mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-27 11:29:36 +03:00
37f9dac592
Internally, zvols are files exposed through the block device API. This is intended to reduce overhead when things require block devices. However, the ZoL zvol code emulates a traditional block device in that it has a top half and a bottom half. This is an unnecessary source of overhead that does not exist on any other OpenZFS platform does this. This patch removes it. Early users of this patch reported double digit performance gains in IOPS on zvols in the range of 50% to 80%. Comments in the code suggest that the current implementation was done to obtain IO merging from Linux's IO elevator. However, the DMU already does write merging while arc_read() should implicitly merge read IOs because only 1 thread is permitted to fetch the buffer into ARC. In addition, commercial ZFSOnLinux distributions report that regular files are more performant than zvols under the current implementation, and the main consumers of zvols are VMs and iSCSI targets, which have their own elevators to merge IOs. Some minor refactoring allows us to register zfs_request() as our ->make_request() handler in place of the generic_make_request() function. This eliminates the layer of code that broke IO requests on zvols into a top half and a bottom half. This has several benefits: 1. No per zvol spinlocks. 2. No redundant IO elevator processing. 3. Interrupts are disabled only when actually necessary. 4. No redispatching of IOs when all taskq threads are busy. 5. Linux's page out routines will properly block. 6. Many autotools checks become obsolete. An unfortunate consequence of eliminating the layer that generic_make_request() is that we no longer calls the instrumentation hooks for block IO accounting. Those hooks are GPL-exported, so we cannot call them ourselves and consequently, we lose the ability to do IO monitoring via iostat. Since zvols are internally files mapped as block devices, this should be okay. Anyone who is willing to accept the performance penalty for the block IO layer's accounting could use the loop device in between the zvol and its consumer. Alternatively, perf and ftrace likely could be used. Also, tools like latencytop will still work. Tools such as latencytop sometimes provide a better view of performance bottlenecks than the traditional block IO accounting tools do. Lastly, if direct reclaim occurs during spacemap loading and swap is on a zvol, this code will deadlock. That deadlock could already occur with sync=always on zvols. Given that swap on zvols is not yet production ready, this is not a blocker. Signed-off-by: Richard Yao <ryao@gentoo.org>
2183 lines
52 KiB
C
2183 lines
52 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2014 by Delphix. All rights reserved.
|
|
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
|
|
* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dmu_zfetch.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zio_compress.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/zfeature.h>
|
|
#ifdef _KERNEL
|
|
#include <sys/vmsystm.h>
|
|
#include <sys/zfs_znode.h>
|
|
#endif
|
|
|
|
/*
|
|
* Enable/disable nopwrite feature.
|
|
*/
|
|
int zfs_nopwrite_enabled = 1;
|
|
|
|
const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
|
|
{ DMU_BSWAP_UINT8, TRUE, "unallocated" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "object directory" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "object array" },
|
|
{ DMU_BSWAP_UINT8, TRUE, "packed nvlist" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "packed nvlist size" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "bpobj" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "bpobj header" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "SPA space map header" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "SPA space map" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "ZIL intent log" },
|
|
{ DMU_BSWAP_DNODE, TRUE, "DMU dnode" },
|
|
{ DMU_BSWAP_OBJSET, TRUE, "DMU objset" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "DSL directory" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "DSL directory child map"},
|
|
{ DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "DSL props" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "DSL dataset" },
|
|
{ DMU_BSWAP_ZNODE, TRUE, "ZFS znode" },
|
|
{ DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" },
|
|
{ DMU_BSWAP_UINT8, FALSE, "ZFS plain file" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "ZFS directory" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "ZFS master node" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" },
|
|
{ DMU_BSWAP_UINT8, FALSE, "zvol object" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "zvol prop" },
|
|
{ DMU_BSWAP_UINT8, FALSE, "other uint8[]" },
|
|
{ DMU_BSWAP_UINT64, FALSE, "other uint64[]" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "other ZAP" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "persistent error log" },
|
|
{ DMU_BSWAP_UINT8, TRUE, "SPA history" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "SPA history offsets" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "Pool properties" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "DSL permissions" },
|
|
{ DMU_BSWAP_ACL, TRUE, "ZFS ACL" },
|
|
{ DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" },
|
|
{ DMU_BSWAP_UINT8, TRUE, "FUID table" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "FUID table size" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"},
|
|
{ DMU_BSWAP_ZAP, TRUE, "scan work queue" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"},
|
|
{ DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "DDT statistics" },
|
|
{ DMU_BSWAP_UINT8, TRUE, "System attributes" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "SA master node" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "SA attr registration" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "SA attr layouts" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "scan translations" },
|
|
{ DMU_BSWAP_UINT8, FALSE, "deduplicated block" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" },
|
|
{ DMU_BSWAP_ZAP, TRUE, "DSL dir clones" },
|
|
{ DMU_BSWAP_UINT64, TRUE, "bpobj subobj" }
|
|
};
|
|
|
|
const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
|
|
{ byteswap_uint8_array, "uint8" },
|
|
{ byteswap_uint16_array, "uint16" },
|
|
{ byteswap_uint32_array, "uint32" },
|
|
{ byteswap_uint64_array, "uint64" },
|
|
{ zap_byteswap, "zap" },
|
|
{ dnode_buf_byteswap, "dnode" },
|
|
{ dmu_objset_byteswap, "objset" },
|
|
{ zfs_znode_byteswap, "znode" },
|
|
{ zfs_oldacl_byteswap, "oldacl" },
|
|
{ zfs_acl_byteswap, "acl" }
|
|
};
|
|
|
|
int
|
|
dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
|
|
void *tag, dmu_buf_t **dbp)
|
|
{
|
|
dnode_t *dn;
|
|
uint64_t blkid;
|
|
dmu_buf_impl_t *db;
|
|
int err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
blkid = dbuf_whichblock(dn, offset);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
db = dbuf_hold(dn, blkid, tag);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dnode_rele(dn, FTAG);
|
|
|
|
if (db == NULL) {
|
|
*dbp = NULL;
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
*dbp = &db->db;
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
|
|
void *tag, dmu_buf_t **dbp, int flags)
|
|
{
|
|
int err;
|
|
int db_flags = DB_RF_CANFAIL;
|
|
|
|
if (flags & DMU_READ_NO_PREFETCH)
|
|
db_flags |= DB_RF_NOPREFETCH;
|
|
|
|
err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
|
|
if (err == 0) {
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
|
|
err = dbuf_read(db, NULL, db_flags);
|
|
if (err != 0) {
|
|
dbuf_rele(db, tag);
|
|
*dbp = NULL;
|
|
}
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_bonus_max(void)
|
|
{
|
|
return (DN_MAX_BONUSLEN);
|
|
}
|
|
|
|
int
|
|
dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
dnode_t *dn;
|
|
int error;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
|
|
if (dn->dn_bonus != db) {
|
|
error = SET_ERROR(EINVAL);
|
|
} else if (newsize < 0 || newsize > db_fake->db_size) {
|
|
error = SET_ERROR(EINVAL);
|
|
} else {
|
|
dnode_setbonuslen(dn, newsize, tx);
|
|
error = 0;
|
|
}
|
|
|
|
DB_DNODE_EXIT(db);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
dnode_t *dn;
|
|
int error;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
|
|
if (!DMU_OT_IS_VALID(type)) {
|
|
error = SET_ERROR(EINVAL);
|
|
} else if (dn->dn_bonus != db) {
|
|
error = SET_ERROR(EINVAL);
|
|
} else {
|
|
dnode_setbonus_type(dn, type, tx);
|
|
error = 0;
|
|
}
|
|
|
|
DB_DNODE_EXIT(db);
|
|
return (error);
|
|
}
|
|
|
|
dmu_object_type_t
|
|
dmu_get_bonustype(dmu_buf_t *db_fake)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
dnode_t *dn;
|
|
dmu_object_type_t type;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
type = dn->dn_bonustype;
|
|
DB_DNODE_EXIT(db);
|
|
|
|
return (type);
|
|
}
|
|
|
|
int
|
|
dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int error;
|
|
|
|
error = dnode_hold(os, object, FTAG, &dn);
|
|
dbuf_rm_spill(dn, tx);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
dnode_rm_spill(dn, tx);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dnode_rele(dn, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* returns ENOENT, EIO, or 0.
|
|
*/
|
|
int
|
|
dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
|
|
{
|
|
dnode_t *dn;
|
|
dmu_buf_impl_t *db;
|
|
int error;
|
|
|
|
error = dnode_hold(os, object, FTAG, &dn);
|
|
if (error)
|
|
return (error);
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
if (dn->dn_bonus == NULL) {
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
if (dn->dn_bonus == NULL)
|
|
dbuf_create_bonus(dn);
|
|
}
|
|
db = dn->dn_bonus;
|
|
|
|
/* as long as the bonus buf is held, the dnode will be held */
|
|
if (refcount_add(&db->db_holds, tag) == 1) {
|
|
VERIFY(dnode_add_ref(dn, db));
|
|
atomic_inc_32(&dn->dn_dbufs_count);
|
|
}
|
|
|
|
/*
|
|
* Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
|
|
* hold and incrementing the dbuf count to ensure that dnode_move() sees
|
|
* a dnode hold for every dbuf.
|
|
*/
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
|
|
VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
|
|
|
|
*dbp = &db->db;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* returns ENOENT, EIO, or 0.
|
|
*
|
|
* This interface will allocate a blank spill dbuf when a spill blk
|
|
* doesn't already exist on the dnode.
|
|
*
|
|
* if you only want to find an already existing spill db, then
|
|
* dmu_spill_hold_existing() should be used.
|
|
*/
|
|
int
|
|
dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
|
|
{
|
|
dmu_buf_impl_t *db = NULL;
|
|
int err;
|
|
|
|
if ((flags & DB_RF_HAVESTRUCT) == 0)
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
|
|
db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
|
|
|
|
if ((flags & DB_RF_HAVESTRUCT) == 0)
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
|
|
ASSERT(db != NULL);
|
|
err = dbuf_read(db, NULL, flags);
|
|
if (err == 0)
|
|
*dbp = &db->db;
|
|
else
|
|
dbuf_rele(db, tag);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
|
|
if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
|
|
err = SET_ERROR(EINVAL);
|
|
} else {
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
|
|
if (!dn->dn_have_spill) {
|
|
err = SET_ERROR(ENOENT);
|
|
} else {
|
|
err = dmu_spill_hold_by_dnode(dn,
|
|
DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
|
|
}
|
|
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
}
|
|
|
|
DB_DNODE_EXIT(db);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
|
|
DB_DNODE_EXIT(db);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Note: longer-term, we should modify all of the dmu_buf_*() interfaces
|
|
* to take a held dnode rather than <os, object> -- the lookup is wasteful,
|
|
* and can induce severe lock contention when writing to several files
|
|
* whose dnodes are in the same block.
|
|
*/
|
|
static int
|
|
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
|
|
int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
|
|
{
|
|
dmu_buf_t **dbp;
|
|
uint64_t blkid, nblks, i;
|
|
uint32_t dbuf_flags;
|
|
int err;
|
|
zio_t *zio;
|
|
|
|
ASSERT(length <= DMU_MAX_ACCESS);
|
|
|
|
dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
|
|
if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
|
|
dbuf_flags |= DB_RF_NOPREFETCH;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
if (dn->dn_datablkshift) {
|
|
int blkshift = dn->dn_datablkshift;
|
|
nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
|
|
P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
|
|
} else {
|
|
if (offset + length > dn->dn_datablksz) {
|
|
zfs_panic_recover("zfs: accessing past end of object "
|
|
"%llx/%llx (size=%u access=%llu+%llu)",
|
|
(longlong_t)dn->dn_objset->
|
|
os_dsl_dataset->ds_object,
|
|
(longlong_t)dn->dn_object, dn->dn_datablksz,
|
|
(longlong_t)offset, (longlong_t)length);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
nblks = 1;
|
|
}
|
|
dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
|
|
|
|
zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
|
|
blkid = dbuf_whichblock(dn, offset);
|
|
for (i = 0; i < nblks; i++) {
|
|
dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
|
|
if (db == NULL) {
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
dmu_buf_rele_array(dbp, nblks, tag);
|
|
zio_nowait(zio);
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
/* initiate async i/o */
|
|
if (read) {
|
|
(void) dbuf_read(db, zio, dbuf_flags);
|
|
}
|
|
dbp[i] = &db->db;
|
|
}
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
|
|
/* wait for async i/o */
|
|
err = zio_wait(zio);
|
|
if (err) {
|
|
dmu_buf_rele_array(dbp, nblks, tag);
|
|
return (err);
|
|
}
|
|
|
|
/* wait for other io to complete */
|
|
if (read) {
|
|
for (i = 0; i < nblks; i++) {
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
|
|
mutex_enter(&db->db_mtx);
|
|
while (db->db_state == DB_READ ||
|
|
db->db_state == DB_FILL)
|
|
cv_wait(&db->db_changed, &db->db_mtx);
|
|
if (db->db_state == DB_UNCACHED)
|
|
err = SET_ERROR(EIO);
|
|
mutex_exit(&db->db_mtx);
|
|
if (err) {
|
|
dmu_buf_rele_array(dbp, nblks, tag);
|
|
return (err);
|
|
}
|
|
}
|
|
}
|
|
|
|
*numbufsp = nblks;
|
|
*dbpp = dbp;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
|
|
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
|
|
numbufsp, dbpp, DMU_READ_PREFETCH);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
|
|
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
|
|
numbufsp, dbpp, DMU_READ_PREFETCH);
|
|
DB_DNODE_EXIT(db);
|
|
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
|
|
{
|
|
int i;
|
|
dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
|
|
|
|
if (numbufs == 0)
|
|
return;
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
if (dbp[i])
|
|
dbuf_rele(dbp[i], tag);
|
|
}
|
|
|
|
kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
|
|
}
|
|
|
|
/*
|
|
* Issue prefetch i/os for the given blocks.
|
|
*
|
|
* Note: The assumption is that we *know* these blocks will be needed
|
|
* almost immediately. Therefore, the prefetch i/os will be issued at
|
|
* ZIO_PRIORITY_SYNC_READ
|
|
*
|
|
* Note: indirect blocks and other metadata will be read synchronously,
|
|
* causing this function to block if they are not already cached.
|
|
*/
|
|
void
|
|
dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
|
|
{
|
|
dnode_t *dn;
|
|
uint64_t blkid;
|
|
int nblks, err;
|
|
|
|
if (zfs_prefetch_disable)
|
|
return;
|
|
|
|
if (len == 0) { /* they're interested in the bonus buffer */
|
|
dn = DMU_META_DNODE(os);
|
|
|
|
if (object == 0 || object >= DN_MAX_OBJECT)
|
|
return;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
|
|
dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* XXX - Note, if the dnode for the requested object is not
|
|
* already cached, we will do a *synchronous* read in the
|
|
* dnode_hold() call. The same is true for any indirects.
|
|
*/
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err != 0)
|
|
return;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
if (dn->dn_datablkshift) {
|
|
int blkshift = dn->dn_datablkshift;
|
|
nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
|
|
P2ALIGN(offset, 1 << blkshift)) >> blkshift;
|
|
} else {
|
|
nblks = (offset < dn->dn_datablksz);
|
|
}
|
|
|
|
if (nblks != 0) {
|
|
int i;
|
|
|
|
blkid = dbuf_whichblock(dn, offset);
|
|
for (i = 0; i < nblks; i++)
|
|
dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Get the next "chunk" of file data to free. We traverse the file from
|
|
* the end so that the file gets shorter over time (if we crashes in the
|
|
* middle, this will leave us in a better state). We find allocated file
|
|
* data by simply searching the allocated level 1 indirects.
|
|
*
|
|
* On input, *start should be the first offset that does not need to be
|
|
* freed (e.g. "offset + length"). On return, *start will be the first
|
|
* offset that should be freed.
|
|
*/
|
|
static int
|
|
get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
|
|
{
|
|
uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
|
|
/* bytes of data covered by a level-1 indirect block */
|
|
uint64_t iblkrange =
|
|
dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
|
|
uint64_t blks;
|
|
|
|
ASSERT3U(minimum, <=, *start);
|
|
|
|
if (*start - minimum <= iblkrange * maxblks) {
|
|
*start = minimum;
|
|
return (0);
|
|
}
|
|
ASSERT(ISP2(iblkrange));
|
|
|
|
for (blks = 0; *start > minimum && blks < maxblks; blks++) {
|
|
int err;
|
|
|
|
/*
|
|
* dnode_next_offset(BACKWARDS) will find an allocated L1
|
|
* indirect block at or before the input offset. We must
|
|
* decrement *start so that it is at the end of the region
|
|
* to search.
|
|
*/
|
|
(*start)--;
|
|
err = dnode_next_offset(dn,
|
|
DNODE_FIND_BACKWARDS, start, 2, 1, 0);
|
|
|
|
/* if there are no indirect blocks before start, we are done */
|
|
if (err == ESRCH) {
|
|
*start = minimum;
|
|
break;
|
|
} else if (err != 0) {
|
|
return (err);
|
|
}
|
|
|
|
/* set start to the beginning of this L1 indirect */
|
|
*start = P2ALIGN(*start, iblkrange);
|
|
}
|
|
if (*start < minimum)
|
|
*start = minimum;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
|
|
uint64_t length)
|
|
{
|
|
uint64_t object_size;
|
|
int err;
|
|
|
|
if (dn == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
|
|
if (offset >= object_size)
|
|
return (0);
|
|
|
|
if (length == DMU_OBJECT_END || offset + length > object_size)
|
|
length = object_size - offset;
|
|
|
|
while (length != 0) {
|
|
uint64_t chunk_end, chunk_begin;
|
|
dmu_tx_t *tx;
|
|
|
|
chunk_end = chunk_begin = offset + length;
|
|
|
|
/* move chunk_begin backwards to the beginning of this chunk */
|
|
err = get_next_chunk(dn, &chunk_begin, offset);
|
|
if (err)
|
|
return (err);
|
|
ASSERT3U(chunk_begin, >=, offset);
|
|
ASSERT3U(chunk_begin, <=, chunk_end);
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_free(tx, dn->dn_object,
|
|
chunk_begin, chunk_end - chunk_begin);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
|
|
dmu_tx_commit(tx);
|
|
|
|
length -= chunk_end - chunk_begin;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_free_long_range(objset_t *os, uint64_t object,
|
|
uint64_t offset, uint64_t length)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err != 0)
|
|
return (err);
|
|
err = dmu_free_long_range_impl(os, dn, offset, length);
|
|
|
|
/*
|
|
* It is important to zero out the maxblkid when freeing the entire
|
|
* file, so that (a) subsequent calls to dmu_free_long_range_impl()
|
|
* will take the fast path, and (b) dnode_reallocate() can verify
|
|
* that the entire file has been freed.
|
|
*/
|
|
if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
|
|
dn->dn_maxblkid = 0;
|
|
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_free_long_object(objset_t *os, uint64_t object)
|
|
{
|
|
dmu_tx_t *tx;
|
|
int err;
|
|
|
|
err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_bonus(tx, object);
|
|
dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err == 0) {
|
|
err = dmu_object_free(os, object, tx);
|
|
dmu_tx_commit(tx);
|
|
} else {
|
|
dmu_tx_abort(tx);
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
|
|
uint64_t size, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
ASSERT(offset < UINT64_MAX);
|
|
ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
|
|
dnode_free_range(dn, offset, size, tx);
|
|
dnode_rele(dn, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
|
|
void *buf, uint32_t flags)
|
|
{
|
|
dnode_t *dn;
|
|
dmu_buf_t **dbp;
|
|
int numbufs, err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
/*
|
|
* Deal with odd block sizes, where there can't be data past the first
|
|
* block. If we ever do the tail block optimization, we will need to
|
|
* handle that here as well.
|
|
*/
|
|
if (dn->dn_maxblkid == 0) {
|
|
uint64_t newsz = offset > dn->dn_datablksz ? 0 :
|
|
MIN(size, dn->dn_datablksz - offset);
|
|
bzero((char *)buf + newsz, size - newsz);
|
|
size = newsz;
|
|
}
|
|
|
|
while (size > 0) {
|
|
uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
|
|
int i;
|
|
|
|
/*
|
|
* NB: we could do this block-at-a-time, but it's nice
|
|
* to be reading in parallel.
|
|
*/
|
|
err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
|
|
TRUE, FTAG, &numbufs, &dbp, flags);
|
|
if (err)
|
|
break;
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
uint64_t tocpy;
|
|
int64_t bufoff;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
ASSERT(size > 0);
|
|
|
|
bufoff = offset - db->db_offset;
|
|
tocpy = MIN(db->db_size - bufoff, size);
|
|
|
|
(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
|
|
|
|
offset += tocpy;
|
|
size -= tocpy;
|
|
buf = (char *)buf + tocpy;
|
|
}
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
}
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
|
|
const void *buf, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t **dbp;
|
|
int numbufs, i;
|
|
|
|
if (size == 0)
|
|
return;
|
|
|
|
VERIFY0(dmu_buf_hold_array(os, object, offset, size,
|
|
FALSE, FTAG, &numbufs, &dbp));
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
uint64_t tocpy;
|
|
int64_t bufoff;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
ASSERT(size > 0);
|
|
|
|
bufoff = offset - db->db_offset;
|
|
tocpy = MIN(db->db_size - bufoff, size);
|
|
|
|
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_will_fill(db, tx);
|
|
else
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_fill_done(db, tx);
|
|
|
|
offset += tocpy;
|
|
size -= tocpy;
|
|
buf = (char *)buf + tocpy;
|
|
}
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
}
|
|
|
|
void
|
|
dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t **dbp;
|
|
int numbufs, i;
|
|
|
|
if (size == 0)
|
|
return;
|
|
|
|
VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
|
|
FALSE, FTAG, &numbufs, &dbp));
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
dmu_buf_will_not_fill(db, tx);
|
|
}
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
}
|
|
|
|
void
|
|
dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
|
|
void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
|
|
int compressed_size, int byteorder, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t *db;
|
|
|
|
ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
|
|
ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
|
|
VERIFY0(dmu_buf_hold_noread(os, object, offset,
|
|
FTAG, &db));
|
|
|
|
dmu_buf_write_embedded(db,
|
|
data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
|
|
uncompressed_size, compressed_size, byteorder, tx);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
|
|
/*
|
|
* DMU support for xuio
|
|
*/
|
|
kstat_t *xuio_ksp = NULL;
|
|
|
|
typedef struct xuio_stats {
|
|
/* loaned yet not returned arc_buf */
|
|
kstat_named_t xuiostat_onloan_rbuf;
|
|
kstat_named_t xuiostat_onloan_wbuf;
|
|
/* whether a copy is made when loaning out a read buffer */
|
|
kstat_named_t xuiostat_rbuf_copied;
|
|
kstat_named_t xuiostat_rbuf_nocopy;
|
|
/* whether a copy is made when assigning a write buffer */
|
|
kstat_named_t xuiostat_wbuf_copied;
|
|
kstat_named_t xuiostat_wbuf_nocopy;
|
|
} xuio_stats_t;
|
|
|
|
static xuio_stats_t xuio_stats = {
|
|
{ "onloan_read_buf", KSTAT_DATA_UINT64 },
|
|
{ "onloan_write_buf", KSTAT_DATA_UINT64 },
|
|
{ "read_buf_copied", KSTAT_DATA_UINT64 },
|
|
{ "read_buf_nocopy", KSTAT_DATA_UINT64 },
|
|
{ "write_buf_copied", KSTAT_DATA_UINT64 },
|
|
{ "write_buf_nocopy", KSTAT_DATA_UINT64 }
|
|
};
|
|
|
|
#define XUIOSTAT_INCR(stat, val) \
|
|
atomic_add_64(&xuio_stats.stat.value.ui64, (val))
|
|
#define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
|
|
|
|
int
|
|
dmu_xuio_init(xuio_t *xuio, int nblk)
|
|
{
|
|
dmu_xuio_t *priv;
|
|
uio_t *uio = &xuio->xu_uio;
|
|
|
|
uio->uio_iovcnt = nblk;
|
|
uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
|
|
|
|
priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
|
|
priv->cnt = nblk;
|
|
priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
|
|
priv->iovp = (iovec_t *)uio->uio_iov;
|
|
XUIO_XUZC_PRIV(xuio) = priv;
|
|
|
|
if (XUIO_XUZC_RW(xuio) == UIO_READ)
|
|
XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
|
|
else
|
|
XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dmu_xuio_fini(xuio_t *xuio)
|
|
{
|
|
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
|
|
int nblk = priv->cnt;
|
|
|
|
kmem_free(priv->iovp, nblk * sizeof (iovec_t));
|
|
kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
|
|
kmem_free(priv, sizeof (dmu_xuio_t));
|
|
|
|
if (XUIO_XUZC_RW(xuio) == UIO_READ)
|
|
XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
|
|
else
|
|
XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
|
|
}
|
|
|
|
/*
|
|
* Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
|
|
* and increase priv->next by 1.
|
|
*/
|
|
int
|
|
dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
|
|
{
|
|
struct iovec *iov;
|
|
uio_t *uio = &xuio->xu_uio;
|
|
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
|
|
int i = priv->next++;
|
|
|
|
ASSERT(i < priv->cnt);
|
|
ASSERT(off + n <= arc_buf_size(abuf));
|
|
iov = (iovec_t *)uio->uio_iov + i;
|
|
iov->iov_base = (char *)abuf->b_data + off;
|
|
iov->iov_len = n;
|
|
priv->bufs[i] = abuf;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_xuio_cnt(xuio_t *xuio)
|
|
{
|
|
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
|
|
return (priv->cnt);
|
|
}
|
|
|
|
arc_buf_t *
|
|
dmu_xuio_arcbuf(xuio_t *xuio, int i)
|
|
{
|
|
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
|
|
|
|
ASSERT(i < priv->cnt);
|
|
return (priv->bufs[i]);
|
|
}
|
|
|
|
void
|
|
dmu_xuio_clear(xuio_t *xuio, int i)
|
|
{
|
|
dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
|
|
|
|
ASSERT(i < priv->cnt);
|
|
priv->bufs[i] = NULL;
|
|
}
|
|
|
|
static void
|
|
xuio_stat_init(void)
|
|
{
|
|
xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
|
|
KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
if (xuio_ksp != NULL) {
|
|
xuio_ksp->ks_data = &xuio_stats;
|
|
kstat_install(xuio_ksp);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xuio_stat_fini(void)
|
|
{
|
|
if (xuio_ksp != NULL) {
|
|
kstat_delete(xuio_ksp);
|
|
xuio_ksp = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
xuio_stat_wbuf_copied()
|
|
{
|
|
XUIOSTAT_BUMP(xuiostat_wbuf_copied);
|
|
}
|
|
|
|
void
|
|
xuio_stat_wbuf_nocopy()
|
|
{
|
|
XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
|
|
/*
|
|
* Copy up to size bytes between arg_buf and req based on the data direction
|
|
* described by the req. If an entire req's data cannot be transfered in one
|
|
* pass, you should pass in @req_offset to indicate where to continue. The
|
|
* return value is the number of bytes successfully copied to arg_buf.
|
|
*/
|
|
static int
|
|
dmu_bio_copy(void *arg_buf, int size, struct bio *bio, size_t bio_offset)
|
|
{
|
|
struct bio_vec bv, *bvp = &bv;
|
|
bvec_iterator_t iter;
|
|
char *bv_buf;
|
|
int tocpy, bv_len, bv_offset;
|
|
int offset = 0;
|
|
|
|
bio_for_each_segment4(bv, bvp, bio, iter) {
|
|
|
|
/*
|
|
* Fully consumed the passed arg_buf. We use goto here because
|
|
* rq_for_each_segment is a double loop
|
|
*/
|
|
ASSERT3S(offset, <=, size);
|
|
if (size == offset)
|
|
goto out;
|
|
|
|
/* Skip already copied bvp */
|
|
if (bio_offset >= bvp->bv_len) {
|
|
bio_offset -= bvp->bv_len;
|
|
continue;
|
|
}
|
|
|
|
bv_len = bvp->bv_len - bio_offset;
|
|
bv_offset = bvp->bv_offset + bio_offset;
|
|
bio_offset = 0;
|
|
|
|
tocpy = MIN(bv_len, size - offset);
|
|
ASSERT3S(tocpy, >=, 0);
|
|
|
|
bv_buf = page_address(bvp->bv_page) + bv_offset;
|
|
ASSERT3P(bv_buf, !=, NULL);
|
|
|
|
if (bio_data_dir(bio) == WRITE)
|
|
memcpy(arg_buf + offset, bv_buf, tocpy);
|
|
else
|
|
memcpy(bv_buf, arg_buf + offset, tocpy);
|
|
|
|
offset += tocpy;
|
|
}
|
|
out:
|
|
return (offset);
|
|
}
|
|
|
|
int
|
|
dmu_read_bio(objset_t *os, uint64_t object, struct bio *bio)
|
|
{
|
|
uint64_t offset = BIO_BI_SECTOR(bio) << 9;
|
|
uint64_t size = BIO_BI_SIZE(bio);
|
|
dmu_buf_t **dbp;
|
|
int numbufs, i, err;
|
|
size_t bio_offset;
|
|
|
|
/*
|
|
* NB: we could do this block-at-a-time, but it's nice
|
|
* to be reading in parallel.
|
|
*/
|
|
err = dmu_buf_hold_array(os, object, offset, size, TRUE, FTAG,
|
|
&numbufs, &dbp);
|
|
if (err)
|
|
return (err);
|
|
|
|
bio_offset = 0;
|
|
for (i = 0; i < numbufs; i++) {
|
|
uint64_t tocpy;
|
|
int64_t bufoff;
|
|
int didcpy;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
bufoff = offset - db->db_offset;
|
|
ASSERT3S(bufoff, >=, 0);
|
|
|
|
tocpy = MIN(db->db_size - bufoff, size);
|
|
if (tocpy == 0)
|
|
break;
|
|
|
|
didcpy = dmu_bio_copy(db->db_data + bufoff, tocpy, bio,
|
|
bio_offset);
|
|
|
|
if (didcpy < tocpy)
|
|
err = EIO;
|
|
|
|
if (err)
|
|
break;
|
|
|
|
size -= tocpy;
|
|
offset += didcpy;
|
|
bio_offset += didcpy;
|
|
err = 0;
|
|
}
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
dmu_write_bio(objset_t *os, uint64_t object, struct bio *bio, dmu_tx_t *tx)
|
|
{
|
|
uint64_t offset = BIO_BI_SECTOR(bio) << 9;
|
|
uint64_t size = BIO_BI_SIZE(bio);
|
|
dmu_buf_t **dbp;
|
|
int numbufs, i, err;
|
|
size_t bio_offset;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
|
|
&numbufs, &dbp);
|
|
if (err)
|
|
return (err);
|
|
|
|
bio_offset = 0;
|
|
for (i = 0; i < numbufs; i++) {
|
|
uint64_t tocpy;
|
|
int64_t bufoff;
|
|
int didcpy;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
bufoff = offset - db->db_offset;
|
|
ASSERT3S(bufoff, >=, 0);
|
|
|
|
tocpy = MIN(db->db_size - bufoff, size);
|
|
if (tocpy == 0)
|
|
break;
|
|
|
|
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_will_fill(db, tx);
|
|
else
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
didcpy = dmu_bio_copy(db->db_data + bufoff, tocpy, bio,
|
|
bio_offset);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_fill_done(db, tx);
|
|
|
|
if (didcpy < tocpy)
|
|
err = EIO;
|
|
|
|
if (err)
|
|
break;
|
|
|
|
size -= tocpy;
|
|
offset += didcpy;
|
|
bio_offset += didcpy;
|
|
err = 0;
|
|
}
|
|
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
|
|
{
|
|
dmu_buf_t **dbp;
|
|
int numbufs, i, err;
|
|
xuio_t *xuio = NULL;
|
|
|
|
/*
|
|
* NB: we could do this block-at-a-time, but it's nice
|
|
* to be reading in parallel.
|
|
*/
|
|
err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
|
|
TRUE, FTAG, &numbufs, &dbp, 0);
|
|
if (err)
|
|
return (err);
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
uint64_t tocpy;
|
|
int64_t bufoff;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
ASSERT(size > 0);
|
|
|
|
bufoff = uio->uio_loffset - db->db_offset;
|
|
tocpy = MIN(db->db_size - bufoff, size);
|
|
|
|
if (xuio) {
|
|
dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
|
|
arc_buf_t *dbuf_abuf = dbi->db_buf;
|
|
arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
|
|
err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
|
|
if (!err) {
|
|
uio->uio_resid -= tocpy;
|
|
uio->uio_loffset += tocpy;
|
|
}
|
|
|
|
if (abuf == dbuf_abuf)
|
|
XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
|
|
else
|
|
XUIOSTAT_BUMP(xuiostat_rbuf_copied);
|
|
} else {
|
|
err = uiomove((char *)db->db_data + bufoff, tocpy,
|
|
UIO_READ, uio);
|
|
}
|
|
if (err)
|
|
break;
|
|
|
|
size -= tocpy;
|
|
}
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Read 'size' bytes into the uio buffer.
|
|
* From object zdb->db_object.
|
|
* Starting at offset uio->uio_loffset.
|
|
*
|
|
* If the caller already has a dbuf in the target object
|
|
* (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
|
|
* because we don't have to find the dnode_t for the object.
|
|
*/
|
|
int
|
|
dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
err = dmu_read_uio_dnode(dn, uio, size);
|
|
DB_DNODE_EXIT(db);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Read 'size' bytes into the uio buffer.
|
|
* From the specified object
|
|
* Starting at offset uio->uio_loffset.
|
|
*/
|
|
int
|
|
dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
err = dmu_read_uio_dnode(dn, uio, size);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t **dbp;
|
|
int numbufs;
|
|
int err = 0;
|
|
int i;
|
|
|
|
err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
|
|
FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
|
|
if (err)
|
|
return (err);
|
|
|
|
for (i = 0; i < numbufs; i++) {
|
|
uint64_t tocpy;
|
|
int64_t bufoff;
|
|
dmu_buf_t *db = dbp[i];
|
|
|
|
ASSERT(size > 0);
|
|
|
|
bufoff = uio->uio_loffset - db->db_offset;
|
|
tocpy = MIN(db->db_size - bufoff, size);
|
|
|
|
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_will_fill(db, tx);
|
|
else
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
/*
|
|
* XXX uiomove could block forever (eg.nfs-backed
|
|
* pages). There needs to be a uiolockdown() function
|
|
* to lock the pages in memory, so that uiomove won't
|
|
* block.
|
|
*/
|
|
err = uiomove((char *)db->db_data + bufoff, tocpy,
|
|
UIO_WRITE, uio);
|
|
|
|
if (tocpy == db->db_size)
|
|
dmu_buf_fill_done(db, tx);
|
|
|
|
if (err)
|
|
break;
|
|
|
|
size -= tocpy;
|
|
}
|
|
|
|
dmu_buf_rele_array(dbp, numbufs, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Write 'size' bytes from the uio buffer.
|
|
* To object zdb->db_object.
|
|
* Starting at offset uio->uio_loffset.
|
|
*
|
|
* If the caller already has a dbuf in the target object
|
|
* (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
|
|
* because we don't have to find the dnode_t for the object.
|
|
*/
|
|
int
|
|
dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
err = dmu_write_uio_dnode(dn, uio, size, tx);
|
|
DB_DNODE_EXIT(db);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Write 'size' bytes from the uio buffer.
|
|
* To the specified object.
|
|
* Starting at offset uio->uio_loffset.
|
|
*/
|
|
int
|
|
dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
|
|
err = dmu_write_uio_dnode(dn, uio, size, tx);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
#endif /* _KERNEL */
|
|
|
|
/*
|
|
* Allocate a loaned anonymous arc buffer.
|
|
*/
|
|
arc_buf_t *
|
|
dmu_request_arcbuf(dmu_buf_t *handle, int size)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
|
|
|
|
return (arc_loan_buf(db->db_objset->os_spa, size));
|
|
}
|
|
|
|
/*
|
|
* Free a loaned arc buffer.
|
|
*/
|
|
void
|
|
dmu_return_arcbuf(arc_buf_t *buf)
|
|
{
|
|
arc_return_buf(buf, FTAG);
|
|
VERIFY(arc_buf_remove_ref(buf, FTAG));
|
|
}
|
|
|
|
/*
|
|
* When possible directly assign passed loaned arc buffer to a dbuf.
|
|
* If this is not possible copy the contents of passed arc buf via
|
|
* dmu_write().
|
|
*/
|
|
void
|
|
dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
|
|
dnode_t *dn;
|
|
dmu_buf_impl_t *db;
|
|
uint32_t blksz = (uint32_t)arc_buf_size(buf);
|
|
uint64_t blkid;
|
|
|
|
DB_DNODE_ENTER(dbuf);
|
|
dn = DB_DNODE(dbuf);
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
blkid = dbuf_whichblock(dn, offset);
|
|
VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
DB_DNODE_EXIT(dbuf);
|
|
|
|
/*
|
|
* We can only assign if the offset is aligned, the arc buf is the
|
|
* same size as the dbuf, and the dbuf is not metadata. It
|
|
* can't be metadata because the loaned arc buf comes from the
|
|
* user-data kmem area.
|
|
*/
|
|
if (offset == db->db.db_offset && blksz == db->db.db_size &&
|
|
DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
|
|
dbuf_assign_arcbuf(db, buf, tx);
|
|
dbuf_rele(db, FTAG);
|
|
} else {
|
|
objset_t *os;
|
|
uint64_t object;
|
|
|
|
DB_DNODE_ENTER(dbuf);
|
|
dn = DB_DNODE(dbuf);
|
|
os = dn->dn_objset;
|
|
object = dn->dn_object;
|
|
DB_DNODE_EXIT(dbuf);
|
|
|
|
dbuf_rele(db, FTAG);
|
|
dmu_write(os, object, offset, blksz, buf->b_data, tx);
|
|
dmu_return_arcbuf(buf);
|
|
XUIOSTAT_BUMP(xuiostat_wbuf_copied);
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
dbuf_dirty_record_t *dsa_dr;
|
|
dmu_sync_cb_t *dsa_done;
|
|
zgd_t *dsa_zgd;
|
|
dmu_tx_t *dsa_tx;
|
|
} dmu_sync_arg_t;
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
|
|
{
|
|
dmu_sync_arg_t *dsa = varg;
|
|
dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
if (zio->io_error == 0) {
|
|
if (BP_IS_HOLE(bp)) {
|
|
/*
|
|
* A block of zeros may compress to a hole, but the
|
|
* block size still needs to be known for replay.
|
|
*/
|
|
BP_SET_LSIZE(bp, db->db_size);
|
|
} else if (!BP_IS_EMBEDDED(bp)) {
|
|
ASSERT(BP_GET_LEVEL(bp) == 0);
|
|
bp->blk_fill = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dmu_sync_late_arrival_ready(zio_t *zio)
|
|
{
|
|
dmu_sync_ready(zio, NULL, zio->io_private);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
|
|
{
|
|
dmu_sync_arg_t *dsa = varg;
|
|
dbuf_dirty_record_t *dr = dsa->dsa_dr;
|
|
dmu_buf_impl_t *db = dr->dr_dbuf;
|
|
|
|
mutex_enter(&db->db_mtx);
|
|
ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
|
|
if (zio->io_error == 0) {
|
|
dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
|
|
if (dr->dt.dl.dr_nopwrite) {
|
|
ASSERTV(blkptr_t *bp = zio->io_bp);
|
|
ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
|
|
ASSERTV(uint8_t chksum = BP_GET_CHECKSUM(bp_orig));
|
|
|
|
ASSERT(BP_EQUAL(bp, bp_orig));
|
|
ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
|
|
ASSERT(zio_checksum_table[chksum].ci_dedup);
|
|
}
|
|
dr->dt.dl.dr_overridden_by = *zio->io_bp;
|
|
dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
|
|
dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
|
|
|
|
/*
|
|
* Old style holes are filled with all zeros, whereas
|
|
* new-style holes maintain their lsize, type, level,
|
|
* and birth time (see zio_write_compress). While we
|
|
* need to reset the BP_SET_LSIZE() call that happened
|
|
* in dmu_sync_ready for old style holes, we do *not*
|
|
* want to wipe out the information contained in new
|
|
* style holes. Thus, only zero out the block pointer if
|
|
* it's an old style hole.
|
|
*/
|
|
if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
|
|
dr->dt.dl.dr_overridden_by.blk_birth == 0)
|
|
BP_ZERO(&dr->dt.dl.dr_overridden_by);
|
|
} else {
|
|
dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
|
|
}
|
|
cv_broadcast(&db->db_changed);
|
|
mutex_exit(&db->db_mtx);
|
|
|
|
dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
|
|
|
|
kmem_free(dsa, sizeof (*dsa));
|
|
}
|
|
|
|
static void
|
|
dmu_sync_late_arrival_done(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
dmu_sync_arg_t *dsa = zio->io_private;
|
|
ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
|
|
|
|
if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
|
|
/*
|
|
* If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
|
|
* then there is nothing to do here. Otherwise, free the
|
|
* newly allocated block in this txg.
|
|
*/
|
|
if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
|
|
ASSERT(BP_EQUAL(bp, bp_orig));
|
|
} else {
|
|
ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
|
|
ASSERT(zio->io_bp->blk_birth == zio->io_txg);
|
|
ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
|
|
zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
|
|
}
|
|
}
|
|
|
|
dmu_tx_commit(dsa->dsa_tx);
|
|
|
|
dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
|
|
|
|
kmem_free(dsa, sizeof (*dsa));
|
|
}
|
|
|
|
static int
|
|
dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
|
|
zio_prop_t *zp, zbookmark_phys_t *zb)
|
|
{
|
|
dmu_sync_arg_t *dsa;
|
|
dmu_tx_t *tx;
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
|
|
if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
|
|
dmu_tx_abort(tx);
|
|
/* Make zl_get_data do txg_waited_synced() */
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
|
|
dsa->dsa_dr = NULL;
|
|
dsa->dsa_done = done;
|
|
dsa->dsa_zgd = zgd;
|
|
dsa->dsa_tx = tx;
|
|
|
|
zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
|
|
zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
|
|
dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
|
|
ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL|ZIO_FLAG_FASTWRITE, zb));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Intent log support: sync the block associated with db to disk.
|
|
* N.B. and XXX: the caller is responsible for making sure that the
|
|
* data isn't changing while dmu_sync() is writing it.
|
|
*
|
|
* Return values:
|
|
*
|
|
* EEXIST: this txg has already been synced, so there's nothing to do.
|
|
* The caller should not log the write.
|
|
*
|
|
* ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
|
|
* The caller should not log the write.
|
|
*
|
|
* EALREADY: this block is already in the process of being synced.
|
|
* The caller should track its progress (somehow).
|
|
*
|
|
* EIO: could not do the I/O.
|
|
* The caller should do a txg_wait_synced().
|
|
*
|
|
* 0: the I/O has been initiated.
|
|
* The caller should log this blkptr in the done callback.
|
|
* It is possible that the I/O will fail, in which case
|
|
* the error will be reported to the done callback and
|
|
* propagated to pio from zio_done().
|
|
*/
|
|
int
|
|
dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
|
|
{
|
|
blkptr_t *bp = zgd->zgd_bp;
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
|
|
objset_t *os = db->db_objset;
|
|
dsl_dataset_t *ds = os->os_dsl_dataset;
|
|
dbuf_dirty_record_t *dr;
|
|
dmu_sync_arg_t *dsa;
|
|
zbookmark_phys_t zb;
|
|
zio_prop_t zp;
|
|
dnode_t *dn;
|
|
|
|
ASSERT(pio != NULL);
|
|
ASSERT(txg != 0);
|
|
|
|
SET_BOOKMARK(&zb, ds->ds_object,
|
|
db->db.db_object, db->db_level, db->db_blkid);
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
|
|
DB_DNODE_EXIT(db);
|
|
|
|
/*
|
|
* If we're frozen (running ziltest), we always need to generate a bp.
|
|
*/
|
|
if (txg > spa_freeze_txg(os->os_spa))
|
|
return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
|
|
|
|
/*
|
|
* Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
|
|
* and us. If we determine that this txg is not yet syncing,
|
|
* but it begins to sync a moment later, that's OK because the
|
|
* sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
|
|
*/
|
|
mutex_enter(&db->db_mtx);
|
|
|
|
if (txg <= spa_last_synced_txg(os->os_spa)) {
|
|
/*
|
|
* This txg has already synced. There's nothing to do.
|
|
*/
|
|
mutex_exit(&db->db_mtx);
|
|
return (SET_ERROR(EEXIST));
|
|
}
|
|
|
|
if (txg <= spa_syncing_txg(os->os_spa)) {
|
|
/*
|
|
* This txg is currently syncing, so we can't mess with
|
|
* the dirty record anymore; just write a new log block.
|
|
*/
|
|
mutex_exit(&db->db_mtx);
|
|
return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
|
|
}
|
|
|
|
dr = db->db_last_dirty;
|
|
while (dr && dr->dr_txg != txg)
|
|
dr = dr->dr_next;
|
|
|
|
if (dr == NULL) {
|
|
/*
|
|
* There's no dr for this dbuf, so it must have been freed.
|
|
* There's no need to log writes to freed blocks, so we're done.
|
|
*/
|
|
mutex_exit(&db->db_mtx);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
|
|
|
|
/*
|
|
* Assume the on-disk data is X, the current syncing data (in
|
|
* txg - 1) is Y, and the current in-memory data is Z (currently
|
|
* in dmu_sync).
|
|
*
|
|
* We usually want to perform a nopwrite if X and Z are the
|
|
* same. However, if Y is different (i.e. the BP is going to
|
|
* change before this write takes effect), then a nopwrite will
|
|
* be incorrect - we would override with X, which could have
|
|
* been freed when Y was written.
|
|
*
|
|
* (Note that this is not a concern when we are nop-writing from
|
|
* syncing context, because X and Y must be identical, because
|
|
* all previous txgs have been synced.)
|
|
*
|
|
* Therefore, we disable nopwrite if the current BP could change
|
|
* before this TXG. There are two ways it could change: by
|
|
* being dirty (dr_next is non-NULL), or by being freed
|
|
* (dnode_block_freed()). This behavior is verified by
|
|
* zio_done(), which VERIFYs that the override BP is identical
|
|
* to the on-disk BP.
|
|
*/
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
|
|
zp.zp_nopwrite = B_FALSE;
|
|
DB_DNODE_EXIT(db);
|
|
|
|
ASSERT(dr->dr_txg == txg);
|
|
if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
|
|
dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
|
|
/*
|
|
* We have already issued a sync write for this buffer,
|
|
* or this buffer has already been synced. It could not
|
|
* have been dirtied since, or we would have cleared the state.
|
|
*/
|
|
mutex_exit(&db->db_mtx);
|
|
return (SET_ERROR(EALREADY));
|
|
}
|
|
|
|
ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
|
|
dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
|
|
mutex_exit(&db->db_mtx);
|
|
|
|
dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
|
|
dsa->dsa_dr = dr;
|
|
dsa->dsa_done = done;
|
|
dsa->dsa_zgd = zgd;
|
|
dsa->dsa_tx = NULL;
|
|
|
|
zio_nowait(arc_write(pio, os->os_spa, txg,
|
|
bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
|
|
DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
|
|
NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
|
|
ZIO_FLAG_CANFAIL, &zb));
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
err = dnode_set_blksz(dn, size, ibs, tx);
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
|
|
/*
|
|
* Send streams include each object's checksum function. This
|
|
* check ensures that the receiving system can understand the
|
|
* checksum function transmitted.
|
|
*/
|
|
ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
|
|
|
|
VERIFY0(dnode_hold(os, object, FTAG, &dn));
|
|
ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
|
|
dn->dn_checksum = checksum;
|
|
dnode_setdirty(dn, tx);
|
|
dnode_rele(dn, FTAG);
|
|
}
|
|
|
|
void
|
|
dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
|
|
/*
|
|
* Send streams include each object's compression function. This
|
|
* check ensures that the receiving system can understand the
|
|
* compression function transmitted.
|
|
*/
|
|
ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
|
|
|
|
VERIFY0(dnode_hold(os, object, FTAG, &dn));
|
|
dn->dn_compress = compress;
|
|
dnode_setdirty(dn, tx);
|
|
dnode_rele(dn, FTAG);
|
|
}
|
|
|
|
int zfs_mdcomp_disable = 0;
|
|
|
|
/*
|
|
* When the "redundant_metadata" property is set to "most", only indirect
|
|
* blocks of this level and higher will have an additional ditto block.
|
|
*/
|
|
int zfs_redundant_metadata_most_ditto_level = 2;
|
|
|
|
void
|
|
dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
|
|
{
|
|
dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
|
|
boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
|
|
(wp & WP_SPILL));
|
|
enum zio_checksum checksum = os->os_checksum;
|
|
enum zio_compress compress = os->os_compress;
|
|
enum zio_checksum dedup_checksum = os->os_dedup_checksum;
|
|
boolean_t dedup = B_FALSE;
|
|
boolean_t nopwrite = B_FALSE;
|
|
boolean_t dedup_verify = os->os_dedup_verify;
|
|
int copies = os->os_copies;
|
|
|
|
/*
|
|
* We maintain different write policies for each of the following
|
|
* types of data:
|
|
* 1. metadata
|
|
* 2. preallocated blocks (i.e. level-0 blocks of a dump device)
|
|
* 3. all other level 0 blocks
|
|
*/
|
|
if (ismd) {
|
|
if (zfs_mdcomp_disable) {
|
|
compress = ZIO_COMPRESS_EMPTY;
|
|
} else {
|
|
/*
|
|
* XXX -- we should design a compression algorithm
|
|
* that specializes in arrays of bps.
|
|
*/
|
|
compress = zio_compress_select(os->os_spa,
|
|
ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
|
|
}
|
|
|
|
/*
|
|
* Metadata always gets checksummed. If the data
|
|
* checksum is multi-bit correctable, and it's not a
|
|
* ZBT-style checksum, then it's suitable for metadata
|
|
* as well. Otherwise, the metadata checksum defaults
|
|
* to fletcher4.
|
|
*/
|
|
if (zio_checksum_table[checksum].ci_correctable < 1 ||
|
|
zio_checksum_table[checksum].ci_eck)
|
|
checksum = ZIO_CHECKSUM_FLETCHER_4;
|
|
|
|
if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
|
|
(os->os_redundant_metadata ==
|
|
ZFS_REDUNDANT_METADATA_MOST &&
|
|
(level >= zfs_redundant_metadata_most_ditto_level ||
|
|
DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
|
|
copies++;
|
|
} else if (wp & WP_NOFILL) {
|
|
ASSERT(level == 0);
|
|
|
|
/*
|
|
* If we're writing preallocated blocks, we aren't actually
|
|
* writing them so don't set any policy properties. These
|
|
* blocks are currently only used by an external subsystem
|
|
* outside of zfs (i.e. dump) and not written by the zio
|
|
* pipeline.
|
|
*/
|
|
compress = ZIO_COMPRESS_OFF;
|
|
checksum = ZIO_CHECKSUM_OFF;
|
|
} else {
|
|
compress = zio_compress_select(os->os_spa, dn->dn_compress,
|
|
compress);
|
|
|
|
checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
|
|
zio_checksum_select(dn->dn_checksum, checksum) :
|
|
dedup_checksum;
|
|
|
|
/*
|
|
* Determine dedup setting. If we are in dmu_sync(),
|
|
* we won't actually dedup now because that's all
|
|
* done in syncing context; but we do want to use the
|
|
* dedup checkum. If the checksum is not strong
|
|
* enough to ensure unique signatures, force
|
|
* dedup_verify.
|
|
*/
|
|
if (dedup_checksum != ZIO_CHECKSUM_OFF) {
|
|
dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
|
|
if (!zio_checksum_table[checksum].ci_dedup)
|
|
dedup_verify = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Enable nopwrite if we have a cryptographically secure
|
|
* checksum that has no known collisions (i.e. SHA-256)
|
|
* and compression is enabled. We don't enable nopwrite if
|
|
* dedup is enabled as the two features are mutually exclusive.
|
|
*/
|
|
nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
|
|
compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
|
|
}
|
|
|
|
zp->zp_checksum = checksum;
|
|
zp->zp_compress = compress;
|
|
zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
|
|
zp->zp_level = level;
|
|
zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
|
|
zp->zp_dedup = dedup;
|
|
zp->zp_dedup_verify = dedup && dedup_verify;
|
|
zp->zp_nopwrite = nopwrite;
|
|
}
|
|
|
|
int
|
|
dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
|
|
{
|
|
dnode_t *dn;
|
|
int i, err;
|
|
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
/*
|
|
* Sync any current changes before
|
|
* we go trundling through the block pointers.
|
|
*/
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
if (list_link_active(&dn->dn_dirty_link[i]))
|
|
break;
|
|
}
|
|
if (i != TXG_SIZE) {
|
|
dnode_rele(dn, FTAG);
|
|
txg_wait_synced(dmu_objset_pool(os), 0);
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err)
|
|
return (err);
|
|
}
|
|
|
|
err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
|
|
dnode_rele(dn, FTAG);
|
|
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
|
|
{
|
|
dnode_phys_t *dnp = dn->dn_phys;
|
|
int i;
|
|
|
|
doi->doi_data_block_size = dn->dn_datablksz;
|
|
doi->doi_metadata_block_size = dn->dn_indblkshift ?
|
|
1ULL << dn->dn_indblkshift : 0;
|
|
doi->doi_type = dn->dn_type;
|
|
doi->doi_bonus_type = dn->dn_bonustype;
|
|
doi->doi_bonus_size = dn->dn_bonuslen;
|
|
doi->doi_indirection = dn->dn_nlevels;
|
|
doi->doi_checksum = dn->dn_checksum;
|
|
doi->doi_compress = dn->dn_compress;
|
|
doi->doi_nblkptr = dn->dn_nblkptr;
|
|
doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
|
|
doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
|
|
doi->doi_fill_count = 0;
|
|
for (i = 0; i < dnp->dn_nblkptr; i++)
|
|
doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
|
|
}
|
|
|
|
void
|
|
dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
|
|
{
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
mutex_enter(&dn->dn_mtx);
|
|
|
|
__dmu_object_info_from_dnode(dn, doi);
|
|
|
|
mutex_exit(&dn->dn_mtx);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
}
|
|
|
|
/*
|
|
* Get information on a DMU object.
|
|
* If doi is NULL, just indicates whether the object exists.
|
|
*/
|
|
int
|
|
dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
|
|
{
|
|
dnode_t *dn;
|
|
int err = dnode_hold(os, object, FTAG, &dn);
|
|
|
|
if (err)
|
|
return (err);
|
|
|
|
if (doi != NULL)
|
|
dmu_object_info_from_dnode(dn, doi);
|
|
|
|
dnode_rele(dn, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* As above, but faster; can be used when you have a held dbuf in hand.
|
|
*/
|
|
void
|
|
dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dmu_object_info_from_dnode(DB_DNODE(db), doi);
|
|
DB_DNODE_EXIT(db);
|
|
}
|
|
|
|
/*
|
|
* Faster still when you only care about the size.
|
|
* This is specifically optimized for zfs_getattr().
|
|
*/
|
|
void
|
|
dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
|
|
u_longlong_t *nblk512)
|
|
{
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
|
dnode_t *dn;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
|
|
*blksize = dn->dn_datablksz;
|
|
/* add 1 for dnode space */
|
|
*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
|
|
SPA_MINBLOCKSHIFT) + 1;
|
|
DB_DNODE_EXIT(db);
|
|
}
|
|
|
|
void
|
|
byteswap_uint64_array(void *vbuf, size_t size)
|
|
{
|
|
uint64_t *buf = vbuf;
|
|
size_t count = size >> 3;
|
|
int i;
|
|
|
|
ASSERT((size & 7) == 0);
|
|
|
|
for (i = 0; i < count; i++)
|
|
buf[i] = BSWAP_64(buf[i]);
|
|
}
|
|
|
|
void
|
|
byteswap_uint32_array(void *vbuf, size_t size)
|
|
{
|
|
uint32_t *buf = vbuf;
|
|
size_t count = size >> 2;
|
|
int i;
|
|
|
|
ASSERT((size & 3) == 0);
|
|
|
|
for (i = 0; i < count; i++)
|
|
buf[i] = BSWAP_32(buf[i]);
|
|
}
|
|
|
|
void
|
|
byteswap_uint16_array(void *vbuf, size_t size)
|
|
{
|
|
uint16_t *buf = vbuf;
|
|
size_t count = size >> 1;
|
|
int i;
|
|
|
|
ASSERT((size & 1) == 0);
|
|
|
|
for (i = 0; i < count; i++)
|
|
buf[i] = BSWAP_16(buf[i]);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
byteswap_uint8_array(void *vbuf, size_t size)
|
|
{
|
|
}
|
|
|
|
void
|
|
dmu_init(void)
|
|
{
|
|
zfs_dbgmsg_init();
|
|
sa_cache_init();
|
|
xuio_stat_init();
|
|
dmu_objset_init();
|
|
dnode_init();
|
|
dbuf_init();
|
|
zfetch_init();
|
|
dmu_tx_init();
|
|
l2arc_init();
|
|
arc_init();
|
|
}
|
|
|
|
void
|
|
dmu_fini(void)
|
|
{
|
|
arc_fini(); /* arc depends on l2arc, so arc must go first */
|
|
l2arc_fini();
|
|
dmu_tx_fini();
|
|
zfetch_fini();
|
|
dbuf_fini();
|
|
dnode_fini();
|
|
dmu_objset_fini();
|
|
xuio_stat_fini();
|
|
sa_cache_fini();
|
|
zfs_dbgmsg_fini();
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
EXPORT_SYMBOL(dmu_bonus_hold);
|
|
EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
|
|
EXPORT_SYMBOL(dmu_buf_rele_array);
|
|
EXPORT_SYMBOL(dmu_prefetch);
|
|
EXPORT_SYMBOL(dmu_free_range);
|
|
EXPORT_SYMBOL(dmu_free_long_range);
|
|
EXPORT_SYMBOL(dmu_free_long_object);
|
|
EXPORT_SYMBOL(dmu_read);
|
|
EXPORT_SYMBOL(dmu_write);
|
|
EXPORT_SYMBOL(dmu_prealloc);
|
|
EXPORT_SYMBOL(dmu_object_info);
|
|
EXPORT_SYMBOL(dmu_object_info_from_dnode);
|
|
EXPORT_SYMBOL(dmu_object_info_from_db);
|
|
EXPORT_SYMBOL(dmu_object_size_from_db);
|
|
EXPORT_SYMBOL(dmu_object_set_blocksize);
|
|
EXPORT_SYMBOL(dmu_object_set_checksum);
|
|
EXPORT_SYMBOL(dmu_object_set_compress);
|
|
EXPORT_SYMBOL(dmu_write_policy);
|
|
EXPORT_SYMBOL(dmu_sync);
|
|
EXPORT_SYMBOL(dmu_request_arcbuf);
|
|
EXPORT_SYMBOL(dmu_return_arcbuf);
|
|
EXPORT_SYMBOL(dmu_assign_arcbuf);
|
|
EXPORT_SYMBOL(dmu_buf_hold);
|
|
EXPORT_SYMBOL(dmu_ot);
|
|
|
|
module_param(zfs_mdcomp_disable, int, 0644);
|
|
MODULE_PARM_DESC(zfs_mdcomp_disable, "Disable meta data compression");
|
|
|
|
module_param(zfs_nopwrite_enabled, int, 0644);
|
|
MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
|
|
|
|
#endif
|