mirror_zfs/lib/libzutil/zutil_import.c
наб 2453d0263d lib/: set O_CLOEXEC on all fds
As found by
  git grep -E '(open|setmntent|pipe2?)\(' |
    grep -vE '((zfs|zpool)_|fd|dl|lzc_re|pidfile_|g_)open\('

FreeBSD's pidfile_open() says nothing about the flags of the files it
opens, but we can't do anything about it anyway; the implementation does
open all files with O_CLOEXEC

Consider this output with zpool.d/media appended with
"pid=$$; (ls -l /proc/$pid/fd > /dev/tty)":
  $ /sbin/zpool iostat -vc media
  lrwx------ 0 -> /dev/pts/0
  l-wx------ 1 -> 'pipe:[3278500]'
  l-wx------ 2 -> /dev/null
  lrwx------ 3 -> /dev/zfs
  lr-x------ 4 -> /proc/31895/mounts
  lrwx------ 5 -> /dev/zfs
  lr-x------ 10 -> /usr/lib/zfs-linux/zpool.d/media
vs
  $ ./zpool iostat -vc vendor,upath,iostat,media
  lrwx------ 0 -> /dev/pts/0
  l-wx------ 1 -> 'pipe:[3279887]'
  l-wx------ 2 -> /dev/null
  lr-x------ 10 -> /usr/lib/zfs-linux/zpool.d/media

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #11866
2021-04-14 13:23:07 -07:00

1738 lines
42 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
* Copyright 2015 RackTop Systems.
* Copyright (c) 2016, Intel Corporation.
* Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
*/
/*
* Pool import support functions.
*
* Used by zpool, ztest, zdb, and zhack to locate importable configs. Since
* these commands are expected to run in the global zone, we can assume
* that the devices are all readable when called.
*
* To import a pool, we rely on reading the configuration information from the
* ZFS label of each device. If we successfully read the label, then we
* organize the configuration information in the following hierarchy:
*
* pool guid -> toplevel vdev guid -> label txg
*
* Duplicate entries matching this same tuple will be discarded. Once we have
* examined every device, we pick the best label txg config for each toplevel
* vdev. We then arrange these toplevel vdevs into a complete pool config, and
* update any paths that have changed. Finally, we attempt to import the pool
* using our derived config, and record the results.
*/
#include <aio.h>
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <libintl.h>
#include <libgen.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/dktp/fdisk.h>
#include <sys/vdev_impl.h>
#include <sys/fs/zfs.h>
#include <thread_pool.h>
#include <libzutil.h>
#include <libnvpair.h>
#include "zutil_import.h"
/*PRINTFLIKE2*/
static void
zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
(void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap);
hdl->lpc_desc_active = B_TRUE;
va_end(ap);
}
static void
zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt,
va_list ap)
{
char action[1024];
(void) vsnprintf(action, sizeof (action), fmt, ap);
if (hdl->lpc_desc_active)
hdl->lpc_desc_active = B_FALSE;
else
hdl->lpc_desc[0] = '\0';
if (hdl->lpc_printerr) {
if (hdl->lpc_desc[0] != '\0')
error = hdl->lpc_desc;
(void) fprintf(stderr, "%s: %s\n", action, error);
}
}
/*PRINTFLIKE3*/
static int
zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
zutil_verror(hdl, error, fmt, ap);
va_end(ap);
return (-1);
}
static int
zutil_error(libpc_handle_t *hdl, const char *error, const char *msg)
{
return (zutil_error_fmt(hdl, error, "%s", msg));
}
static int
zutil_no_memory(libpc_handle_t *hdl)
{
zutil_error(hdl, EZFS_NOMEM, "internal error");
exit(1);
}
void *
zutil_alloc(libpc_handle_t *hdl, size_t size)
{
void *data;
if ((data = calloc(1, size)) == NULL)
(void) zutil_no_memory(hdl);
return (data);
}
char *
zutil_strdup(libpc_handle_t *hdl, const char *str)
{
char *ret;
if ((ret = strdup(str)) == NULL)
(void) zutil_no_memory(hdl);
return (ret);
}
/*
* Intermediate structures used to gather configuration information.
*/
typedef struct config_entry {
uint64_t ce_txg;
nvlist_t *ce_config;
struct config_entry *ce_next;
} config_entry_t;
typedef struct vdev_entry {
uint64_t ve_guid;
config_entry_t *ve_configs;
struct vdev_entry *ve_next;
} vdev_entry_t;
typedef struct pool_entry {
uint64_t pe_guid;
vdev_entry_t *pe_vdevs;
struct pool_entry *pe_next;
} pool_entry_t;
typedef struct name_entry {
char *ne_name;
uint64_t ne_guid;
uint64_t ne_order;
uint64_t ne_num_labels;
struct name_entry *ne_next;
} name_entry_t;
typedef struct pool_list {
pool_entry_t *pools;
name_entry_t *names;
} pool_list_t;
/*
* Go through and fix up any path and/or devid information for the given vdev
* configuration.
*/
static int
fix_paths(libpc_handle_t *hdl, nvlist_t *nv, name_entry_t *names)
{
nvlist_t **child;
uint_t c, children;
uint64_t guid;
name_entry_t *ne, *best;
char *path;
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) == 0) {
for (c = 0; c < children; c++)
if (fix_paths(hdl, child[c], names) != 0)
return (-1);
return (0);
}
/*
* This is a leaf (file or disk) vdev. In either case, go through
* the name list and see if we find a matching guid. If so, replace
* the path and see if we can calculate a new devid.
*
* There may be multiple names associated with a particular guid, in
* which case we have overlapping partitions or multiple paths to the
* same disk. In this case we prefer to use the path name which
* matches the ZPOOL_CONFIG_PATH. If no matching entry is found we
* use the lowest order device which corresponds to the first match
* while traversing the ZPOOL_IMPORT_PATH search path.
*/
verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
path = NULL;
best = NULL;
for (ne = names; ne != NULL; ne = ne->ne_next) {
if (ne->ne_guid == guid) {
if (path == NULL) {
best = ne;
break;
}
if ((strlen(path) == strlen(ne->ne_name)) &&
strncmp(path, ne->ne_name, strlen(path)) == 0) {
best = ne;
break;
}
if (best == NULL) {
best = ne;
continue;
}
/* Prefer paths with move vdev labels. */
if (ne->ne_num_labels > best->ne_num_labels) {
best = ne;
continue;
}
/* Prefer paths earlier in the search order. */
if (ne->ne_num_labels == best->ne_num_labels &&
ne->ne_order < best->ne_order) {
best = ne;
continue;
}
}
}
if (best == NULL)
return (0);
if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
return (-1);
update_vdev_config_dev_strs(nv);
return (0);
}
/*
* Add the given configuration to the list of known devices.
*/
static int
add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path,
int order, int num_labels, nvlist_t *config)
{
uint64_t pool_guid, vdev_guid, top_guid, txg, state;
pool_entry_t *pe;
vdev_entry_t *ve;
config_entry_t *ce;
name_entry_t *ne;
/*
* If this is a hot spare not currently in use or level 2 cache
* device, add it to the list of names to translate, but don't do
* anything else.
*/
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
&state) == 0 &&
(state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL)
return (-1);
if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) {
free(ne);
return (-1);
}
ne->ne_guid = vdev_guid;
ne->ne_order = order;
ne->ne_num_labels = num_labels;
ne->ne_next = pl->names;
pl->names = ne;
return (0);
}
/*
* If we have a valid config but cannot read any of these fields, then
* it means we have a half-initialized label. In vdev_label_init()
* we write a label with txg == 0 so that we can identify the device
* in case the user refers to the same disk later on. If we fail to
* create the pool, we'll be left with a label in this state
* which should not be considered part of a valid pool.
*/
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
&pool_guid) != 0 ||
nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
&vdev_guid) != 0 ||
nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
&top_guid) != 0 ||
nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
&txg) != 0 || txg == 0) {
return (0);
}
/*
* First, see if we know about this pool. If not, then add it to the
* list of known pools.
*/
for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
if (pe->pe_guid == pool_guid)
break;
}
if (pe == NULL) {
if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
return (-1);
}
pe->pe_guid = pool_guid;
pe->pe_next = pl->pools;
pl->pools = pe;
}
/*
* Second, see if we know about this toplevel vdev. Add it if its
* missing.
*/
for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
if (ve->ve_guid == top_guid)
break;
}
if (ve == NULL) {
if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
return (-1);
}
ve->ve_guid = top_guid;
ve->ve_next = pe->pe_vdevs;
pe->pe_vdevs = ve;
}
/*
* Third, see if we have a config with a matching transaction group. If
* so, then we do nothing. Otherwise, add it to the list of known
* configs.
*/
for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
if (ce->ce_txg == txg)
break;
}
if (ce == NULL) {
if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) {
return (-1);
}
ce->ce_txg = txg;
ce->ce_config = fnvlist_dup(config);
ce->ce_next = ve->ve_configs;
ve->ve_configs = ce;
}
/*
* At this point we've successfully added our config to the list of
* known configs. The last thing to do is add the vdev guid -> path
* mappings so that we can fix up the configuration as necessary before
* doing the import.
*/
if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL)
return (-1);
if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) {
free(ne);
return (-1);
}
ne->ne_guid = vdev_guid;
ne->ne_order = order;
ne->ne_num_labels = num_labels;
ne->ne_next = pl->names;
pl->names = ne;
return (0);
}
static int
zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid,
boolean_t *isactive)
{
ASSERT(hdl->lpc_ops->pco_pool_active != NULL);
int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name,
guid, isactive);
return (error);
}
static nvlist_t *
zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig)
{
ASSERT(hdl->lpc_ops->pco_refresh_config != NULL);
return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle,
tryconfig));
}
/*
* Determine if the vdev id is a hole in the namespace.
*/
static boolean_t
vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
{
int c;
for (c = 0; c < holes; c++) {
/* Top-level is a hole */
if (hole_array[c] == id)
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Convert our list of pools into the definitive set of configurations. We
* start by picking the best config for each toplevel vdev. Once that's done,
* we assemble the toplevel vdevs into a full config for the pool. We make a
* pass to fix up any incorrect paths, and then add it to the main list to
* return to the user.
*/
static nvlist_t *
get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
nvlist_t *policy)
{
pool_entry_t *pe;
vdev_entry_t *ve;
config_entry_t *ce;
nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
nvlist_t **spares, **l2cache;
uint_t i, nspares, nl2cache;
boolean_t config_seen;
uint64_t best_txg;
char *name, *hostname = NULL;
uint64_t guid;
uint_t children = 0;
nvlist_t **child = NULL;
uint_t holes;
uint64_t *hole_array, max_id;
uint_t c;
boolean_t isactive;
uint64_t hostid;
nvlist_t *nvl;
boolean_t valid_top_config = B_FALSE;
if (nvlist_alloc(&ret, 0, 0) != 0)
goto nomem;
for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
uint64_t id, max_txg = 0;
if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
goto nomem;
config_seen = B_FALSE;
/*
* Iterate over all toplevel vdevs. Grab the pool configuration
* from the first one we find, and then go through the rest and
* add them as necessary to the 'vdevs' member of the config.
*/
for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
/*
* Determine the best configuration for this vdev by
* selecting the config with the latest transaction
* group.
*/
best_txg = 0;
for (ce = ve->ve_configs; ce != NULL;
ce = ce->ce_next) {
if (ce->ce_txg > best_txg) {
tmp = ce->ce_config;
best_txg = ce->ce_txg;
}
}
/*
* We rely on the fact that the max txg for the
* pool will contain the most up-to-date information
* about the valid top-levels in the vdev namespace.
*/
if (best_txg > max_txg) {
(void) nvlist_remove(config,
ZPOOL_CONFIG_VDEV_CHILDREN,
DATA_TYPE_UINT64);
(void) nvlist_remove(config,
ZPOOL_CONFIG_HOLE_ARRAY,
DATA_TYPE_UINT64_ARRAY);
max_txg = best_txg;
hole_array = NULL;
holes = 0;
max_id = 0;
valid_top_config = B_FALSE;
if (nvlist_lookup_uint64(tmp,
ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
verify(nvlist_add_uint64(config,
ZPOOL_CONFIG_VDEV_CHILDREN,
max_id) == 0);
valid_top_config = B_TRUE;
}
if (nvlist_lookup_uint64_array(tmp,
ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
&holes) == 0) {
verify(nvlist_add_uint64_array(config,
ZPOOL_CONFIG_HOLE_ARRAY,
hole_array, holes) == 0);
}
}
if (!config_seen) {
/*
* Copy the relevant pieces of data to the pool
* configuration:
*
* version
* pool guid
* name
* comment (if available)
* compatibility features (if available)
* pool state
* hostid (if available)
* hostname (if available)
*/
uint64_t state, version;
char *comment = NULL;
char *compatibility = NULL;
version = fnvlist_lookup_uint64(tmp,
ZPOOL_CONFIG_VERSION);
fnvlist_add_uint64(config,
ZPOOL_CONFIG_VERSION, version);
guid = fnvlist_lookup_uint64(tmp,
ZPOOL_CONFIG_POOL_GUID);
fnvlist_add_uint64(config,
ZPOOL_CONFIG_POOL_GUID, guid);
name = fnvlist_lookup_string(tmp,
ZPOOL_CONFIG_POOL_NAME);
fnvlist_add_string(config,
ZPOOL_CONFIG_POOL_NAME, name);
if (nvlist_lookup_string(tmp,
ZPOOL_CONFIG_COMMENT, &comment) == 0)
fnvlist_add_string(config,
ZPOOL_CONFIG_COMMENT, comment);
if (nvlist_lookup_string(tmp,
ZPOOL_CONFIG_COMPATIBILITY,
&compatibility) == 0)
fnvlist_add_string(config,
ZPOOL_CONFIG_COMPATIBILITY,
compatibility);
state = fnvlist_lookup_uint64(tmp,
ZPOOL_CONFIG_POOL_STATE);
fnvlist_add_uint64(config,
ZPOOL_CONFIG_POOL_STATE, state);
hostid = 0;
if (nvlist_lookup_uint64(tmp,
ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
fnvlist_add_uint64(config,
ZPOOL_CONFIG_HOSTID, hostid);
hostname = fnvlist_lookup_string(tmp,
ZPOOL_CONFIG_HOSTNAME);
fnvlist_add_string(config,
ZPOOL_CONFIG_HOSTNAME, hostname);
}
config_seen = B_TRUE;
}
/*
* Add this top-level vdev to the child array.
*/
verify(nvlist_lookup_nvlist(tmp,
ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
&id) == 0);
if (id >= children) {
nvlist_t **newchild;
newchild = zutil_alloc(hdl, (id + 1) *
sizeof (nvlist_t *));
if (newchild == NULL)
goto nomem;
for (c = 0; c < children; c++)
newchild[c] = child[c];
free(child);
child = newchild;
children = id + 1;
}
if (nvlist_dup(nvtop, &child[id], 0) != 0)
goto nomem;
}
/*
* If we have information about all the top-levels then
* clean up the nvlist which we've constructed. This
* means removing any extraneous devices that are
* beyond the valid range or adding devices to the end
* of our array which appear to be missing.
*/
if (valid_top_config) {
if (max_id < children) {
for (c = max_id; c < children; c++)
nvlist_free(child[c]);
children = max_id;
} else if (max_id > children) {
nvlist_t **newchild;
newchild = zutil_alloc(hdl, (max_id) *
sizeof (nvlist_t *));
if (newchild == NULL)
goto nomem;
for (c = 0; c < children; c++)
newchild[c] = child[c];
free(child);
child = newchild;
children = max_id;
}
}
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
&guid) == 0);
/*
* The vdev namespace may contain holes as a result of
* device removal. We must add them back into the vdev
* tree before we process any missing devices.
*/
if (holes > 0) {
ASSERT(valid_top_config);
for (c = 0; c < children; c++) {
nvlist_t *holey;
if (child[c] != NULL ||
!vdev_is_hole(hole_array, holes, c))
continue;
if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
0) != 0)
goto nomem;
/*
* Holes in the namespace are treated as
* "hole" top-level vdevs and have a
* special flag set on them.
*/
if (nvlist_add_string(holey,
ZPOOL_CONFIG_TYPE,
VDEV_TYPE_HOLE) != 0 ||
nvlist_add_uint64(holey,
ZPOOL_CONFIG_ID, c) != 0 ||
nvlist_add_uint64(holey,
ZPOOL_CONFIG_GUID, 0ULL) != 0) {
nvlist_free(holey);
goto nomem;
}
child[c] = holey;
}
}
/*
* Look for any missing top-level vdevs. If this is the case,
* create a faked up 'missing' vdev as a placeholder. We cannot
* simply compress the child array, because the kernel performs
* certain checks to make sure the vdev IDs match their location
* in the configuration.
*/
for (c = 0; c < children; c++) {
if (child[c] == NULL) {
nvlist_t *missing;
if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
0) != 0)
goto nomem;
if (nvlist_add_string(missing,
ZPOOL_CONFIG_TYPE,
VDEV_TYPE_MISSING) != 0 ||
nvlist_add_uint64(missing,
ZPOOL_CONFIG_ID, c) != 0 ||
nvlist_add_uint64(missing,
ZPOOL_CONFIG_GUID, 0ULL) != 0) {
nvlist_free(missing);
goto nomem;
}
child[c] = missing;
}
}
/*
* Put all of this pool's top-level vdevs into a root vdev.
*/
if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
goto nomem;
if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
VDEV_TYPE_ROOT) != 0 ||
nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
child, children) != 0) {
nvlist_free(nvroot);
goto nomem;
}
for (c = 0; c < children; c++)
nvlist_free(child[c]);
free(child);
children = 0;
child = NULL;
/*
* Go through and fix up any paths and/or devids based on our
* known list of vdev GUID -> path mappings.
*/
if (fix_paths(hdl, nvroot, pl->names) != 0) {
nvlist_free(nvroot);
goto nomem;
}
/*
* Add the root vdev to this pool's configuration.
*/
if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
nvroot) != 0) {
nvlist_free(nvroot);
goto nomem;
}
nvlist_free(nvroot);
/*
* zdb uses this path to report on active pools that were
* imported or created using -R.
*/
if (active_ok)
goto add_pool;
/*
* Determine if this pool is currently active, in which case we
* can't actually import it.
*/
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
&name) == 0);
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
&guid) == 0);
if (zutil_pool_active(hdl, name, guid, &isactive) != 0)
goto error;
if (isactive) {
nvlist_free(config);
config = NULL;
continue;
}
if (policy != NULL) {
if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
policy) != 0)
goto nomem;
}
if ((nvl = zutil_refresh_config(hdl, config)) == NULL) {
nvlist_free(config);
config = NULL;
continue;
}
nvlist_free(config);
config = nvl;
/*
* Go through and update the paths for spares, now that we have
* them.
*/
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) == 0);
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
&spares, &nspares) == 0) {
for (i = 0; i < nspares; i++) {
if (fix_paths(hdl, spares[i], pl->names) != 0)
goto nomem;
}
}
/*
* Update the paths for l2cache devices.
*/
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
&l2cache, &nl2cache) == 0) {
for (i = 0; i < nl2cache; i++) {
if (fix_paths(hdl, l2cache[i], pl->names) != 0)
goto nomem;
}
}
/*
* Restore the original information read from the actual label.
*/
(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
DATA_TYPE_UINT64);
(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
DATA_TYPE_STRING);
if (hostid != 0) {
verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
hostid) == 0);
verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
hostname) == 0);
}
add_pool:
/*
* Add this pool to the list of configs.
*/
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
&name) == 0);
if (nvlist_add_nvlist(ret, name, config) != 0)
goto nomem;
nvlist_free(config);
config = NULL;
}
return (ret);
nomem:
(void) zutil_no_memory(hdl);
error:
nvlist_free(config);
nvlist_free(ret);
for (c = 0; c < children; c++)
nvlist_free(child[c]);
free(child);
return (NULL);
}
/*
* Return the offset of the given label.
*/
static uint64_t
label_offset(uint64_t size, int l)
{
ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
}
/*
* Given a file descriptor, read the label information and return an nvlist
* describing the configuration, if there is one. The number of valid
* labels found will be returned in num_labels when non-NULL.
*/
int
zpool_read_label(int fd, nvlist_t **config, int *num_labels)
{
struct stat64 statbuf;
struct aiocb aiocbs[VDEV_LABELS];
struct aiocb *aiocbps[VDEV_LABELS];
vdev_phys_t *labels;
nvlist_t *expected_config = NULL;
uint64_t expected_guid = 0, size;
int error, l, count = 0;
*config = NULL;
if (fstat64_blk(fd, &statbuf) == -1)
return (0);
size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
error = posix_memalign((void **)&labels, PAGESIZE,
VDEV_LABELS * sizeof (*labels));
if (error)
return (-1);
memset(aiocbs, 0, sizeof (aiocbs));
for (l = 0; l < VDEV_LABELS; l++) {
off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE;
aiocbs[l].aio_fildes = fd;
aiocbs[l].aio_offset = offset;
aiocbs[l].aio_buf = &labels[l];
aiocbs[l].aio_nbytes = sizeof (vdev_phys_t);
aiocbs[l].aio_lio_opcode = LIO_READ;
aiocbps[l] = &aiocbs[l];
}
if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) {
int saved_errno = errno;
if (errno == EAGAIN || errno == EINTR || errno == EIO) {
/*
* A portion of the requests may have been submitted.
* Clean them up.
*/
for (l = 0; l < VDEV_LABELS; l++) {
errno = 0;
int r = aio_error(&aiocbs[l]);
if (r != EINVAL)
(void) aio_return(&aiocbs[l]);
}
}
free(labels);
errno = saved_errno;
return (-1);
}
for (l = 0; l < VDEV_LABELS; l++) {
uint64_t state, guid, txg;
if (aio_return(&aiocbs[l]) != sizeof (vdev_phys_t))
continue;
if (nvlist_unpack(labels[l].vp_nvlist,
sizeof (labels[l].vp_nvlist), config, 0) != 0)
continue;
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
&guid) != 0 || guid == 0) {
nvlist_free(*config);
continue;
}
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
&state) != 0 || state > POOL_STATE_L2CACHE) {
nvlist_free(*config);
continue;
}
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
(nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
&txg) != 0 || txg == 0)) {
nvlist_free(*config);
continue;
}
if (expected_guid) {
if (expected_guid == guid)
count++;
nvlist_free(*config);
} else {
expected_config = *config;
expected_guid = guid;
count++;
}
}
if (num_labels != NULL)
*num_labels = count;
free(labels);
*config = expected_config;
return (0);
}
/*
* Sorted by full path and then vdev guid to allow for multiple entries with
* the same full path name. This is required because it's possible to
* have multiple block devices with labels that refer to the same
* ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both
* entries need to be added to the cache. Scenarios where this can occur
* include overwritten pool labels, devices which are visible from multiple
* hosts and multipath devices.
*/
int
slice_cache_compare(const void *arg1, const void *arg2)
{
const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid;
uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid;
int rv;
rv = TREE_ISIGN(strcmp(nm1, nm2));
if (rv)
return (rv);
return (TREE_CMP(guid1, guid2));
}
static int
label_paths_impl(libpc_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid,
uint64_t vdev_guid, char **path, char **devid)
{
nvlist_t **child;
uint_t c, children;
uint64_t guid;
char *val;
int error;
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
&child, &children) == 0) {
for (c = 0; c < children; c++) {
error = label_paths_impl(hdl, child[c],
pool_guid, vdev_guid, path, devid);
if (error)
return (error);
}
return (0);
}
if (nvroot == NULL)
return (0);
error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid);
if ((error != 0) || (guid != vdev_guid))
return (0);
error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val);
if (error == 0)
*path = val;
error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val);
if (error == 0)
*devid = val;
return (0);
}
/*
* Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID
* and store these strings as config_path and devid_path respectively.
* The returned pointers are only valid as long as label remains valid.
*/
int
label_paths(libpc_handle_t *hdl, nvlist_t *label, char **path, char **devid)
{
nvlist_t *nvroot;
uint64_t pool_guid;
uint64_t vdev_guid;
*path = NULL;
*devid = NULL;
if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid))
return (ENOENT);
return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path,
devid));
}
static void
zpool_find_import_scan_add_slice(libpc_handle_t *hdl, pthread_mutex_t *lock,
avl_tree_t *cache, const char *path, const char *name, int order)
{
avl_index_t where;
rdsk_node_t *slice;
slice = zutil_alloc(hdl, sizeof (rdsk_node_t));
if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) {
free(slice);
return;
}
slice->rn_vdev_guid = 0;
slice->rn_lock = lock;
slice->rn_avl = cache;
slice->rn_hdl = hdl;
slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET;
slice->rn_labelpaths = B_FALSE;
pthread_mutex_lock(lock);
if (avl_find(cache, slice, &where)) {
free(slice->rn_name);
free(slice);
} else {
avl_insert(cache, slice, where);
}
pthread_mutex_unlock(lock);
}
static int
zpool_find_import_scan_dir(libpc_handle_t *hdl, pthread_mutex_t *lock,
avl_tree_t *cache, const char *dir, int order)
{
int error;
char path[MAXPATHLEN];
struct dirent64 *dp;
DIR *dirp;
if (realpath(dir, path) == NULL) {
error = errno;
if (error == ENOENT)
return (0);
zutil_error_aux(hdl, strerror(error));
(void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext(
TEXT_DOMAIN, "cannot resolve path '%s'"), dir);
return (error);
}
dirp = opendir(path);
if (dirp == NULL) {
error = errno;
zutil_error_aux(hdl, strerror(error));
(void) zutil_error_fmt(hdl, EZFS_BADPATH,
dgettext(TEXT_DOMAIN, "cannot open '%s'"), path);
return (error);
}
while ((dp = readdir64(dirp)) != NULL) {
const char *name = dp->d_name;
if (name[0] == '.' &&
(name[1] == 0 || (name[1] == '.' && name[2] == 0)))
continue;
zpool_find_import_scan_add_slice(hdl, lock, cache, path, name,
order);
}
(void) closedir(dirp);
return (0);
}
static int
zpool_find_import_scan_path(libpc_handle_t *hdl, pthread_mutex_t *lock,
avl_tree_t *cache, const char *dir, int order)
{
int error = 0;
char path[MAXPATHLEN];
char *d, *b;
char *dpath, *name;
/*
* Separate the directory part and last part of the
* path. We do this so that we can get the realpath of
* the directory. We don't get the realpath on the
* whole path because if it's a symlink, we want the
* path of the symlink not where it points to.
*/
d = zutil_strdup(hdl, dir);
b = zutil_strdup(hdl, dir);
dpath = dirname(d);
name = basename(b);
if (realpath(dpath, path) == NULL) {
error = errno;
if (error == ENOENT) {
error = 0;
goto out;
}
zutil_error_aux(hdl, strerror(error));
(void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext(
TEXT_DOMAIN, "cannot resolve path '%s'"), dir);
goto out;
}
zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order);
out:
free(b);
free(d);
return (error);
}
/*
* Scan a list of directories for zfs devices.
*/
static int
zpool_find_import_scan(libpc_handle_t *hdl, pthread_mutex_t *lock,
avl_tree_t **slice_cache, const char * const *dir, size_t dirs)
{
avl_tree_t *cache;
rdsk_node_t *slice;
void *cookie;
int i, error;
*slice_cache = NULL;
cache = zutil_alloc(hdl, sizeof (avl_tree_t));
avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t),
offsetof(rdsk_node_t, rn_node));
for (i = 0; i < dirs; i++) {
struct stat sbuf;
if (stat(dir[i], &sbuf) != 0) {
error = errno;
if (error == ENOENT)
continue;
zutil_error_aux(hdl, strerror(error));
(void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext(
TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]);
goto error;
}
/*
* If dir[i] is a directory, we walk through it and add all
* the entries to the cache. If it's not a directory, we just
* add it to the cache.
*/
if (S_ISDIR(sbuf.st_mode)) {
if ((error = zpool_find_import_scan_dir(hdl, lock,
cache, dir[i], i)) != 0)
goto error;
} else {
if ((error = zpool_find_import_scan_path(hdl, lock,
cache, dir[i], i)) != 0)
goto error;
}
}
*slice_cache = cache;
return (0);
error:
cookie = NULL;
while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
free(slice->rn_name);
free(slice);
}
free(cache);
return (error);
}
/*
* Given a list of directories to search, find all pools stored on disk. This
* includes partial pools which are not available to import. If no args are
* given (argc is 0), then the default directory (/dev/dsk) is searched.
* poolname or guid (but not both) are provided by the caller when trying
* to import a specific pool.
*/
static nvlist_t *
zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg,
pthread_mutex_t *lock, avl_tree_t *cache)
{
nvlist_t *ret = NULL;
pool_list_t pools = { 0 };
pool_entry_t *pe, *penext;
vdev_entry_t *ve, *venext;
config_entry_t *ce, *cenext;
name_entry_t *ne, *nenext;
rdsk_node_t *slice;
void *cookie;
tpool_t *t;
verify(iarg->poolname == NULL || iarg->guid == 0);
/*
* Create a thread pool to parallelize the process of reading and
* validating labels, a large number of threads can be used due to
* minimal contention.
*/
t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL);
for (slice = avl_first(cache); slice;
(slice = avl_walk(cache, slice, AVL_AFTER)))
(void) tpool_dispatch(t, zpool_open_func, slice);
tpool_wait(t);
tpool_destroy(t);
/*
* Process the cache, filtering out any entries which are not
* for the specified pool then adding matching label configs.
*/
cookie = NULL;
while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
if (slice->rn_config != NULL) {
nvlist_t *config = slice->rn_config;
boolean_t matched = B_TRUE;
boolean_t aux = B_FALSE;
int fd;
/*
* Check if it's a spare or l2cache device. If it is,
* we need to skip the name and guid check since they
* don't exist on aux device label.
*/
if (iarg->poolname != NULL || iarg->guid != 0) {
uint64_t state;
aux = nvlist_lookup_uint64(config,
ZPOOL_CONFIG_POOL_STATE, &state) == 0 &&
(state == POOL_STATE_SPARE ||
state == POOL_STATE_L2CACHE);
}
if (iarg->poolname != NULL && !aux) {
char *pname;
matched = nvlist_lookup_string(config,
ZPOOL_CONFIG_POOL_NAME, &pname) == 0 &&
strcmp(iarg->poolname, pname) == 0;
} else if (iarg->guid != 0 && !aux) {
uint64_t this_guid;
matched = nvlist_lookup_uint64(config,
ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 &&
iarg->guid == this_guid;
}
if (matched) {
/*
* Verify all remaining entries can be opened
* exclusively. This will prune all underlying
* multipath devices which otherwise could
* result in the vdev appearing as UNAVAIL.
*
* Under zdb, this step isn't required and
* would prevent a zdb -e of active pools with
* no cachefile.
*/
fd = open(slice->rn_name,
O_RDONLY | O_EXCL | O_CLOEXEC);
if (fd >= 0 || iarg->can_be_active) {
if (fd >= 0)
close(fd);
add_config(hdl, &pools,
slice->rn_name, slice->rn_order,
slice->rn_num_labels, config);
}
}
nvlist_free(config);
}
free(slice->rn_name);
free(slice);
}
avl_destroy(cache);
free(cache);
ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
for (pe = pools.pools; pe != NULL; pe = penext) {
penext = pe->pe_next;
for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
venext = ve->ve_next;
for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
cenext = ce->ce_next;
nvlist_free(ce->ce_config);
free(ce);
}
free(ve);
}
free(pe);
}
for (ne = pools.names; ne != NULL; ne = nenext) {
nenext = ne->ne_next;
free(ne->ne_name);
free(ne);
}
return (ret);
}
/*
* Given a config, discover the paths for the devices which
* exist in the config.
*/
static int
discover_cached_paths(libpc_handle_t *hdl, nvlist_t *nv,
avl_tree_t *cache, pthread_mutex_t *lock)
{
char *path = NULL;
uint_t children;
nvlist_t **child;
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) == 0) {
for (int c = 0; c < children; c++) {
discover_cached_paths(hdl, child[c], cache, lock);
}
}
/*
* Once we have the path, we need to add the directory to
* our directory cache.
*/
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0) {
return (zpool_find_import_scan_dir(hdl, lock, cache,
dirname(path), 0));
}
return (0);
}
/*
* Given a cache file, return the contents as a list of importable pools.
* poolname or guid (but not both) are provided by the caller when trying
* to import a specific pool.
*/
static nvlist_t *
zpool_find_import_cached(libpc_handle_t *hdl, importargs_t *iarg)
{
char *buf;
int fd;
struct stat64 statbuf;
nvlist_t *raw, *src, *dst;
nvlist_t *pools;
nvpair_t *elem;
char *name;
uint64_t this_guid;
boolean_t active;
verify(iarg->poolname == NULL || iarg->guid == 0);
if ((fd = open(iarg->cachefile, O_RDONLY | O_CLOEXEC)) < 0) {
zutil_error_aux(hdl, "%s", strerror(errno));
(void) zutil_error(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN, "failed to open cache file"));
return (NULL);
}
if (fstat64(fd, &statbuf) != 0) {
zutil_error_aux(hdl, "%s", strerror(errno));
(void) close(fd);
(void) zutil_error(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
return (NULL);
}
if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) {
(void) close(fd);
return (NULL);
}
if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
(void) close(fd);
free(buf);
(void) zutil_error(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN,
"failed to read cache file contents"));
return (NULL);
}
(void) close(fd);
if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
free(buf);
(void) zutil_error(hdl, EZFS_BADCACHE,
dgettext(TEXT_DOMAIN,
"invalid or corrupt cache file contents"));
return (NULL);
}
free(buf);
/*
* Go through and get the current state of the pools and refresh their
* state.
*/
if (nvlist_alloc(&pools, 0, 0) != 0) {
(void) zutil_no_memory(hdl);
nvlist_free(raw);
return (NULL);
}
elem = NULL;
while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
src = fnvpair_value_nvlist(elem);
name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
if (iarg->poolname != NULL && strcmp(iarg->poolname, name) != 0)
continue;
this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
if (iarg->guid != 0 && iarg->guid != this_guid)
continue;
if (zutil_pool_active(hdl, name, this_guid, &active) != 0) {
nvlist_free(raw);
nvlist_free(pools);
return (NULL);
}
if (active)
continue;
if (iarg->scan) {
uint64_t saved_guid = iarg->guid;
const char *saved_poolname = iarg->poolname;
pthread_mutex_t lock;
/*
* Create the device cache that will hold the
* devices we will scan based on the cachefile.
* This will get destroyed and freed by
* zpool_find_import_impl.
*/
avl_tree_t *cache = zutil_alloc(hdl,
sizeof (avl_tree_t));
avl_create(cache, slice_cache_compare,
sizeof (rdsk_node_t),
offsetof(rdsk_node_t, rn_node));
nvlist_t *nvroot = fnvlist_lookup_nvlist(src,
ZPOOL_CONFIG_VDEV_TREE);
/*
* We only want to find the pool with this_guid.
* We will reset these values back later.
*/
iarg->guid = this_guid;
iarg->poolname = NULL;
/*
* We need to build up a cache of devices that exists
* in the paths pointed to by the cachefile. This allows
* us to preserve the device namespace that was
* originally specified by the user but also lets us
* scan devices in those directories in case they had
* been renamed.
*/
pthread_mutex_init(&lock, NULL);
discover_cached_paths(hdl, nvroot, cache, &lock);
nvlist_t *nv = zpool_find_import_impl(hdl, iarg,
&lock, cache);
pthread_mutex_destroy(&lock);
/*
* zpool_find_import_impl will return back
* a list of pools that it found based on the
* device cache. There should only be one pool
* since we're looking for a specific guid.
* We will use that pool to build up the final
* pool nvlist which is returned back to the
* caller.
*/
nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
fnvlist_add_nvlist(pools, nvpair_name(pair),
fnvpair_value_nvlist(pair));
VERIFY3P(nvlist_next_nvpair(nv, pair), ==, NULL);
iarg->guid = saved_guid;
iarg->poolname = saved_poolname;
continue;
}
if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
iarg->cachefile) != 0) {
(void) zutil_no_memory(hdl);
nvlist_free(raw);
nvlist_free(pools);
return (NULL);
}
if ((dst = zutil_refresh_config(hdl, src)) == NULL) {
nvlist_free(raw);
nvlist_free(pools);
return (NULL);
}
if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
(void) zutil_no_memory(hdl);
nvlist_free(dst);
nvlist_free(raw);
nvlist_free(pools);
return (NULL);
}
nvlist_free(dst);
}
nvlist_free(raw);
return (pools);
}
static nvlist_t *
zpool_find_import(libpc_handle_t *hdl, importargs_t *iarg)
{
pthread_mutex_t lock;
avl_tree_t *cache;
nvlist_t *pools = NULL;
verify(iarg->poolname == NULL || iarg->guid == 0);
pthread_mutex_init(&lock, NULL);
/*
* Locate pool member vdevs by blkid or by directory scanning.
* On success a newly allocated AVL tree which is populated with an
* entry for each discovered vdev will be returned in the cache.
* It's the caller's responsibility to consume and destroy this tree.
*/
if (iarg->scan || iarg->paths != 0) {
size_t dirs = iarg->paths;
const char * const *dir = (const char * const *)iarg->path;
if (dirs == 0)
dir = zpool_default_search_paths(&dirs);
if (zpool_find_import_scan(hdl, &lock, &cache,
dir, dirs) != 0) {
pthread_mutex_destroy(&lock);
return (NULL);
}
} else {
if (zpool_find_import_blkid(hdl, &lock, &cache) != 0) {
pthread_mutex_destroy(&lock);
return (NULL);
}
}
pools = zpool_find_import_impl(hdl, iarg, &lock, cache);
pthread_mutex_destroy(&lock);
return (pools);
}
nvlist_t *
zpool_search_import(void *hdl, importargs_t *import,
const pool_config_ops_t *pco)
{
libpc_handle_t handle = { 0 };
nvlist_t *pools = NULL;
handle.lpc_lib_handle = hdl;
handle.lpc_ops = pco;
handle.lpc_printerr = B_TRUE;
verify(import->poolname == NULL || import->guid == 0);
if (import->cachefile != NULL)
pools = zpool_find_import_cached(&handle, import);
else
pools = zpool_find_import(&handle, import);
if ((pools == NULL || nvlist_empty(pools)) &&
handle.lpc_open_access_error && geteuid() != 0) {
(void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN,
"no pools found"));
}
return (pools);
}
static boolean_t
pool_match(nvlist_t *cfg, char *tgt)
{
uint64_t v, guid = strtoull(tgt, NULL, 0);
char *s;
if (guid != 0) {
if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0)
return (v == guid);
} else {
if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0)
return (strcmp(s, tgt) == 0);
}
return (B_FALSE);
}
int
zpool_find_config(void *hdl, const char *target, nvlist_t **configp,
importargs_t *args, const pool_config_ops_t *pco)
{
nvlist_t *pools;
nvlist_t *match = NULL;
nvlist_t *config = NULL;
char *sepp = NULL;
char sep = '\0';
int count = 0;
char *targetdup = strdup(target);
*configp = NULL;
if ((sepp = strpbrk(targetdup, "/@")) != NULL) {
sep = *sepp;
*sepp = '\0';
}
pools = zpool_search_import(hdl, args, pco);
if (pools != NULL) {
nvpair_t *elem = NULL;
while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
VERIFY0(nvpair_value_nvlist(elem, &config));
if (pool_match(config, targetdup)) {
count++;
if (match != NULL) {
/* multiple matches found */
continue;
} else {
match = fnvlist_dup(config);
}
}
}
fnvlist_free(pools);
}
if (count == 0) {
free(targetdup);
return (ENOENT);
}
if (count > 1) {
free(targetdup);
fnvlist_free(match);
return (EINVAL);
}
*configp = match;
free(targetdup);
return (0);
}