kmem_cache_destroy(buf_cache);
}
/*
* Constructor callback - called when the cache is empty
* and a new buf is requested.
*/
/* ARGSUSED */
static int
hdr_full_cons(void *vbuf, void *unused, int kmflag)
{
arc_buf_hdr_t *hdr = vbuf;
bzero(hdr, HDR_FULL_SIZE);
cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
refcount_create(&hdr->b_l1hdr.b_refcnt);
mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
list_link_init(&hdr->b_l1hdr.b_arc_node);
list_link_init(&hdr->b_l2hdr.b_l2node);
multilist_link_init(&hdr->b_l1hdr.b_arc_node);
arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
return (0);
}
/* ARGSUSED */
static int
hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
{
arc_buf_hdr_t *hdr = vbuf;
bzero(hdr, HDR_L2ONLY_SIZE);
arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
return (0);
}
/* ARGSUSED */
static int
buf_cons(void *vbuf, void *unused, int kmflag)
{
arc_buf_t *buf = vbuf;
bzero(buf, sizeof (arc_buf_t));
mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
return (0);
}
/*
* Destructor callback - called when a cached buf is
* no longer required.
*/
/* ARGSUSED */
static void
hdr_full_dest(void *vbuf, void *unused)
{
arc_buf_hdr_t *hdr = vbuf;
ASSERT(BUF_EMPTY(hdr));
cv_destroy(&hdr->b_l1hdr.b_cv);
refcount_destroy(&hdr->b_l1hdr.b_refcnt);
mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
}
/* ARGSUSED */
static void
hdr_l2only_dest(void *vbuf, void *unused)
{
ASSERTV(arc_buf_hdr_t *hdr = vbuf);
ASSERT(BUF_EMPTY(hdr));
arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
}
/* ARGSUSED */
static void
buf_dest(void *vbuf, void *unused)
{
arc_buf_t *buf = vbuf;
mutex_destroy(&buf->b_evict_lock);
arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
}
/*
* Reclaim callback -- invoked when memory is low.
*/
/* ARGSUSED */
static void
hdr_recl(void *unused)
{
dprintf("hdr_recl called\n");
/*
* umem calls the reclaim func when we destroy the buf cache,
* which is after we do arc_fini().
*/
if (!arc_dead)
cv_signal(&arc_reclaim_thread_cv);
}
static void
buf_init(void)
{
uint64_t *ct;
uint64_t hsize = 1ULL << 12;
int i, j;
/*
* The hash table is big enough to fill all of physical memory
* with an average block size of zfs_arc_average_blocksize (default 8K).
* By default, the table will take up
* totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
*/
while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
hsize <<= 1;
retry:
buf_hash_table.ht_mask = hsize - 1;
#if defined(_KERNEL) && defined(HAVE_SPL)
/*
* Large allocations which do not require contiguous pages
* should be using vmem_alloc() in the linux kernel
*/
buf_hash_table.ht_table =
vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
#else
buf_hash_table.ht_table =
kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
#endif
if (buf_hash_table.ht_table == NULL) {
ASSERT(hsize > (1ULL << 8));
hsize >>= 1;
goto retry;
}
hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
NULL, NULL, 0);
buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
for (i = 0; i < 256; i++)
for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
for (i = 0; i < BUF_LOCKS; i++) {
mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
NULL, MUTEX_DEFAULT, NULL);
}
}
/*
* Transition between the two allocation states for the arc_buf_hdr struct.
* The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
* (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
* version is used when a cache buffer is only in the L2ARC in order to reduce
* memory usage.
*/
static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
{
arc_buf_hdr_t *nhdr;
l2arc_dev_t *dev;
ASSERT(HDR_HAS_L2HDR(hdr));
ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
(old == hdr_l2only_cache && new == hdr_full_cache));
dev = hdr->b_l2hdr.b_dev;
nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
buf_hash_remove(hdr);
bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
if (new == hdr_full_cache) {
nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
/*
* arc_access and arc_change_state need to be aware that a
* header has just come out of L2ARC, so we set its state to
* l2c_only even though it's about to change.
*/
nhdr->b_l1hdr.b_state = arc_l2c_only;
/* Verify previous threads set to NULL before freeing */
ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
} else {
ASSERT(hdr->b_l1hdr.b_buf == NULL);
ASSERT0(hdr->b_l1hdr.b_datacnt);
/*
* If we've reached here, We must have been called from
* arc_evict_hdr(), as such we should have already been
* removed from any ghost list we were previously on
* (which protects us from racing with arc_evict_state),
* thus no locking is needed during this check.
*/
ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
/*
* A buffer must not be moved into the arc_l2c_only
* state if it's not finished being written out to the
* l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
* might try to be accessed, even though it was removed.
*/
VERIFY(!HDR_L2_WRITING(hdr));
VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
}
/*
* The header has been reallocated so we need to re-insert it into any
* lists it was on.
*/
(void) buf_hash_insert(nhdr, NULL);
ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
mutex_enter(&dev->l2ad_mtx);
/*
* We must place the realloc'ed header back into the list at
* the same spot. Otherwise, if it's placed earlier in the list,
* l2arc_write_buffers() could find it during the function's
* write phase, and try to write it out to the l2arc.
*/
list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
list_remove(&dev->l2ad_buflist, hdr);
mutex_exit(&dev->l2ad_mtx);
/*
* Since we're using the pointer address as the tag when
* incrementing and decrementing the l2ad_alloc refcount, we
* must remove the old pointer (that we're about to destroy) and
* add the new pointer to the refcount. Otherwise we'd remove
* the wrong pointer address when calling arc_hdr_destroy() later.
*/
(void) refcount_remove_many(&dev->l2ad_alloc,
hdr->b_l2hdr.b_asize, hdr);
(void) refcount_add_many(&dev->l2ad_alloc,
nhdr->b_l2hdr.b_asize, nhdr);
buf_discard_identity(hdr);
hdr->b_freeze_cksum = NULL;
kmem_cache_free(old, hdr);
return (nhdr);
}
#define ARC_MINTIME (hz>>4) /* 62 ms */
static void
arc_cksum_verify(arc_buf_t *buf)
{
zio_cksum_t zc;
if (!(zfs_flags & ZFS_DEBUG_MODIFY))
return;
mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
return;
}
fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
panic("buffer modified while frozen!");
mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
}
static int
arc_cksum_equal(arc_buf_t *buf)
{
zio_cksum_t zc;
int equal;
mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
return (equal);
}
static void
arc_cksum_compute(arc_buf_t *buf, boolean_t force)
{
if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
return;
mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
if (buf->b_hdr->b_freeze_cksum != NULL) {
mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
return;
}
buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
buf->b_hdr->b_freeze_cksum);
mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
arc_buf_watch(buf);
}
#ifndef _KERNEL
void
arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
{
panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
}
#endif
/* ARGSUSED */
static void
arc_buf_unwatch(arc_buf_t *buf)
{
#ifndef _KERNEL
if (arc_watch) {
ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
PROT_READ | PROT_WRITE));
}
#endif
}
/* ARGSUSED */
static void
arc_buf_watch(arc_buf_t *buf)
{
#ifndef _KERNEL
if (arc_watch)
ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
#endif
}
static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t *hdr)
{
if (HDR_ISTYPE_METADATA(hdr)) {
return (ARC_BUFC_METADATA);
} else {
return (ARC_BUFC_DATA);
}
}
static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)
{
switch (type) {
case ARC_BUFC_DATA:
/* metadata field is 0 if buffer contains normal data */
return (0);
case ARC_BUFC_METADATA:
return (ARC_FLAG_BUFC_METADATA);
default:
break;
}
panic("undefined ARC buffer type!");
return ((uint32_t)-1);
}
void
arc_buf_thaw(arc_buf_t *buf)
{
if (zfs_flags & ZFS_DEBUG_MODIFY) {
if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
panic("modifying non-anon buffer!");
if (HDR_IO_IN_PROGRESS(buf->b_hdr))
panic("modifying buffer while i/o in progress!");
arc_cksum_verify(buf);
}
mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
if (buf->b_hdr->b_freeze_cksum != NULL) {
kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
buf->b_hdr->b_freeze_cksum = NULL;
}
mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
arc_buf_unwatch(buf);
}
void
arc_buf_freeze(arc_buf_t *buf)
{
kmutex_t *hash_lock;
if (!(zfs_flags & ZFS_DEBUG_MODIFY))
return;
hash_lock = HDR_LOCK(buf->b_hdr);
mutex_enter(hash_lock);
ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
buf->b_hdr->b_l1hdr.b_state == arc_anon);
arc_cksum_compute(buf, B_FALSE);
mutex_exit(hash_lock);
}
static void
add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
{
arc_state_t *state;
ASSERT(HDR_HAS_L1HDR(hdr));
ASSERT(MUTEX_HELD(hash_lock));
state = hdr->b_l1hdr.b_state;
if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
(state != arc_anon)) {
/* We don't use the L2-only state list. */
if (state != arc_l2c_only) {
arc_buf_contents_t type = arc_buf_type(hdr);
uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
multilist_t *list = &state->arcs_list[type];
uint64_t *size = &state->arcs_lsize[type];
multilist_remove(list, hdr);
if (GHOST_STATE(state)) {
ASSERT0(hdr->b_l1hdr.b_datacnt);
ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
delta = hdr->b_size;
}
ASSERT(delta > 0);
ASSERT3U(*size, >=, delta);
atomic_add_64(size, -delta);
}
/* remove the prefetch flag if we get a reference */
hdr->b_flags &= ~ARC_FLAG_PREFETCH;
}
}
static int
remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
{
int cnt;
arc_state_t *state = hdr->b_l1hdr.b_state;
ASSERT(HDR_HAS_L1HDR(hdr));
ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
ASSERT(!GHOST_STATE(state));
/*
* arc_l2c_only counts as a ghost state so we don't need to explicitly
* check to prevent usage of the arc_l2c_only list.
*/
if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
(state != arc_anon)) {
arc_buf_contents_t type = arc_buf_type(hdr);
multilist_t *list = &state->arcs_list[type];
uint64_t *size = &state->arcs_lsize[type];
multilist_insert(list, hdr);
ASSERT(hdr->b_l1hdr.b_datacnt > 0);
atomic_add_64(size, hdr->b_size *
hdr->b_l1hdr.b_datacnt);
}
return (cnt);
}
/*
* Returns detailed information about a specific arc buffer. When the
* state_index argument is set the function will calculate the arc header
* list position for its arc state. Since this requires a linear traversal
* callers are strongly encourage not to do this. However, it can be helpful
* for targeted analysis so the functionality is provided.
*/
void
arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
{
arc_buf_hdr_t *hdr = ab->b_hdr;
l1arc_buf_hdr_t *l1hdr = NULL;
l2arc_buf_hdr_t *l2hdr = NULL;
arc_state_t *state = NULL;
if (HDR_HAS_L1HDR(hdr)) {
l1hdr = &hdr->b_l1hdr;
state = l1hdr->b_state;
}
if (HDR_HAS_L2HDR(hdr))
l2hdr = &hdr->b_l2hdr;
memset(abi, 0, sizeof (arc_buf_info_t));
abi->abi_flags = hdr->b_flags;
if (l1hdr) {
abi->abi_datacnt = l1hdr->b_datacnt;
abi->abi_access = l1hdr->b_arc_access;
abi->abi_mru_hits = l1hdr->b_mru_hits;
abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
abi->abi_mfu_hits = l1hdr->b_mfu_hits;
abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
}
if (l2hdr) {
abi->abi_l2arc_dattr = l2hdr->b_daddr;
abi->abi_l2arc_asize = l2hdr->b_asize;
abi->abi_l2arc_compress = l2hdr->b_compress;
abi->abi_l2arc_hits = l2hdr->b_hits;
}
abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
abi->abi_state_contents = arc_buf_type(hdr);
abi->abi_size = hdr->b_size;
}
/*
* Move the supplied buffer to the indicated state. The hash lock
* for the buffer must be held by the caller.
*/
static void
arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
kmutex_t *hash_lock)
{
arc_state_t *old_state;
int64_t refcnt;
uint32_t datacnt;
uint64_t from_delta, to_delta;
arc_buf_contents_t buftype = arc_buf_type(hdr);
/*
* We almost always have an L1 hdr here, since we call arc_hdr_realloc()
* in arc_read() when bringing a buffer out of the L2ARC. However, the
* L1 hdr doesn't always exist when we change state to arc_anon before
* destroying a header, in which case reallocating to add the L1 hdr is
* pointless.
*/
if (HDR_HAS_L1HDR(hdr)) {
old_state = hdr->b_l1hdr.b_state;
refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
datacnt = hdr->b_l1hdr.b_datacnt;
} else {
old_state = arc_l2c_only;
refcnt = 0;
datacnt = 0;
}
ASSERT(MUTEX_HELD(hash_lock));
ASSERT3P(new_state, !=, old_state);
ASSERT(refcnt == 0 || datacnt > 0);
ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
ASSERT(old_state != arc_anon || datacnt <= 1);
from_delta = to_delta = datacnt * hdr->b_size;
/*
* If this buffer is evictable, transfer it from the
* old state list to the new state list.
*/
if (refcnt == 0) {
if (old_state != arc_anon && old_state != arc_l2c_only) {
uint64_t *size = &old_state->arcs_lsize[buftype];
ASSERT(HDR_HAS_L1HDR(hdr));
multilist_remove(&old_state->arcs_list[buftype], hdr);
/*
* If prefetching out of the ghost cache,
* we will have a non-zero datacnt.
*/
if (GHOST_STATE(old_state) && datacnt == 0) {
/* ghost elements have a ghost size */
ASSERT(hdr->b_l1hdr.b_buf == NULL);
from_delta = hdr->b_size;
}
ASSERT3U(*size, >=, from_delta);
atomic_add_64(size, -from_delta);
}
if (new_state != arc_anon && new_state != arc_l2c_only) {
uint64_t *size = &new_state->arcs_lsize[buftype];
/*
* An L1 header always exists here, since if we're
* moving to some L1-cached state (i.e. not l2c_only or
* anonymous), we realloc the header to add an L1hdr
* beforehand.
*/
ASSERT(HDR_HAS_L1HDR(hdr));
multilist_insert(&new_state->arcs_list[buftype], hdr);
/* ghost elements have a ghost size */
if (GHOST_STATE(new_state)) {
ASSERT0(datacnt);
ASSERT(hdr->b_l1hdr.b_buf == NULL);
to_delta = hdr->b_size;
}
atomic_add_64(size, to_delta);
}
}
ASSERT(!BUF_EMPTY(hdr));
if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
buf_hash_remove(hdr);
/* adjust state sizes (ignore arc_l2c_only) */
if (to_delta && new_state != arc_l2c_only) {
ASSERT(HDR_HAS_L1HDR(hdr));
if (GHOST_STATE(new_state)) {
ASSERT0(datacnt);
/*
* We moving a header to a ghost state, we first
* remove all arc buffers. Thus, we'll have a
* datacnt of zero, and no arc buffer to use for
* the reference. As a result, we use the arc
* header pointer for the reference.
*/
(void) refcount_add_many(&new_state->arcs_size,
hdr->b_size, hdr);
} else {
arc_buf_t *buf;
ASSERT3U(datacnt, !=, 0);
/*
* Each individual buffer holds a unique reference,
* thus we must remove each of these references one
* at a time.
*/
for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
buf = buf->b_next) {
(void) refcount_add_many(&new_state->arcs_size,
hdr->b_size, buf);
}
}
}
if (from_delta && old_state != arc_l2c_only) {
ASSERT(HDR_HAS_L1HDR(hdr));
if (GHOST_STATE(old_state)) {
/*
* When moving a header off of a ghost state,
* there's the possibility for datacnt to be
* non-zero. This is because we first add the
* arc buffer to the header prior to changing
* the header's state. Since we used the header
* for the reference when putting the header on
* the ghost state, we must balance that and use
* the header when removing off the ghost state
* (even though datacnt is non zero).
*/
IMPLY(datacnt == 0, new_state == arc_anon ||
new_state == arc_l2c_only);
(void) refcount_remove_many(&old_state->arcs_size,
hdr->b_size, hdr);
} else {
arc_buf_t *buf;
ASSERT3U(datacnt, !=, 0);
/*
* Each individual buffer holds a unique reference,
* thus we must remove each of these references one
* at a time.
*/
for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
buf = buf->b_next) {
(void) refcount_remove_many(
&old_state->arcs_size, hdr->b_size, buf);
}
}
}
if (HDR_HAS_L1HDR(hdr))
hdr->b_l1hdr.b_state = new_state;
/*
* L2 headers should never be on the L2 state list since they don't
* have L1 headers allocated.
*/
ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
}
void
arc_space_consume(uint64_t space, arc_space_type_t type)
{
ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
switch (type) {
default:
break;
case ARC_SPACE_DATA:
ARCSTAT_INCR(arcstat_data_size, space);
break;
case ARC_SPACE_META:
ARCSTAT_INCR(arcstat_metadata_size, space);
break;
case ARC_SPACE_OTHER:
ARCSTAT_INCR(arcstat_other_size, space);
break;
case ARC_SPACE_HDRS:
ARCSTAT_INCR(arcstat_hdr_size, space);
break;
case ARC_SPACE_L2HDRS:
ARCSTAT_INCR(arcstat_l2_hdr_size, space);
break;
}
if (type != ARC_SPACE_DATA)
ARCSTAT_INCR(arcstat_meta_used, space);
atomic_add_64(&arc_size, space);
}
void
arc_space_return(uint64_t space, arc_space_type_t type)
{
ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
switch (type) {
default:
break;
case ARC_SPACE_DATA:
ARCSTAT_INCR(arcstat_data_size, -space);
break;
case ARC_SPACE_META:
ARCSTAT_INCR(arcstat_metadata_size, -space);
break;
case ARC_SPACE_OTHER:
ARCSTAT_INCR(arcstat_other_size, -space);
break;
case ARC_SPACE_HDRS:
ARCSTAT_INCR(arcstat_hdr_size, -space);
break;
case ARC_SPACE_L2HDRS:
ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
break;
}
if (type != ARC_SPACE_DATA) {
ASSERT(arc_meta_used >= space);
if (arc_meta_max < arc_meta_used)
arc_meta_max = arc_meta_used;
ARCSTAT_INCR(arcstat_meta_used, -space);
}
ASSERT(arc_size >= space);
atomic_add_64(&arc_size, -space);
}
arc_buf_t *
arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
{
arc_buf_hdr_t *hdr;
arc_buf_t *buf;
VERIFY3U(size, <=, spa_maxblocksize(spa));
hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
ASSERT(BUF_EMPTY(hdr));
ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
hdr->b_size = size;
hdr->b_spa = spa_load_guid(spa);
hdr->b_l1hdr.b_mru_hits = 0;
hdr->b_l1hdr.b_mru_ghost_hits = 0;
hdr->b_l1hdr.b_mfu_hits = 0;
hdr->b_l1hdr.b_mfu_ghost_hits = 0;
hdr->b_l1hdr.b_l2_hits = 0;
buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
buf->b_hdr = hdr;
buf->b_data = NULL;
buf->b_efunc = NULL;
buf->b_private = NULL;
buf->b_next = NULL;
hdr->b_flags = arc_bufc_to_flags(type);
hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
hdr->b_l1hdr.b_buf = buf;
hdr->b_l1hdr.b_state = arc_anon;
hdr->b_l1hdr.b_arc_access = 0;
hdr->b_l1hdr.b_datacnt = 1;
hdr->b_l1hdr.b_tmp_cdata = NULL;
arc_get_data_buf(buf);
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
return (buf);
}
static char *arc_onloan_tag = "onloan";
/*
* Loan out an anonymous arc buffer. Loaned buffers are not counted as in
* flight data by arc_tempreserve_space() until they are "returned". Loaned
* buffers must be returned to the arc before they can be used by the DMU or
* freed.
*/
arc_buf_t *
arc_loan_buf(spa_t *spa, uint64_t size)
{
arc_buf_t *buf;
buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
atomic_add_64(&arc_loaned_bytes, size);
return (buf);
}
/*
* Return a loaned arc buffer to the arc.
*/
void
arc_return_buf(arc_buf_t *buf, void *tag)
{
arc_buf_hdr_t *hdr = buf->b_hdr;
ASSERT(buf->b_data != NULL);
ASSERT(HDR_HAS_L1HDR(hdr));
(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
}
/* Detach an arc_buf from a dbuf (tag) */
void
arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
{
arc_buf_hdr_t *hdr = buf->b_hdr;
ASSERT(buf->b_data != NULL);
ASSERT(HDR_HAS_L1HDR(hdr));
(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
buf->b_efunc = NULL;
buf->b_private = NULL;
atomic_add_64(&arc_loaned_bytes, hdr->b_size);
}
static arc_buf_t *
arc_buf_clone(arc_buf_t *from)
{
arc_buf_t *buf;
arc_buf_hdr_t *hdr = from->b_hdr;
uint64_t size = hdr->b_size;
ASSERT(HDR_HAS_L1HDR(hdr));
ASSERT(hdr->b_l1hdr.b_state != arc_anon);
buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
buf->b_hdr = hdr;
buf->b_data = NULL;
buf->b_efunc = NULL;
buf->b_private = NULL;
buf->b_next = hdr->b_l1hdr.b_buf;
hdr->b_l1hdr.b_buf = buf;
arc_get_data_buf(buf);
bcopy(from->b_data, buf->b_data, size);
/*
* This buffer already exists in the arc so create a duplicate
* copy for the caller. If the buffer is associated with user data
* then track the size and number of duplicates. These stats will be
* updated as duplicate buffers are created and destroyed.
*/
if (HDR_ISTYPE_DATA(hdr)) {
ARCSTAT_BUMP(arcstat_duplicate_buffers);
ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
}
hdr->b_l1hdr.b_datacnt += 1;
return (buf);
}
void
arc_buf_add_ref(arc_buf_t *buf, void* tag)
{
arc_buf_hdr_t *hdr;
kmutex_t *hash_lock;
/*
* Check to see if this buffer is evicted. Callers
* must verify b_data != NULL to know if the add_ref
* was successful.
*/
mutex_enter(&buf->b_evict_lock);
if (buf->b_data == NULL) {
mutex_exit(&buf->b_evict_lock);
return;
}
hash_lock = HDR_LOCK(buf->b_hdr);
mutex_enter(hash_lock);
hdr = buf->b_hdr;
ASSERT(HDR_HAS_L1HDR(hdr));
ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
mutex_exit(&buf->b_evict_lock);
ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
hdr->b_l1hdr.b_state == arc_mfu);
add_reference(hdr, hash_lock, tag);
DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
arc_access(hdr, hash_lock);
mutex_exit(hash_lock);
ARCSTAT_BUMP(arcstat_hits);
ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
data, metadata, hits);
}
static void
arc_buf_free_on_write(void *data, size_t size,
void (*free_func)(void *, size_t))
{
l2arc_data_free_t *df;
df = kmem_alloc(sizeof (*df), KM_SLEEP);
df->l2df_data = data;
df->l2df_size = size;
df->l2df_func = free_func;
mutex_enter(&l2arc_free_on_write_mtx);
list_insert_head(l2arc_free_on_write, df);
mutex_exit(&l2arc_free_on_write_mtx);
}
/*
* Free the arc data buffer. If it is an l2arc write in progress,
* the buffer is placed on l2arc_free_on_write to be freed later.
*/
static void
arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
{
arc_buf_hdr_t *hdr = buf->b_hdr;
if (HDR_L2_WRITING(hdr)) {
arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
ARCSTAT_BUMP(arcstat_l2_free_on_write);
} else {
free_func(buf->b_data, hdr->b_size);
}
}
static void
arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
{
ASSERT(HDR_HAS_L2HDR(hdr));
ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
/*
* The b_tmp_cdata field is linked off of the b_l1hdr, so if
* that doesn't exist, the header is in the arc_l2c_only state,
* and there isn't anything to free (it's already been freed).
*/
if (!HDR_HAS_L1HDR(hdr))
return;
/*
* The header isn't being written to the l2arc device, thus it
* shouldn't have a b_tmp_cdata to free.
*/
if (!HDR_L2_WRITING(hdr)) {
ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
return;
}
/*
* The header does not have compression enabled. This can be due
* to the buffer not being compressible, or because we're
* freeing the buffer before the second phase of
* l2arc_write_buffer() has started (which does the compression
* step). In either case, b_tmp_cdata does not point to a
* separately compressed buffer, so there's nothing to free (it
* points to the same buffer as the arc_buf_t's b_data field).
*/
if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) {
hdr->b_l1hdr.b_tmp_cdata = NULL;
return;
}
/*
* There's nothing to free since the buffer was all zero's and
* compressed to a zero length buffer.
*/
if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
return;
}
ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress));
arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
hdr->b_size, zio_data_buf_free);
ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
hdr->b_l1hdr.b_tmp_cdata = NULL;
}
/*
* Free up buf->b_data and if 'remove' is set, then pull the
* arc_buf_t off of the the arc_buf_hdr_t's list and free it.
*/
static void
arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
{
arc_buf_t **bufp;
/* free up data associated with the buf */
if (buf->b_data != NULL) {
arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
uint64_t size = buf->b_hdr->b_size;
arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
arc_cksum_verify(buf);
arc_buf_unwatch(buf);
if (type == ARC_BUFC_METADATA) {
arc_buf_data_free(buf, zio_buf_free);
arc_space_return(size, ARC_SPACE_META);
} else {
ASSERT(type == ARC_BUFC_DATA);
arc_buf_data_free(buf, zio_data_buf_free);
arc_space_return(size, ARC_SPACE_DATA);
}
/* protected by hash lock, if in the hash table */
if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
uint64_t *cnt = &state->arcs_lsize[type];
ASSERT(refcount_is_zero(
&buf->b_hdr->b_l1hdr.b_refcnt));
ASSERT(state != arc_anon && state != arc_l2c_only);
ASSERT3U(*cnt, >=, size);
atomic_add_64(cnt, -size);
}
(void) refcount_remove_many(&state->arcs_size, size, buf);
buf->b_data = NULL;
/*
* If we're destroying a duplicate buffer make sure
* that the appropriate statistics are updated.
*/
if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
HDR_ISTYPE_DATA(buf->b_hdr)) {
ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
}
ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
buf->b_hdr->b_l1hdr.b_datacnt -= 1;
}
/* only remove the buf if requested */
if (!remove)
return;
/* remove the buf from the hdr list */
for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
bufp = &(*bufp)->b_next)
continue;
*bufp = buf->b_next;
buf->b_next = NULL;
ASSERT(buf->b_efunc == NULL);
/* clean up the buf */
buf->b_hdr = NULL;
kmem_cache_free(buf_cache, buf);
}
static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
{
l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
l2arc_dev_t *dev = l2hdr->b_dev;
ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
ASSERT(HDR_HAS_L2HDR(hdr));
list_remove(&dev->l2ad_buflist, hdr);
/*
* We don't want to leak the b_tmp_cdata buffer that was
* allocated in l2arc_write_buffers()
*/
arc_buf_l2_cdata_free(hdr);
/*
* If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
* this header is being processed by l2arc_write_buffers() (i.e.
* it's in the first stage of l2arc_write_buffers()).
* Re-affirming that truth here, just to serve as a reminder. If
* b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
* may not have its HDR_L2_WRITING flag set. (the write may have
* completed, in which case HDR_L2_WRITING will be false and the
* b_daddr field will point to the address of the buffer on disk).
*/
IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
/*
* If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
* l2arc_write_buffers(). Since we've just removed this header
* from the l2arc buffer list, this header will never reach the
* second stage of l2arc_write_buffers(), which increments the
* accounting stats for this header. Thus, we must be careful
* not to decrement them for this header either.
*/
if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
vdev_space_update(dev->l2ad_vdev,
-l2hdr->b_asize, 0, 0);
(void) refcount_remove_many(&dev->l2ad_alloc,
l2hdr->b_asize, hdr);
}
hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
}
static void
arc_hdr_destroy(arc_buf_hdr_t *hdr)
{
if (HDR_HAS_L1HDR(hdr)) {
ASSERT(hdr->b_l1hdr.b_buf == NULL ||
hdr->b_l1hdr.b_datacnt > 0);
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
}
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
ASSERT(!HDR_IN_HASH_TABLE(hdr));
if (HDR_HAS_L2HDR(hdr)) {
l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
if (!buflist_held)
mutex_enter(&dev->l2ad_mtx);
/*
* Even though we checked this conditional above, we
* need to check this again now that we have the
* l2ad_mtx. This is because we could be racing with
* another thread calling l2arc_evict() which might have
* destroyed this header's L2 portion as we were waiting
* to acquire the l2ad_mtx. If that happens, we don't
* want to re-destroy the header's L2 portion.
*/
if (HDR_HAS_L2HDR(hdr))
arc_hdr_l2hdr_destroy(hdr);
if (!buflist_held)
mutex_exit(&dev->l2ad_mtx);
}
if (!BUF_EMPTY(hdr))
buf_discard_identity(hdr);
if (hdr->b_freeze_cksum != NULL) {
kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
hdr->b_freeze_cksum = NULL;
}
if (HDR_HAS_L1HDR(hdr)) {
while (hdr->b_l1hdr.b_buf) {
arc_buf_t *buf = hdr->b_l1hdr.b_buf;
if (buf->b_efunc != NULL) {
mutex_enter(&arc_user_evicts_lock);
mutex_enter(&buf->b_evict_lock);
ASSERT(buf->b_hdr != NULL);
arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
hdr->b_l1hdr.b_buf = buf->b_next;
buf->b_hdr = &arc_eviction_hdr;
buf->b_next = arc_eviction_list;
arc_eviction_list = buf;
mutex_exit(&buf->b_evict_lock);
cv_signal(&arc_user_evicts_cv);
mutex_exit(&arc_user_evicts_lock);
} else {
arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
}
}
}
ASSERT3P(hdr->b_hash_next, ==, NULL);
if (HDR_HAS_L1HDR(hdr)) {
ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
kmem_cache_free(hdr_full_cache, hdr);
} else {
kmem_cache_free(hdr_l2only_cache, hdr);
}
}
void
arc_buf_free(arc_buf_t *buf, void *tag)
{
arc_buf_hdr_t *hdr = buf->b_hdr;
int hashed = hdr->b_l1hdr.b_state != arc_anon;
ASSERT(buf->b_efunc == NULL);
ASSERT(buf->b_data != NULL);
if (hashed) {
kmutex_t *hash_lock = HDR_LOCK(hdr);
mutex_enter(hash_lock);
hdr = buf->b_hdr;
ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
(void) remove_reference(hdr, hash_lock, tag);
if (hdr->b_l1hdr.b_datacnt > 1) {
arc_buf_destroy(buf, TRUE);
} else {
ASSERT(buf == hdr->b_l1hdr.b_buf);
ASSERT(buf->b_efunc == NULL);
hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
}
mutex_exit(hash_lock);
} else if (HDR_IO_IN_PROGRESS(hdr)) {
int destroy_hdr;
/*
* We are in the middle of an async write. Don't destroy
* this buffer unless the write completes before we finish
* decrementing the reference count.
*/
mutex_enter(&arc_user_evicts_lock);
(void) remove_reference(hdr, NULL, tag);
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
mutex_exit(&arc_user_evicts_lock);
if (destroy_hdr)
arc_hdr_destroy(hdr);
} else {
if (remove_reference(hdr, NULL, tag) > 0)
arc_buf_destroy(buf, TRUE);
else
arc_hdr_destroy(hdr);
}
}
boolean_t
arc_buf_remove_ref(arc_buf_t *buf, void* tag)
{
arc_buf_hdr_t *hdr = buf->b_hdr;
kmutex_t *hash_lock = HDR_LOCK(hdr);
boolean_t no_callback = (buf->b_efunc == NULL);
if (hdr->b_l1hdr.b_state == arc_anon) {
ASSERT(hdr->b_l1hdr.b_datacnt == 1);
arc_buf_free(buf, tag);
return (no_callback);
}
mutex_enter(hash_lock);
hdr = buf->b_hdr;
ASSERT(hdr->b_l1hdr.b_datacnt > 0);
ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
ASSERT(hdr->b_l1hdr.b_state != arc_anon);
ASSERT(buf->b_data != NULL);
(void) remove_reference(hdr, hash_lock, tag);
if (hdr->b_l1hdr.b_datacnt > 1) {
if (no_callback)
arc_buf_destroy(buf, TRUE);
} else if (no_callback) {
ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
ASSERT(buf->b_efunc == NULL);
hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
}
ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
mutex_exit(hash_lock);
return (no_callback);
}
uint64_t
arc_buf_size(arc_buf_t *buf)
{
return (buf->b_hdr->b_size);
}
/*
* Called from the DMU to determine if the current buffer should be
* evicted. In order to ensure proper locking, the eviction must be initiated
* from the DMU. Return true if the buffer is associated with user data and
* duplicate buffers still exist.
*/
boolean_t
arc_buf_eviction_needed(arc_buf_t *buf)
{
arc_buf_hdr_t *hdr;
boolean_t evict_needed = B_FALSE;
if (zfs_disable_dup_eviction)
return (B_FALSE);
mutex_enter(&buf->b_evict_lock);
hdr = buf->b_hdr;
if (hdr == NULL) {
/*
* We are in arc_do_user_evicts(); let that function
* perform the eviction.
*/
ASSERT(buf->b_data == NULL);
mutex_exit(&buf->b_evict_lock);
return (B_FALSE);
} else if (buf->b_data == NULL) {
/*
* We have already been added to the arc eviction list;
* recommend eviction.
*/
ASSERT3P(hdr, ==, &arc_eviction_hdr);
mutex_exit(&buf->b_evict_lock);
return (B_TRUE);
}
if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
evict_needed = B_TRUE;
mutex_exit(&buf->b_evict_lock);
return (evict_needed);
}
/*
* Evict the arc_buf_hdr that is provided as a parameter. The resultant
* state of the header is dependent on its state prior to entering this
* function. The following transitions are possible:
*
* - arc_mru -> arc_mru_ghost
* - arc_mfu -> arc_mfu_ghost
* - arc_mru_ghost -> arc_l2c_only
* - arc_mru_ghost -> deleted
* - arc_mfu_ghost -> arc_l2c_only
* - arc_mfu_ghost -> deleted
*/
static int64_t
arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
{
arc_state_t *evicted_state, *state;
int64_t bytes_evicted = 0;
ASSERT(MUTEX_HELD(hash_lock));
ASSERT(HDR_HAS_L1HDR(hdr));
state = hdr->b_l1hdr.b_state;
if (GHOST_STATE(state)) {
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
ASSERT(hdr->b_l1hdr.b_buf == NULL);
/*
* l2arc_write_buffers() relies on a header's L1 portion
* (i.e. its b_tmp_cdata field) during its write phase.
* Thus, we cannot push a header onto the arc_l2c_only
* state (removing its L1 piece) until the header is
* done being written to the l2arc.
*/
if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
ARCSTAT_BUMP(arcstat_evict_l2_skip);
return (bytes_evicted);
}
ARCSTAT_BUMP(arcstat_deleted);
bytes_evicted += hdr->b_size;
DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
if (HDR_HAS_L2HDR(hdr)) {
/*
* This buffer is cached on the 2nd Level ARC;
* don't destroy the header.
*/
arc_change_state(arc_l2c_only, hdr, hash_lock);
/*
* dropping from L1+L2 cached to L2-only,
* realloc to remove the L1 header.
*/
hdr = arc_hdr_realloc(hdr, hdr_full_cache,
hdr_l2only_cache);
} else {
arc_change_state(arc_anon, hdr, hash_lock);
arc_hdr_destroy(hdr);
}
return (bytes_evicted);
}
ASSERT(state == arc_mru || state == arc_mfu);
evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
/* prefetch buffers have a minimum lifespan */
if (HDR_IO_IN_PROGRESS(hdr) ||
((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
arc_min_prefetch_lifespan)) {
ARCSTAT_BUMP(arcstat_evict_skip);
return (bytes_evicted);
}
ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
while (hdr->b_l1hdr.b_buf) {
arc_buf_t *buf = hdr->b_l1hdr.b_buf;
if (!mutex_tryenter(&buf->b_evict_lock)) {
ARCSTAT_BUMP(arcstat_mutex_miss);
break;
}
if (buf->b_data != NULL)
bytes_evicted += hdr->b_size;
if (buf->b_efunc != NULL) {
mutex_enter(&arc_user_evicts_lock);
arc_buf_destroy(buf, FALSE);
hdr->b_l1hdr.b_buf = buf->b_next;
buf->b_hdr = &arc_eviction_hdr;
buf->b_next = arc_eviction_list;
arc_eviction_list = buf;
cv_signal(&arc_user_evicts_cv);
mutex_exit(&arc_user_evicts_lock);
mutex_exit(&buf->b_evict_lock);
} else {
mutex_exit(&buf->b_evict_lock);
arc_buf_destroy(buf, TRUE);
}
}
if (HDR_HAS_L2HDR(hdr)) {
ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
} else {
if (l2arc_write_eligible(hdr->b_spa, hdr))
ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
else
ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
}
if (hdr->b_l1hdr.b_datacnt == 0) {
arc_change_state(evicted_state, hdr, hash_lock);
ASSERT(HDR_IN_HASH_TABLE(hdr));
hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
}
return (bytes_evicted);
}
static uint64_t
arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
uint64_t spa, int64_t bytes)
{
multilist_sublist_t *mls;
uint64_t bytes_evicted = 0;
arc_buf_hdr_t *hdr;
kmutex_t *hash_lock;
int evict_count = 0;
ASSERT3P(marker, !=, NULL);
IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
mls = multilist_sublist_lock(ml, idx);
for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
hdr = multilist_sublist_prev(mls, marker)) {
if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
(evict_count >= zfs_arc_evict_batch_limit))
break;
/*
* To keep our iteration location, move the marker
* forward. Since we're not holding hdr's hash lock, we
* must be very careful and not remove 'hdr' from the
* sublist. Otherwise, other consumers might mistake the
* 'hdr' as not being on a sublist when they call the
* multilist_link_active() function (they all rely on
* the hash lock protecting concurrent insertions and
* removals). multilist_sublist_move_forward() was
* specifically implemented to ensure this is the case
* (only 'marker' will be removed and re-inserted).
*/
multilist_sublist_move_forward(mls, marker);
/*
* The only case where the b_spa field should ever be
* zero, is the marker headers inserted by
* arc_evict_state(). It's possible for multiple threads
* to be calling arc_evict_state() concurrently (e.g.
* dsl_pool_close() and zio_inject_fault()), so we must
* skip any markers we see from these other threads.
*/
if (hdr->b_spa == 0)
continue;
/* we're only interested in evicting buffers of a certain spa */
if (spa != 0 && hdr->b_spa != spa) {
ARCSTAT_BUMP(arcstat_evict_skip);
continue;
}
hash_lock = HDR_LOCK(hdr);
/*
* We aren't calling this function from any code path
* that would already be holding a hash lock, so we're
* asserting on this assumption to be defensive in case
* this ever changes. Without this check, it would be
* possible to incorrectly increment arcstat_mutex_miss
* below (e.g. if the code changed such that we called
* this function with a hash lock held).
*/
ASSERT(!MUTEX_HELD(hash_lock));
if (mutex_tryenter(hash_lock)) {
uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
mutex_exit(hash_lock);
bytes_evicted += evicted;
/*
* If evicted is zero, arc_evict_hdr() must have
* decided to skip this header, don't increment
* evict_count in this case.
*/
if (evicted != 0)
evict_count++;
/*
* If arc_size isn't overflowing, signal any
* threads that might happen to be waiting.
*
* For each header evicted, we wake up a single
* thread. If we used cv_broadcast, we could
* wake up "too many" threads causing arc_size
* to significantly overflow arc_c; since
* arc_get_data_buf() doesn't check for overflow
* when it's woken up (it doesn't because it's
* possible for the ARC to be overflowing while
* full of un-evictable buffers, and the
* function should proceed in this case).
*
* If threads are left sleeping, due to not
* using cv_broadcast, they will be woken up
* just before arc_reclaim_thread() sleeps.
*/
mutex_enter(&arc_reclaim_lock);
if (!arc_is_overflowing())
cv_signal(&arc_reclaim_waiters_cv);
mutex_exit(&arc_reclaim_lock);
} else {
ARCSTAT_BUMP(arcstat_mutex_miss);
}
}
multilist_sublist_unlock(mls);
return (bytes_evicted);
}
/*
* Evict buffers from the given arc state, until we've removed the
* specified number of bytes. Move the removed buffers to the
* appropriate evict state.
*
* This function makes a "best effort". It skips over any buffers
* it can't get a hash_lock on, and so, may not catch all candidates.
* It may also return without evicting as much space as requested.
*
* If bytes is specified using the special value ARC_EVICT_ALL, this
* will evict all available (i.e. unlocked and evictable) buffers from
* the given arc state; which is used by arc_flush().
*/
static uint64_t
arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
arc_buf_contents_t type)
{
uint64_t total_evicted = 0;
multilist_t *ml = &state->arcs_list[type];
int num_sublists;
arc_buf_hdr_t **markers;
int i;
IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
num_sublists = multilist_get_num_sublists(ml);
/*
* If we've tried to evict from each sublist, made some
* progress, but still have not hit the target number of bytes
* to evict, we want to keep trying. The markers allow us to
* pick up where we left off for each individual sublist, rather
* than starting from the tail each time.
*/
markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
for (i = 0; i < num_sublists; i++) {
multilist_sublist_t *mls;
markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
/*
* A b_spa of 0 is used to indicate that this header is
* a marker. This fact is used in arc_adjust_type() and
* arc_evict_state_impl().
*/
markers[i]->b_spa = 0;
mls = multilist_sublist_lock(ml, i);
multilist_sublist_insert_tail(mls, markers[i]);
multilist_sublist_unlock(mls);
}
/*
* While we haven't hit our target number of bytes to evict, or
* we're evicting all available buffers.
*/
while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
/*
* Start eviction using a randomly selected sublist,
* this is to try and evenly balance eviction across all
* sublists. Always starting at the same sublist
* (e.g. index 0) would cause evictions to favor certain
* sublists over others.
*/
int sublist_idx = multilist_get_random_index(ml);
uint64_t scan_evicted = 0;
for (i = 0; i < num_sublists; i++) {
uint64_t bytes_remaining;
uint64_t bytes_evicted;
if (bytes == ARC_EVICT_ALL)
bytes_remaining = ARC_EVICT_ALL;
else if (total_evicted < bytes)
bytes_remaining = bytes - total_evicted;
else
break;
bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
markers[sublist_idx], spa, bytes_remaining);
scan_evicted += bytes_evicted;
total_evicted += bytes_evicted;
/* we've reached the end, wrap to the beginning */
if (++sublist_idx >= num_sublists)
sublist_idx = 0;
}
/*
* If we didn't evict anything during this scan, we have
* no reason to believe we'll evict more during another
* scan, so break the loop.
*/
if (scan_evicted == 0) {
/* This isn't possible, let's make that obvious */
ASSERT3S(bytes, !=, 0);
/*
* When bytes is ARC_EVICT_ALL, the only way to
* break the loop is when scan_evicted is zero.
* In that case, we actually have evicted enough,
* so we don't want to increment the kstat.
*/
if (bytes != ARC_EVICT_ALL) {
ASSERT3S(total_evicted, <, bytes);
ARCSTAT_BUMP(arcstat_evict_not_enough);
}
break;
}
}
for (i = 0; i < num_sublists; i++) {
multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
multilist_sublist_remove(mls, markers[i]);
multilist_sublist_unlock(mls);
kmem_cache_free(hdr_full_cache, markers[i]);
}
kmem_free(markers, sizeof (*markers) * num_sublists);
return (total_evicted);
}
/*
* Flush all "evictable" data of the given type from the arc state
* specified. This will not evict any "active" buffers (i.e. referenced).
*
* When 'retry' is set to FALSE, the function will make a single pass
* over the state and evict any buffers that it can. Since it doesn't
* continually retry the eviction, it might end up leaving some buffers
* in the ARC due to lock misses.
*
* When 'retry' is set to TRUE, the function will continually retry the
* eviction until *all* evictable buffers have been removed from the
* state. As a result, if concurrent insertions into the state are
* allowed (e.g. if the ARC isn't shutting down), this function might
* wind up in an infinite loop, continually trying to evict buffers.
*/
static uint64_t
arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
boolean_t retry)
{
uint64_t evicted = 0;
while (state->arcs_lsize[type] != 0) {
evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
if (!retry)
break;
}
return (evicted);
}
/*
* Helper function for arc_prune_async() it is responsible for safely
* handling the execution of a registered arc_prune_func_t.
*/
static void
arc_prune_task(void *ptr)
{
arc_prune_t *ap = (arc_prune_t *)ptr;
arc_prune_func_t *func = ap->p_pfunc;
if (func != NULL)
func(ap->p_adjust, ap->p_private);
/* Callback unregistered concurrently with execution */
if (refcount_remove(&ap->p_refcnt, func) == 0) {
ASSERT(!list_link_active(&ap->p_node));
refcount_destroy(&ap->p_refcnt);
kmem_free(ap, sizeof (*ap));
}
}
/*
* Notify registered consumers they must drop holds on a portion of the ARC
* buffered they reference. This provides a mechanism to ensure the ARC can
* honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
* is analogous to dnlc_reduce_cache() but more generic.
*
* This operation is performed asynchronously so it may be safely called
* in the context of the arc_reclaim_thread(). A reference is taken here
* for each registered arc_prune_t and the arc_prune_task() is responsible
* for releasing it once the registered arc_prune_func_t has completed.
*/
static void
arc_prune_async(int64_t adjust)
{
arc_prune_t *ap;
mutex_enter(&arc_prune_mtx);
for (ap = list_head(&arc_prune_list); ap != NULL;
ap = list_next(&arc_prune_list, ap)) {
if (refcount_count(&ap->p_refcnt) >= 2)
continue;
refcount_add(&ap->p_refcnt, ap->p_pfunc);
ap->p_adjust = adjust;
taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
ARCSTAT_BUMP(arcstat_prune);
}
mutex_exit(&arc_prune_mtx);
}
/*
* Evict the specified number of bytes from the state specified,
* restricting eviction to the spa and type given. This function
* prevents us from trying to evict more from a state's list than
* is "evictable", and to skip evicting altogether when passed a
* negative value for "bytes". In contrast, arc_evict_state() will
* evict everything it can, when passed a negative value for "bytes".
*/
static uint64_t
arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
arc_buf_contents_t type)
{
int64_t delta;
if (bytes > 0 && state->arcs_lsize[type] > 0) {
delta = MIN(state->arcs_lsize[type], bytes);
return (arc_evict_state(state, spa, delta, type));
}
return (0);
}
/*
* The goal of this function is to evict enough meta data buffers from the
* ARC in order to enforce the arc_meta_limit. Achieving this is slightly
* more complicated than it appears because it is common for data buffers
* to have holds on meta data buffers. In addition, dnode meta data buffers
* will be held by the dnodes in the block preventing them from being freed.
* This means we can't simply traverse the ARC and expect to always find
* enough unheld meta data buffer to release.
*
* Therefore, this function has been updated to make alternating passes
* over the ARC releasing data buffers and then newly unheld meta data
* buffers. This ensures forward progress is maintained and arc_meta_used
* will decrease. Normally this is sufficient, but if required the ARC
* will call the registered prune callbacks causing dentry and inodes to
* be dropped from the VFS cache. This will make dnode meta data buffers
* available for reclaim.
*/
static uint64_t
arc_adjust_meta_balanced(void)
{
int64_t adjustmnt, delta, prune = 0;
uint64_t total_evicted = 0;
arc_buf_contents_t type = ARC_BUFC_DATA;
int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
restart:
/*
* This slightly differs than the way we evict from the mru in
* arc_adjust because we don't have a "target" value (i.e. no
* "meta" arc_p). As a result, I think we can completely
* cannibalize the metadata in the MRU before we evict the
* metadata from the MFU. I think we probably need to implement a
* "metadata arc_p" value to do this properly.
*/
adjustmnt = arc_meta_used - arc_meta_limit;
if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
adjustmnt -= delta;
}
/*
* We can't afford to recalculate adjustmnt here. If we do,
* new metadata buffers can sneak into the MRU or ANON lists,
* thus penalize the MFU metadata. Although the fudge factor is
* small, it has been empirically shown to be significant for
* certain workloads (e.g. creating many empty directories). As
* such, we use the original calculation for adjustmnt, and
* simply decrement the amount of data evicted from the MRU.
*/
if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
}
adjustmnt = arc_meta_used - arc_meta_limit;
if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
delta = MIN(adjustmnt,
arc_mru_ghost->arcs_lsize[type]);
total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
adjustmnt -= delta;
}
if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
delta = MIN(adjustmnt,
arc_mfu_ghost->arcs_lsize[type]);
total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
}
/*
* If after attempting to make the requested adjustment to the ARC
* the meta limit is still being exceeded then request that the
* higher layers drop some cached objects which have holds on ARC
* meta buffers. Requests to the upper layers will be made with
* increasingly large scan sizes until the ARC is below the limit.
*/
if (arc_meta_used > arc_meta_limit) {
if (type == ARC_BUFC_DATA) {
type = ARC_BUFC_METADATA;
} else {
type = ARC_BUFC_DATA;
if (zfs_arc_meta_prune) {
prune += zfs_arc_meta_prune;
arc_prune_async(prune);
}
}
if (restarts > 0) {
restarts--;
goto restart;
}
}
return (total_evicted);
}
/*
* Evict metadata buffers from the cache, such that arc_meta_used is
* capped by the arc_meta_limit tunable.
*/
static uint64_t
arc_adjust_meta_only(void)
{
uint64_t total_evicted = 0;
int64_t target;
/*
* If we're over the meta limit, we want to evict enough
* metadata to get back under the meta limit. We don't want to
* evict so much that we drop the MRU below arc_p, though. If
* we're over the meta limit more than we're over arc_p, we
* evict some from the MRU here, and some from the MFU below.
*/
target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
(int64_t)(refcount_count(&arc_anon->arcs_size) +
refcount_count(&arc_mru->arcs_size) - arc_p));
total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
/*
* Similar to the above, we want to evict enough bytes to get us
* below the meta limit, but not so much as to drop us below the
* space alloted to the MFU (which is defined as arc_c - arc_p).
*/
target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
(int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
return (total_evicted);
}
static uint64_t
arc_adjust_meta(void)
{
if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
return (arc_adjust_meta_only());
else
return (arc_adjust_meta_balanced());
}
/*
* Return the type of the oldest buffer in the given arc state
*
* This function will select a random sublist of type ARC_BUFC_DATA and
* a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
* is compared, and the type which contains the "older" buffer will be
* returned.
*/
static arc_buf_contents_t
arc_adjust_type(arc_state_t *state)
{
multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
int data_idx = multilist_get_random_index(data_ml);
int meta_idx = multilist_get_random_index(meta_ml);
multilist_sublist_t *data_mls;
multilist_sublist_t *meta_mls;
arc_buf_contents_t type;
arc_buf_hdr_t *data_hdr;
arc_buf_hdr_t *meta_hdr;
/*
* We keep the sublist lock until we're finished, to prevent
* the headers from being destroyed via arc_evict_state().
*/
data_mls = multilist_sublist_lock(data_ml, data_idx);
meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
/*
* These two loops are to ensure we skip any markers that
* might be at the tail of the lists due to arc_evict_state().
*/
for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
if (data_hdr->b_spa != 0)
break;
}
for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
if (meta_hdr->b_spa != 0)
break;
}
if (data_hdr == NULL && meta_hdr == NULL) {
type = ARC_BUFC_DATA;
} else if (data_hdr == NULL) {
ASSERT3P(meta_hdr, !=, NULL);
type = ARC_BUFC_METADATA;
} else if (meta_hdr == NULL) {
ASSERT3P(data_hdr, !=, NULL);
type = ARC_BUFC_DATA;
} else {
ASSERT3P(data_hdr, !=, NULL);
ASSERT3P(meta_hdr, !=, NULL);
/* The headers can't be on the sublist without an L1 header */
ASSERT(HDR_HAS_L1HDR(data_hdr));
ASSERT(HDR_HAS_L1HDR(meta_hdr));
if (data_hdr->b_l1hdr.b_arc_access <
meta_hdr->b_l1hdr.b_arc_access) {
type = ARC_BUFC_DATA;
} else {
type = ARC_BUFC_METADATA;
}
}
multilist_sublist_unlock(meta_mls);
multilist_sublist_unlock(data_mls);
return (type);
}
/*
* Evict buffers from the cache, such that arc_size is capped by arc_c.
*/
static uint64_t
arc_adjust(void)
{
uint64_t total_evicted = 0;
uint64_t bytes;
int64_t target;
/*
* If we're over arc_meta_limit, we want to correct that before
* potentially evicting data buffers below.
*/
total_evicted += arc_adjust_meta();
/*
* Adjust MRU size
*
* If we're over the target cache size, we want to evict enough
* from the list to get back to our target size. We don't want
* to evict too much from the MRU, such that it drops below
* arc_p. So, if we're over our target cache size more than
* the MRU is over arc_p, we'll evict enough to get back to
* arc_p here, and then evict more from the MFU below.
*/
target = MIN((int64_t)(arc_size - arc_c),
(int64_t)(refcount_count(&arc_anon->arcs_size) +
refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
/*
* If we're below arc_meta_min, always prefer to evict data.
* Otherwise, try to satisfy the requested number of bytes to
* evict from the type which contains older buffers; in an
* effort to keep newer buffers in the cache regardless of their
* type. If we cannot satisfy the number of bytes from this
* type, spill over into the next type.
*/
if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
arc_meta_used > arc_meta_min) {
bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
total_evicted += bytes;
/*
* If we couldn't evict our target number of bytes from
* metadata, we try to get the rest from data.
*/
target -= bytes;
total_evicted +=
arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
} else {
bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
total_evicted += bytes;
/*
* If we couldn't evict our target number of bytes from
* data, we try to get the rest from metadata.
*/
target -= bytes;
total_evicted +=
arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
}
/*
* Adjust MFU size
*
* Now that we've tried to evict enough from the MRU to get its
* size back to arc_p, if we're still above the target cache
* size, we evict the rest from the MFU.
*/
target = arc_size - arc_c;
if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
arc_meta_used > arc_meta_min) {
bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
total_evicted += bytes;
/*
* If we couldn't evict our target number of bytes from
* metadata, we try to get the rest from data.
*/
target -= bytes;
total_evicted +=
arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
} else {
bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
total_evicted += bytes;
/*
* If we couldn't evict our target number of bytes from
* data, we try to get the rest from data.
*/
target -= bytes;
total_evicted +=
arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
}
/*
* Adjust ghost lists
*
* In addition to the above, the ARC also defines target values
* for the ghost lists. The sum of the mru list and mru ghost
* list should never exceed the target size of the cache, and
* the sum of the mru list, mfu list, mru ghost list, and mfu
* ghost list should never exceed twice the target size of the
* cache. The following logic enforces these limits on the ghost
* caches, and evicts from them as needed.
*/
target = refcount_count(&arc_mru->arcs_size) +
refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
total_evicted += bytes;
target -= bytes;
total_evicted +=
arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
/*
* We assume the sum of the mru list and mfu list is less than
* or equal to arc_c (we enforced this above), which means we
* can use the simpler of the two equations below:
*
* mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
* mru ghost + mfu ghost <= arc_c
*/
target = refcount_count(&arc_mru_ghost->arcs_size) +
refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
total_evicted += bytes;
target -= bytes;
total_evicted +=
arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
return (total_evicted);
}
static void
arc_do_user_evicts(void)
{
mutex_enter(&arc_user_evicts_lock);
while (arc_eviction_list != NULL) {
arc_buf_t *buf = arc_eviction_list;
arc_eviction_list = buf->b_next;
mutex_enter(&buf->b_evict_lock);
buf->b_hdr = NULL;
mutex_exit(&buf->b_evict_lock);
mutex_exit(&arc_user_evicts_lock);
if (buf->b_efunc != NULL)
VERIFY0(buf->b_efunc(buf->b_private));
buf->b_efunc = NULL;
buf->b_private = NULL;
kmem_cache_free(buf_cache, buf);
mutex_enter(&arc_user_evicts_lock);
}
mutex_exit(&arc_user_evicts_lock);
}
void
arc_flush(spa_t *spa, boolean_t retry)
{
uint64_t guid = 0;
/*
* If retry is TRUE, a spa must not be specified since we have
* no good way to determine if all of a spa's buffers have been
* evicted from an arc state.
*/
ASSERT(!retry || spa == 0);
if (spa != NULL)
guid = spa_load_guid(spa);
(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
arc_do_user_evicts();
ASSERT(spa || arc_eviction_list == NULL);
}
void
arc_shrink(int64_t to_free)
{
if (arc_c > arc_c_min) {
if (arc_c > arc_c_min + to_free)
atomic_add_64(&arc_c, -to_free);
else
arc_c = arc_c_min;
atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
if (arc_c > arc_size)
arc_c = MAX(arc_size, arc_c_min);
if (arc_p > arc_c)
arc_p = (arc_c >> 1);
ASSERT(arc_c >= arc_c_min);
ASSERT((int64_t)arc_p >= 0);
}
if (arc_size > arc_c)
(void) arc_adjust();
}
typedef enum free_memory_reason_t {
FMR_UNKNOWN,
FMR_NEEDFREE,
FMR_LOTSFREE,
FMR_SWAPFS_MINFREE,
FMR_PAGES_PP_MAXIMUM,
FMR_HEAP_ARENA,
FMR_ZIO_ARENA,
} free_memory_reason_t;
int64_t last_free_memory;
free_memory_reason_t last_free_reason;
#ifdef _KERNEL
/*
* Additional reserve of pages for pp_reserve.
*/
int64_t arc_pages_pp_reserve = 64;
/*
* Additional reserve of pages for swapfs.
*/
int64_t arc_swapfs_reserve = 64;
#endif /* _KERNEL */
/*
* Return the amount of memory that can be consumed before reclaim will be
* needed. Positive if there is sufficient free memory, negative indicates
* the amount of memory that needs to be freed up.
*/
static int64_t
arc_available_memory(void)
{
int64_t lowest = INT64_MAX;
free_memory_reason_t r = FMR_UNKNOWN;
#ifdef _KERNEL
int64_t n;
#ifdef __linux__
pgcnt_t needfree = btop(arc_need_free);
pgcnt_t lotsfree = btop(arc_sys_free);
pgcnt_t desfree = 0;
#endif
if (needfree > 0) {
n = PAGESIZE * (-needfree);
if (n < lowest) {
lowest = n;
r = FMR_NEEDFREE;
}
}
/*
* check that we're out of range of the pageout scanner. It starts to
* schedule paging if freemem is less than lotsfree and needfree.
* lotsfree is the high-water mark for pageout, and needfree is the
* number of needed free pages. We add extra pages here to make sure
* the scanner doesn't start up while we're freeing memory.
*/
n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
if (n < lowest) {
lowest = n;
r = FMR_LOTSFREE;
}
#ifndef __linux__
/*
* check to make sure that swapfs has enough space so that anon
* reservations can still succeed. anon_resvmem() checks that the
* availrmem is greater than swapfs_minfree, and the number of reserved
* swap pages. We also add a bit of extra here just to prevent
* circumstances from getting really dire.
*/
n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
desfree - arc_swapfs_reserve);
if (n < lowest) {
lowest = n;
r = FMR_SWAPFS_MINFREE;
}
/*
* Check that we have enough availrmem that memory locking (e.g., via
* mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
* stores the number of pages that cannot be locked; when availrmem
* drops below pages_pp_maximum, page locking mechanisms such as
* page_pp_lock() will fail.)
*/
n = PAGESIZE * (availrmem - pages_pp_maximum -
arc_pages_pp_reserve);
if (n < lowest) {
lowest = n;
r = FMR_PAGES_PP_MAXIMUM;
}
#endif
#if defined(__i386)
/*
* If we're on an i386 platform, it's possible that we'll exhaust the
* kernel heap space before we ever run out of available physical
* memory. Most checks of the size of the heap_area compare against
* tune.t_minarmem, which is the minimum available real memory that we
* can have in the system. However, this is generally fixed at 25 pages
* which is so low that it's useless. In this comparison, we seek to
* calculate the total heap-size, and reclaim if more than 3/4ths of the
* heap is allocated. (Or, in the calculation, if less than 1/4th is
* free)
*/
n = vmem_size(heap_arena, VMEM_FREE) -
(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
if (n < lowest) {
lowest = n;
r = FMR_HEAP_ARENA;
}
#endif
/*
* If zio data pages are being allocated out of a separate heap segment,
* then enforce that the size of available vmem for this arena remains
* above about 1/16th free.
*
* Note: The 1/16th arena free requirement was put in place
* to aggressively evict memory from the arc in order to avoid
* memory fragmentation issues.
*/
if (zio_arena != NULL) {
n = vmem_size(zio_arena, VMEM_FREE) -
(vmem_size(zio_arena, VMEM_ALLOC) >> 4);
if (n < lowest) {
lowest = n;
r = FMR_ZIO_ARENA;
}
}
#else /* _KERNEL */
/* Every 100 calls, free a small amount */
if (spa_get_random(100) == 0)
lowest = -1024;
#endif /* _KERNEL */
last_free_memory = lowest;
last_free_reason = r;
return (lowest);
}
/*
* Determine if the system is under memory pressure and is asking
* to reclaim memory. A return value of TRUE indicates that the system
* is under memory pressure and that the arc should adjust accordingly.
*/
static boolean_t
arc_reclaim_needed(void)
{
return (arc_available_memory() < 0);
}
static void
arc_kmem_reap_now(void)
{
size_t i;
kmem_cache_t *prev_cache = NULL;
kmem_cache_t *prev_data_cache = NULL;
extern kmem_cache_t *zio_buf_cache[];
extern kmem_cache_t *zio_data_buf_cache[];
extern kmem_cache_t *range_seg_cache;
if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
/*
* We are exceeding our meta-data cache limit.
* Prune some entries to release holds on meta-data.
*/
arc_prune_async(zfs_arc_meta_prune);
}
for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
#ifdef _ILP32
/* reach upper limit of cache size on 32-bit */
if (zio_buf_cache[i] == NULL)
break;
#endif
if (zio_buf_cache[i] != prev_cache) {
prev_cache = zio_buf_cache[i];
kmem_cache_reap_now(zio_buf_cache[i]);
}
if (zio_data_buf_cache[i] != prev_data_cache) {
prev_data_cache = zio_data_buf_cache[i];
kmem_cache_reap_now(zio_data_buf_cache[i]);
}
}
kmem_cache_reap_now(buf_cache);
kmem_cache_reap_now(hdr_full_cache);
kmem_cache_reap_now(hdr_l2only_cache);
kmem_cache_reap_now(range_seg_cache);
if (zio_arena != NULL) {
/*
* Ask the vmem arena to reclaim unused memory from its
* quantum caches.
*/
vmem_qcache_reap(zio_arena);
}
}
/*
* Threads can block in arc_get_data_buf() waiting for this thread to evict
* enough data and signal them to proceed. When this happens, the threads in
* arc_get_data_buf() are sleeping while holding the hash lock for their
* particular arc header. Thus, we must be careful to never sleep on a
* hash lock in this thread. This is to prevent the following deadlock:
*
* - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
* waiting for the reclaim thread to signal it.
*
* - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
* fails, and goes to sleep forever.
*
* This possible deadlock is avoided by always acquiring a hash lock
* using mutex_tryenter() from arc_reclaim_thread().
*/
static void
arc_reclaim_thread(void)
{
fstrans_cookie_t cookie = spl_fstrans_mark();
clock_t growtime = 0;
callb_cpr_t cpr;
CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
mutex_enter(&arc_reclaim_lock);
while (!arc_reclaim_thread_exit) {
int64_t to_free;
int64_t free_memory = arc_available_memory();
uint64_t evicted = 0;
arc_tuning_update();
mutex_exit(&arc_reclaim_lock);
if (free_memory < 0) {
arc_no_grow = B_TRUE;
arc_warm = B_TRUE;
/*
* Wait at least zfs_grow_retry (default 5) seconds
* before considering growing.
*/
growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
arc_kmem_reap_now();
/*
* If we are still low on memory, shrink the ARC
* so that we have arc_shrink_min free space.
*/
free_memory = arc_available_memory();
to_free = (arc_c >> arc_shrink_shift) - free_memory;
if (to_free > 0) {
#ifdef _KERNEL
to_free = MAX(to_free, arc_need_free);
#endif
arc_shrink(to_free);
}
} else if (free_memory < arc_c >> arc_no_grow_shift) {
arc_no_grow = B_TRUE;
} else if (ddi_get_lbolt() >= growtime) {
arc_no_grow = B_FALSE;
}
evicted = arc_adjust();
mutex_enter(&arc_reclaim_lock);
/*
* If evicted is zero, we couldn't evict anything via
* arc_adjust(). This could be due to hash lock
* collisions, but more likely due to the majority of
* arc buffers being unevictable. Therefore, even if
* arc_size is above arc_c, another pass is unlikely to
* be helpful and could potentially cause us to enter an
* infinite loop.
*/
if (arc_size <= arc_c || evicted == 0) {
/*
* We're either no longer overflowing, or we
* can't evict anything more, so we should wake
* up any threads before we go to sleep and clear
* arc_need_free since nothing more can be done.
*/
cv_broadcast(&arc_reclaim_waiters_cv);
arc_need_free = 0;
/*
* Block until signaled, or after one second (we
* might need to perform arc_kmem_reap_now()
* even if we aren't being signalled)
*/
CALLB_CPR_SAFE_BEGIN(&cpr);
(void) cv_timedwait_sig(&arc_reclaim_thread_cv,
&arc_reclaim_lock, ddi_get_lbolt() + hz);
CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
}
}
arc_reclaim_thread_exit = FALSE;
cv_broadcast(&arc_reclaim_thread_cv);
CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
spl_fstrans_unmark(cookie);
thread_exit();
}
static void
arc_user_evicts_thread(void)
{
fstrans_cookie_t cookie = spl_fstrans_mark();
callb_cpr_t cpr;
CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
mutex_enter(&arc_user_evicts_lock);
while (!arc_user_evicts_thread_exit) {
mutex_exit(&arc_user_evicts_lock);
arc_do_user_evicts();
/*
* This is necessary in order for the mdb ::arc dcmd to
* show up to date information. Since the ::arc command
* does not call the kstat's update function, without
* this call, the command may show stale stats for the
* anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
* with this change, the data might be up to 1 second
* out of date; but that should suffice. The arc_state_t
* structures can be queried directly if more accurate
* information is needed.
*/
if (arc_ksp != NULL)
arc_ksp->ks_update(arc_ksp, KSTAT_READ);
mutex_enter(&arc_user_evicts_lock);
/*
* Block until signaled, or after one second (we need to
* call the arc's kstat update function regularly).
*/
CALLB_CPR_SAFE_BEGIN(&cpr);
(void) cv_timedwait_sig(&arc_user_evicts_cv,
&arc_user_evicts_lock, ddi_get_lbolt() + hz);
CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
}
arc_user_evicts_thread_exit = FALSE;
cv_broadcast(&arc_user_evicts_cv);
CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
spl_fstrans_unmark(cookie);
thread_exit();
}
#ifdef _KERNEL
/*
* Determine the amount of memory eligible for eviction contained in the
* ARC. All clean data reported by the ghost lists can always be safely
* evicted. Due to arc_c_min, the same does not hold for all clean data
* contained by the regular mru and mfu lists.
*
* In the case of the regular mru and mfu lists, we need to report as
* much clean data as possible, such that evicting that same reported
* data will not bring arc_size below arc_c_min. Thus, in certain
* circumstances, the total amount of clean data in the mru and mfu
* lists might not actually be evictable.
*
* The following two distinct cases are accounted for:
*
* 1. The sum of the amount of dirty data contained by both the mru and
* mfu lists, plus the ARC's other accounting (e.g. the anon list),
* is greater than or equal to arc_c_min.
* (i.e. amount of dirty data >= arc_c_min)
*
* This is the easy case; all clean data contained by the mru and mfu
* lists is evictable. Evicting all clean data can only drop arc_size
* to the amount of dirty data, which is greater than arc_c_min.
*
* 2. The sum of the amount of dirty data contained by both the mru and
* mfu lists, plus the ARC's other accounting (e.g. the anon list),
* is less than arc_c_min.
* (i.e. arc_c_min > amount of dirty data)
*
* 2.1. arc_size is greater than or equal arc_c_min.
* (i.e. arc_size >= arc_c_min > amount of dirty data)
*
* In this case, not all clean data from the regular mru and mfu
* lists is actually evictable; we must leave enough clean data
* to keep arc_size above arc_c_min. Thus, the maximum amount of
* evictable data from the two lists combined, is exactly the
* difference between arc_size and arc_c_min.
*
* 2.2. arc_size is less than arc_c_min
* (i.e. arc_c_min > arc_size > amount of dirty data)
*
* In this case, none of the data contained in the mru and mfu
* lists is evictable, even if it's clean. Since arc_size is
* already below arc_c_min, evicting any more would only
* increase this negative difference.
*/
static uint64_t
arc_evictable_memory(void) {
uint64_t arc_clean =
arc_mru->arcs_lsize[ARC_BUFC_DATA] +
arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
uint64_t ghost_clean =
arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
if (arc_dirty >= arc_c_min)
return (ghost_clean + arc_clean);
return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
}
/*
* If sc->nr_to_scan is zero, the caller is requesting a query of the
* number of objects which can potentially be freed. If it is nonzero,
* the request is to free that many objects.
*
* Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
* in struct shrinker and also require the shrinker to return the number
* of objects freed.
*
* Older kernels require the shrinker to return the number of freeable
* objects following the freeing of nr_to_free.
*/
static spl_shrinker_t
__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
{
int64_t pages;
/* The arc is considered warm once reclaim has occurred */
if (unlikely(arc_warm == B_FALSE))
arc_warm = B_TRUE;
/* Return the potential number of reclaimable pages */
pages = btop((int64_t)arc_evictable_memory());
if (sc->nr_to_scan == 0)
return (pages);
/* Not allowed to perform filesystem reclaim */
if (!(sc->gfp_mask & __GFP_FS))
return (SHRINK_STOP);
/* Reclaim in progress */
if (mutex_tryenter(&arc_reclaim_lock) == 0)
return (SHRINK_STOP);
mutex_exit(&arc_reclaim_lock);
/*
* Evict the requested number of pages by shrinking arc_c the
* requested amount. If there is nothing left to evict just
* reap whatever we can from the various arc slabs.
*/
if (pages > 0) {
arc_shrink(ptob(sc->nr_to_scan));
arc_kmem_reap_now();
#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
pages = MAX(pages - btop(arc_evictable_memory()), 0);
#else
pages = btop(arc_evictable_memory());
#endif
} else {
arc_kmem_reap_now();
pages = SHRINK_STOP;
}
/*
* We've reaped what we can, wake up threads.
*/
cv_broadcast(&arc_reclaim_waiters_cv);
/*
* When direct reclaim is observed it usually indicates a rapid
* increase in memory pressure. This occurs because the kswapd
* threads were unable to asynchronously keep enough free memory
* available. In this case set arc_no_grow to briefly pause arc
* growth to avoid compounding the memory pressure.
*/
if (current_is_kswapd()) {
ARCSTAT_BUMP(arcstat_memory_indirect_count);
} else {
arc_no_grow = B_TRUE;
arc_need_free = ptob(sc->nr_to_scan);
ARCSTAT_BUMP(arcstat_memory_direct_count);
}
return (pages);
}
SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
#endif /* _KERNEL */
/*
* Adapt arc info given the number of bytes we are trying to add and
* the state that we are comming from. This function is only called
* when we are adding new content to the cache.
*/
static void
arc_adapt(int bytes, arc_state_t *state)
{
int mult;
uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
if (state == arc_l2c_only)
return;
ASSERT(bytes > 0);
/*
* Adapt the target size of the MRU list:
* - if we just hit in the MRU ghost list, then increase
* the target size of the MRU list.
* - if we just hit in the MFU ghost list, then increase
* the target size of the MFU list by decreasing the
* target size of the MRU list.
*/
if (state == arc_mru_ghost) {
mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
if (!zfs_arc_p_dampener_disable)
mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
} else if (state == arc_mfu_ghost) {
uint64_t delta;
mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
if (!zfs_arc_p_dampener_disable)
mult = MIN(mult, 10);
delta = MIN(bytes * mult, arc_p);
arc_p = MAX(arc_p_min, arc_p - delta);
}
ASSERT((int64_t)arc_p >= 0);
if (arc_reclaim_needed()) {
cv_signal(&arc_reclaim_thread_cv);
return;
}
if (arc_no_grow)
return;
if (arc_c >= arc_c_max)
return;
/*
* If we're within (2 * maxblocksize) bytes of the target
* cache size, increment the target cache size
*/
ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
arc_c = MAX(arc_c, 2ULL << SPA_MAXBLOCKSHIFT);
if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
atomic_add_64(&arc_c, (int64_t)bytes);
if (arc_c > arc_c_max)
arc_c = arc_c_max;
else if (state == arc_anon)
atomic_add_64(&arc_p, (int64_t)bytes);
if (arc_p > arc_c)
arc_p = arc_c;
}
ASSERT((int64_t)arc_p >= 0);
}
/*
* Check if arc_size has grown past our upper threshold, determined by
* zfs_arc_overflow_shift.
*/
static boolean_t
arc_is_overflowing(void)
{
/* Always allow at least one block of overflow */
uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
arc_c >> zfs_arc_overflow_shift);
return (arc_size >= arc_c + overflow);
}
/*
* The buffer, supplied as the first argument, needs a data block. If we
* are hitting the hard limit for the cache size, we must sleep, waiting
* for the eviction thread to catch up. If we're past the target size
* but below the hard limit, we'll only signal the reclaim thread and
* continue on.
*/
static void
arc_get_data_buf(arc_buf_t *buf)
{
arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
uint64_t size = buf->b_hdr->b_size;
arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
arc_adapt(size, state);
/*
* If arc_size is currently overflowing, and has grown past our
* upper limit, we must be adding data faster than the evict
* thread can evict. Thus, to ensure we don't compound the
* problem by adding more data and forcing arc_size to grow even
* further past it's target size, we halt and wait for the
* eviction thread to catch up.
*
* It's also possible that the reclaim thread is unable to evict
* enough buffers to get arc_size below the overflow limit (e.g.
* due to buffers being un-evictable, or hash lock collisions).
* In this case, we want to proceed regardless if we're
* overflowing; thus we don't use a while loop here.
*/
if (arc_is_overflowing()) {
mutex_enter(&arc_reclaim_lock);
/*
* Now that we've acquired the lock, we may no longer be
* over the overflow limit, lets check.
*
* We're ignoring the case of spurious wake ups. If that
* were to happen, it'd let this thread consume an ARC
* buffer before it should have (i.e. before we're under
* the overflow limit and were signalled by the reclaim
* thread). As long as that is a rare occurrence, it
* shouldn't cause any harm.
*/
if (arc_is_overflowing()) {
cv_signal(&arc_reclaim_thread_cv);
cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
}
mutex_exit(&arc_reclaim_lock);
}
if (type == ARC_BUFC_METADATA) {
buf->b_data = zio_buf_alloc(size);
arc_space_consume(size, ARC_SPACE_META);
} else {
ASSERT(type == ARC_BUFC_DATA);
buf->b_data = zio_data_buf_alloc(size);
arc_space_consume(size, ARC_SPACE_DATA);
}
/*
* Update the state size. Note that ghost states have a
* "ghost size" and so don't need to be updated.
*/
if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
arc_buf_hdr_t *hdr = buf->b_hdr;
arc_state_t *state = hdr->b_l1hdr.b_state;
(void) refcount_add_many(&state->arcs_size, size, buf);
/*
* If this is reached via arc_read, the link is
* protected by the hash lock. If reached via
* arc_buf_alloc, the header should not be accessed by
* any other thread. And, if reached via arc_read_done,
* the hash lock will protect it if it's found in the
* hash table; otherwise no other thread should be
* trying to [add|remove]_reference it.
*/
if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
size);
}
/*
* If we are growing the cache, and we are adding anonymous
* data, and we have outgrown arc_p, update arc_p
*/
if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
(refcount_count(&arc_anon->arcs_size) +
refcount_count(&arc_mru->arcs_size) > arc_p))
arc_p = MIN(arc_c, arc_p + size);
}
}
/*
* This routine is called whenever a buffer is accessed.
* NOTE: the hash lock is dropped in this function.
*/
static void
arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
{
clock_t now;
ASSERT(MUTEX_HELD(hash_lock));
ASSERT(HDR_HAS_L1HDR(hdr));
if (hdr->b_l1hdr.b_state == arc_anon) {
/*
* This buffer is not in the cache, and does not
* appear in our "ghost" list. Add the new buffer
* to the MRU state.
*/
ASSERT0(hdr->b_l1hdr.b_arc_access);
hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
arc_change_state(arc_mru, hdr, hash_lock);
} else if (hdr->b_l1hdr.b_state == arc_mru) {
now = ddi_get_lbolt();
/*
* If this buffer is here because of a prefetch, then either:
* - clear the flag if this is a "referencing" read
* (any subsequent access will bump this into the MFU state).
* or
* - move the buffer to the head of the list if this is
* another prefetch (to make it less likely to be evicted).
*/
if (HDR_PREFETCH(hdr)) {
if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
/* link protected by hash lock */
ASSERT(multilist_link_active(
&hdr->b_l1hdr.b_arc_node));
} else {
hdr->b_flags &= ~ARC_FLAG_PREFETCH;
atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
ARCSTAT_BUMP(arcstat_mru_hits);
}
hdr->b_l1hdr.b_arc_access = now;
return;
}
/*
* This buffer has been "accessed" only once so far,
* but it is still in the cache. Move it to the MFU
* state.
*/
if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
ARC_MINTIME)) {
/*
* More than 125ms have passed since we
* instantiated this buffer. Move it to the
* most frequently used state.
*/
hdr->b_l1hdr.b_arc_access = now;
DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
arc_change_state(arc_mfu, hdr, hash_lock);
}
atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
ARCSTAT_BUMP(arcstat_mru_hits);
} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
arc_state_t *new_state;
/*
* This buffer has been "accessed" recently, but
* was evicted from the cache. Move it to the
* MFU state.
*/
if (HDR_PREFETCH(hdr)) {
new_state = arc_mru;
if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
hdr->b_flags &= ~ARC_FLAG_PREFETCH;
DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
} else {
new_state = arc_mfu;
DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
}
hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
arc_change_state(new_state, hdr, hash_lock);
atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
ARCSTAT_BUMP(arcstat_mru_ghost_hits);
} else if (hdr->b_l1hdr.b_state == arc_mfu) {
/*
* This buffer has been accessed more than once and is
* still in the cache. Keep it in the MFU state.
*
* NOTE: an add_reference() that occurred when we did
* the arc_read() will have kicked this off the list.
* If it was a prefetch, we will explicitly move it to
* the head of the list now.
*/
if ((HDR_PREFETCH(hdr)) != 0) {
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
/* link protected by hash_lock */
ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
}
atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
ARCSTAT_BUMP(arcstat_mfu_hits);
hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
arc_state_t *new_state = arc_mfu;
/*
* This buffer has been accessed more than once but has
* been evicted from the cache. Move it back to the
* MFU state.
*/
if (HDR_PREFETCH(hdr)) {
/*
* This is a prefetch access...
* move this block back to the MRU state.
*/
ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
new_state = arc_mru;
}
hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
arc_change_state(new_state, hdr, hash_lock);
atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
/*
* This buffer is on the 2nd Level ARC.
*/
hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
arc_change_state(arc_mfu, hdr, hash_lock);
} else {
cmn_err(CE_PANIC, "invalid arc state 0x%p",
hdr->b_l1hdr.b_state);
}
}
/* a generic arc_done_func_t which you can use */
/* ARGSUSED */
void
arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
{
if (zio == NULL || zio->io_error == 0)
bcopy(buf->b_data, arg, buf->b_hdr->b_size);
VERIFY(arc_buf_remove_ref(buf, arg));
}
/* a generic arc_done_func_t */
void
arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
{
arc_buf_t **bufp = arg;
if (zio && zio->io_error) {
VERIFY(arc_buf_remove_ref(buf, arg));
*bufp = NULL;
} else {
*bufp = buf;
ASSERT(buf->b_data);
}
}
static void
arc_read_done(zio_t *zio)
{
arc_buf_hdr_t *hdr;
arc_buf_t *buf;
arc_buf_t *abuf; /* buffer we're assigning to callback */
kmutex_t *hash_lock = NULL;
arc_callback_t *callback_list, *acb;
int freeable = FALSE;
buf = zio->io_private;
hdr = buf->b_hdr;
/*
* The hdr was inserted into hash-table and removed from lists
* prior to starting I/O. We should find this header, since
* it's in the hash table, and it should be legit since it's
* not possible to evict it during the I/O. The only possible
* reason for it not to be found is if we were freed during the
* read.
*/
if (HDR_IN_HASH_TABLE(hdr)) {
arc_buf_hdr_t *found;
ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
ASSERT3U(hdr->b_dva.dva_word[0], ==,
BP_IDENTITY(zio->io_bp)->dva_word[0]);
ASSERT3U(hdr->b_dva.dva_word[1], ==,
BP_IDENTITY(zio->io_bp)->dva_word[1]);
found = buf_hash_find(hdr->b_spa, zio->io_bp,
&hash_lock);
ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
hash_lock == NULL) ||
(found == hdr &&
DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
(found == hdr && HDR_L2_READING(hdr)));
}
hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
if (l2arc_noprefetch && HDR_PREFETCH(hdr))
hdr->b_flags &= ~ARC_FLAG_L2CACHE;
/* byteswap if necessary */
callback_list = hdr->b_l1hdr.b_acb;
ASSERT(callback_list != NULL);
if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
dmu_object_byteswap_t bswap =
DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
if (BP_GET_LEVEL(zio->io_bp) > 0)
byteswap_uint64_array(buf->b_data, hdr->b_size);
else
dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
}
arc_cksum_compute(buf, B_FALSE);
arc_buf_watch(buf);
if (hash_lock && zio->io_error == 0 &&
hdr->b_l1hdr.b_state == arc_anon) {
/*
* Only call arc_access on anonymous buffers. This is because
* if we've issued an I/O for an evicted buffer, we've already
* called arc_access (to prevent any simultaneous readers from
* getting confused).
*/
arc_access(hdr, hash_lock);
}
/* create copies of the data buffer for the callers */
abuf = buf;
for (acb = callback_list; acb; acb = acb->acb_next) {
if (acb->acb_done) {
if (abuf == NULL) {
ARCSTAT_BUMP(arcstat_duplicate_reads);
abuf = arc_buf_clone(buf);
}
acb->acb_buf = abuf;
abuf = NULL;
}
}
hdr->b_l1hdr.b_acb = NULL;
hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
ASSERT(!HDR_BUF_AVAILABLE(hdr));
if (abuf == buf) {
ASSERT(buf->b_efunc == NULL);
ASSERT(hdr->b_l1hdr.b_datacnt == 1);
hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
}
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
callback_list != NULL);
if (zio->io_error != 0) {
hdr->b_flags |= ARC_FLAG_IO_ERROR;
if (hdr->b_l1hdr.b_state != arc_anon)
arc_change_state(arc_anon, hdr, hash_lock);
if (HDR_IN_HASH_TABLE(hdr))
buf_hash_remove(hdr);
freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
}
/*
* Broadcast before we drop the hash_lock to avoid the possibility
* that the hdr (and hence the cv) might be freed before we get to
* the cv_broadcast().
*/
cv_broadcast(&hdr->b_l1hdr.b_cv);
if (hash_lock != NULL) {
mutex_exit(hash_lock);
} else {
/*
* This block was freed while we waited for the read to
* complete. It has been removed from the hash table and
* moved to the anonymous state (so that it won't show up
* in the cache).
*/
ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
}
/* execute each callback and free its structure */
while ((acb = callback_list) != NULL) {
if (acb->acb_done)
acb->acb_done(zio, acb->acb_buf, acb->acb_private);
if (acb->acb_zio_dummy != NULL) {
acb->acb_zio_dummy->io_error = zio->io_error;
zio_nowait(acb->acb_zio_dummy);
}
callback_list = acb->acb_next;
kmem_free(acb, sizeof (arc_callback_t));
}
if (freeable)
arc_hdr_destroy(hdr);
}
/*
* "Read" the block at the specified DVA (in bp) via the
* cache. If the block is found in the cache, invoke the provided
* callback immediately and return. Note that the `zio' parameter
* in the callback will be NULL in this case, since no IO was
* required. If the block is not in the cache pass the read request
* on to the spa with a substitute callback function, so that the
* requested block will be added to the cache.
*
* If a read request arrives for a block that has a read in-progress,
* either wait for the in-progress read to complete (and return the
* results); or, if this is a read with a "done" func, add a record
* to the read to invoke the "done" func when the read completes,
* and return; or just return.
*
* arc_read_done() will invoke all the requested "done" functions
* for readers of this block.
*/
int
arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
void *private, zio_priority_t priority, int zio_flags,
arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
{
arc_buf_hdr_t *hdr = NULL;
arc_buf_t *buf = NULL;
kmutex_t *hash_lock = NULL;
zio_t *rzio;
uint64_t guid = spa_load_guid(spa);
int rc = 0;
ASSERT(!BP_IS_EMBEDDED(bp) ||
BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
top:
if (!BP_IS_EMBEDDED(bp)) {
/*
* Embedded BP's have no DVA and require no I/O to "read".
* Create an anonymous arc buf to back it.
*/
hdr = buf_hash_find(guid, bp, &hash_lock);
}
if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
*arc_flags |= ARC_FLAG_CACHED;
if (HDR_IO_IN_PROGRESS(hdr)) {
if (*arc_flags & ARC_FLAG_WAIT) {
cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
mutex_exit(hash_lock);
goto top;
}
ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
if (done) {
arc_callback_t *acb = NULL;
acb = kmem_zalloc(sizeof (arc_callback_t),
KM_SLEEP);
acb->acb_done = done;
acb->acb_private = private;
if (pio != NULL)
acb->acb_zio_dummy = zio_null(pio,
spa, NULL, NULL, NULL, zio_flags);
ASSERT(acb->acb_done != NULL);
acb->acb_next = hdr->b_l1hdr.b_acb;
hdr->b_l1hdr.b_acb = acb;
add_reference(hdr, hash_lock, private);
mutex_exit(hash_lock);
goto out;
}
mutex_exit(hash_lock);
goto out;
}
ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
hdr->b_l1hdr.b_state == arc_mfu);
if (done) {
add_reference(hdr, hash_lock, private);
/*
* If this block is already in use, create a new
* copy of the data so that we will be guaranteed
* that arc_release() will always succeed.
*/
buf = hdr->b_l1hdr.b_buf;
ASSERT(buf);
ASSERT(buf->b_data);
if (HDR_BUF_AVAILABLE(hdr)) {
ASSERT(buf->b_efunc == NULL);
hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
} else {
buf = arc_buf_clone(buf);
}
} else if (*arc_flags & ARC_FLAG_PREFETCH &&
refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
hdr->b_flags |= ARC_FLAG_PREFETCH;
}
DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
arc_access(hdr, hash_lock);
if (*arc_flags & ARC_FLAG_L2CACHE)
hdr->b_flags |= ARC_FLAG_L2CACHE;
if (*arc_flags & ARC_FLAG_L2COMPRESS)
hdr->b_flags |= ARC_FLAG_L2COMPRESS;
mutex_exit(hash_lock);
ARCSTAT_BUMP(arcstat_hits);
ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
data, metadata, hits);
if (done)
done(NULL, buf, private);
} else {
uint64_t size = BP_GET_LSIZE(bp);
arc_callback_t *acb;
vdev_t *vd = NULL;
uint64_t addr = 0;
boolean_t devw = B_FALSE;
enum zio_compress b_compress = ZIO_COMPRESS_OFF;
int32_t b_asize = 0;
/*
* Gracefully handle a damaged logical block size as a
* checksum error.
*/
if (size > spa_maxblocksize(spa)) {
ASSERT3P(buf, ==, NULL);
rc = SET_ERROR(ECKSUM);
goto out;
}
if (hdr == NULL) {
/* this block is not in the cache */
arc_buf_hdr_t *exists = NULL;
arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
buf = arc_buf_alloc(spa, size, private, type);
hdr = buf->b_hdr;
if (!BP_IS_EMBEDDED(bp)) {
hdr->b_dva = *BP_IDENTITY(bp);
hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
exists = buf_hash_insert(hdr, &hash_lock);
}
if (exists != NULL) {
/* somebody beat us to the hash insert */
mutex_exit(hash_lock);
buf_discard_identity(hdr);
(void) arc_buf_remove_ref(buf, private);
goto top; /* restart the IO request */
}
/* if this is a prefetch, we don't have a reference */
if (*arc_flags & ARC_FLAG_PREFETCH) {
(void) remove_reference(hdr, hash_lock,
private);
hdr->b_flags |= ARC_FLAG_PREFETCH;
}
if (*arc_flags & ARC_FLAG_L2CACHE)
hdr->b_flags |= ARC_FLAG_L2CACHE;
if (*arc_flags & ARC_FLAG_L2COMPRESS)
hdr->b_flags |= ARC_FLAG_L2COMPRESS;
if (BP_GET_LEVEL(bp) > 0)
hdr->b_flags |= ARC_FLAG_INDIRECT;
} else {
/*
* This block is in the ghost cache. If it was L2-only
* (and thus didn't have an L1 hdr), we realloc the
* header to add an L1 hdr.
*/
if (!HDR_HAS_L1HDR(hdr)) {
hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
hdr_full_cache);
}
ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
/* if this is a prefetch, we don't have a reference */
if (*arc_flags & ARC_FLAG_PREFETCH)
hdr->b_flags |= ARC_FLAG_PREFETCH;
else
add_reference(hdr, hash_lock, private);
if (*arc_flags & ARC_FLAG_L2CACHE)
hdr->b_flags |= ARC_FLAG_L2CACHE;
if (*arc_flags & ARC_FLAG_L2COMPRESS)
hdr->b_flags |= ARC_FLAG_L2COMPRESS;
buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
buf->b_hdr = hdr;
buf->b_data = NULL;
buf->b_efunc = NULL;
buf->b_private = NULL;
buf->b_next = NULL;
hdr->b_l1hdr.b_buf = buf;
ASSERT0(hdr->b_l1hdr.b_datacnt);
hdr->b_l1hdr.b_datacnt = 1;
arc_get_data_buf(buf);
arc_access(hdr, hash_lock);
}
ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
acb->acb_done = done;
acb->acb_private = private;
ASSERT(hdr->b_l1hdr.b_acb == NULL);
hdr->b_l1hdr.b_acb = acb;
hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
if (HDR_HAS_L2HDR(hdr) &&
(vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
devw = hdr->b_l2hdr.b_dev->l2ad_writing;
addr = hdr->b_l2hdr.b_daddr;
b_compress = hdr->b_l2hdr.b_compress;
b_asize = hdr->b_l2hdr.b_asize;
/*
* Lock out device removal.
*/
if (vdev_is_dead(vd) ||
!spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
vd = NULL;
}
if (hash_lock != NULL)
mutex_exit(hash_lock);
/*
* At this point, we have a level 1 cache miss. Try again in
* L2ARC if possible.
*/
ASSERT3U(hdr->b_size, ==, size);
DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
uint64_t, size, zbookmark_phys_t *, zb);
ARCSTAT_BUMP(arcstat_misses);
ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
data, metadata, misses);
if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
/*
* Read from the L2ARC if the following are true:
* 1. The L2ARC vdev was previously cached.
* 2. This buffer still has L2ARC metadata.
* 3. This buffer isn't currently writing to the L2ARC.
* 4. The L2ARC entry wasn't evicted, which may
* also have invalidated the vdev.
* 5. This isn't prefetch and l2arc_noprefetch is set.
*/
if (HDR_HAS_L2HDR(hdr) &&
!HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
!(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
l2arc_read_callback_t *cb;
DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
ARCSTAT_BUMP(arcstat_l2_hits);
atomic_inc_32(&hdr->b_l2hdr.b_hits);
cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
KM_SLEEP);
cb->l2rcb_buf = buf;
cb->l2rcb_spa = spa;
cb->l2rcb_bp = *bp;
cb->l2rcb_zb = *zb;
cb->l2rcb_flags = zio_flags;
cb->l2rcb_compress = b_compress;
ASSERT(addr >= VDEV_LABEL_START_SIZE &&
addr + size < vd->vdev_psize -
VDEV_LABEL_END_SIZE);
/*
* l2arc read. The SCL_L2ARC lock will be
* released by l2arc_read_done().
* Issue a null zio if the underlying buffer
* was squashed to zero size by compression.
*/
if (b_compress == ZIO_COMPRESS_EMPTY) {
rzio = zio_null(pio, spa, vd,
l2arc_read_done, cb,
zio_flags | ZIO_FLAG_DONT_CACHE |
ZIO_FLAG_CANFAIL |
ZIO_FLAG_DONT_PROPAGATE |
ZIO_FLAG_DONT_RETRY);
} else {
rzio = zio_read_phys(pio, vd, addr,
b_asize, buf->b_data,
ZIO_CHECKSUM_OFF,
l2arc_read_done, cb, priority,
zio_flags | ZIO_FLAG_DONT_CACHE |
ZIO_FLAG_CANFAIL |
ZIO_FLAG_DONT_PROPAGATE |
ZIO_FLAG_DONT_RETRY, B_FALSE);
}
DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
zio_t *, rzio);
ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
if (*arc_flags & ARC_FLAG_NOWAIT) {
zio_nowait(rzio);
goto out;
}
ASSERT(*arc_flags & ARC_FLAG_WAIT);
if (zio_wait(rzio) == 0)
goto out;
/* l2arc read error; goto zio_read() */
} else {
DTRACE_PROBE1(l2arc__miss,
arc_buf_hdr_t *, hdr);
ARCSTAT_BUMP(arcstat_l2_misses);
if (HDR_L2_WRITING(hdr))
ARCSTAT_BUMP(arcstat_l2_rw_clash);
spa_config_exit(spa, SCL_L2ARC, vd);
}
} else {
if (vd != NULL)
spa_config_exit(spa, SCL_L2ARC, vd);
if (l2arc_ndev != 0) {
DTRACE_PROBE1(l2arc__miss,
arc_buf_hdr_t *, hdr);
ARCSTAT_BUMP(arcstat_l2_misses);
}
}
rzio = zio_read(pio, spa, bp, buf->b_data, size,
arc_read_done, buf, priority, zio_flags, zb);
if (*arc_flags & ARC_FLAG_WAIT) {
rc = zio_wait(rzio);
goto out;
}
ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
zio_nowait(rzio);
}
out:
spa_read_history_add(spa, zb, *arc_flags);
return (rc);
}
arc_prune_t *
arc_add_prune_callback(arc_prune_func_t *func, void *private)
{
arc_prune_t *p;
p = kmem_alloc(sizeof (*p), KM_SLEEP);
p->p_pfunc = func;
p->p_private = private;
list_link_init(&p->p_node);
refcount_create(&p->p_refcnt);
mutex_enter(&arc_prune_mtx);
refcount_add(&p->p_refcnt, &arc_prune_list);
list_insert_head(&arc_prune_list, p);
mutex_exit(&arc_prune_mtx);
return (p);
}
void
arc_remove_prune_callback(arc_prune_t *p)
{
mutex_enter(&arc_prune_mtx);
list_remove(&arc_prune_list, p);
if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
refcount_destroy(&p->p_refcnt);
kmem_free(p, sizeof (*p));
}
mutex_exit(&arc_prune_mtx);
}
void
arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
{
ASSERT(buf->b_hdr != NULL);
ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
func == NULL);
ASSERT(buf->b_efunc == NULL);
ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
buf->b_efunc = func;
buf->b_private = private;
}
/*
* Notify the arc that a block was freed, and thus will never be used again.
*/
void
arc_freed(spa_t *spa, const blkptr_t *bp)
{
arc_buf_hdr_t *hdr;
kmutex_t *hash_lock;
uint64_t guid = spa_load_guid(spa);
ASSERT(!BP_IS_EMBEDDED(bp));
hdr = buf_hash_find(guid, bp, &hash_lock);
if (hdr == NULL)
return;
if (HDR_BUF_AVAILABLE(hdr)) {
arc_buf_t *buf = hdr->b_l1hdr.b_buf;
add_reference(hdr, hash_lock, FTAG);
hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
mutex_exit(hash_lock);
arc_release(buf, FTAG);
(void) arc_buf_remove_ref(buf, FTAG);
} else {
mutex_exit(hash_lock);
}
}
/*
* Clear the user eviction callback set by arc_set_callback(), first calling
* it if it exists. Because the presence of a callback keeps an arc_buf cached
* clearing the callback may result in the arc_buf being destroyed. However,
* it will not result in the *last* arc_buf being destroyed, hence the data
* will remain cached in the ARC. We make a copy of the arc buffer here so
* that we can process the callback without holding any locks.
*
* It's possible that the callback is already in the process of being cleared
* by another thread. In this case we can not clear the callback.
*
* Returns B_TRUE if the callback was successfully called and cleared.
*/
boolean_t
arc_clear_callback(arc_buf_t *buf)
{
arc_buf_hdr_t *hdr;
kmutex_t *hash_lock;
arc_evict_func_t *efunc = buf->b_efunc;
void *private = buf->b_private;
mutex_enter(&buf->b_evict_lock);
hdr = buf->b_hdr;
if (hdr == NULL) {
/*
* We are in arc_do_user_evicts().
*/
ASSERT(buf->b_data == NULL);
mutex_exit(&buf->b_evict_lock);
return (B_FALSE);
} else if (buf->b_data == NULL) {
/*
* We are on the eviction list; process this buffer now
* but let arc_do_user_evicts() do the reaping.
*/
buf->b_efunc = NULL;
mutex_exit(&buf->b_evict_lock);
VERIFY0(efunc(private));
return (B_TRUE);
}
hash_lock = HDR_LOCK(hdr);
mutex_enter(hash_lock);
hdr = buf->b_hdr;
ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
hdr->b_l1hdr.b_datacnt);
ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
hdr->b_l1hdr.b_state == arc_mfu);
buf->b_efunc = NULL;
buf->b_private = NULL;
if (hdr->b_l1hdr.b_datacnt > 1) {
mutex_exit(&buf->b_evict_lock);
arc_buf_destroy(buf, TRUE);
} else {
ASSERT(buf == hdr->b_l1hdr.b_buf);
hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
mutex_exit(&buf->b_evict_lock);
}
mutex_exit(hash_lock);
VERIFY0(efunc(private));
return (B_TRUE);
}
/*
* Release this buffer from the cache, making it an anonymous buffer. This
* must be done after a read and prior to modifying the buffer contents.
* If the buffer has more than one reference, we must make
* a new hdr for the buffer.
*/
void
arc_release(arc_buf_t *buf, void *tag)
{
kmutex_t *hash_lock;
arc_state_t *state;
arc_buf_hdr_t *hdr = buf->b_hdr;
/*
* It would be nice to assert that if its DMU metadata (level >
* 0 || it's the dnode file), then it must be syncing context.
* But we don't know that information at this level.
*/
mutex_enter(&buf->b_evict_lock);
ASSERT(HDR_HAS_L1HDR(hdr));
/*
* We don't grab the hash lock prior to this check, because if
* the buffer's header is in the arc_anon state, it won't be
* linked into the hash table.
*/
if (hdr->b_l1hdr.b_state == arc_anon) {
mutex_exit(&buf->b_evict_lock);
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
ASSERT(!HDR_IN_HASH_TABLE(hdr));
ASSERT(!HDR_HAS_L2HDR(hdr));
ASSERT(BUF_EMPTY(hdr));
ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
ASSERT3P(buf->b_efunc, ==, NULL);
ASSERT3P(buf->b_private, ==, NULL);
hdr->b_l1hdr.b_arc_access = 0;
arc_buf_thaw(buf);
return;
}
hash_lock = HDR_LOCK(hdr);
mutex_enter(hash_lock);
/*
* This assignment is only valid as long as the hash_lock is
* held, we must be careful not to reference state or the
* b_state field after dropping the lock.
*/
state = hdr->b_l1hdr.b_state;
ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
ASSERT3P(state, !=, arc_anon);
/* this buffer is not on any list */
ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
if (HDR_HAS_L2HDR(hdr)) {
mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
/*
* We have to recheck this conditional again now that
* we're holding the l2ad_mtx to prevent a race with
* another thread which might be concurrently calling
* l2arc_evict(). In that case, l2arc_evict() might have
* destroyed the header's L2 portion as we were waiting
* to acquire the l2ad_mtx.
*/
if (HDR_HAS_L2HDR(hdr))
arc_hdr_l2hdr_destroy(hdr);
mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
}
/*
* Do we have more than one buf?
*/
if (hdr->b_l1hdr.b_datacnt > 1) {
arc_buf_hdr_t *nhdr;
arc_buf_t **bufp;
uint64_t blksz = hdr->b_size;
uint64_t spa = hdr->b_spa;
arc_buf_contents_t type = arc_buf_type(hdr);
uint32_t flags = hdr->b_flags;
ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
/*
* Pull the data off of this hdr and attach it to
* a new anonymous hdr.
*/
(void) remove_reference(hdr, hash_lock, tag);
bufp = &hdr->b_l1hdr.b_buf;
while (*bufp != buf)
bufp = &(*bufp)->b_next;
*bufp = buf->b_next;
buf->b_next = NULL;
ASSERT3P(state, !=, arc_l2c_only);
(void) refcount_remove_many(
&state->arcs_size, hdr->b_size, buf);
if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
uint64_t *size;
ASSERT3P(state, !=, arc_l2c_only);
size = &state->arcs_lsize[type];
ASSERT3U(*size, >=, hdr->b_size);
atomic_add_64(size, -hdr->b_size);
}
/*
* We're releasing a duplicate user data buffer, update
* our statistics accordingly.
*/
if (HDR_ISTYPE_DATA(hdr)) {
ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
ARCSTAT_INCR(arcstat_duplicate_buffers_size,
-hdr->b_size);
}
hdr->b_l1hdr.b_datacnt -= 1;
arc_cksum_verify(buf);
arc_buf_unwatch(buf);
mutex_exit(hash_lock);
nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
nhdr->b_size = blksz;
nhdr->b_spa = spa;
nhdr->b_l1hdr.b_mru_hits = 0;
nhdr->b_l1hdr.b_mru_ghost_hits = 0;
nhdr->b_l1hdr.b_mfu_hits = 0;
nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
nhdr->b_l1hdr.b_l2_hits = 0;
nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
nhdr->b_flags |= arc_bufc_to_flags(type);
nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
nhdr->b_l1hdr.b_buf = buf;
nhdr->b_l1hdr.b_datacnt = 1;
nhdr->b_l1hdr.b_state = arc_anon;
nhdr->b_l1hdr.b_arc_access = 0;
nhdr->b_l1hdr.b_tmp_cdata = NULL;
nhdr->b_freeze_cksum = NULL;
(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
buf->b_hdr = nhdr;
mutex_exit(&buf->b_evict_lock);
(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
} else {
mutex_exit(&buf->b_evict_lock);
ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
/* protected by hash lock, or hdr is on arc_anon */
ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
hdr->b_l1hdr.b_mru_hits = 0;
hdr->b_l1hdr.b_mru_ghost_hits = 0;
hdr->b_l1hdr.b_mfu_hits = 0;
hdr->b_l1hdr.b_mfu_ghost_hits = 0;
hdr->b_l1hdr.b_l2_hits = 0;
arc_change_state(arc_anon, hdr, hash_lock);
hdr->b_l1hdr.b_arc_access = 0;
mutex_exit(hash_lock);
buf_discard_identity(hdr);
arc_buf_thaw(buf);
}
buf->b_efunc = NULL;
buf->b_private = NULL;
}
int
arc_released(arc_buf_t *buf)
{
int released;
mutex_enter(&buf->b_evict_lock);
released = (buf->b_data != NULL &&
buf->b_hdr->b_l1hdr.b_state == arc_anon);
mutex_exit(&buf->b_evict_lock);
return (released);
}
#ifdef ZFS_DEBUG
int
arc_referenced(arc_buf_t *buf)
{
int referenced;
mutex_enter(&buf->b_evict_lock);
referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
mutex_exit(&buf->b_evict_lock);
return (referenced);
}
#endif
static void
arc_write_ready(zio_t *zio)
{
arc_write_callback_t *callback = zio->io_private;
arc_buf_t *buf = callback->awcb_buf;
arc_buf_hdr_t *hdr = buf->b_hdr;
ASSERT(HDR_HAS_L1HDR(hdr));
ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
ASSERT(hdr->b_l1hdr.b_datacnt > 0);
callback->awcb_ready(zio, buf, callback->awcb_private);
/*
* If the IO is already in progress, then this is a re-write
* attempt, so we need to thaw and re-compute the cksum.
* It is the responsibility of the callback to handle the
* accounting for any re-write attempt.
*/
if (HDR_IO_IN_PROGRESS(hdr)) {
mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
if (hdr->b_freeze_cksum != NULL) {
kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
hdr->b_freeze_cksum = NULL;
}
mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
}
arc_cksum_compute(buf, B_FALSE);
hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
}
/*
* The SPA calls this callback for each physical write that happens on behalf
* of a logical write. See the comment in dbuf_write_physdone() for details.
*/
static void
arc_write_physdone(zio_t *zio)
{
arc_write_callback_t *cb = zio->io_private;
if (cb->awcb_physdone != NULL)
cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
}
static void
arc_write_done(zio_t *zio)
{
arc_write_callback_t *callback = zio->io_private;
arc_buf_t *buf = callback->awcb_buf;
arc_buf_hdr_t *hdr = buf->b_hdr;
ASSERT(hdr->b_l1hdr.b_acb == NULL);
if (zio->io_error == 0) {
if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
buf_discard_identity(hdr);
} else {
hdr->b_dva = *BP_IDENTITY(zio->io_bp);
hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
}
} else {
ASSERT(BUF_EMPTY(hdr));
}
/*
* If the block to be written was all-zero or compressed enough to be
* embedded in the BP, no write was performed so there will be no
* dva/birth/checksum. The buffer must therefore remain anonymous
* (and uncached).
*/
if (!BUF_EMPTY(hdr)) {
arc_buf_hdr_t *exists;
kmutex_t *hash_lock;
ASSERT(zio->io_error == 0);
arc_cksum_verify(buf);
exists = buf_hash_insert(hdr, &hash_lock);
if (exists != NULL) {
/*
* This can only happen if we overwrite for
* sync-to-convergence, because we remove
* buffers from the hash table when we arc_free().
*/
if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
panic("bad overwrite, hdr=%p exists=%p",
(void *)hdr, (void *)exists);
ASSERT(refcount_is_zero(
&exists->b_l1hdr.b_refcnt));
arc_change_state(arc_anon, exists, hash_lock);
mutex_exit(hash_lock);
arc_hdr_destroy(exists);
exists = buf_hash_insert(hdr, &hash_lock);
ASSERT3P(exists, ==, NULL);
} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
/* nopwrite */
ASSERT(zio->io_prop.zp_nopwrite);
if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
panic("bad nopwrite, hdr=%p exists=%p",
(void *)hdr, (void *)exists);
} else {
/* Dedup */
ASSERT(hdr->b_l1hdr.b_datacnt == 1);
ASSERT(hdr->b_l1hdr.b_state == arc_anon);
ASSERT(BP_GET_DEDUP(zio->io_bp));
ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
}
}
hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
/* if it's not anon, we are doing a scrub */
if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
arc_access(hdr, hash_lock);
mutex_exit(hash_lock);
} else {
hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
}
ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
callback->awcb_done(zio, buf, callback->awcb_private);
kmem_free(callback, sizeof (arc_write_callback_t));
}
zio_t *
arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
arc_done_func_t *done, void *private, zio_priority_t priority,
int zio_flags, const zbookmark_phys_t *zb)
{
arc_buf_hdr_t *hdr = buf->b_hdr;
arc_write_callback_t *callback;
zio_t *zio;
ASSERT(ready != NULL);
ASSERT(done != NULL);
ASSERT(!HDR_IO_ERROR(hdr));
ASSERT(!HDR_IO_IN_PROGRESS(hdr));
ASSERT(hdr->b_l1hdr.b_acb == NULL);
ASSERT(hdr->b_l1hdr.b_datacnt > 0);
if (l2arc)
hdr->b_flags |= ARC_FLAG_L2CACHE;
if (l2arc_compress)
hdr->b_flags |= ARC_FLAG_L2COMPRESS;
callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
callback->awcb_ready = ready;
callback->awcb_physdone = physdone;
callback->awcb_done = done;
callback->awcb_private = private;
callback->awcb_buf = buf;
zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
arc_write_ready, arc_write_physdone, arc_write_done, callback,
priority, zio_flags, zb);
return (zio);
}
static int
arc_memory_throttle(uint64_t reserve, uint64_t txg)
{
#ifdef _KERNEL
uint64_t available_memory = ptob(freemem);
static uint64_t page_load = 0;
static uint64_t last_txg = 0;
#ifdef __linux__
pgcnt_t minfree = btop(arc_sys_free / 4);
#endif
if (freemem > physmem * arc_lotsfree_percent / 100)
return (0);
if (txg > last_txg) {
last_txg = txg;
page_load = 0;
}
/*
* If we are in pageout, we know that memory is already tight,
* the arc is already going to be evicting, so we just want to
* continue to let page writes occur as quickly as possible.
*/
if (current_is_kswapd()) {
if (page_load > MAX(ptob(minfree), available_memory) / 4) {
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
return (SET_ERROR(ERESTART));
}
/* Note: reserve is inflated, so we deflate */
page_load += reserve / 8;
return (0);
} else if (page_load > 0 && arc_reclaim_needed()) {
/* memory is low, delay before restarting */
ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
return (SET_ERROR(EAGAIN));
}
page_load = 0;
#endif
return (0);
}
void
arc_tempreserve_clear(uint64_t reserve)
{
atomic_add_64(&arc_tempreserve, -reserve);
ASSERT((int64_t)arc_tempreserve >= 0);
}
int
arc_tempreserve_space(uint64_t reserve, uint64_t txg)
{
int error;
uint64_t anon_size;
if (reserve > arc_c/4 && !arc_no_grow)
arc_c = MIN(arc_c_max, reserve * 4);
/*
* Throttle when the calculated memory footprint for the TXG
* exceeds the target ARC size.
*/
if (reserve > arc_c) {
DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
return (SET_ERROR(ERESTART));
}
/*
* Don't count loaned bufs as in flight dirty data to prevent long
* network delays from blocking transactions that are ready to be
* assigned to a txg.
*/
anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
arc_loaned_bytes), 0);
/*
* Writes will, almost always, require additional memory allocations
* in order to compress/encrypt/etc the data. We therefore need to
* make sure that there is sufficient available memory for this.
*/
error = arc_memory_throttle(reserve, txg);
if (error != 0)
return (error);
/*
* Throttle writes when the amount of dirty data in the cache
* gets too large. We try to keep the cache less than half full
* of dirty blocks so that our sync times don't grow too large.
* Note: if two requests come in concurrently, we might let them
* both succeed, when one of them should fail. Not a huge deal.
*/
if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
anon_size > arc_c / 4) {
dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
"anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
arc_tempreserve>>10,
arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
reserve>>10, arc_c>>10);
DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
return (SET_ERROR(ERESTART));
}
atomic_add_64(&arc_tempreserve, reserve);
return (0);
}
static void
arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
kstat_named_t *evict_data, kstat_named_t *evict_metadata)
{
size->value.ui64 = refcount_count(&state->arcs_size);
evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
}
static int
arc_kstat_update(kstat_t *ksp, int rw)
{
arc_stats_t *as = ksp->ks_data;
if (rw == KSTAT_WRITE) {
return (EACCES);
} else {
arc_kstat_update_state(arc_anon,
&as->arcstat_anon_size,
&as->arcstat_anon_evictable_data,
&as->arcstat_anon_evictable_metadata);
arc_kstat_update_state(arc_mru,
&as->arcstat_mru_size,
&as->arcstat_mru_evictable_data,
&as->arcstat_mru_evictable_metadata);
arc_kstat_update_state(arc_mru_ghost,
&as->arcstat_mru_ghost_size,
&as->arcstat_mru_ghost_evictable_data,
&as->arcstat_mru_ghost_evictable_metadata);
arc_kstat_update_state(arc_mfu,
&as->arcstat_mfu_size,
&as->arcstat_mfu_evictable_data,
&as->arcstat_mfu_evictable_metadata);
arc_kstat_update_state(arc_mfu_ghost,
&as->arcstat_mfu_ghost_size,
&as->arcstat_mfu_ghost_evictable_data,
&as->arcstat_mfu_ghost_evictable_metadata);
}
return (0);
}
/*
* This function *must* return indices evenly distributed between all
* sublists of the multilist. This is needed due to how the ARC eviction
* code is laid out; arc_evict_state() assumes ARC buffers are evenly
* distributed between all sublists and uses this assumption when
* deciding which sublist to evict from and how much to evict from it.
*/
unsigned int
arc_state_multilist_index_func(multilist_t *ml, void *obj)
{
arc_buf_hdr_t *hdr = obj;
/*
* We rely on b_dva to generate evenly distributed index
* numbers using buf_hash below. So, as an added precaution,
* let's make sure we never add empty buffers to the arc lists.
*/
ASSERT(!BUF_EMPTY(hdr));
/*
* The assumption here, is the hash value for a given
* arc_buf_hdr_t will remain constant throughout its lifetime
* (i.e. its b_spa, b_dva, and b_birth fields don't change).
* Thus, we don't need to store the header's sublist index
* on insertion, as this index can be recalculated on removal.
*
* Also, the low order bits of the hash value are thought to be
* distributed evenly. Otherwise, in the case that the multilist
* has a power of two number of sublists, each sublists' usage
* would not be evenly distributed.
*/
return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
multilist_get_num_sublists(ml));
}
/*
* Called during module initialization and periodically thereafter to
* apply reasonable changes to the exposed performance tunings. Non-zero
* zfs_* values which differ from the currently set values will be applied.
*/
static void
arc_tuning_update(void)
{
/* Valid range: 64M - <all physical memory> */
if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
(zfs_arc_max > 64 << 20) && (zfs_arc_max < ptob(physmem)) &&
(zfs_arc_max > arc_c_min)) {
arc_c_max = zfs_arc_max;
arc_c = arc_c_max;
arc_p = (arc_c >> 1);
arc_meta_limit = MIN(arc_meta_limit, (3 * arc_c_max) / 4);
}
/* Valid range: 32M - <arc_c_max> */
if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
(zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
(zfs_arc_min <= arc_c_max)) {
arc_c_min = zfs_arc_min;
arc_c = MAX(arc_c, arc_c_min);
}
/* Valid range: 16M - <arc_c_max> */
if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
(zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
(zfs_arc_meta_min <= arc_c_max)) {
arc_meta_min = zfs_arc_meta_min;
arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
}
/* Valid range: <arc_meta_min> - <arc_c_max> */
if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
(zfs_arc_meta_limit >= zfs_arc_meta_min) &&
(zfs_arc_meta_limit <= arc_c_max))
arc_meta_limit = zfs_arc_meta_limit;
/* Valid range: 1 - N */
if (zfs_arc_grow_retry)
arc_grow_retry = zfs_arc_grow_retry;
/* Valid range: 1 - N */
if (zfs_arc_shrink_shift) {
arc_shrink_shift = zfs_arc_shrink_shift;
arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
}
/* Valid range: 1 - N */
if (zfs_arc_p_min_shift)
arc_p_min_shift = zfs_arc_p_min_shift;
/* Valid range: 1 - N ticks */
if (zfs_arc_min_prefetch_lifespan)
arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
/* Valid range: 0 - 100 */
if ((zfs_arc_lotsfree_percent >= 0) &&
(zfs_arc_lotsfree_percent <= 100))
arc_lotsfree_percent = zfs_arc_lotsfree_percent;
/* Valid range: 0 - <all physical memory> */
if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), ptob(physmem));
}
void
arc_init(void)
{
/*
* allmem is "all memory that we could possibly use".
*/
#ifdef _KERNEL
uint64_t allmem = ptob(physmem);
#else
uint64_t allmem = (physmem * PAGESIZE) / 2;
#endif
mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
/* Convert seconds to clock ticks */
arc_min_prefetch_lifespan = 1 * hz;
/* Start out with 1/8 of all memory */
arc_c = allmem / 8;
#ifdef _KERNEL
/*
* On architectures where the physical memory can be larger
* than the addressable space (intel in 32-bit mode), we may
* need to limit the cache to 1/8 of VM size.
*/
arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
/*
* Register a shrinker to support synchronous (direct) memory
* reclaim from the arc. This is done to prevent kswapd from
* swapping out pages when it is preferable to shrink the arc.
*/
spl_register_shrinker(&arc_shrinker);
/* Set to 1/64 of all memory or a minimum of 512K */
arc_sys_free = MAX(ptob(physmem / 64), (512 * 1024));
arc_need_free = 0;
#endif
/* Set min cache to allow safe operation of arc_adapt() */
arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
/* Set max to 1/2 of all memory */
arc_c_max = allmem / 2;
arc_c = arc_c_max;
arc_p = (arc_c >> 1);
/* Set min to 1/2 of arc_c_min */
arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
/* Initialize maximum observed usage to zero */
arc_meta_max = 0;
/* Set limit to 3/4 of arc_c_max with a floor of arc_meta_min */
arc_meta_limit = MAX((3 * arc_c_max) / 4, arc_meta_min);
/* Apply user specified tunings */
arc_tuning_update();
if (zfs_arc_num_sublists_per_state < 1)
zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
/* if kmem_flags are set, lets try to use less memory */
if (kmem_debugging())
arc_c = arc_c / 2;
if (arc_c < arc_c_min)
arc_c = arc_c_min;
arc_anon = &ARC_anon;
arc_mru = &ARC_mru;
arc_mru_ghost = &ARC_mru_ghost;
arc_mfu = &ARC_mfu;
arc_mfu_ghost = &ARC_mfu_ghost;
arc_l2c_only = &ARC_l2c_only;
arc_size = 0;
multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
arc_anon->arcs_state = ARC_STATE_ANON;
arc_mru->arcs_state = ARC_STATE_MRU;
arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
arc_mfu->arcs_state = ARC_STATE_MFU;
arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
refcount_create(&arc_anon->arcs_size);
refcount_create(&arc_mru->arcs_size);
refcount_create(&arc_mru_ghost->arcs_size);
refcount_create(&arc_mfu->arcs_size);
refcount_create(&arc_mfu_ghost->arcs_size);
refcount_create(&arc_l2c_only->arcs_size);
buf_init();
arc_reclaim_thread_exit = FALSE;
arc_user_evicts_thread_exit = FALSE;
list_create(&arc_prune_list, sizeof (arc_prune_t),
offsetof(arc_prune_t, p_node));
arc_eviction_list = NULL;
mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (arc_ksp != NULL) {
arc_ksp->ks_data = &arc_stats;
arc_ksp->ks_update = arc_kstat_update;
kstat_install(arc_ksp);
}
(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
TS_RUN, defclsyspri);
(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
TS_RUN, defclsyspri);
arc_dead = FALSE;
arc_warm = B_FALSE;
/*
* Calculate maximum amount of dirty data per pool.
*
* If it has been set by a module parameter, take that.
* Otherwise, use a percentage of physical memory defined by
* zfs_dirty_data_max_percent (default 10%) with a cap at
* zfs_dirty_data_max_max (default 25% of physical memory).
*/
if (zfs_dirty_data_max_max == 0)
zfs_dirty_data_max_max = (uint64_t)physmem * PAGESIZE *
zfs_dirty_data_max_max_percent / 100;
if (zfs_dirty_data_max == 0) {
zfs_dirty_data_max = (uint64_t)physmem * PAGESIZE *
zfs_dirty_data_max_percent / 100;
zfs_dirty_data_max = MIN(zfs_dirty_data_max,
zfs_dirty_data_max_max);
}
}
void
arc_fini(void)
{
arc_prune_t *p;
#ifdef _KERNEL
spl_unregister_shrinker(&arc_shrinker);
#endif /* _KERNEL */
mutex_enter(&arc_reclaim_lock);
arc_reclaim_thread_exit = TRUE;
/*
* The reclaim thread will set arc_reclaim_thread_exit back to
* FALSE when it is finished exiting; we're waiting for that.
*/
while (arc_reclaim_thread_exit) {
cv_signal(&arc_reclaim_thread_cv);
cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
}
mutex_exit(&arc_reclaim_lock);
mutex_enter(&arc_user_evicts_lock);
arc_user_evicts_thread_exit = TRUE;
/*
* The user evicts thread will set arc_user_evicts_thread_exit
* to FALSE when it is finished exiting; we're waiting for that.
*/
while (arc_user_evicts_thread_exit) {
cv_signal(&arc_user_evicts_cv);
cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
}
mutex_exit(&arc_user_evicts_lock);
/* Use TRUE to ensure *all* buffers are evicted */
arc_flush(NULL, TRUE);
arc_dead = TRUE;
if (arc_ksp != NULL) {
kstat_delete(arc_ksp);
arc_ksp = NULL;
}
taskq_wait(arc_prune_taskq);
taskq_destroy(arc_prune_taskq);
mutex_enter(&arc_prune_mtx);
while ((p = list_head(&arc_prune_list)) != NULL) {
list_remove(&arc_prune_list, p);
refcount_remove(&p->p_refcnt, &arc_prune_list);
refcount_destroy(&p->p_refcnt);
kmem_free(p, sizeof (*p));
}
mutex_exit(&arc_prune_mtx);
list_destroy(&arc_prune_list);
mutex_destroy(&arc_prune_mtx);
mutex_destroy(&arc_reclaim_lock);
cv_destroy(&arc_reclaim_thread_cv);
cv_destroy(&arc_reclaim_waiters_cv);
mutex_destroy(&arc_user_evicts_lock);
cv_destroy(&arc_user_evicts_cv);
refcount_destroy(&arc_anon->arcs_size);
refcount_destroy(&arc_mru->arcs_size);
refcount_destroy(&arc_mru_ghost->arcs_size);
refcount_destroy(&arc_mfu->arcs_size);
refcount_destroy(&arc_mfu_ghost->arcs_size);
refcount_destroy(&arc_l2c_only->arcs_size);
multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
buf_fini();
ASSERT0(arc_loaned_bytes);
}
/*
* Level 2 ARC
*
* The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
* It uses dedicated storage devices to hold cached data, which are populated
* using large infrequent writes. The main role of this cache is to boost
* the performance of random read workloads. The intended L2ARC devices
* include short-stroked disks, solid state disks, and other media with
* substantially faster read latency than disk.
*
* +-----------------------+
* | ARC |
* +-----------------------+
* | ^ ^
* | | |
* l2arc_feed_thread() arc_read()
* | | |
* | l2arc read |
* V | |
* +---------------+ |
* | L2ARC | |
* +---------------+ |
* | ^ |
* l2arc_write() | |
* | | |
* V | |
* +-------+ +-------+
* | vdev | | vdev |
* | cache | | cache |
* +-------+ +-------+
* +=========+ .-----.
* : L2ARC : |-_____-|
* : devices : | Disks |
* +=========+ `-_____-'
*
* Read requests are satisfied from the following sources, in order:
*
* 1) ARC
* 2) vdev cache of L2ARC devices
* 3) L2ARC devices
* 4) vdev cache of disks
* 5) disks
*
* Some L2ARC device types exhibit extremely slow write performance.
* To accommodate for this there are some significant differences between
* the L2ARC and traditional cache design:
*
* 1. There is no eviction path from the ARC to the L2ARC. Evictions from
* the ARC behave as usual, freeing buffers and placing headers on ghost
* lists. The ARC does not send buffers to the L2ARC during eviction as
* this would add inflated write latencies for all ARC memory pressure.
*
* 2. The L2ARC attempts to cache data from the ARC before it is evicted.
* It does this by periodically scanning buffers from the eviction-end of
* the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
* not already there. It scans until a headroom of buffers is satisfied,
* which itself is a buffer for ARC eviction. If a compressible buffer is
* found during scanning and selected for writing to an L2ARC device, we
* temporarily boost scanning headroom during the next scan cycle to make
* sure we adapt to compression effects (which might significantly reduce
* the data volume we write to L2ARC). The thread that does this is
* l2arc_feed_thread(), illustrated below; example sizes are included to
* provide a better sense of ratio than this diagram:
*
* head --> tail
* +---------------------+----------+
* ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
* +---------------------+----------+ | o L2ARC eligible
* ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
* +---------------------+----------+ |
* 15.9 Gbytes ^ 32 Mbytes |
* headroom |
* l2arc_feed_thread()
* |
* l2arc write hand <--[oooo]--'
* | 8 Mbyte
* | write max
* V
* +==============================+
* L2ARC dev |####|#|###|###| |####| ... |
* +==============================+
* 32 Gbytes
*
* 3. If an ARC buffer is copied to the L2ARC but then hit instead of
* evicted, then the L2ARC has cached a buffer much sooner than it probably
* needed to, potentially wasting L2ARC device bandwidth and storage. It is
* safe to say that this is an uncommon case, since buffers at the end of
* the ARC lists have moved there due to inactivity.
*
* 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
* then the L2ARC simply misses copying some buffers. This serves as a
* pressure valve to prevent heavy read workloads from both stalling the ARC
* with waits and clogging the L2ARC with writes. This also helps prevent
* the potential for the L2ARC to churn if it attempts to cache content too
* quickly, such as during backups of the entire pool.
*
* 5. After system boot and before the ARC has filled main memory, there are
* no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
* lists can remain mostly static. Instead of searching from tail of these
* lists as pictured, the l2arc_feed_thread() will search from the list heads
* for eligible buffers, greatly increasing its chance of finding them.
*
* The L2ARC device write speed is also boosted during this time so that
* the L2ARC warms up faster. Since there have been no ARC evictions yet,
* there are no L2ARC reads, and no fear of degrading read performance
* through increased writes.
*
* 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
* the vdev queue can aggregate them into larger and fewer writes. Each
* device is written to in a rotor fashion, sweeping writes through
* available space then repeating.
*
* 7. The L2ARC does not store dirty content. It never needs to flush
* write buffers back to disk based storage.
*
* 8. If an ARC buffer is written (and dirtied) which also exists in the
* L2ARC, the now stale L2ARC buffer is immediately dropped.
*
* The performance of the L2ARC can be tweaked by a number of tunables, which
* may be necessary for different workloads:
*
* l2arc_write_max max write bytes per interval
* l2arc_write_boost extra write bytes during device warmup
* l2arc_noprefetch skip caching prefetched buffers
* l2arc_nocompress skip compressing buffers
* l2arc_headroom number of max device writes to precache
* l2arc_headroom_boost when we find compressed buffers during ARC
* scanning, we multiply headroom by this
* percentage factor for the next scan cycle,
* since more compressed buffers are likely to
* be present
* l2arc_feed_secs seconds between L2ARC writing
*
* Tunables may be removed or added as future performance improvements are
* integrated, and also may become zpool properties.
*
* There are three key functions that control how the L2ARC warms up:
*
* l2arc_write_eligible() check if a buffer is eligible to cache
* l2arc_write_size() calculate how much to write
* l2arc_write_interval() calculate sleep delay between writes
*
* These three functions determine what to write, how much, and how quickly
* to send writes.
*/
static boolean_t
l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
{
/*
* A buffer is *not* eligible for the L2ARC if it:
* 1. belongs to a different spa.
* 2. is already cached on the L2ARC.
* 3. has an I/O in progress (it may be an incomplete read).
* 4. is flagged not eligible (zfs property).
*/
if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
return (B_FALSE);
return (B_TRUE);
}
static uint64_t
l2arc_write_size(void)
{
uint64_t size;
/*
* Make sure our globals have meaningful values in case the user
* altered them.
*/
size = l2arc_write_max;
if (size == 0) {
cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
"be greater than zero, resetting it to the default (%d)",
L2ARC_WRITE_SIZE);
size = l2arc_write_max = L2ARC_WRITE_SIZE;
}
if (arc_warm == B_FALSE)
size += l2arc_write_boost;
return (size);
}
static clock_t
l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
{
clock_t interval, next, now;
/*
* If the ARC lists are busy, increase our write rate; if the
* lists are stale, idle back. This is achieved by checking
* how much we previously wrote - if it was more than half of
* what we wanted, schedule the next write much sooner.
*/
if (l2arc_feed_again && wrote > (wanted / 2))
interval = (hz * l2arc_feed_min_ms) / 1000;
else
interval = hz * l2arc_feed_secs;
now = ddi_get_lbolt();
next = MAX(now, MIN(now + interval, began + interval));
return (next);
}
/*
* Cycle through L2ARC devices. This is how L2ARC load balances.
* If a device is returned, this also returns holding the spa config lock.
*/
static l2arc_dev_t *
l2arc_dev_get_next(void)
{
l2arc_dev_t *first, *next = NULL;
/*
* Lock out the removal of spas (spa_namespace_lock), then removal
* of cache devices (l2arc_dev_mtx). Once a device has been selected,
* both locks will be dropped and a spa config lock held instead.
*/
mutex_enter(&spa_namespace_lock);
mutex_enter(&l2arc_dev_mtx);
/* if there are no vdevs, there is nothing to do */
if (l2arc_ndev == 0)
goto out;
first = NULL;
next = l2arc_dev_last;
do {
/* loop around the list looking for a non-faulted vdev */
if (next == NULL) {
next = list_head(l2arc_dev_list);
} else {
next = list_next(l2arc_dev_list, next);
if (next == NULL)
next = list_head(l2arc_dev_list);
}
/* if we have come back to the start, bail out */
if (first == NULL)
first = next;
else if (next == first)
break;
} while (vdev_is_dead(next->l2ad_vdev));
/* if we were unable to find any usable vdevs, return NULL */
if (vdev_is_dead(next->l2ad_vdev))
next = NULL;
l2arc_dev_last = next;
out:
mutex_exit(&l2arc_dev_mtx);
/*
* Grab the config lock to prevent the 'next' device from being
* removed while we are writing to it.
*/
if (next != NULL)
spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
mutex_exit(&spa_namespace_lock);
return (next);
}
/*
* Free buffers that were tagged for destruction.
*/
static void
l2arc_do_free_on_write(void)
{
list_t *buflist;
l2arc_data_free_t *df, *df_prev;
mutex_enter(&l2arc_free_on_write_mtx);
buflist = l2arc_free_on_write;
for (df = list_tail(buflist); df; df = df_prev) {
df_prev = list_prev(buflist, df);
ASSERT(df->l2df_data != NULL);
ASSERT(df->l2df_func != NULL);
df->l2df_func(df->l2df_data, df->l2df_size);
list_remove(buflist, df);
kmem_free(df, sizeof (l2arc_data_free_t));
}
mutex_exit(&l2arc_free_on_write_mtx);
}
/*
* A write to a cache device has completed. Update all headers to allow
* reads from these buffers to begin.
*/
static void
l2arc_write_done(zio_t *zio)
{
l2arc_write_callback_t *cb;
l2arc_dev_t *dev;
list_t *buflist;
arc_buf_hdr_t *head, *hdr, *hdr_prev;
kmutex_t *hash_lock;
int64_t bytes_dropped = 0;
cb = zio->io_private;
ASSERT(cb != NULL);
dev = cb->l2wcb_dev;
ASSERT(dev != NULL);
head = cb->l2wcb_head;
ASSERT(head != NULL);
buflist = &dev->l2ad_buflist;
ASSERT(buflist != NULL);
DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
l2arc_write_callback_t *, cb);
if (zio->io_error != 0)
ARCSTAT_BUMP(arcstat_l2_writes_error);
/*
* All writes completed, or an error was hit.
*/
top:
mutex_enter(&dev->l2ad_mtx);
for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
hdr_prev = list_prev(buflist, hdr);
hash_lock = HDR_LOCK(hdr);
/*
* We cannot use mutex_enter or else we can deadlock
* with l2arc_write_buffers (due to swapping the order
* the hash lock and l2ad_mtx are taken).
*/
if (!mutex_tryenter(hash_lock)) {
/*
* Missed the hash lock. We must retry so we
* don't leave the ARC_FLAG_L2_WRITING bit set.
*/
ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
/*
* We don't want to rescan the headers we've
* already marked as having been written out, so
* we reinsert the head node so we can pick up
* where we left off.
*/
list_remove(buflist, head);
list_insert_after(buflist, hdr, head);
mutex_exit(&dev->l2ad_mtx);
/*
* We wait for the hash lock to become available
* to try and prevent busy waiting, and increase
* the chance we'll be able to acquire the lock
* the next time around.
*/
mutex_enter(hash_lock);
mutex_exit(hash_lock);
goto top;
}
/*
* We could not have been moved into the arc_l2c_only
* state while in-flight due to our ARC_FLAG_L2_WRITING
* bit being set. Let's just ensure that's being enforced.
*/
ASSERT(HDR_HAS_L1HDR(hdr));
/*
* We may have allocated a buffer for L2ARC compression,
* we must release it to avoid leaking this data.
*/
l2arc_release_cdata_buf(hdr);
if (zio->io_error != 0) {
/*
* Error - drop L2ARC entry.
*/
list_remove(buflist, hdr);
hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
bytes_dropped += hdr->b_l2hdr.b_asize;
(void) refcount_remove_many(&dev->l2ad_alloc,
hdr->b_l2hdr.b_asize, hdr);
}
/*
* Allow ARC to begin reads and ghost list evictions to
* this L2ARC entry.
*/
hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
mutex_exit(hash_lock);
}
atomic_inc_64(&l2arc_writes_done);
list_remove(buflist, head);
ASSERT(!HDR_HAS_L1HDR(head));
kmem_cache_free(hdr_l2only_cache, head);
mutex_exit(&dev->l2ad_mtx);
vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
l2arc_do_free_on_write();
kmem_free(cb, sizeof (l2arc_write_callback_t));
}
/*
* A read to a cache device completed. Validate buffer contents before
* handing over to the regular ARC routines.
*/
static void
l2arc_read_done(zio_t *zio)
{
l2arc_read_callback_t *cb;
arc_buf_hdr_t *hdr;
arc_buf_t *buf;
kmutex_t *hash_lock;
int equal;
ASSERT(zio->io_vd != NULL);
ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
cb = zio->io_private;
ASSERT(cb != NULL);
buf = cb->l2rcb_buf;
ASSERT(buf != NULL);
hash_lock = HDR_LOCK(buf->b_hdr);
mutex_enter(hash_lock);
hdr = buf->b_hdr;
ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
/*
* If the buffer was compressed, decompress it first.
*/
if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
ASSERT(zio->io_data != NULL);
ASSERT3U(zio->io_size, ==, hdr->b_size);
ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
/*
* Check this survived the L2ARC journey.
*/
equal = arc_cksum_equal(buf);
if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
mutex_exit(hash_lock);
zio->io_private = buf;
zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
arc_read_done(zio);
} else {
mutex_exit(hash_lock);
/*
* Buffer didn't survive caching. Increment stats and
* reissue to the original storage device.
*/
if (zio->io_error != 0) {
ARCSTAT_BUMP(arcstat_l2_io_error);
} else {
zio->io_error = SET_ERROR(EIO);
}
if (!equal)
ARCSTAT_BUMP(arcstat_l2_cksum_bad);
/*
* If there's no waiter, issue an async i/o to the primary
* storage now. If there *is* a waiter, the caller must
* issue the i/o in a context where it's OK to block.
*/
if (zio->io_waiter == NULL) {
zio_t *pio = zio_unique_parent(zio);
ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
buf->b_data, hdr->b_size, arc_read_done, buf,
zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
}
}
kmem_free(cb, sizeof (l2arc_read_callback_t));
}
/*
* This is the list priority from which the L2ARC will search for pages to
* cache. This is used within loops (0..3) to cycle through lists in the
* desired order. This order can have a significant effect on cache
* performance.
*
* Currently the metadata lists are hit first, MFU then MRU, followed by
* the data lists. This function returns a locked list, and also returns
* the lock pointer.
*/
static multilist_sublist_t *
l2arc_sublist_lock(int list_num)
{
multilist_t *ml = NULL;
unsigned int idx;
ASSERT(list_num >= 0 && list_num <= 3);
switch (list_num) {
case 0:
ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
break;
case 1:
ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
break;
case 2:
ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
break;
case 3:
ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
break;
}
/*
* Return a randomly-selected sublist. This is acceptable
* because the caller feeds only a little bit of data for each
* call (8MB). Subsequent calls will result in different
* sublists being selected.
*/
idx = multilist_get_random_index(ml);
return (multilist_sublist_lock(ml, idx));
}
/*
* Evict buffers from the device write hand to the distance specified in
* bytes. This distance may span populated buffers, it may span nothing.
* This is clearing a region on the L2ARC device ready for writing.
* If the 'all' boolean is set, every buffer is evicted.
*/
static void
l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
{
list_t *buflist;
arc_buf_hdr_t *hdr, *hdr_prev;
kmutex_t *hash_lock;
uint64_t taddr;
buflist = &dev->l2ad_buflist;
if (!all && dev->l2ad_first) {
/*
* This is the first sweep through the device. There is
* nothing to evict.
*/
return;
}
if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
/*
* When nearing the end of the device, evict to the end
* before the device write hand jumps to the start.
*/
taddr = dev->l2ad_end;
} else {
taddr = dev->l2ad_hand + distance;
}
DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
uint64_t, taddr, boolean_t, all);
top:
mutex_enter(&dev->l2ad_mtx);
for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
hdr_prev = list_prev(buflist, hdr);
hash_lock = HDR_LOCK(hdr);
/*
* We cannot use mutex_enter or else we can deadlock
* with l2arc_write_buffers (due to swapping the order
* the hash lock and l2ad_mtx are taken).
*/
if (!mutex_tryenter(hash_lock)) {
/*
* Missed the hash lock. Retry.
*/
ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
mutex_exit(&dev->l2ad_mtx);
mutex_enter(hash_lock);
mutex_exit(hash_lock);
goto top;
}
if (HDR_L2_WRITE_HEAD(hdr)) {
/*
* We hit a write head node. Leave it for
* l2arc_write_done().
*/
list_remove(buflist, hdr);
mutex_exit(hash_lock);
continue;
}
if (!all && HDR_HAS_L2HDR(hdr) &&
(hdr->b_l2hdr.b_daddr > taddr ||
hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
/*
* We've evicted to the target address,
* or the end of the device.
*/
mutex_exit(hash_lock);
break;
}
ASSERT(HDR_HAS_L2HDR(hdr));
if (!HDR_HAS_L1HDR(hdr)) {
ASSERT(!HDR_L2_READING(hdr));
/*
* This doesn't exist in the ARC. Destroy.
* arc_hdr_destroy() will call list_remove()
* and decrement arcstat_l2_size.
*/
arc_change_state(arc_anon, hdr, hash_lock);
arc_hdr_destroy(hdr);
} else {
ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
/*
* Invalidate issued or about to be issued
* reads, since we may be about to write
* over this location.
*/
if (HDR_L2_READING(hdr)) {
ARCSTAT_BUMP(arcstat_l2_evict_reading);
hdr->b_flags |= ARC_FLAG_L2_EVICTED;
}
/* Ensure this header has finished being written */
ASSERT(!HDR_L2_WRITING(hdr));
ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
arc_hdr_l2hdr_destroy(hdr);
}
mutex_exit(hash_lock);
}
mutex_exit(&dev->l2ad_mtx);
}
/*
* Find and write ARC buffers to the L2ARC device.
*
* An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
* for reading until they have completed writing.
* The headroom_boost is an in-out parameter used to maintain headroom boost
* state between calls to this function.
*
* Returns the number of bytes actually written (which may be smaller than
* the delta by which the device hand has changed due to alignment).
*/
static uint64_t
l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
boolean_t *headroom_boost)
{
arc_buf_hdr_t *hdr, *hdr_prev, *head;
uint64_t write_asize, write_sz, headroom, buf_compress_minsz,
stats_size;
void *buf_data;
boolean_t full;
l2arc_write_callback_t *cb;
zio_t *pio, *wzio;
uint64_t guid = spa_load_guid(spa);
int try;
const boolean_t do_headroom_boost = *headroom_boost;
ASSERT(dev->l2ad_vdev != NULL);
/* Lower the flag now, we might want to raise it again later. */
*headroom_boost = B_FALSE;
pio = NULL;
write_sz = write_asize = 0;
full = B_FALSE;
head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
head->b_flags |= ARC_FLAG_HAS_L2HDR;
/*
* We will want to try to compress buffers that are at least 2x the
* device sector size.
*/
buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
/*
* Copy buffers for L2ARC writing.
*/
for (try = 0; try <= 3; try++) {
multilist_sublist_t *mls = l2arc_sublist_lock(try);
uint64_t passed_sz = 0;
/*
* L2ARC fast warmup.
*
* Until the ARC is warm and starts to evict, read from the
* head of the ARC lists rather than the tail.
*/
if (arc_warm == B_FALSE)
hdr = multilist_sublist_head(mls);
else
hdr = multilist_sublist_tail(mls);
headroom = target_sz * l2arc_headroom;
if (do_headroom_boost)
headroom = (headroom * l2arc_headroom_boost) / 100;
for (; hdr; hdr = hdr_prev) {
kmutex_t *hash_lock;
uint64_t buf_sz;
uint64_t buf_a_sz;
if (arc_warm == B_FALSE)
hdr_prev = multilist_sublist_next(mls, hdr);
else
hdr_prev = multilist_sublist_prev(mls, hdr);
hash_lock = HDR_LOCK(hdr);
if (!mutex_tryenter(hash_lock)) {
/*
* Skip this buffer rather than waiting.
*/
continue;
}
passed_sz += hdr->b_size;
if (passed_sz > headroom) {
/*
* Searched too far.
*/
mutex_exit(hash_lock);
break;
}
if (!l2arc_write_eligible(guid, hdr)) {
mutex_exit(hash_lock);
continue;
}
/*
* Assume that the buffer is not going to be compressed
* and could take more space on disk because of a larger
* disk block size.
*/
buf_sz = hdr->b_size;
buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
if ((write_asize + buf_a_sz) > target_sz) {
full = B_TRUE;
mutex_exit(hash_lock);
break;
}
if (pio == NULL) {
/*
* Insert a dummy header on the buflist so
* l2arc_write_done() can find where the
* write buffers begin without searching.
*/
mutex_enter(&dev->l2ad_mtx);
list_insert_head(&dev->l2ad_buflist, head);
mutex_exit(&dev->l2ad_mtx);
cb = kmem_alloc(
sizeof (l2arc_write_callback_t), KM_SLEEP);
cb->l2wcb_dev = dev;
cb->l2wcb_head = head;
pio = zio_root(spa, l2arc_write_done, cb,
ZIO_FLAG_CANFAIL);
}
/*
* Create and add a new L2ARC header.
*/
hdr->b_l2hdr.b_dev = dev;
hdr->b_flags |= ARC_FLAG_L2_WRITING;
/*
* Temporarily stash the data buffer in b_tmp_cdata.
* The subsequent write step will pick it up from
* there. This is because can't access b_l1hdr.b_buf
* without holding the hash_lock, which we in turn
* can't access without holding the ARC list locks
* (which we want to avoid during compression/writing)
*/
hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
hdr->b_l2hdr.b_asize = hdr->b_size;
hdr->b_l2hdr.b_hits = 0;
hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
/*
* Explicitly set the b_daddr field to a known
* value which means "invalid address". This
* enables us to differentiate which stage of
* l2arc_write_buffers() the particular header
* is in (e.g. this loop, or the one below).
* ARC_FLAG_L2_WRITING is not enough to make
* this distinction, and we need to know in
* order to do proper l2arc vdev accounting in
* arc_release() and arc_hdr_destroy().
*
* Note, we can't use a new flag to distinguish
* the two stages because we don't hold the
* header's hash_lock below, in the second stage
* of this function. Thus, we can't simply
* change the b_flags field to denote that the
* IO has been sent. We can change the b_daddr
* field of the L2 portion, though, since we'll
* be holding the l2ad_mtx; which is why we're
* using it to denote the header's state change.
*/
hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
mutex_enter(&dev->l2ad_mtx);
list_insert_head(&dev->l2ad_buflist, hdr);
mutex_exit(&dev->l2ad_mtx);
/*
* Compute and store the buffer cksum before
* writing. On debug the cksum is verified first.
*/
arc_cksum_verify(hdr->b_l1hdr.b_buf);
arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
mutex_exit(hash_lock);
write_sz += buf_sz;
write_asize += buf_a_sz;
}
multilist_sublist_unlock(mls);
if (full == B_TRUE)
break;
}
/* No buffers selected for writing? */
if (pio == NULL) {
ASSERT0(write_sz);
ASSERT(!HDR_HAS_L1HDR(head));
kmem_cache_free(hdr_l2only_cache, head);
return (0);
}
mutex_enter(&dev->l2ad_mtx);
/*
* Note that elsewhere in this file arcstat_l2_asize
* and the used space on l2ad_vdev are updated using b_asize,
* which is not necessarily rounded up to the device block size.
* Too keep accounting consistent we do the same here as well:
* stats_size accumulates the sum of b_asize of the written buffers,
* while write_asize accumulates the sum of b_asize rounded up
* to the device block size.
* The latter sum is used only to validate the corectness of the code.
*/
stats_size = 0;
write_asize = 0;
/*
* Now start writing the buffers. We're starting at the write head
* and work backwards, retracing the course of the buffer selector
* loop above.
*/
for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
hdr = list_prev(&dev->l2ad_buflist, hdr)) {
uint64_t buf_sz;
/*
* We rely on the L1 portion of the header below, so
* it's invalid for this header to have been evicted out
* of the ghost cache, prior to being written out. The
* ARC_FLAG_L2_WRITING bit ensures this won't happen.
*/
ASSERT(HDR_HAS_L1HDR(hdr));
/*
* We shouldn't need to lock the buffer here, since we flagged
* it as ARC_FLAG_L2_WRITING in the previous step, but we must
* take care to only access its L2 cache parameters. In
* particular, hdr->l1hdr.b_buf may be invalid by now due to
* ARC eviction.
*/
hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
if ((!l2arc_nocompress && HDR_L2COMPRESS(hdr)) &&
hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
if (l2arc_compress_buf(hdr)) {
/*
* If compression succeeded, enable headroom
* boost on the next scan cycle.
*/
*headroom_boost = B_TRUE;
}
}
/*
* Pick up the buffer data we had previously stashed away
* (and now potentially also compressed).
*/
buf_data = hdr->b_l1hdr.b_tmp_cdata;
buf_sz = hdr->b_l2hdr.b_asize;
/*
* We need to do this regardless if buf_sz is zero or
* not, otherwise, when this l2hdr is evicted we'll
* remove a reference that was never added.
*/
(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
/* Compression may have squashed the buffer to zero length. */
if (buf_sz != 0) {
uint64_t buf_a_sz;
wzio = zio_write_phys(pio, dev->l2ad_vdev,
dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_CANFAIL, B_FALSE);
DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
zio_t *, wzio);
(void) zio_nowait(wzio);
stats_size += buf_sz;
/*
* Keep the clock hand suitably device-aligned.
*/
buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
write_asize += buf_a_sz;
dev->l2ad_hand += buf_a_sz;
}
}
mutex_exit(&dev->l2ad_mtx);
ASSERT3U(write_asize, <=, target_sz);
ARCSTAT_BUMP(arcstat_l2_writes_sent);
ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
ARCSTAT_INCR(arcstat_l2_size, write_sz);
ARCSTAT_INCR(arcstat_l2_asize, stats_size);
vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
/*
* Bump device hand to the device start if it is approaching the end.
* l2arc_evict() will already have evicted ahead for this case.
*/
if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
dev->l2ad_hand = dev->l2ad_start;
dev->l2ad_first = B_FALSE;
}
dev->l2ad_writing = B_TRUE;
(void) zio_wait(pio);
dev->l2ad_writing = B_FALSE;
return (write_asize);
}
/*
* Compresses an L2ARC buffer.
* The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
* size in l2hdr->b_asize. This routine tries to compress the data and
* depending on the compression result there are three possible outcomes:
* *) The buffer was incompressible. The original l2hdr contents were left
* untouched and are ready for writing to an L2 device.
* *) The buffer was all-zeros, so there is no need to write it to an L2
* device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
* set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
* *) Compression succeeded and b_tmp_cdata was replaced with a temporary
* data buffer which holds the compressed data to be written, and b_asize
* tells us how much data there is. b_compress is set to the appropriate
* compression algorithm. Once writing is done, invoke
* l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
*
* Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
* buffer was incompressible).
*/
static boolean_t
l2arc_compress_buf(arc_buf_hdr_t *hdr)
{
void *cdata;
size_t csize, len, rounded;
l2arc_buf_hdr_t *l2hdr;
ASSERT(HDR_HAS_L2HDR(hdr));
l2hdr = &hdr->b_l2hdr;
ASSERT(HDR_HAS_L1HDR(hdr));
ASSERT3U(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
len = l2hdr->b_asize;
cdata = zio_data_buf_alloc(len);
ASSERT3P(cdata, !=, NULL);
csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
cdata, l2hdr->b_asize);
rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
if (rounded > csize) {
bzero((char *)cdata + csize, rounded - csize);
csize = rounded;
}
if (csize == 0) {
/* zero block, indicate that there's nothing to write */
zio_data_buf_free(cdata, len);
l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
l2hdr->b_asize = 0;
hdr->b_l1hdr.b_tmp_cdata = NULL;
ARCSTAT_BUMP(arcstat_l2_compress_zeros);
return (B_TRUE);
} else if (csize > 0 && csize < len) {
/*
* Compression succeeded, we'll keep the cdata around for
* writing and release it afterwards.
*/
l2hdr->b_compress = ZIO_COMPRESS_LZ4;
l2hdr->b_asize = csize;
hdr->b_l1hdr.b_tmp_cdata = cdata;
ARCSTAT_BUMP(arcstat_l2_compress_successes);
return (B_TRUE);
} else {
/*
* Compression failed, release the compressed buffer.
* l2hdr will be left unmodified.
*/
zio_data_buf_free(cdata, len);
ARCSTAT_BUMP(arcstat_l2_compress_failures);
return (B_FALSE);
}
}
/*
* Decompresses a zio read back from an l2arc device. On success, the
* underlying zio's io_data buffer is overwritten by the uncompressed
* version. On decompression error (corrupt compressed stream), the
* zio->io_error value is set to signal an I/O error.
*
* Please note that the compressed data stream is not checksummed, so
* if the underlying device is experiencing data corruption, we may feed
* corrupt data to the decompressor, so the decompressor needs to be
* able to handle this situation (LZ4 does).
*/
static void
l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
{
uint64_t csize;
void *cdata;
ASSERT(L2ARC_IS_VALID_COMPRESS(c));
if (zio->io_error != 0) {
/*
* An io error has occured, just restore the original io
* size in preparation for a main pool read.
*/
zio->io_orig_size = zio->io_size = hdr->b_size;
return;
}
if (c == ZIO_COMPRESS_EMPTY) {
/*
* An empty buffer results in a null zio, which means we
* need to fill its io_data after we're done restoring the
* buffer's contents.
*/
ASSERT(hdr->b_l1hdr.b_buf != NULL);
bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
} else {
ASSERT(zio->io_data != NULL);
/*
* We copy the compressed data from the start of the arc buffer
* (the zio_read will have pulled in only what we need, the
* rest is garbage which we will overwrite at decompression)
* and then decompress back to the ARC data buffer. This way we
* can minimize copying by simply decompressing back over the
* original compressed data (rather than decompressing to an
* aux buffer and then copying back the uncompressed buffer,
* which is likely to be much larger).
*/
csize = zio->io_size;
cdata = zio_data_buf_alloc(csize);
bcopy(zio->io_data, cdata, csize);
if (zio_decompress_data(c, cdata, zio->io_data, csize,
hdr->b_size) != 0)
zio->io_error = EIO;
zio_data_buf_free(cdata, csize);
}
/* Restore the expected uncompressed IO size. */
zio->io_orig_size = zio->io_size = hdr->b_size;
}
/*
* Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
* This buffer serves as a temporary holder of compressed data while
* the buffer entry is being written to an l2arc device. Once that is
* done, we can dispose of it.
*/
static void
l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
{
enum zio_compress comp;
ASSERT(HDR_HAS_L1HDR(hdr));
ASSERT(HDR_HAS_L2HDR(hdr));
comp = hdr->b_l2hdr.b_compress;
ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
if (comp == ZIO_COMPRESS_OFF) {
/*
* In this case, b_tmp_cdata points to the same buffer
* as the arc_buf_t's b_data field. We don't want to
* free it, since the arc_buf_t will handle that.
*/
hdr->b_l1hdr.b_tmp_cdata = NULL;
} else if (comp == ZIO_COMPRESS_EMPTY) {
/*
* In this case, b_tmp_cdata was compressed to an empty
* buffer, thus there's nothing to free and b_tmp_cdata
* should have been set to NULL in l2arc_write_buffers().
*/
ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
} else {
/*
* If the data was compressed, then we've allocated a
* temporary buffer for it, so now we need to release it.
*/
ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
hdr->b_size);
hdr->b_l1hdr.b_tmp_cdata = NULL;
}
}
/*
* This thread feeds the L2ARC at regular intervals. This is the beating
* heart of the L2ARC.
*/
static void
l2arc_feed_thread(void)
{
callb_cpr_t cpr;
l2arc_dev_t *dev;
spa_t *spa;
uint64_t size, wrote;
clock_t begin, next = ddi_get_lbolt();
boolean_t headroom_boost = B_FALSE;
fstrans_cookie_t cookie;
CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
mutex_enter(&l2arc_feed_thr_lock);
cookie = spl_fstrans_mark();
while (l2arc_thread_exit == 0) {
CALLB_CPR_SAFE_BEGIN(&cpr);
(void) cv_timedwait_sig(&l2arc_feed_thr_cv,
&l2arc_feed_thr_lock, next);
CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
next = ddi_get_lbolt() + hz;
/*
* Quick check for L2ARC devices.
*/
mutex_enter(&l2arc_dev_mtx);
if (l2arc_ndev == 0) {
mutex_exit(&l2arc_dev_mtx);
continue;
}
mutex_exit(&l2arc_dev_mtx);
begin = ddi_get_lbolt();
/*
* This selects the next l2arc device to write to, and in
* doing so the next spa to feed from: dev->l2ad_spa. This
* will return NULL if there are now no l2arc devices or if
* they are all faulted.
*
* If a device is returned, its spa's config lock is also
* held to prevent device removal. l2arc_dev_get_next()
* will grab and release l2arc_dev_mtx.
*/
if ((dev = l2arc_dev_get_next()) == NULL)
continue;
spa = dev->l2ad_spa;
ASSERT(spa != NULL);
/*
* If the pool is read-only then force the feed thread to
* sleep a little longer.
*/
if (!spa_writeable(spa)) {
next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
spa_config_exit(spa, SCL_L2ARC, dev);
continue;
}
/*
* Avoid contributing to memory pressure.
*/
if (arc_reclaim_needed()) {
ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
spa_config_exit(spa, SCL_L2ARC, dev);
continue;
}
ARCSTAT_BUMP(arcstat_l2_feeds);
size = l2arc_write_size();
/*
* Evict L2ARC buffers that will be overwritten.
*/
l2arc_evict(dev, size, B_FALSE);
/*
* Write ARC buffers.
*/
wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
/*
* Calculate interval between writes.
*/
next = l2arc_write_interval(begin, size, wrote);
spa_config_exit(spa, SCL_L2ARC, dev);
}
spl_fstrans_unmark(cookie);
l2arc_thread_exit = 0;
cv_broadcast(&l2arc_feed_thr_cv);
CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
thread_exit();
}
boolean_t
l2arc_vdev_present(vdev_t *vd)
{
l2arc_dev_t *dev;
mutex_enter(&l2arc_dev_mtx);
for (dev = list_head(l2arc_dev_list); dev != NULL;
dev = list_next(l2arc_dev_list, dev)) {
if (dev->l2ad_vdev == vd)
break;
}
mutex_exit(&l2arc_dev_mtx);
return (dev != NULL);
}
/*
* Add a vdev for use by the L2ARC. By this point the spa has already
* validated the vdev and opened it.
*/
void
l2arc_add_vdev(spa_t *spa, vdev_t *vd)
{
l2arc_dev_t *adddev;
ASSERT(!l2arc_vdev_present(vd));
/*
* Create a new l2arc device entry.
*/
adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
adddev->l2ad_spa = spa;
adddev->l2ad_vdev = vd;
adddev->l2ad_start = VDEV_LABEL_START_SIZE;
adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
adddev->l2ad_hand = adddev->l2ad_start;
adddev->l2ad_first = B_TRUE;
adddev->l2ad_writing = B_FALSE;
list_link_init(&adddev->l2ad_node);
mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
/*
* This is a list of all ARC buffers that are still valid on the
* device.
*/
list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
refcount_create(&adddev->l2ad_alloc);
/*
* Add device to global list
*/
mutex_enter(&l2arc_dev_mtx);
list_insert_head(l2arc_dev_list, adddev);
atomic_inc_64(&l2arc_ndev);
mutex_exit(&l2arc_dev_mtx);
}
/*
* Remove a vdev from the L2ARC.
*/
void
l2arc_remove_vdev(vdev_t *vd)
{
l2arc_dev_t *dev, *nextdev, *remdev = NULL;
/*
* Find the device by vdev
*/
mutex_enter(&l2arc_dev_mtx);
for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
nextdev = list_next(l2arc_dev_list, dev);
if (vd == dev->l2ad_vdev) {
remdev = dev;
break;
}
}
ASSERT(remdev != NULL);
/*
* Remove device from global list
*/
list_remove(l2arc_dev_list, remdev);
l2arc_dev_last = NULL; /* may have been invalidated */
atomic_dec_64(&l2arc_ndev);
mutex_exit(&l2arc_dev_mtx);
/*
* Clear all buflists and ARC references. L2ARC device flush.
*/
l2arc_evict(remdev, 0, B_TRUE);
list_destroy(&remdev->l2ad_buflist);
mutex_destroy(&remdev->l2ad_mtx);
refcount_destroy(&remdev->l2ad_alloc);
kmem_free(remdev, sizeof (l2arc_dev_t));
}
void
l2arc_init(void)
{
l2arc_thread_exit = 0;
l2arc_ndev = 0;
l2arc_writes_sent = 0;
l2arc_writes_done = 0;
mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
l2arc_dev_list = &L2ARC_dev_list;
l2arc_free_on_write = &L2ARC_free_on_write;
list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
offsetof(l2arc_dev_t, l2ad_node));
list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
offsetof(l2arc_data_free_t, l2df_list_node));
}
void
l2arc_fini(void)
{
/*
* This is called from dmu_fini(), which is called from spa_fini();
* Because of this, we can assume that all l2arc devices have
* already been removed when the pools themselves were removed.
*/
l2arc_do_free_on_write();
mutex_destroy(&l2arc_feed_thr_lock);
cv_destroy(&l2arc_feed_thr_cv);
mutex_destroy(&l2arc_dev_mtx);
mutex_destroy(&l2arc_free_on_write_mtx);
list_destroy(l2arc_dev_list);
list_destroy(l2arc_free_on_write);
}
void
l2arc_start(void)
{
if (!(spa_mode_global & FWRITE))
return;
(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
TS_RUN, defclsyspri);
}
void
l2arc_stop(void)
{
if (!(spa_mode_global & FWRITE))
return;
mutex_enter(&l2arc_feed_thr_lock);
cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
l2arc_thread_exit = 1;
while (l2arc_thread_exit != 0)
cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
mutex_exit(&l2arc_feed_thr_lock);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(arc_buf_size);
EXPORT_SYMBOL(arc_write);
EXPORT_SYMBOL(arc_read);
EXPORT_SYMBOL(arc_buf_remove_ref);
EXPORT_SYMBOL(arc_buf_info);
EXPORT_SYMBOL(arc_getbuf_func);
EXPORT_SYMBOL(arc_add_prune_callback);
EXPORT_SYMBOL(arc_remove_prune_callback);
module_param(zfs_arc_min, ulong, 0644);
MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
module_param(zfs_arc_max, ulong, 0644);
MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
module_param(zfs_arc_meta_limit, ulong, 0644);
MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
module_param(zfs_arc_meta_min, ulong, 0644);
MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
module_param(zfs_arc_meta_prune, int, 0644);
MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
module_param(zfs_arc_meta_adjust_restarts, int, 0644);
MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
"Limit number of restarts in arc_adjust_meta");
module_param(zfs_arc_meta_strategy, int, 0644);
MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
module_param(zfs_arc_grow_retry, int, 0644);
MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
module_param(zfs_arc_p_aggressive_disable, int, 0644);
MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
module_param(zfs_arc_p_dampener_disable, int, 0644);
MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
module_param(zfs_arc_shrink_shift, int, 0644);
MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
module_param(zfs_arc_p_min_shift, int, 0644);
MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
module_param(zfs_disable_dup_eviction, int, 0644);
MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
module_param(zfs_arc_average_blocksize, int, 0444);
MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
module_param(zfs_arc_num_sublists_per_state, int, 0644);
MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
"Number of sublists used in each of the ARC state lists");
module_param(l2arc_write_max, ulong, 0644);
MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
module_param(l2arc_write_boost, ulong, 0644);
MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
module_param(l2arc_headroom, ulong, 0644);
MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
module_param(l2arc_headroom_boost, ulong, 0644);
MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
module_param(l2arc_feed_secs, ulong, 0644);
MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
module_param(l2arc_feed_min_ms, ulong, 0644);
MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
module_param(l2arc_noprefetch, int, 0644);
MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
module_param(l2arc_nocompress, int, 0644);
MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
module_param(l2arc_feed_again, int, 0644);
MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
module_param(l2arc_norw, int, 0644);
MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
module_param(zfs_arc_lotsfree_percent, int, 0644);
MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
"System free memory I/O throttle in bytes");
module_param(zfs_arc_sys_free, ulong, 0644);
MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
#endif