mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-27 03:19:35 +03:00
18168da727
Evaluated every variable that lives in .data (and globals in .rodata) in the kernel modules, and constified/eliminated/localised them appropriately. This means that all read-only data is now actually read-only data, and, if possible, at file scope. A lot of previously- global-symbols became inlinable (and inlined!) constants. Probably not in a big Wowee Performance Moment, but hey. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12899
2957 lines
77 KiB
C
2957 lines
77 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
|
|
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
* Copyright 2013 Saso Kiselkov. All rights reserved.
|
|
* Copyright (c) 2017 Datto Inc.
|
|
* Copyright (c) 2017, Intel Corporation.
|
|
* Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zio_compress.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/vdev_initialize.h>
|
|
#include <sys/vdev_trim.h>
|
|
#include <sys/vdev_file.h>
|
|
#include <sys/vdev_raidz.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/unique.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/fm/util.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/kstat.h>
|
|
#include "zfs_prop.h"
|
|
#include <sys/btree.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/qat.h>
|
|
#include <sys/zstd/zstd.h>
|
|
|
|
/*
|
|
* SPA locking
|
|
*
|
|
* There are three basic locks for managing spa_t structures:
|
|
*
|
|
* spa_namespace_lock (global mutex)
|
|
*
|
|
* This lock must be acquired to do any of the following:
|
|
*
|
|
* - Lookup a spa_t by name
|
|
* - Add or remove a spa_t from the namespace
|
|
* - Increase spa_refcount from non-zero
|
|
* - Check if spa_refcount is zero
|
|
* - Rename a spa_t
|
|
* - add/remove/attach/detach devices
|
|
* - Held for the duration of create/destroy/import/export
|
|
*
|
|
* It does not need to handle recursion. A create or destroy may
|
|
* reference objects (files or zvols) in other pools, but by
|
|
* definition they must have an existing reference, and will never need
|
|
* to lookup a spa_t by name.
|
|
*
|
|
* spa_refcount (per-spa zfs_refcount_t protected by mutex)
|
|
*
|
|
* This reference count keep track of any active users of the spa_t. The
|
|
* spa_t cannot be destroyed or freed while this is non-zero. Internally,
|
|
* the refcount is never really 'zero' - opening a pool implicitly keeps
|
|
* some references in the DMU. Internally we check against spa_minref, but
|
|
* present the image of a zero/non-zero value to consumers.
|
|
*
|
|
* spa_config_lock[] (per-spa array of rwlocks)
|
|
*
|
|
* This protects the spa_t from config changes, and must be held in
|
|
* the following circumstances:
|
|
*
|
|
* - RW_READER to perform I/O to the spa
|
|
* - RW_WRITER to change the vdev config
|
|
*
|
|
* The locking order is fairly straightforward:
|
|
*
|
|
* spa_namespace_lock -> spa_refcount
|
|
*
|
|
* The namespace lock must be acquired to increase the refcount from 0
|
|
* or to check if it is zero.
|
|
*
|
|
* spa_refcount -> spa_config_lock[]
|
|
*
|
|
* There must be at least one valid reference on the spa_t to acquire
|
|
* the config lock.
|
|
*
|
|
* spa_namespace_lock -> spa_config_lock[]
|
|
*
|
|
* The namespace lock must always be taken before the config lock.
|
|
*
|
|
*
|
|
* The spa_namespace_lock can be acquired directly and is globally visible.
|
|
*
|
|
* The namespace is manipulated using the following functions, all of which
|
|
* require the spa_namespace_lock to be held.
|
|
*
|
|
* spa_lookup() Lookup a spa_t by name.
|
|
*
|
|
* spa_add() Create a new spa_t in the namespace.
|
|
*
|
|
* spa_remove() Remove a spa_t from the namespace. This also
|
|
* frees up any memory associated with the spa_t.
|
|
*
|
|
* spa_next() Returns the next spa_t in the system, or the
|
|
* first if NULL is passed.
|
|
*
|
|
* spa_evict_all() Shutdown and remove all spa_t structures in
|
|
* the system.
|
|
*
|
|
* spa_guid_exists() Determine whether a pool/device guid exists.
|
|
*
|
|
* The spa_refcount is manipulated using the following functions:
|
|
*
|
|
* spa_open_ref() Adds a reference to the given spa_t. Must be
|
|
* called with spa_namespace_lock held if the
|
|
* refcount is currently zero.
|
|
*
|
|
* spa_close() Remove a reference from the spa_t. This will
|
|
* not free the spa_t or remove it from the
|
|
* namespace. No locking is required.
|
|
*
|
|
* spa_refcount_zero() Returns true if the refcount is currently
|
|
* zero. Must be called with spa_namespace_lock
|
|
* held.
|
|
*
|
|
* The spa_config_lock[] is an array of rwlocks, ordered as follows:
|
|
* SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
|
|
* spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
|
|
*
|
|
* To read the configuration, it suffices to hold one of these locks as reader.
|
|
* To modify the configuration, you must hold all locks as writer. To modify
|
|
* vdev state without altering the vdev tree's topology (e.g. online/offline),
|
|
* you must hold SCL_STATE and SCL_ZIO as writer.
|
|
*
|
|
* We use these distinct config locks to avoid recursive lock entry.
|
|
* For example, spa_sync() (which holds SCL_CONFIG as reader) induces
|
|
* block allocations (SCL_ALLOC), which may require reading space maps
|
|
* from disk (dmu_read() -> zio_read() -> SCL_ZIO).
|
|
*
|
|
* The spa config locks cannot be normal rwlocks because we need the
|
|
* ability to hand off ownership. For example, SCL_ZIO is acquired
|
|
* by the issuing thread and later released by an interrupt thread.
|
|
* They do, however, obey the usual write-wanted semantics to prevent
|
|
* writer (i.e. system administrator) starvation.
|
|
*
|
|
* The lock acquisition rules are as follows:
|
|
*
|
|
* SCL_CONFIG
|
|
* Protects changes to the vdev tree topology, such as vdev
|
|
* add/remove/attach/detach. Protects the dirty config list
|
|
* (spa_config_dirty_list) and the set of spares and l2arc devices.
|
|
*
|
|
* SCL_STATE
|
|
* Protects changes to pool state and vdev state, such as vdev
|
|
* online/offline/fault/degrade/clear. Protects the dirty state list
|
|
* (spa_state_dirty_list) and global pool state (spa_state).
|
|
*
|
|
* SCL_ALLOC
|
|
* Protects changes to metaslab groups and classes.
|
|
* Held as reader by metaslab_alloc() and metaslab_claim().
|
|
*
|
|
* SCL_ZIO
|
|
* Held by bp-level zios (those which have no io_vd upon entry)
|
|
* to prevent changes to the vdev tree. The bp-level zio implicitly
|
|
* protects all of its vdev child zios, which do not hold SCL_ZIO.
|
|
*
|
|
* SCL_FREE
|
|
* Protects changes to metaslab groups and classes.
|
|
* Held as reader by metaslab_free(). SCL_FREE is distinct from
|
|
* SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
|
|
* blocks in zio_done() while another i/o that holds either
|
|
* SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
|
|
*
|
|
* SCL_VDEV
|
|
* Held as reader to prevent changes to the vdev tree during trivial
|
|
* inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
|
|
* other locks, and lower than all of them, to ensure that it's safe
|
|
* to acquire regardless of caller context.
|
|
*
|
|
* In addition, the following rules apply:
|
|
*
|
|
* (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
|
|
* The lock ordering is SCL_CONFIG > spa_props_lock.
|
|
*
|
|
* (b) I/O operations on leaf vdevs. For any zio operation that takes
|
|
* an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
|
|
* or zio_write_phys() -- the caller must ensure that the config cannot
|
|
* cannot change in the interim, and that the vdev cannot be reopened.
|
|
* SCL_STATE as reader suffices for both.
|
|
*
|
|
* The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
|
|
*
|
|
* spa_vdev_enter() Acquire the namespace lock and the config lock
|
|
* for writing.
|
|
*
|
|
* spa_vdev_exit() Release the config lock, wait for all I/O
|
|
* to complete, sync the updated configs to the
|
|
* cache, and release the namespace lock.
|
|
*
|
|
* vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
|
|
* Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
|
|
* locking is, always, based on spa_namespace_lock and spa_config_lock[].
|
|
*/
|
|
|
|
static avl_tree_t spa_namespace_avl;
|
|
kmutex_t spa_namespace_lock;
|
|
static kcondvar_t spa_namespace_cv;
|
|
static const int spa_max_replication_override = SPA_DVAS_PER_BP;
|
|
|
|
static kmutex_t spa_spare_lock;
|
|
static avl_tree_t spa_spare_avl;
|
|
static kmutex_t spa_l2cache_lock;
|
|
static avl_tree_t spa_l2cache_avl;
|
|
|
|
spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
|
|
|
|
#ifdef ZFS_DEBUG
|
|
/*
|
|
* Everything except dprintf, set_error, spa, and indirect_remap is on
|
|
* by default in debug builds.
|
|
*/
|
|
int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
|
|
ZFS_DEBUG_INDIRECT_REMAP);
|
|
#else
|
|
int zfs_flags = 0;
|
|
#endif
|
|
|
|
/*
|
|
* zfs_recover can be set to nonzero to attempt to recover from
|
|
* otherwise-fatal errors, typically caused by on-disk corruption. When
|
|
* set, calls to zfs_panic_recover() will turn into warning messages.
|
|
* This should only be used as a last resort, as it typically results
|
|
* in leaked space, or worse.
|
|
*/
|
|
int zfs_recover = B_FALSE;
|
|
|
|
/*
|
|
* If destroy encounters an EIO while reading metadata (e.g. indirect
|
|
* blocks), space referenced by the missing metadata can not be freed.
|
|
* Normally this causes the background destroy to become "stalled", as
|
|
* it is unable to make forward progress. While in this stalled state,
|
|
* all remaining space to free from the error-encountering filesystem is
|
|
* "temporarily leaked". Set this flag to cause it to ignore the EIO,
|
|
* permanently leak the space from indirect blocks that can not be read,
|
|
* and continue to free everything else that it can.
|
|
*
|
|
* The default, "stalling" behavior is useful if the storage partially
|
|
* fails (i.e. some but not all i/os fail), and then later recovers. In
|
|
* this case, we will be able to continue pool operations while it is
|
|
* partially failed, and when it recovers, we can continue to free the
|
|
* space, with no leaks. However, note that this case is actually
|
|
* fairly rare.
|
|
*
|
|
* Typically pools either (a) fail completely (but perhaps temporarily,
|
|
* e.g. a top-level vdev going offline), or (b) have localized,
|
|
* permanent errors (e.g. disk returns the wrong data due to bit flip or
|
|
* firmware bug). In case (a), this setting does not matter because the
|
|
* pool will be suspended and the sync thread will not be able to make
|
|
* forward progress regardless. In case (b), because the error is
|
|
* permanent, the best we can do is leak the minimum amount of space,
|
|
* which is what setting this flag will do. Therefore, it is reasonable
|
|
* for this flag to normally be set, but we chose the more conservative
|
|
* approach of not setting it, so that there is no possibility of
|
|
* leaking space in the "partial temporary" failure case.
|
|
*/
|
|
int zfs_free_leak_on_eio = B_FALSE;
|
|
|
|
/*
|
|
* Expiration time in milliseconds. This value has two meanings. First it is
|
|
* used to determine when the spa_deadman() logic should fire. By default the
|
|
* spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
|
|
* Secondly, the value determines if an I/O is considered "hung". Any I/O that
|
|
* has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
|
|
* in one of three behaviors controlled by zfs_deadman_failmode.
|
|
*/
|
|
unsigned long zfs_deadman_synctime_ms = 600000UL; /* 10 min. */
|
|
|
|
/*
|
|
* This value controls the maximum amount of time zio_wait() will block for an
|
|
* outstanding IO. By default this is 300 seconds at which point the "hung"
|
|
* behavior will be applied as described for zfs_deadman_synctime_ms.
|
|
*/
|
|
unsigned long zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */
|
|
|
|
/*
|
|
* Check time in milliseconds. This defines the frequency at which we check
|
|
* for hung I/O.
|
|
*/
|
|
unsigned long zfs_deadman_checktime_ms = 60000UL; /* 1 min. */
|
|
|
|
/*
|
|
* By default the deadman is enabled.
|
|
*/
|
|
int zfs_deadman_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Controls the behavior of the deadman when it detects a "hung" I/O.
|
|
* Valid values are zfs_deadman_failmode=<wait|continue|panic>.
|
|
*
|
|
* wait - Wait for the "hung" I/O (default)
|
|
* continue - Attempt to recover from a "hung" I/O
|
|
* panic - Panic the system
|
|
*/
|
|
const char *zfs_deadman_failmode = "wait";
|
|
|
|
/*
|
|
* The worst case is single-sector max-parity RAID-Z blocks, in which
|
|
* case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
|
|
* times the size; so just assume that. Add to this the fact that
|
|
* we can have up to 3 DVAs per bp, and one more factor of 2 because
|
|
* the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
|
|
* the worst case is:
|
|
* (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
|
|
*/
|
|
int spa_asize_inflation = 24;
|
|
|
|
/*
|
|
* Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
|
|
* the pool to be consumed (bounded by spa_max_slop). This ensures that we
|
|
* don't run the pool completely out of space, due to unaccounted changes (e.g.
|
|
* to the MOS). It also limits the worst-case time to allocate space. If we
|
|
* have less than this amount of free space, most ZPL operations (e.g. write,
|
|
* create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are
|
|
* also part of this 3.2% of space which can't be consumed by normal writes;
|
|
* the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
|
|
* log space.
|
|
*
|
|
* Certain operations (e.g. file removal, most administrative actions) can
|
|
* use half the slop space. They will only return ENOSPC if less than half
|
|
* the slop space is free. Typically, once the pool has less than the slop
|
|
* space free, the user will use these operations to free up space in the pool.
|
|
* These are the operations that call dsl_pool_adjustedsize() with the netfree
|
|
* argument set to TRUE.
|
|
*
|
|
* Operations that are almost guaranteed to free up space in the absence of
|
|
* a pool checkpoint can use up to three quarters of the slop space
|
|
* (e.g zfs destroy).
|
|
*
|
|
* A very restricted set of operations are always permitted, regardless of
|
|
* the amount of free space. These are the operations that call
|
|
* dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
|
|
* increase in the amount of space used, it is possible to run the pool
|
|
* completely out of space, causing it to be permanently read-only.
|
|
*
|
|
* Note that on very small pools, the slop space will be larger than
|
|
* 3.2%, in an effort to have it be at least spa_min_slop (128MB),
|
|
* but we never allow it to be more than half the pool size.
|
|
*
|
|
* Further, on very large pools, the slop space will be smaller than
|
|
* 3.2%, to avoid reserving much more space than we actually need; bounded
|
|
* by spa_max_slop (128GB).
|
|
*
|
|
* See also the comments in zfs_space_check_t.
|
|
*/
|
|
int spa_slop_shift = 5;
|
|
static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
|
|
static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
|
|
static const int spa_allocators = 4;
|
|
|
|
|
|
void
|
|
spa_load_failed(spa_t *spa, const char *fmt, ...)
|
|
{
|
|
va_list adx;
|
|
char buf[256];
|
|
|
|
va_start(adx, fmt);
|
|
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
|
|
va_end(adx);
|
|
|
|
zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
|
|
spa->spa_trust_config ? "trusted" : "untrusted", buf);
|
|
}
|
|
|
|
void
|
|
spa_load_note(spa_t *spa, const char *fmt, ...)
|
|
{
|
|
va_list adx;
|
|
char buf[256];
|
|
|
|
va_start(adx, fmt);
|
|
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
|
|
va_end(adx);
|
|
|
|
zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
|
|
spa->spa_trust_config ? "trusted" : "untrusted", buf);
|
|
}
|
|
|
|
/*
|
|
* By default dedup and user data indirects land in the special class
|
|
*/
|
|
static int zfs_ddt_data_is_special = B_TRUE;
|
|
static int zfs_user_indirect_is_special = B_TRUE;
|
|
|
|
/*
|
|
* The percentage of special class final space reserved for metadata only.
|
|
* Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
|
|
* let metadata into the class.
|
|
*/
|
|
static int zfs_special_class_metadata_reserve_pct = 25;
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA config locking
|
|
* ==========================================================================
|
|
*/
|
|
static void
|
|
spa_config_lock_init(spa_t *spa)
|
|
{
|
|
for (int i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
|
|
scl->scl_writer = NULL;
|
|
scl->scl_write_wanted = 0;
|
|
scl->scl_count = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_config_lock_destroy(spa_t *spa)
|
|
{
|
|
for (int i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
mutex_destroy(&scl->scl_lock);
|
|
cv_destroy(&scl->scl_cv);
|
|
ASSERT(scl->scl_writer == NULL);
|
|
ASSERT(scl->scl_write_wanted == 0);
|
|
ASSERT(scl->scl_count == 0);
|
|
}
|
|
}
|
|
|
|
int
|
|
spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
|
|
{
|
|
for (int i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
mutex_enter(&scl->scl_lock);
|
|
if (rw == RW_READER) {
|
|
if (scl->scl_writer || scl->scl_write_wanted) {
|
|
mutex_exit(&scl->scl_lock);
|
|
spa_config_exit(spa, locks & ((1 << i) - 1),
|
|
tag);
|
|
return (0);
|
|
}
|
|
} else {
|
|
ASSERT(scl->scl_writer != curthread);
|
|
if (scl->scl_count != 0) {
|
|
mutex_exit(&scl->scl_lock);
|
|
spa_config_exit(spa, locks & ((1 << i) - 1),
|
|
tag);
|
|
return (0);
|
|
}
|
|
scl->scl_writer = curthread;
|
|
}
|
|
scl->scl_count++;
|
|
mutex_exit(&scl->scl_lock);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
|
|
{
|
|
(void) tag;
|
|
int wlocks_held = 0;
|
|
|
|
ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
|
|
|
|
for (int i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (scl->scl_writer == curthread)
|
|
wlocks_held |= (1 << i);
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
mutex_enter(&scl->scl_lock);
|
|
if (rw == RW_READER) {
|
|
while (scl->scl_writer || scl->scl_write_wanted) {
|
|
cv_wait(&scl->scl_cv, &scl->scl_lock);
|
|
}
|
|
} else {
|
|
ASSERT(scl->scl_writer != curthread);
|
|
while (scl->scl_count != 0) {
|
|
scl->scl_write_wanted++;
|
|
cv_wait(&scl->scl_cv, &scl->scl_lock);
|
|
scl->scl_write_wanted--;
|
|
}
|
|
scl->scl_writer = curthread;
|
|
}
|
|
scl->scl_count++;
|
|
mutex_exit(&scl->scl_lock);
|
|
}
|
|
ASSERT3U(wlocks_held, <=, locks);
|
|
}
|
|
|
|
void
|
|
spa_config_exit(spa_t *spa, int locks, const void *tag)
|
|
{
|
|
(void) tag;
|
|
for (int i = SCL_LOCKS - 1; i >= 0; i--) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
mutex_enter(&scl->scl_lock);
|
|
ASSERT(scl->scl_count > 0);
|
|
if (--scl->scl_count == 0) {
|
|
ASSERT(scl->scl_writer == NULL ||
|
|
scl->scl_writer == curthread);
|
|
scl->scl_writer = NULL; /* OK in either case */
|
|
cv_broadcast(&scl->scl_cv);
|
|
}
|
|
mutex_exit(&scl->scl_lock);
|
|
}
|
|
}
|
|
|
|
int
|
|
spa_config_held(spa_t *spa, int locks, krw_t rw)
|
|
{
|
|
int locks_held = 0;
|
|
|
|
for (int i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
if ((rw == RW_READER && scl->scl_count != 0) ||
|
|
(rw == RW_WRITER && scl->scl_writer == curthread))
|
|
locks_held |= 1 << i;
|
|
}
|
|
|
|
return (locks_held);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA namespace functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
|
|
* Returns NULL if no matching spa_t is found.
|
|
*/
|
|
spa_t *
|
|
spa_lookup(const char *name)
|
|
{
|
|
static spa_t search; /* spa_t is large; don't allocate on stack */
|
|
spa_t *spa;
|
|
avl_index_t where;
|
|
char *cp;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
|
|
|
|
/*
|
|
* If it's a full dataset name, figure out the pool name and
|
|
* just use that.
|
|
*/
|
|
cp = strpbrk(search.spa_name, "/@#");
|
|
if (cp != NULL)
|
|
*cp = '\0';
|
|
|
|
spa = avl_find(&spa_namespace_avl, &search, &where);
|
|
|
|
return (spa);
|
|
}
|
|
|
|
/*
|
|
* Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
|
|
* If the zfs_deadman_enabled flag is set then it inspects all vdev queues
|
|
* looking for potentially hung I/Os.
|
|
*/
|
|
void
|
|
spa_deadman(void *arg)
|
|
{
|
|
spa_t *spa = arg;
|
|
|
|
/* Disable the deadman if the pool is suspended. */
|
|
if (spa_suspended(spa))
|
|
return;
|
|
|
|
zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
|
|
(gethrtime() - spa->spa_sync_starttime) / NANOSEC,
|
|
(u_longlong_t)++spa->spa_deadman_calls);
|
|
if (zfs_deadman_enabled)
|
|
vdev_deadman(spa->spa_root_vdev, FTAG);
|
|
|
|
spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
|
|
spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
|
|
MSEC_TO_TICK(zfs_deadman_checktime_ms));
|
|
}
|
|
|
|
static int
|
|
spa_log_sm_sort_by_txg(const void *va, const void *vb)
|
|
{
|
|
const spa_log_sm_t *a = va;
|
|
const spa_log_sm_t *b = vb;
|
|
|
|
return (TREE_CMP(a->sls_txg, b->sls_txg));
|
|
}
|
|
|
|
/*
|
|
* Create an uninitialized spa_t with the given name. Requires
|
|
* spa_namespace_lock. The caller must ensure that the spa_t doesn't already
|
|
* exist by calling spa_lookup() first.
|
|
*/
|
|
spa_t *
|
|
spa_add(const char *name, nvlist_t *config, const char *altroot)
|
|
{
|
|
spa_t *spa;
|
|
spa_config_dirent_t *dp;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
|
|
|
|
mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
for (int t = 0; t < TXG_SIZE; t++)
|
|
bplist_create(&spa->spa_free_bplist[t]);
|
|
|
|
(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
|
|
spa->spa_state = POOL_STATE_UNINITIALIZED;
|
|
spa->spa_freeze_txg = UINT64_MAX;
|
|
spa->spa_final_txg = UINT64_MAX;
|
|
spa->spa_load_max_txg = UINT64_MAX;
|
|
spa->spa_proc = &p0;
|
|
spa->spa_proc_state = SPA_PROC_NONE;
|
|
spa->spa_trust_config = B_TRUE;
|
|
spa->spa_hostid = zone_get_hostid(NULL);
|
|
|
|
spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
|
|
spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
|
|
spa_set_deadman_failmode(spa, zfs_deadman_failmode);
|
|
|
|
zfs_refcount_create(&spa->spa_refcount);
|
|
spa_config_lock_init(spa);
|
|
spa_stats_init(spa);
|
|
|
|
avl_add(&spa_namespace_avl, spa);
|
|
|
|
/*
|
|
* Set the alternate root, if there is one.
|
|
*/
|
|
if (altroot)
|
|
spa->spa_root = spa_strdup(altroot);
|
|
|
|
spa->spa_alloc_count = spa_allocators;
|
|
spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
|
|
sizeof (spa_alloc_t), KM_SLEEP);
|
|
for (int i = 0; i < spa->spa_alloc_count; i++) {
|
|
mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
|
|
NULL);
|
|
avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
|
|
sizeof (zio_t), offsetof(zio_t, io_alloc_node));
|
|
}
|
|
avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
|
|
sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
|
|
avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
|
|
sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
|
|
list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
|
|
offsetof(log_summary_entry_t, lse_node));
|
|
|
|
/*
|
|
* Every pool starts with the default cachefile
|
|
*/
|
|
list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
|
|
offsetof(spa_config_dirent_t, scd_link));
|
|
|
|
dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
|
|
dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
|
|
list_insert_head(&spa->spa_config_list, dp);
|
|
|
|
VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
|
|
KM_SLEEP) == 0);
|
|
|
|
if (config != NULL) {
|
|
nvlist_t *features;
|
|
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
|
|
&features) == 0) {
|
|
VERIFY(nvlist_dup(features, &spa->spa_label_features,
|
|
0) == 0);
|
|
}
|
|
|
|
VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
|
|
}
|
|
|
|
if (spa->spa_label_features == NULL) {
|
|
VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
|
|
KM_SLEEP) == 0);
|
|
}
|
|
|
|
spa->spa_min_ashift = INT_MAX;
|
|
spa->spa_max_ashift = 0;
|
|
spa->spa_min_alloc = INT_MAX;
|
|
|
|
/* Reset cached value */
|
|
spa->spa_dedup_dspace = ~0ULL;
|
|
|
|
/*
|
|
* As a pool is being created, treat all features as disabled by
|
|
* setting SPA_FEATURE_DISABLED for all entries in the feature
|
|
* refcount cache.
|
|
*/
|
|
for (int i = 0; i < SPA_FEATURES; i++) {
|
|
spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
|
|
}
|
|
|
|
list_create(&spa->spa_leaf_list, sizeof (vdev_t),
|
|
offsetof(vdev_t, vdev_leaf_node));
|
|
|
|
return (spa);
|
|
}
|
|
|
|
/*
|
|
* Removes a spa_t from the namespace, freeing up any memory used. Requires
|
|
* spa_namespace_lock. This is called only after the spa_t has been closed and
|
|
* deactivated.
|
|
*/
|
|
void
|
|
spa_remove(spa_t *spa)
|
|
{
|
|
spa_config_dirent_t *dp;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
|
|
ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
|
|
ASSERT0(spa->spa_waiters);
|
|
|
|
nvlist_free(spa->spa_config_splitting);
|
|
|
|
avl_remove(&spa_namespace_avl, spa);
|
|
cv_broadcast(&spa_namespace_cv);
|
|
|
|
if (spa->spa_root)
|
|
spa_strfree(spa->spa_root);
|
|
|
|
while ((dp = list_head(&spa->spa_config_list)) != NULL) {
|
|
list_remove(&spa->spa_config_list, dp);
|
|
if (dp->scd_path != NULL)
|
|
spa_strfree(dp->scd_path);
|
|
kmem_free(dp, sizeof (spa_config_dirent_t));
|
|
}
|
|
|
|
for (int i = 0; i < spa->spa_alloc_count; i++) {
|
|
avl_destroy(&spa->spa_allocs[i].spaa_tree);
|
|
mutex_destroy(&spa->spa_allocs[i].spaa_lock);
|
|
}
|
|
kmem_free(spa->spa_allocs, spa->spa_alloc_count *
|
|
sizeof (spa_alloc_t));
|
|
|
|
avl_destroy(&spa->spa_metaslabs_by_flushed);
|
|
avl_destroy(&spa->spa_sm_logs_by_txg);
|
|
list_destroy(&spa->spa_log_summary);
|
|
list_destroy(&spa->spa_config_list);
|
|
list_destroy(&spa->spa_leaf_list);
|
|
|
|
nvlist_free(spa->spa_label_features);
|
|
nvlist_free(spa->spa_load_info);
|
|
nvlist_free(spa->spa_feat_stats);
|
|
spa_config_set(spa, NULL);
|
|
|
|
zfs_refcount_destroy(&spa->spa_refcount);
|
|
|
|
spa_stats_destroy(spa);
|
|
spa_config_lock_destroy(spa);
|
|
|
|
for (int t = 0; t < TXG_SIZE; t++)
|
|
bplist_destroy(&spa->spa_free_bplist[t]);
|
|
|
|
zio_checksum_templates_free(spa);
|
|
|
|
cv_destroy(&spa->spa_async_cv);
|
|
cv_destroy(&spa->spa_evicting_os_cv);
|
|
cv_destroy(&spa->spa_proc_cv);
|
|
cv_destroy(&spa->spa_scrub_io_cv);
|
|
cv_destroy(&spa->spa_suspend_cv);
|
|
cv_destroy(&spa->spa_activities_cv);
|
|
cv_destroy(&spa->spa_waiters_cv);
|
|
|
|
mutex_destroy(&spa->spa_flushed_ms_lock);
|
|
mutex_destroy(&spa->spa_async_lock);
|
|
mutex_destroy(&spa->spa_errlist_lock);
|
|
mutex_destroy(&spa->spa_errlog_lock);
|
|
mutex_destroy(&spa->spa_evicting_os_lock);
|
|
mutex_destroy(&spa->spa_history_lock);
|
|
mutex_destroy(&spa->spa_proc_lock);
|
|
mutex_destroy(&spa->spa_props_lock);
|
|
mutex_destroy(&spa->spa_cksum_tmpls_lock);
|
|
mutex_destroy(&spa->spa_scrub_lock);
|
|
mutex_destroy(&spa->spa_suspend_lock);
|
|
mutex_destroy(&spa->spa_vdev_top_lock);
|
|
mutex_destroy(&spa->spa_feat_stats_lock);
|
|
mutex_destroy(&spa->spa_activities_lock);
|
|
|
|
kmem_free(spa, sizeof (spa_t));
|
|
}
|
|
|
|
/*
|
|
* Given a pool, return the next pool in the namespace, or NULL if there is
|
|
* none. If 'prev' is NULL, return the first pool.
|
|
*/
|
|
spa_t *
|
|
spa_next(spa_t *prev)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
if (prev)
|
|
return (AVL_NEXT(&spa_namespace_avl, prev));
|
|
else
|
|
return (avl_first(&spa_namespace_avl));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA refcount functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Add a reference to the given spa_t. Must have at least one reference, or
|
|
* have the namespace lock held.
|
|
*/
|
|
void
|
|
spa_open_ref(spa_t *spa, void *tag)
|
|
{
|
|
ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
|
|
MUTEX_HELD(&spa_namespace_lock));
|
|
(void) zfs_refcount_add(&spa->spa_refcount, tag);
|
|
}
|
|
|
|
/*
|
|
* Remove a reference to the given spa_t. Must have at least one reference, or
|
|
* have the namespace lock held.
|
|
*/
|
|
void
|
|
spa_close(spa_t *spa, void *tag)
|
|
{
|
|
ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
|
|
MUTEX_HELD(&spa_namespace_lock));
|
|
(void) zfs_refcount_remove(&spa->spa_refcount, tag);
|
|
}
|
|
|
|
/*
|
|
* Remove a reference to the given spa_t held by a dsl dir that is
|
|
* being asynchronously released. Async releases occur from a taskq
|
|
* performing eviction of dsl datasets and dirs. The namespace lock
|
|
* isn't held and the hold by the object being evicted may contribute to
|
|
* spa_minref (e.g. dataset or directory released during pool export),
|
|
* so the asserts in spa_close() do not apply.
|
|
*/
|
|
void
|
|
spa_async_close(spa_t *spa, void *tag)
|
|
{
|
|
(void) zfs_refcount_remove(&spa->spa_refcount, tag);
|
|
}
|
|
|
|
/*
|
|
* Check to see if the spa refcount is zero. Must be called with
|
|
* spa_namespace_lock held. We really compare against spa_minref, which is the
|
|
* number of references acquired when opening a pool
|
|
*/
|
|
boolean_t
|
|
spa_refcount_zero(spa_t *spa)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA spare and l2cache tracking
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Hot spares and cache devices are tracked using the same code below,
|
|
* for 'auxiliary' devices.
|
|
*/
|
|
|
|
typedef struct spa_aux {
|
|
uint64_t aux_guid;
|
|
uint64_t aux_pool;
|
|
avl_node_t aux_avl;
|
|
int aux_count;
|
|
} spa_aux_t;
|
|
|
|
static inline int
|
|
spa_aux_compare(const void *a, const void *b)
|
|
{
|
|
const spa_aux_t *sa = (const spa_aux_t *)a;
|
|
const spa_aux_t *sb = (const spa_aux_t *)b;
|
|
|
|
return (TREE_CMP(sa->aux_guid, sb->aux_guid));
|
|
}
|
|
|
|
static void
|
|
spa_aux_add(vdev_t *vd, avl_tree_t *avl)
|
|
{
|
|
avl_index_t where;
|
|
spa_aux_t search;
|
|
spa_aux_t *aux;
|
|
|
|
search.aux_guid = vd->vdev_guid;
|
|
if ((aux = avl_find(avl, &search, &where)) != NULL) {
|
|
aux->aux_count++;
|
|
} else {
|
|
aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
|
|
aux->aux_guid = vd->vdev_guid;
|
|
aux->aux_count = 1;
|
|
avl_insert(avl, aux, where);
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
|
|
{
|
|
spa_aux_t search;
|
|
spa_aux_t *aux;
|
|
avl_index_t where;
|
|
|
|
search.aux_guid = vd->vdev_guid;
|
|
aux = avl_find(avl, &search, &where);
|
|
|
|
ASSERT(aux != NULL);
|
|
|
|
if (--aux->aux_count == 0) {
|
|
avl_remove(avl, aux);
|
|
kmem_free(aux, sizeof (spa_aux_t));
|
|
} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
|
|
aux->aux_pool = 0ULL;
|
|
}
|
|
}
|
|
|
|
static boolean_t
|
|
spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
|
|
{
|
|
spa_aux_t search, *found;
|
|
|
|
search.aux_guid = guid;
|
|
found = avl_find(avl, &search, NULL);
|
|
|
|
if (pool) {
|
|
if (found)
|
|
*pool = found->aux_pool;
|
|
else
|
|
*pool = 0ULL;
|
|
}
|
|
|
|
if (refcnt) {
|
|
if (found)
|
|
*refcnt = found->aux_count;
|
|
else
|
|
*refcnt = 0;
|
|
}
|
|
|
|
return (found != NULL);
|
|
}
|
|
|
|
static void
|
|
spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
|
|
{
|
|
spa_aux_t search, *found;
|
|
avl_index_t where;
|
|
|
|
search.aux_guid = vd->vdev_guid;
|
|
found = avl_find(avl, &search, &where);
|
|
ASSERT(found != NULL);
|
|
ASSERT(found->aux_pool == 0ULL);
|
|
|
|
found->aux_pool = spa_guid(vd->vdev_spa);
|
|
}
|
|
|
|
/*
|
|
* Spares are tracked globally due to the following constraints:
|
|
*
|
|
* - A spare may be part of multiple pools.
|
|
* - A spare may be added to a pool even if it's actively in use within
|
|
* another pool.
|
|
* - A spare in use in any pool can only be the source of a replacement if
|
|
* the target is a spare in the same pool.
|
|
*
|
|
* We keep track of all spares on the system through the use of a reference
|
|
* counted AVL tree. When a vdev is added as a spare, or used as a replacement
|
|
* spare, then we bump the reference count in the AVL tree. In addition, we set
|
|
* the 'vdev_isspare' member to indicate that the device is a spare (active or
|
|
* inactive). When a spare is made active (used to replace a device in the
|
|
* pool), we also keep track of which pool its been made a part of.
|
|
*
|
|
* The 'spa_spare_lock' protects the AVL tree. These functions are normally
|
|
* called under the spa_namespace lock as part of vdev reconfiguration. The
|
|
* separate spare lock exists for the status query path, which does not need to
|
|
* be completely consistent with respect to other vdev configuration changes.
|
|
*/
|
|
|
|
static int
|
|
spa_spare_compare(const void *a, const void *b)
|
|
{
|
|
return (spa_aux_compare(a, b));
|
|
}
|
|
|
|
void
|
|
spa_spare_add(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_spare_lock);
|
|
ASSERT(!vd->vdev_isspare);
|
|
spa_aux_add(vd, &spa_spare_avl);
|
|
vd->vdev_isspare = B_TRUE;
|
|
mutex_exit(&spa_spare_lock);
|
|
}
|
|
|
|
void
|
|
spa_spare_remove(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_spare_lock);
|
|
ASSERT(vd->vdev_isspare);
|
|
spa_aux_remove(vd, &spa_spare_avl);
|
|
vd->vdev_isspare = B_FALSE;
|
|
mutex_exit(&spa_spare_lock);
|
|
}
|
|
|
|
boolean_t
|
|
spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
|
|
{
|
|
boolean_t found;
|
|
|
|
mutex_enter(&spa_spare_lock);
|
|
found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
|
|
mutex_exit(&spa_spare_lock);
|
|
|
|
return (found);
|
|
}
|
|
|
|
void
|
|
spa_spare_activate(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_spare_lock);
|
|
ASSERT(vd->vdev_isspare);
|
|
spa_aux_activate(vd, &spa_spare_avl);
|
|
mutex_exit(&spa_spare_lock);
|
|
}
|
|
|
|
/*
|
|
* Level 2 ARC devices are tracked globally for the same reasons as spares.
|
|
* Cache devices currently only support one pool per cache device, and so
|
|
* for these devices the aux reference count is currently unused beyond 1.
|
|
*/
|
|
|
|
static int
|
|
spa_l2cache_compare(const void *a, const void *b)
|
|
{
|
|
return (spa_aux_compare(a, b));
|
|
}
|
|
|
|
void
|
|
spa_l2cache_add(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_l2cache_lock);
|
|
ASSERT(!vd->vdev_isl2cache);
|
|
spa_aux_add(vd, &spa_l2cache_avl);
|
|
vd->vdev_isl2cache = B_TRUE;
|
|
mutex_exit(&spa_l2cache_lock);
|
|
}
|
|
|
|
void
|
|
spa_l2cache_remove(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_l2cache_lock);
|
|
ASSERT(vd->vdev_isl2cache);
|
|
spa_aux_remove(vd, &spa_l2cache_avl);
|
|
vd->vdev_isl2cache = B_FALSE;
|
|
mutex_exit(&spa_l2cache_lock);
|
|
}
|
|
|
|
boolean_t
|
|
spa_l2cache_exists(uint64_t guid, uint64_t *pool)
|
|
{
|
|
boolean_t found;
|
|
|
|
mutex_enter(&spa_l2cache_lock);
|
|
found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
|
|
mutex_exit(&spa_l2cache_lock);
|
|
|
|
return (found);
|
|
}
|
|
|
|
void
|
|
spa_l2cache_activate(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_l2cache_lock);
|
|
ASSERT(vd->vdev_isl2cache);
|
|
spa_aux_activate(vd, &spa_l2cache_avl);
|
|
mutex_exit(&spa_l2cache_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA vdev locking
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Lock the given spa_t for the purpose of adding or removing a vdev.
|
|
* Grabs the global spa_namespace_lock plus the spa config lock for writing.
|
|
* It returns the next transaction group for the spa_t.
|
|
*/
|
|
uint64_t
|
|
spa_vdev_enter(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_vdev_top_lock);
|
|
mutex_enter(&spa_namespace_lock);
|
|
|
|
vdev_autotrim_stop_all(spa);
|
|
|
|
return (spa_vdev_config_enter(spa));
|
|
}
|
|
|
|
/*
|
|
* The same as spa_vdev_enter() above but additionally takes the guid of
|
|
* the vdev being detached. When there is a rebuild in process it will be
|
|
* suspended while the vdev tree is modified then resumed by spa_vdev_exit().
|
|
* The rebuild is canceled if only a single child remains after the detach.
|
|
*/
|
|
uint64_t
|
|
spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
|
|
{
|
|
mutex_enter(&spa->spa_vdev_top_lock);
|
|
mutex_enter(&spa_namespace_lock);
|
|
|
|
vdev_autotrim_stop_all(spa);
|
|
|
|
if (guid != 0) {
|
|
vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
|
|
if (vd) {
|
|
vdev_rebuild_stop_wait(vd->vdev_top);
|
|
}
|
|
}
|
|
|
|
return (spa_vdev_config_enter(spa));
|
|
}
|
|
|
|
/*
|
|
* Internal implementation for spa_vdev_enter(). Used when a vdev
|
|
* operation requires multiple syncs (i.e. removing a device) while
|
|
* keeping the spa_namespace_lock held.
|
|
*/
|
|
uint64_t
|
|
spa_vdev_config_enter(spa_t *spa)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
|
|
|
|
return (spa_last_synced_txg(spa) + 1);
|
|
}
|
|
|
|
/*
|
|
* Used in combination with spa_vdev_config_enter() to allow the syncing
|
|
* of multiple transactions without releasing the spa_namespace_lock.
|
|
*/
|
|
void
|
|
spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
int config_changed = B_FALSE;
|
|
|
|
ASSERT(txg > spa_last_synced_txg(spa));
|
|
|
|
spa->spa_pending_vdev = NULL;
|
|
|
|
/*
|
|
* Reassess the DTLs.
|
|
*/
|
|
vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
|
|
|
|
if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
|
|
config_changed = B_TRUE;
|
|
spa->spa_config_generation++;
|
|
}
|
|
|
|
/*
|
|
* Verify the metaslab classes.
|
|
*/
|
|
ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
|
|
ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
|
|
ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
|
|
ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
|
|
ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
|
|
|
|
spa_config_exit(spa, SCL_ALL, spa);
|
|
|
|
/*
|
|
* Panic the system if the specified tag requires it. This
|
|
* is useful for ensuring that configurations are updated
|
|
* transactionally.
|
|
*/
|
|
if (zio_injection_enabled)
|
|
zio_handle_panic_injection(spa, tag, 0);
|
|
|
|
/*
|
|
* Note: this txg_wait_synced() is important because it ensures
|
|
* that there won't be more than one config change per txg.
|
|
* This allows us to use the txg as the generation number.
|
|
*/
|
|
if (error == 0)
|
|
txg_wait_synced(spa->spa_dsl_pool, txg);
|
|
|
|
if (vd != NULL) {
|
|
ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
|
|
NULL);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
mutex_enter(&vd->vdev_trim_lock);
|
|
vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
|
|
mutex_exit(&vd->vdev_trim_lock);
|
|
}
|
|
|
|
/*
|
|
* The vdev may be both a leaf and top-level device.
|
|
*/
|
|
vdev_autotrim_stop_wait(vd);
|
|
|
|
spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
|
|
vdev_free(vd);
|
|
spa_config_exit(spa, SCL_STATE_ALL, spa);
|
|
}
|
|
|
|
/*
|
|
* If the config changed, update the config cache.
|
|
*/
|
|
if (config_changed)
|
|
spa_write_cachefile(spa, B_FALSE, B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Unlock the spa_t after adding or removing a vdev. Besides undoing the
|
|
* locking of spa_vdev_enter(), we also want make sure the transactions have
|
|
* synced to disk, and then update the global configuration cache with the new
|
|
* information.
|
|
*/
|
|
int
|
|
spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
|
|
{
|
|
vdev_autotrim_restart(spa);
|
|
vdev_rebuild_restart(spa);
|
|
|
|
spa_vdev_config_exit(spa, vd, txg, error, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
mutex_exit(&spa->spa_vdev_top_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Lock the given spa_t for the purpose of changing vdev state.
|
|
*/
|
|
void
|
|
spa_vdev_state_enter(spa_t *spa, int oplocks)
|
|
{
|
|
int locks = SCL_STATE_ALL | oplocks;
|
|
|
|
/*
|
|
* Root pools may need to read of the underlying devfs filesystem
|
|
* when opening up a vdev. Unfortunately if we're holding the
|
|
* SCL_ZIO lock it will result in a deadlock when we try to issue
|
|
* the read from the root filesystem. Instead we "prefetch"
|
|
* the associated vnodes that we need prior to opening the
|
|
* underlying devices and cache them so that we can prevent
|
|
* any I/O when we are doing the actual open.
|
|
*/
|
|
if (spa_is_root(spa)) {
|
|
int low = locks & ~(SCL_ZIO - 1);
|
|
int high = locks & ~low;
|
|
|
|
spa_config_enter(spa, high, spa, RW_WRITER);
|
|
vdev_hold(spa->spa_root_vdev);
|
|
spa_config_enter(spa, low, spa, RW_WRITER);
|
|
} else {
|
|
spa_config_enter(spa, locks, spa, RW_WRITER);
|
|
}
|
|
spa->spa_vdev_locks = locks;
|
|
}
|
|
|
|
int
|
|
spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
|
|
{
|
|
boolean_t config_changed = B_FALSE;
|
|
vdev_t *vdev_top;
|
|
|
|
if (vd == NULL || vd == spa->spa_root_vdev) {
|
|
vdev_top = spa->spa_root_vdev;
|
|
} else {
|
|
vdev_top = vd->vdev_top;
|
|
}
|
|
|
|
if (vd != NULL || error == 0)
|
|
vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
|
|
|
|
if (vd != NULL) {
|
|
if (vd != spa->spa_root_vdev)
|
|
vdev_state_dirty(vdev_top);
|
|
|
|
config_changed = B_TRUE;
|
|
spa->spa_config_generation++;
|
|
}
|
|
|
|
if (spa_is_root(spa))
|
|
vdev_rele(spa->spa_root_vdev);
|
|
|
|
ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
|
|
spa_config_exit(spa, spa->spa_vdev_locks, spa);
|
|
|
|
/*
|
|
* If anything changed, wait for it to sync. This ensures that,
|
|
* from the system administrator's perspective, zpool(8) commands
|
|
* are synchronous. This is important for things like zpool offline:
|
|
* when the command completes, you expect no further I/O from ZFS.
|
|
*/
|
|
if (vd != NULL)
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
|
|
/*
|
|
* If the config changed, update the config cache.
|
|
*/
|
|
if (config_changed) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_write_cachefile(spa, B_FALSE, B_TRUE);
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Miscellaneous functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
void
|
|
spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
|
|
{
|
|
if (!nvlist_exists(spa->spa_label_features, feature)) {
|
|
fnvlist_add_boolean(spa->spa_label_features, feature);
|
|
/*
|
|
* When we are creating the pool (tx_txg==TXG_INITIAL), we can't
|
|
* dirty the vdev config because lock SCL_CONFIG is not held.
|
|
* Thankfully, in this case we don't need to dirty the config
|
|
* because it will be written out anyway when we finish
|
|
* creating the pool.
|
|
*/
|
|
if (tx->tx_txg != TXG_INITIAL)
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
}
|
|
}
|
|
|
|
void
|
|
spa_deactivate_mos_feature(spa_t *spa, const char *feature)
|
|
{
|
|
if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
}
|
|
|
|
/*
|
|
* Return the spa_t associated with given pool_guid, if it exists. If
|
|
* device_guid is non-zero, determine whether the pool exists *and* contains
|
|
* a device with the specified device_guid.
|
|
*/
|
|
spa_t *
|
|
spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
|
|
{
|
|
spa_t *spa;
|
|
avl_tree_t *t = &spa_namespace_avl;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
|
|
continue;
|
|
if (spa->spa_root_vdev == NULL)
|
|
continue;
|
|
if (spa_guid(spa) == pool_guid) {
|
|
if (device_guid == 0)
|
|
break;
|
|
|
|
if (vdev_lookup_by_guid(spa->spa_root_vdev,
|
|
device_guid) != NULL)
|
|
break;
|
|
|
|
/*
|
|
* Check any devices we may be in the process of adding.
|
|
*/
|
|
if (spa->spa_pending_vdev) {
|
|
if (vdev_lookup_by_guid(spa->spa_pending_vdev,
|
|
device_guid) != NULL)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (spa);
|
|
}
|
|
|
|
/*
|
|
* Determine whether a pool with the given pool_guid exists.
|
|
*/
|
|
boolean_t
|
|
spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
|
|
{
|
|
return (spa_by_guid(pool_guid, device_guid) != NULL);
|
|
}
|
|
|
|
char *
|
|
spa_strdup(const char *s)
|
|
{
|
|
size_t len;
|
|
char *new;
|
|
|
|
len = strlen(s);
|
|
new = kmem_alloc(len + 1, KM_SLEEP);
|
|
bcopy(s, new, len);
|
|
new[len] = '\0';
|
|
|
|
return (new);
|
|
}
|
|
|
|
void
|
|
spa_strfree(char *s)
|
|
{
|
|
kmem_free(s, strlen(s) + 1);
|
|
}
|
|
|
|
uint64_t
|
|
spa_generate_guid(spa_t *spa)
|
|
{
|
|
uint64_t guid;
|
|
|
|
if (spa != NULL) {
|
|
do {
|
|
(void) random_get_pseudo_bytes((void *)&guid,
|
|
sizeof (guid));
|
|
} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
|
|
} else {
|
|
do {
|
|
(void) random_get_pseudo_bytes((void *)&guid,
|
|
sizeof (guid));
|
|
} while (guid == 0 || spa_guid_exists(guid, 0));
|
|
}
|
|
|
|
return (guid);
|
|
}
|
|
|
|
void
|
|
snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
|
|
{
|
|
char type[256];
|
|
char *checksum = NULL;
|
|
char *compress = NULL;
|
|
|
|
if (bp != NULL) {
|
|
if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
|
|
dmu_object_byteswap_t bswap =
|
|
DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
|
|
(void) snprintf(type, sizeof (type), "bswap %s %s",
|
|
DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
|
|
"metadata" : "data",
|
|
dmu_ot_byteswap[bswap].ob_name);
|
|
} else {
|
|
(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
|
|
sizeof (type));
|
|
}
|
|
if (!BP_IS_EMBEDDED(bp)) {
|
|
checksum =
|
|
zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
|
|
}
|
|
compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
|
|
}
|
|
|
|
SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
|
|
compress);
|
|
}
|
|
|
|
void
|
|
spa_freeze(spa_t *spa)
|
|
{
|
|
uint64_t freeze_txg = 0;
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
if (spa->spa_freeze_txg == UINT64_MAX) {
|
|
freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
|
|
spa->spa_freeze_txg = freeze_txg;
|
|
}
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
if (freeze_txg != 0)
|
|
txg_wait_synced(spa_get_dsl(spa), freeze_txg);
|
|
}
|
|
|
|
void
|
|
zfs_panic_recover(const char *fmt, ...)
|
|
{
|
|
va_list adx;
|
|
|
|
va_start(adx, fmt);
|
|
vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
|
|
va_end(adx);
|
|
}
|
|
|
|
/*
|
|
* This is a stripped-down version of strtoull, suitable only for converting
|
|
* lowercase hexadecimal numbers that don't overflow.
|
|
*/
|
|
uint64_t
|
|
zfs_strtonum(const char *str, char **nptr)
|
|
{
|
|
uint64_t val = 0;
|
|
char c;
|
|
int digit;
|
|
|
|
while ((c = *str) != '\0') {
|
|
if (c >= '0' && c <= '9')
|
|
digit = c - '0';
|
|
else if (c >= 'a' && c <= 'f')
|
|
digit = 10 + c - 'a';
|
|
else
|
|
break;
|
|
|
|
val *= 16;
|
|
val += digit;
|
|
|
|
str++;
|
|
}
|
|
|
|
if (nptr)
|
|
*nptr = (char *)str;
|
|
|
|
return (val);
|
|
}
|
|
|
|
void
|
|
spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
|
|
{
|
|
/*
|
|
* We bump the feature refcount for each special vdev added to the pool
|
|
*/
|
|
ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
|
|
spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Accessor functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
boolean_t
|
|
spa_shutting_down(spa_t *spa)
|
|
{
|
|
return (spa->spa_async_suspended);
|
|
}
|
|
|
|
dsl_pool_t *
|
|
spa_get_dsl(spa_t *spa)
|
|
{
|
|
return (spa->spa_dsl_pool);
|
|
}
|
|
|
|
boolean_t
|
|
spa_is_initializing(spa_t *spa)
|
|
{
|
|
return (spa->spa_is_initializing);
|
|
}
|
|
|
|
boolean_t
|
|
spa_indirect_vdevs_loaded(spa_t *spa)
|
|
{
|
|
return (spa->spa_indirect_vdevs_loaded);
|
|
}
|
|
|
|
blkptr_t *
|
|
spa_get_rootblkptr(spa_t *spa)
|
|
{
|
|
return (&spa->spa_ubsync.ub_rootbp);
|
|
}
|
|
|
|
void
|
|
spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
spa->spa_uberblock.ub_rootbp = *bp;
|
|
}
|
|
|
|
void
|
|
spa_altroot(spa_t *spa, char *buf, size_t buflen)
|
|
{
|
|
if (spa->spa_root == NULL)
|
|
buf[0] = '\0';
|
|
else
|
|
(void) strncpy(buf, spa->spa_root, buflen);
|
|
}
|
|
|
|
int
|
|
spa_sync_pass(spa_t *spa)
|
|
{
|
|
return (spa->spa_sync_pass);
|
|
}
|
|
|
|
char *
|
|
spa_name(spa_t *spa)
|
|
{
|
|
return (spa->spa_name);
|
|
}
|
|
|
|
uint64_t
|
|
spa_guid(spa_t *spa)
|
|
{
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
uint64_t guid;
|
|
|
|
/*
|
|
* If we fail to parse the config during spa_load(), we can go through
|
|
* the error path (which posts an ereport) and end up here with no root
|
|
* vdev. We stash the original pool guid in 'spa_config_guid' to handle
|
|
* this case.
|
|
*/
|
|
if (spa->spa_root_vdev == NULL)
|
|
return (spa->spa_config_guid);
|
|
|
|
guid = spa->spa_last_synced_guid != 0 ?
|
|
spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
|
|
|
|
/*
|
|
* Return the most recently synced out guid unless we're
|
|
* in syncing context.
|
|
*/
|
|
if (dp && dsl_pool_sync_context(dp))
|
|
return (spa->spa_root_vdev->vdev_guid);
|
|
else
|
|
return (guid);
|
|
}
|
|
|
|
uint64_t
|
|
spa_load_guid(spa_t *spa)
|
|
{
|
|
/*
|
|
* This is a GUID that exists solely as a reference for the
|
|
* purposes of the arc. It is generated at load time, and
|
|
* is never written to persistent storage.
|
|
*/
|
|
return (spa->spa_load_guid);
|
|
}
|
|
|
|
uint64_t
|
|
spa_last_synced_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_ubsync.ub_txg);
|
|
}
|
|
|
|
uint64_t
|
|
spa_first_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_first_txg);
|
|
}
|
|
|
|
uint64_t
|
|
spa_syncing_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_syncing_txg);
|
|
}
|
|
|
|
/*
|
|
* Return the last txg where data can be dirtied. The final txgs
|
|
* will be used to just clear out any deferred frees that remain.
|
|
*/
|
|
uint64_t
|
|
spa_final_dirty_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_final_txg - TXG_DEFER_SIZE);
|
|
}
|
|
|
|
pool_state_t
|
|
spa_state(spa_t *spa)
|
|
{
|
|
return (spa->spa_state);
|
|
}
|
|
|
|
spa_load_state_t
|
|
spa_load_state(spa_t *spa)
|
|
{
|
|
return (spa->spa_load_state);
|
|
}
|
|
|
|
uint64_t
|
|
spa_freeze_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_freeze_txg);
|
|
}
|
|
|
|
/*
|
|
* Return the inflated asize for a logical write in bytes. This is used by the
|
|
* DMU to calculate the space a logical write will require on disk.
|
|
* If lsize is smaller than the largest physical block size allocatable on this
|
|
* pool we use its value instead, since the write will end up using the whole
|
|
* block anyway.
|
|
*/
|
|
uint64_t
|
|
spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
|
|
{
|
|
if (lsize == 0)
|
|
return (0); /* No inflation needed */
|
|
return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
|
|
}
|
|
|
|
/*
|
|
* Return the amount of slop space in bytes. It is typically 1/32 of the pool
|
|
* (3.2%), minus the embedded log space. On very small pools, it may be
|
|
* slightly larger than this. On very large pools, it will be capped to
|
|
* the value of spa_max_slop. The embedded log space is not included in
|
|
* spa_dspace. By subtracting it, the usable space (per "zfs list") is a
|
|
* constant 97% of the total space, regardless of metaslab size (assuming the
|
|
* default spa_slop_shift=5 and a non-tiny pool).
|
|
*
|
|
* See the comment above spa_slop_shift for more details.
|
|
*/
|
|
uint64_t
|
|
spa_get_slop_space(spa_t *spa)
|
|
{
|
|
uint64_t space = 0;
|
|
uint64_t slop = 0;
|
|
|
|
/*
|
|
* Make sure spa_dedup_dspace has been set.
|
|
*/
|
|
if (spa->spa_dedup_dspace == ~0ULL)
|
|
spa_update_dspace(spa);
|
|
|
|
/*
|
|
* spa_get_dspace() includes the space only logically "used" by
|
|
* deduplicated data, so since it's not useful to reserve more
|
|
* space with more deduplicated data, we subtract that out here.
|
|
*/
|
|
space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
|
|
slop = MIN(space >> spa_slop_shift, spa_max_slop);
|
|
|
|
/*
|
|
* Subtract the embedded log space, but no more than half the (3.2%)
|
|
* unusable space. Note, the "no more than half" is only relevant if
|
|
* zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
|
|
* default.
|
|
*/
|
|
uint64_t embedded_log =
|
|
metaslab_class_get_dspace(spa_embedded_log_class(spa));
|
|
slop -= MIN(embedded_log, slop >> 1);
|
|
|
|
/*
|
|
* Slop space should be at least spa_min_slop, but no more than half
|
|
* the entire pool.
|
|
*/
|
|
slop = MAX(slop, MIN(space >> 1, spa_min_slop));
|
|
return (slop);
|
|
}
|
|
|
|
uint64_t
|
|
spa_get_dspace(spa_t *spa)
|
|
{
|
|
return (spa->spa_dspace);
|
|
}
|
|
|
|
uint64_t
|
|
spa_get_checkpoint_space(spa_t *spa)
|
|
{
|
|
return (spa->spa_checkpoint_info.sci_dspace);
|
|
}
|
|
|
|
void
|
|
spa_update_dspace(spa_t *spa)
|
|
{
|
|
spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
|
|
ddt_get_dedup_dspace(spa);
|
|
if (spa->spa_nonallocating_dspace > 0) {
|
|
/*
|
|
* Subtract the space provided by all non-allocating vdevs that
|
|
* contribute to dspace. If a file is overwritten, its old
|
|
* blocks are freed and new blocks are allocated. If there are
|
|
* no snapshots of the file, the available space should remain
|
|
* the same. The old blocks could be freed from the
|
|
* non-allocating vdev, but the new blocks must be allocated on
|
|
* other (allocating) vdevs. By reserving the entire size of
|
|
* the non-allocating vdevs (including allocated space), we
|
|
* ensure that there will be enough space on the allocating
|
|
* vdevs for this file overwrite to succeed.
|
|
*
|
|
* Note that the DMU/DSL doesn't actually know or care
|
|
* how much space is allocated (it does its own tracking
|
|
* of how much space has been logically used). So it
|
|
* doesn't matter that the data we are moving may be
|
|
* allocated twice (on the old device and the new device).
|
|
*/
|
|
ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
|
|
spa->spa_dspace -= spa->spa_nonallocating_dspace;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the failure mode that has been set to this pool. The default
|
|
* behavior will be to block all I/Os when a complete failure occurs.
|
|
*/
|
|
uint64_t
|
|
spa_get_failmode(spa_t *spa)
|
|
{
|
|
return (spa->spa_failmode);
|
|
}
|
|
|
|
boolean_t
|
|
spa_suspended(spa_t *spa)
|
|
{
|
|
return (spa->spa_suspended != ZIO_SUSPEND_NONE);
|
|
}
|
|
|
|
uint64_t
|
|
spa_version(spa_t *spa)
|
|
{
|
|
return (spa->spa_ubsync.ub_version);
|
|
}
|
|
|
|
boolean_t
|
|
spa_deflate(spa_t *spa)
|
|
{
|
|
return (spa->spa_deflate);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_normal_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_normal_class);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_log_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_log_class);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_embedded_log_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_embedded_log_class);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_special_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_special_class);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_dedup_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_dedup_class);
|
|
}
|
|
|
|
/*
|
|
* Locate an appropriate allocation class
|
|
*/
|
|
metaslab_class_t *
|
|
spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
|
|
uint_t level, uint_t special_smallblk)
|
|
{
|
|
/*
|
|
* ZIL allocations determine their class in zio_alloc_zil().
|
|
*/
|
|
ASSERT(objtype != DMU_OT_INTENT_LOG);
|
|
|
|
boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
|
|
|
|
if (DMU_OT_IS_DDT(objtype)) {
|
|
if (spa->spa_dedup_class->mc_groups != 0)
|
|
return (spa_dedup_class(spa));
|
|
else if (has_special_class && zfs_ddt_data_is_special)
|
|
return (spa_special_class(spa));
|
|
else
|
|
return (spa_normal_class(spa));
|
|
}
|
|
|
|
/* Indirect blocks for user data can land in special if allowed */
|
|
if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
|
|
if (has_special_class && zfs_user_indirect_is_special)
|
|
return (spa_special_class(spa));
|
|
else
|
|
return (spa_normal_class(spa));
|
|
}
|
|
|
|
if (DMU_OT_IS_METADATA(objtype) || level > 0) {
|
|
if (has_special_class)
|
|
return (spa_special_class(spa));
|
|
else
|
|
return (spa_normal_class(spa));
|
|
}
|
|
|
|
/*
|
|
* Allow small file blocks in special class in some cases (like
|
|
* for the dRAID vdev feature). But always leave a reserve of
|
|
* zfs_special_class_metadata_reserve_pct exclusively for metadata.
|
|
*/
|
|
if (DMU_OT_IS_FILE(objtype) &&
|
|
has_special_class && size <= special_smallblk) {
|
|
metaslab_class_t *special = spa_special_class(spa);
|
|
uint64_t alloc = metaslab_class_get_alloc(special);
|
|
uint64_t space = metaslab_class_get_space(special);
|
|
uint64_t limit =
|
|
(space * (100 - zfs_special_class_metadata_reserve_pct))
|
|
/ 100;
|
|
|
|
if (alloc < limit)
|
|
return (special);
|
|
}
|
|
|
|
return (spa_normal_class(spa));
|
|
}
|
|
|
|
void
|
|
spa_evicting_os_register(spa_t *spa, objset_t *os)
|
|
{
|
|
mutex_enter(&spa->spa_evicting_os_lock);
|
|
list_insert_head(&spa->spa_evicting_os_list, os);
|
|
mutex_exit(&spa->spa_evicting_os_lock);
|
|
}
|
|
|
|
void
|
|
spa_evicting_os_deregister(spa_t *spa, objset_t *os)
|
|
{
|
|
mutex_enter(&spa->spa_evicting_os_lock);
|
|
list_remove(&spa->spa_evicting_os_list, os);
|
|
cv_broadcast(&spa->spa_evicting_os_cv);
|
|
mutex_exit(&spa->spa_evicting_os_lock);
|
|
}
|
|
|
|
void
|
|
spa_evicting_os_wait(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_evicting_os_lock);
|
|
while (!list_is_empty(&spa->spa_evicting_os_list))
|
|
cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
|
|
mutex_exit(&spa->spa_evicting_os_lock);
|
|
|
|
dmu_buf_user_evict_wait();
|
|
}
|
|
|
|
int
|
|
spa_max_replication(spa_t *spa)
|
|
{
|
|
/*
|
|
* As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
|
|
* handle BPs with more than one DVA allocated. Set our max
|
|
* replication level accordingly.
|
|
*/
|
|
if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
|
|
return (1);
|
|
return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
|
|
}
|
|
|
|
int
|
|
spa_prev_software_version(spa_t *spa)
|
|
{
|
|
return (spa->spa_prev_software_version);
|
|
}
|
|
|
|
uint64_t
|
|
spa_deadman_synctime(spa_t *spa)
|
|
{
|
|
return (spa->spa_deadman_synctime);
|
|
}
|
|
|
|
spa_autotrim_t
|
|
spa_get_autotrim(spa_t *spa)
|
|
{
|
|
return (spa->spa_autotrim);
|
|
}
|
|
|
|
uint64_t
|
|
spa_deadman_ziotime(spa_t *spa)
|
|
{
|
|
return (spa->spa_deadman_ziotime);
|
|
}
|
|
|
|
uint64_t
|
|
spa_get_deadman_failmode(spa_t *spa)
|
|
{
|
|
return (spa->spa_deadman_failmode);
|
|
}
|
|
|
|
void
|
|
spa_set_deadman_failmode(spa_t *spa, const char *failmode)
|
|
{
|
|
if (strcmp(failmode, "wait") == 0)
|
|
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
|
|
else if (strcmp(failmode, "continue") == 0)
|
|
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
|
|
else if (strcmp(failmode, "panic") == 0)
|
|
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
|
|
else
|
|
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
|
|
}
|
|
|
|
void
|
|
spa_set_deadman_ziotime(hrtime_t ns)
|
|
{
|
|
spa_t *spa = NULL;
|
|
|
|
if (spa_mode_global != SPA_MODE_UNINIT) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL)
|
|
spa->spa_deadman_ziotime = ns;
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
}
|
|
|
|
void
|
|
spa_set_deadman_synctime(hrtime_t ns)
|
|
{
|
|
spa_t *spa = NULL;
|
|
|
|
if (spa_mode_global != SPA_MODE_UNINIT) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL)
|
|
spa->spa_deadman_synctime = ns;
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
|
|
{
|
|
uint64_t asize = DVA_GET_ASIZE(dva);
|
|
uint64_t dsize = asize;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
|
|
|
|
if (asize != 0 && spa->spa_deflate) {
|
|
vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
|
|
if (vd != NULL)
|
|
dsize = (asize >> SPA_MINBLOCKSHIFT) *
|
|
vd->vdev_deflate_ratio;
|
|
}
|
|
|
|
return (dsize);
|
|
}
|
|
|
|
uint64_t
|
|
bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
uint64_t dsize = 0;
|
|
|
|
for (int d = 0; d < BP_GET_NDVAS(bp); d++)
|
|
dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
|
|
|
|
return (dsize);
|
|
}
|
|
|
|
uint64_t
|
|
bp_get_dsize(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
uint64_t dsize = 0;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (int d = 0; d < BP_GET_NDVAS(bp); d++)
|
|
dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
return (dsize);
|
|
}
|
|
|
|
uint64_t
|
|
spa_dirty_data(spa_t *spa)
|
|
{
|
|
return (spa->spa_dsl_pool->dp_dirty_total);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA Import Progress Routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
typedef struct spa_import_progress {
|
|
uint64_t pool_guid; /* unique id for updates */
|
|
char *pool_name;
|
|
spa_load_state_t spa_load_state;
|
|
uint64_t mmp_sec_remaining; /* MMP activity check */
|
|
uint64_t spa_load_max_txg; /* rewind txg */
|
|
procfs_list_node_t smh_node;
|
|
} spa_import_progress_t;
|
|
|
|
spa_history_list_t *spa_import_progress_list = NULL;
|
|
|
|
static int
|
|
spa_import_progress_show_header(struct seq_file *f)
|
|
{
|
|
seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
|
|
"load_state", "multihost_secs", "max_txg",
|
|
"pool_name");
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_import_progress_show(struct seq_file *f, void *data)
|
|
{
|
|
spa_import_progress_t *sip = (spa_import_progress_t *)data;
|
|
|
|
seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
|
|
(u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
|
|
(u_longlong_t)sip->mmp_sec_remaining,
|
|
(u_longlong_t)sip->spa_load_max_txg,
|
|
(sip->pool_name ? sip->pool_name : "-"));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Remove oldest elements from list until there are no more than 'size' left */
|
|
static void
|
|
spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
|
|
{
|
|
spa_import_progress_t *sip;
|
|
while (shl->size > size) {
|
|
sip = list_remove_head(&shl->procfs_list.pl_list);
|
|
if (sip->pool_name)
|
|
spa_strfree(sip->pool_name);
|
|
kmem_free(sip, sizeof (spa_import_progress_t));
|
|
shl->size--;
|
|
}
|
|
|
|
IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
|
|
}
|
|
|
|
static void
|
|
spa_import_progress_init(void)
|
|
{
|
|
spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
|
|
KM_SLEEP);
|
|
|
|
spa_import_progress_list->size = 0;
|
|
|
|
spa_import_progress_list->procfs_list.pl_private =
|
|
spa_import_progress_list;
|
|
|
|
procfs_list_install("zfs",
|
|
NULL,
|
|
"import_progress",
|
|
0644,
|
|
&spa_import_progress_list->procfs_list,
|
|
spa_import_progress_show,
|
|
spa_import_progress_show_header,
|
|
NULL,
|
|
offsetof(spa_import_progress_t, smh_node));
|
|
}
|
|
|
|
static void
|
|
spa_import_progress_destroy(void)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
procfs_list_uninstall(&shl->procfs_list);
|
|
spa_import_progress_truncate(shl, 0);
|
|
procfs_list_destroy(&shl->procfs_list);
|
|
kmem_free(shl, sizeof (spa_history_list_t));
|
|
}
|
|
|
|
int
|
|
spa_import_progress_set_state(uint64_t pool_guid,
|
|
spa_load_state_t load_state)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
spa_import_progress_t *sip;
|
|
int error = ENOENT;
|
|
|
|
if (shl->size == 0)
|
|
return (0);
|
|
|
|
mutex_enter(&shl->procfs_list.pl_lock);
|
|
for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
|
|
sip = list_prev(&shl->procfs_list.pl_list, sip)) {
|
|
if (sip->pool_guid == pool_guid) {
|
|
sip->spa_load_state = load_state;
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
mutex_exit(&shl->procfs_list.pl_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
spa_import_progress_t *sip;
|
|
int error = ENOENT;
|
|
|
|
if (shl->size == 0)
|
|
return (0);
|
|
|
|
mutex_enter(&shl->procfs_list.pl_lock);
|
|
for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
|
|
sip = list_prev(&shl->procfs_list.pl_list, sip)) {
|
|
if (sip->pool_guid == pool_guid) {
|
|
sip->spa_load_max_txg = load_max_txg;
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
mutex_exit(&shl->procfs_list.pl_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
spa_import_progress_set_mmp_check(uint64_t pool_guid,
|
|
uint64_t mmp_sec_remaining)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
spa_import_progress_t *sip;
|
|
int error = ENOENT;
|
|
|
|
if (shl->size == 0)
|
|
return (0);
|
|
|
|
mutex_enter(&shl->procfs_list.pl_lock);
|
|
for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
|
|
sip = list_prev(&shl->procfs_list.pl_list, sip)) {
|
|
if (sip->pool_guid == pool_guid) {
|
|
sip->mmp_sec_remaining = mmp_sec_remaining;
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
mutex_exit(&shl->procfs_list.pl_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* A new import is in progress, add an entry.
|
|
*/
|
|
void
|
|
spa_import_progress_add(spa_t *spa)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
spa_import_progress_t *sip;
|
|
char *poolname = NULL;
|
|
|
|
sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
|
|
sip->pool_guid = spa_guid(spa);
|
|
|
|
(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
|
|
&poolname);
|
|
if (poolname == NULL)
|
|
poolname = spa_name(spa);
|
|
sip->pool_name = spa_strdup(poolname);
|
|
sip->spa_load_state = spa_load_state(spa);
|
|
|
|
mutex_enter(&shl->procfs_list.pl_lock);
|
|
procfs_list_add(&shl->procfs_list, sip);
|
|
shl->size++;
|
|
mutex_exit(&shl->procfs_list.pl_lock);
|
|
}
|
|
|
|
void
|
|
spa_import_progress_remove(uint64_t pool_guid)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
spa_import_progress_t *sip;
|
|
|
|
mutex_enter(&shl->procfs_list.pl_lock);
|
|
for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
|
|
sip = list_prev(&shl->procfs_list.pl_list, sip)) {
|
|
if (sip->pool_guid == pool_guid) {
|
|
if (sip->pool_name)
|
|
spa_strfree(sip->pool_name);
|
|
list_remove(&shl->procfs_list.pl_list, sip);
|
|
shl->size--;
|
|
kmem_free(sip, sizeof (spa_import_progress_t));
|
|
break;
|
|
}
|
|
}
|
|
mutex_exit(&shl->procfs_list.pl_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Initialization and Termination
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static int
|
|
spa_name_compare(const void *a1, const void *a2)
|
|
{
|
|
const spa_t *s1 = a1;
|
|
const spa_t *s2 = a2;
|
|
int s;
|
|
|
|
s = strcmp(s1->spa_name, s2->spa_name);
|
|
|
|
return (TREE_ISIGN(s));
|
|
}
|
|
|
|
void
|
|
spa_boot_init(void)
|
|
{
|
|
spa_config_load();
|
|
}
|
|
|
|
void
|
|
spa_init(spa_mode_t mode)
|
|
{
|
|
mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
|
|
offsetof(spa_t, spa_avl));
|
|
|
|
avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
|
|
offsetof(spa_aux_t, aux_avl));
|
|
|
|
avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
|
|
offsetof(spa_aux_t, aux_avl));
|
|
|
|
spa_mode_global = mode;
|
|
|
|
#ifndef _KERNEL
|
|
if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
|
|
struct sigaction sa;
|
|
|
|
sa.sa_flags = SA_SIGINFO;
|
|
sigemptyset(&sa.sa_mask);
|
|
sa.sa_sigaction = arc_buf_sigsegv;
|
|
|
|
if (sigaction(SIGSEGV, &sa, NULL) == -1) {
|
|
perror("could not enable watchpoints: "
|
|
"sigaction(SIGSEGV, ...) = ");
|
|
} else {
|
|
arc_watch = B_TRUE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
fm_init();
|
|
zfs_refcount_init();
|
|
unique_init();
|
|
zfs_btree_init();
|
|
metaslab_stat_init();
|
|
ddt_init();
|
|
zio_init();
|
|
dmu_init();
|
|
zil_init();
|
|
vdev_cache_stat_init();
|
|
vdev_mirror_stat_init();
|
|
vdev_raidz_math_init();
|
|
vdev_file_init();
|
|
zfs_prop_init();
|
|
zpool_prop_init();
|
|
zpool_feature_init();
|
|
spa_config_load();
|
|
vdev_prop_init();
|
|
l2arc_start();
|
|
scan_init();
|
|
qat_init();
|
|
spa_import_progress_init();
|
|
}
|
|
|
|
void
|
|
spa_fini(void)
|
|
{
|
|
l2arc_stop();
|
|
|
|
spa_evict_all();
|
|
|
|
vdev_file_fini();
|
|
vdev_cache_stat_fini();
|
|
vdev_mirror_stat_fini();
|
|
vdev_raidz_math_fini();
|
|
zil_fini();
|
|
dmu_fini();
|
|
zio_fini();
|
|
ddt_fini();
|
|
metaslab_stat_fini();
|
|
zfs_btree_fini();
|
|
unique_fini();
|
|
zfs_refcount_fini();
|
|
fm_fini();
|
|
scan_fini();
|
|
qat_fini();
|
|
spa_import_progress_destroy();
|
|
|
|
avl_destroy(&spa_namespace_avl);
|
|
avl_destroy(&spa_spare_avl);
|
|
avl_destroy(&spa_l2cache_avl);
|
|
|
|
cv_destroy(&spa_namespace_cv);
|
|
mutex_destroy(&spa_namespace_lock);
|
|
mutex_destroy(&spa_spare_lock);
|
|
mutex_destroy(&spa_l2cache_lock);
|
|
}
|
|
|
|
/*
|
|
* Return whether this pool has a dedicated slog device. No locking needed.
|
|
* It's not a problem if the wrong answer is returned as it's only for
|
|
* performance and not correctness.
|
|
*/
|
|
boolean_t
|
|
spa_has_slogs(spa_t *spa)
|
|
{
|
|
return (spa->spa_log_class->mc_groups != 0);
|
|
}
|
|
|
|
spa_log_state_t
|
|
spa_get_log_state(spa_t *spa)
|
|
{
|
|
return (spa->spa_log_state);
|
|
}
|
|
|
|
void
|
|
spa_set_log_state(spa_t *spa, spa_log_state_t state)
|
|
{
|
|
spa->spa_log_state = state;
|
|
}
|
|
|
|
boolean_t
|
|
spa_is_root(spa_t *spa)
|
|
{
|
|
return (spa->spa_is_root);
|
|
}
|
|
|
|
boolean_t
|
|
spa_writeable(spa_t *spa)
|
|
{
|
|
return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
|
|
}
|
|
|
|
/*
|
|
* Returns true if there is a pending sync task in any of the current
|
|
* syncing txg, the current quiescing txg, or the current open txg.
|
|
*/
|
|
boolean_t
|
|
spa_has_pending_synctask(spa_t *spa)
|
|
{
|
|
return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
|
|
!txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
|
|
}
|
|
|
|
spa_mode_t
|
|
spa_mode(spa_t *spa)
|
|
{
|
|
return (spa->spa_mode);
|
|
}
|
|
|
|
uint64_t
|
|
spa_bootfs(spa_t *spa)
|
|
{
|
|
return (spa->spa_bootfs);
|
|
}
|
|
|
|
uint64_t
|
|
spa_delegation(spa_t *spa)
|
|
{
|
|
return (spa->spa_delegation);
|
|
}
|
|
|
|
objset_t *
|
|
spa_meta_objset(spa_t *spa)
|
|
{
|
|
return (spa->spa_meta_objset);
|
|
}
|
|
|
|
enum zio_checksum
|
|
spa_dedup_checksum(spa_t *spa)
|
|
{
|
|
return (spa->spa_dedup_checksum);
|
|
}
|
|
|
|
/*
|
|
* Reset pool scan stat per scan pass (or reboot).
|
|
*/
|
|
void
|
|
spa_scan_stat_init(spa_t *spa)
|
|
{
|
|
/* data not stored on disk */
|
|
spa->spa_scan_pass_start = gethrestime_sec();
|
|
if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
|
|
spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
|
|
else
|
|
spa->spa_scan_pass_scrub_pause = 0;
|
|
spa->spa_scan_pass_scrub_spent_paused = 0;
|
|
spa->spa_scan_pass_exam = 0;
|
|
spa->spa_scan_pass_issued = 0;
|
|
vdev_scan_stat_init(spa->spa_root_vdev);
|
|
}
|
|
|
|
/*
|
|
* Get scan stats for zpool status reports
|
|
*/
|
|
int
|
|
spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
|
|
{
|
|
dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
|
|
|
|
if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
|
|
return (SET_ERROR(ENOENT));
|
|
bzero(ps, sizeof (pool_scan_stat_t));
|
|
|
|
/* data stored on disk */
|
|
ps->pss_func = scn->scn_phys.scn_func;
|
|
ps->pss_state = scn->scn_phys.scn_state;
|
|
ps->pss_start_time = scn->scn_phys.scn_start_time;
|
|
ps->pss_end_time = scn->scn_phys.scn_end_time;
|
|
ps->pss_to_examine = scn->scn_phys.scn_to_examine;
|
|
ps->pss_examined = scn->scn_phys.scn_examined;
|
|
ps->pss_to_process = scn->scn_phys.scn_to_process;
|
|
ps->pss_processed = scn->scn_phys.scn_processed;
|
|
ps->pss_errors = scn->scn_phys.scn_errors;
|
|
|
|
/* data not stored on disk */
|
|
ps->pss_pass_exam = spa->spa_scan_pass_exam;
|
|
ps->pss_pass_start = spa->spa_scan_pass_start;
|
|
ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
|
|
ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
|
|
ps->pss_pass_issued = spa->spa_scan_pass_issued;
|
|
ps->pss_issued =
|
|
scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
spa_maxblocksize(spa_t *spa)
|
|
{
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
|
|
return (SPA_MAXBLOCKSIZE);
|
|
else
|
|
return (SPA_OLD_MAXBLOCKSIZE);
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns the txg that the last device removal completed. No indirect mappings
|
|
* have been added since this txg.
|
|
*/
|
|
uint64_t
|
|
spa_get_last_removal_txg(spa_t *spa)
|
|
{
|
|
uint64_t vdevid;
|
|
uint64_t ret = -1ULL;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
/*
|
|
* sr_prev_indirect_vdev is only modified while holding all the
|
|
* config locks, so it is sufficient to hold SCL_VDEV as reader when
|
|
* examining it.
|
|
*/
|
|
vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
|
|
|
|
while (vdevid != -1ULL) {
|
|
vdev_t *vd = vdev_lookup_top(spa, vdevid);
|
|
vdev_indirect_births_t *vib = vd->vdev_indirect_births;
|
|
|
|
ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
|
|
|
|
/*
|
|
* If the removal did not remap any data, we don't care.
|
|
*/
|
|
if (vdev_indirect_births_count(vib) != 0) {
|
|
ret = vdev_indirect_births_last_entry_txg(vib);
|
|
break;
|
|
}
|
|
|
|
vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
|
|
}
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
IMPLY(ret != -1ULL,
|
|
spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
spa_maxdnodesize(spa_t *spa)
|
|
{
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
|
|
return (DNODE_MAX_SIZE);
|
|
else
|
|
return (DNODE_MIN_SIZE);
|
|
}
|
|
|
|
boolean_t
|
|
spa_multihost(spa_t *spa)
|
|
{
|
|
return (spa->spa_multihost ? B_TRUE : B_FALSE);
|
|
}
|
|
|
|
uint32_t
|
|
spa_get_hostid(spa_t *spa)
|
|
{
|
|
return (spa->spa_hostid);
|
|
}
|
|
|
|
boolean_t
|
|
spa_trust_config(spa_t *spa)
|
|
{
|
|
return (spa->spa_trust_config);
|
|
}
|
|
|
|
uint64_t
|
|
spa_missing_tvds_allowed(spa_t *spa)
|
|
{
|
|
return (spa->spa_missing_tvds_allowed);
|
|
}
|
|
|
|
space_map_t *
|
|
spa_syncing_log_sm(spa_t *spa)
|
|
{
|
|
return (spa->spa_syncing_log_sm);
|
|
}
|
|
|
|
void
|
|
spa_set_missing_tvds(spa_t *spa, uint64_t missing)
|
|
{
|
|
spa->spa_missing_tvds = missing;
|
|
}
|
|
|
|
/*
|
|
* Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
|
|
*/
|
|
const char *
|
|
spa_state_to_name(spa_t *spa)
|
|
{
|
|
ASSERT3P(spa, !=, NULL);
|
|
|
|
/*
|
|
* it is possible for the spa to exist, without root vdev
|
|
* as the spa transitions during import/export
|
|
*/
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
if (rvd == NULL) {
|
|
return ("TRANSITIONING");
|
|
}
|
|
vdev_state_t state = rvd->vdev_state;
|
|
vdev_aux_t aux = rvd->vdev_stat.vs_aux;
|
|
|
|
if (spa_suspended(spa) &&
|
|
(spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
|
|
return ("SUSPENDED");
|
|
|
|
switch (state) {
|
|
case VDEV_STATE_CLOSED:
|
|
case VDEV_STATE_OFFLINE:
|
|
return ("OFFLINE");
|
|
case VDEV_STATE_REMOVED:
|
|
return ("REMOVED");
|
|
case VDEV_STATE_CANT_OPEN:
|
|
if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
|
|
return ("FAULTED");
|
|
else if (aux == VDEV_AUX_SPLIT_POOL)
|
|
return ("SPLIT");
|
|
else
|
|
return ("UNAVAIL");
|
|
case VDEV_STATE_FAULTED:
|
|
return ("FAULTED");
|
|
case VDEV_STATE_DEGRADED:
|
|
return ("DEGRADED");
|
|
case VDEV_STATE_HEALTHY:
|
|
return ("ONLINE");
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ("UNKNOWN");
|
|
}
|
|
|
|
boolean_t
|
|
spa_top_vdevs_spacemap_addressable(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
|
|
if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
|
|
return (B_FALSE);
|
|
}
|
|
return (B_TRUE);
|
|
}
|
|
|
|
boolean_t
|
|
spa_has_checkpoint(spa_t *spa)
|
|
{
|
|
return (spa->spa_checkpoint_txg != 0);
|
|
}
|
|
|
|
boolean_t
|
|
spa_importing_readonly_checkpoint(spa_t *spa)
|
|
{
|
|
return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
|
|
spa->spa_mode == SPA_MODE_READ);
|
|
}
|
|
|
|
uint64_t
|
|
spa_min_claim_txg(spa_t *spa)
|
|
{
|
|
uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
|
|
|
|
if (checkpoint_txg != 0)
|
|
return (checkpoint_txg + 1);
|
|
|
|
return (spa->spa_first_txg);
|
|
}
|
|
|
|
/*
|
|
* If there is a checkpoint, async destroys may consume more space from
|
|
* the pool instead of freeing it. In an attempt to save the pool from
|
|
* getting suspended when it is about to run out of space, we stop
|
|
* processing async destroys.
|
|
*/
|
|
boolean_t
|
|
spa_suspend_async_destroy(spa_t *spa)
|
|
{
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
|
|
uint64_t unreserved = dsl_pool_unreserved_space(dp,
|
|
ZFS_SPACE_CHECK_EXTRA_RESERVED);
|
|
uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
|
|
uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
|
|
|
|
if (spa_has_checkpoint(spa) && avail == 0)
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
|
|
int
|
|
param_set_deadman_failmode_common(const char *val)
|
|
{
|
|
spa_t *spa = NULL;
|
|
char *p;
|
|
|
|
if (val == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if ((p = strchr(val, '\n')) != NULL)
|
|
*p = '\0';
|
|
|
|
if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
|
|
strcmp(val, "panic"))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (spa_mode_global != SPA_MODE_UNINIT) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL)
|
|
spa_set_deadman_failmode(spa, val);
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
/* Namespace manipulation */
|
|
EXPORT_SYMBOL(spa_lookup);
|
|
EXPORT_SYMBOL(spa_add);
|
|
EXPORT_SYMBOL(spa_remove);
|
|
EXPORT_SYMBOL(spa_next);
|
|
|
|
/* Refcount functions */
|
|
EXPORT_SYMBOL(spa_open_ref);
|
|
EXPORT_SYMBOL(spa_close);
|
|
EXPORT_SYMBOL(spa_refcount_zero);
|
|
|
|
/* Pool configuration lock */
|
|
EXPORT_SYMBOL(spa_config_tryenter);
|
|
EXPORT_SYMBOL(spa_config_enter);
|
|
EXPORT_SYMBOL(spa_config_exit);
|
|
EXPORT_SYMBOL(spa_config_held);
|
|
|
|
/* Pool vdev add/remove lock */
|
|
EXPORT_SYMBOL(spa_vdev_enter);
|
|
EXPORT_SYMBOL(spa_vdev_exit);
|
|
|
|
/* Pool vdev state change lock */
|
|
EXPORT_SYMBOL(spa_vdev_state_enter);
|
|
EXPORT_SYMBOL(spa_vdev_state_exit);
|
|
|
|
/* Accessor functions */
|
|
EXPORT_SYMBOL(spa_shutting_down);
|
|
EXPORT_SYMBOL(spa_get_dsl);
|
|
EXPORT_SYMBOL(spa_get_rootblkptr);
|
|
EXPORT_SYMBOL(spa_set_rootblkptr);
|
|
EXPORT_SYMBOL(spa_altroot);
|
|
EXPORT_SYMBOL(spa_sync_pass);
|
|
EXPORT_SYMBOL(spa_name);
|
|
EXPORT_SYMBOL(spa_guid);
|
|
EXPORT_SYMBOL(spa_last_synced_txg);
|
|
EXPORT_SYMBOL(spa_first_txg);
|
|
EXPORT_SYMBOL(spa_syncing_txg);
|
|
EXPORT_SYMBOL(spa_version);
|
|
EXPORT_SYMBOL(spa_state);
|
|
EXPORT_SYMBOL(spa_load_state);
|
|
EXPORT_SYMBOL(spa_freeze_txg);
|
|
EXPORT_SYMBOL(spa_get_dspace);
|
|
EXPORT_SYMBOL(spa_update_dspace);
|
|
EXPORT_SYMBOL(spa_deflate);
|
|
EXPORT_SYMBOL(spa_normal_class);
|
|
EXPORT_SYMBOL(spa_log_class);
|
|
EXPORT_SYMBOL(spa_special_class);
|
|
EXPORT_SYMBOL(spa_preferred_class);
|
|
EXPORT_SYMBOL(spa_max_replication);
|
|
EXPORT_SYMBOL(spa_prev_software_version);
|
|
EXPORT_SYMBOL(spa_get_failmode);
|
|
EXPORT_SYMBOL(spa_suspended);
|
|
EXPORT_SYMBOL(spa_bootfs);
|
|
EXPORT_SYMBOL(spa_delegation);
|
|
EXPORT_SYMBOL(spa_meta_objset);
|
|
EXPORT_SYMBOL(spa_maxblocksize);
|
|
EXPORT_SYMBOL(spa_maxdnodesize);
|
|
|
|
/* Miscellaneous support routines */
|
|
EXPORT_SYMBOL(spa_guid_exists);
|
|
EXPORT_SYMBOL(spa_strdup);
|
|
EXPORT_SYMBOL(spa_strfree);
|
|
EXPORT_SYMBOL(spa_generate_guid);
|
|
EXPORT_SYMBOL(snprintf_blkptr);
|
|
EXPORT_SYMBOL(spa_freeze);
|
|
EXPORT_SYMBOL(spa_upgrade);
|
|
EXPORT_SYMBOL(spa_evict_all);
|
|
EXPORT_SYMBOL(spa_lookup_by_guid);
|
|
EXPORT_SYMBOL(spa_has_spare);
|
|
EXPORT_SYMBOL(dva_get_dsize_sync);
|
|
EXPORT_SYMBOL(bp_get_dsize_sync);
|
|
EXPORT_SYMBOL(bp_get_dsize);
|
|
EXPORT_SYMBOL(spa_has_slogs);
|
|
EXPORT_SYMBOL(spa_is_root);
|
|
EXPORT_SYMBOL(spa_writeable);
|
|
EXPORT_SYMBOL(spa_mode);
|
|
EXPORT_SYMBOL(spa_namespace_lock);
|
|
EXPORT_SYMBOL(spa_trust_config);
|
|
EXPORT_SYMBOL(spa_missing_tvds_allowed);
|
|
EXPORT_SYMBOL(spa_set_missing_tvds);
|
|
EXPORT_SYMBOL(spa_state_to_name);
|
|
EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
|
|
EXPORT_SYMBOL(spa_min_claim_txg);
|
|
EXPORT_SYMBOL(spa_suspend_async_destroy);
|
|
EXPORT_SYMBOL(spa_has_checkpoint);
|
|
EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
|
|
"Set additional debugging flags");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
|
|
"Set to attempt to recover from fatal errors");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
|
|
"Set to ignore IO errors during free and permanently leak the space");
|
|
|
|
ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, ULONG, ZMOD_RW,
|
|
"Dead I/O check interval in milliseconds");
|
|
|
|
ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
|
|
"Enable deadman timer");
|
|
|
|
ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
|
|
"SPA size estimate multiplication factor");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
|
|
"Place DDT data into the special class");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
|
|
"Place user data indirect blocks into the special class");
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
|
|
param_set_deadman_failmode, param_get_charp, ZMOD_RW,
|
|
"Failmode for deadman timer");
|
|
|
|
ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
|
|
param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
|
|
"Pool sync expiration time in milliseconds");
|
|
|
|
ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
|
|
param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
|
|
"IO expiration time in milliseconds");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
|
|
"Small file blocks in special vdevs depends on this much "
|
|
"free space available");
|
|
/* END CSTYLED */
|
|
|
|
ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
|
|
param_get_int, ZMOD_RW, "Reserved free space in pool");
|