mirror_zfs/module/zfs/zio_inject.c
Alexander Motin f3969ea78b Optimize small random numbers generation
In all places except two spa_get_random() is used for small values,
and the consumers do not require well seeded high quality values.
Switch those two exceptions directly to random_get_pseudo_bytes()
and optimize spa_get_random(), renaming it to random_in_range(),
since it is not related to SPA or ZFS in general.

On FreeBSD directly map random_in_range() to new prng32_bounded() KPI
added in FreeBSD 13.  On Linux and in user-space just reduce the type
used to uint32_t to avoid more expensive 64bit division.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #12183
2021-09-14 12:10:17 -07:00

973 lines
26 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
* Copyright (c) 2017, Intel Corporation.
*/
/*
* ZFS fault injection
*
* To handle fault injection, we keep track of a series of zinject_record_t
* structures which describe which logical block(s) should be injected with a
* fault. These are kept in a global list. Each record corresponds to a given
* spa_t and maintains a special hold on the spa_t so that it cannot be deleted
* or exported while the injection record exists.
*
* Device level injection is done using the 'zi_guid' field. If this is set, it
* means that the error is destined for a particular device, not a piece of
* data.
*
* This is a rather poor data structure and algorithm, but we don't expect more
* than a few faults at any one time, so it should be sufficient for our needs.
*/
#include <sys/arc.h>
#include <sys/zio.h>
#include <sys/zfs_ioctl.h>
#include <sys/vdev_impl.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dataset.h>
#include <sys/fs/zfs.h>
uint32_t zio_injection_enabled = 0;
/*
* Data describing each zinject handler registered on the system, and
* contains the list node linking the handler in the global zinject
* handler list.
*/
typedef struct inject_handler {
int zi_id;
spa_t *zi_spa;
zinject_record_t zi_record;
uint64_t *zi_lanes;
int zi_next_lane;
list_node_t zi_link;
} inject_handler_t;
/*
* List of all zinject handlers registered on the system, protected by
* the inject_lock defined below.
*/
static list_t inject_handlers;
/*
* This protects insertion into, and traversal of, the inject handler
* list defined above; as well as the inject_delay_count. Any time a
* handler is inserted or removed from the list, this lock should be
* taken as a RW_WRITER; and any time traversal is done over the list
* (without modification to it) this lock should be taken as a RW_READER.
*/
static krwlock_t inject_lock;
/*
* This holds the number of zinject delay handlers that have been
* registered on the system. It is protected by the inject_lock defined
* above. Thus modifications to this count must be a RW_WRITER of the
* inject_lock, and reads of this count must be (at least) a RW_READER
* of the lock.
*/
static int inject_delay_count = 0;
/*
* This lock is used only in zio_handle_io_delay(), refer to the comment
* in that function for more details.
*/
static kmutex_t inject_delay_mtx;
/*
* Used to assign unique identifying numbers to each new zinject handler.
*/
static int inject_next_id = 1;
/*
* Test if the requested frequency was triggered
*/
static boolean_t
freq_triggered(uint32_t frequency)
{
/*
* zero implies always (100%)
*/
if (frequency == 0)
return (B_TRUE);
/*
* Note: we still handle legacy (unscaled) frequency values
*/
uint32_t maximum = (frequency <= 100) ? 100 : ZI_PERCENTAGE_MAX;
return (random_in_range(maximum) < frequency);
}
/*
* Returns true if the given record matches the I/O in progress.
*/
static boolean_t
zio_match_handler(const zbookmark_phys_t *zb, uint64_t type, int dva,
zinject_record_t *record, int error)
{
/*
* Check for a match against the MOS, which is based on type
*/
if (zb->zb_objset == DMU_META_OBJSET &&
record->zi_objset == DMU_META_OBJSET &&
record->zi_object == DMU_META_DNODE_OBJECT) {
if (record->zi_type == DMU_OT_NONE ||
type == record->zi_type)
return (freq_triggered(record->zi_freq));
else
return (B_FALSE);
}
/*
* Check for an exact match.
*/
if (zb->zb_objset == record->zi_objset &&
zb->zb_object == record->zi_object &&
zb->zb_level == record->zi_level &&
zb->zb_blkid >= record->zi_start &&
zb->zb_blkid <= record->zi_end &&
(record->zi_dvas == 0 || (record->zi_dvas & (1ULL << dva))) &&
error == record->zi_error) {
return (freq_triggered(record->zi_freq));
}
return (B_FALSE);
}
/*
* Panic the system when a config change happens in the function
* specified by tag.
*/
void
zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type)
{
inject_handler_t *handler;
rw_enter(&inject_lock, RW_READER);
for (handler = list_head(&inject_handlers); handler != NULL;
handler = list_next(&inject_handlers, handler)) {
if (spa != handler->zi_spa)
continue;
if (handler->zi_record.zi_type == type &&
strcmp(tag, handler->zi_record.zi_func) == 0)
panic("Panic requested in function %s\n", tag);
}
rw_exit(&inject_lock);
}
/*
* Inject a decryption failure. Decryption failures can occur in
* both the ARC and the ZIO layers.
*/
int
zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb,
uint64_t type, int error)
{
int ret = 0;
inject_handler_t *handler;
rw_enter(&inject_lock, RW_READER);
for (handler = list_head(&inject_handlers); handler != NULL;
handler = list_next(&inject_handlers, handler)) {
if (spa != handler->zi_spa ||
handler->zi_record.zi_cmd != ZINJECT_DECRYPT_FAULT)
continue;
if (zio_match_handler(zb, type, ZI_NO_DVA,
&handler->zi_record, error)) {
ret = error;
break;
}
}
rw_exit(&inject_lock);
return (ret);
}
/*
* If this is a physical I/O for a vdev child determine which DVA it is
* for. We iterate backwards through the DVAs matching on the offset so
* that we end up with ZI_NO_DVA (-1) if we don't find a match.
*/
static int
zio_match_dva(zio_t *zio)
{
int i = ZI_NO_DVA;
if (zio->io_bp != NULL && zio->io_vd != NULL &&
zio->io_child_type == ZIO_CHILD_VDEV) {
for (i = BP_GET_NDVAS(zio->io_bp) - 1; i >= 0; i--) {
dva_t *dva = &zio->io_bp->blk_dva[i];
uint64_t off = DVA_GET_OFFSET(dva);
vdev_t *vd = vdev_lookup_top(zio->io_spa,
DVA_GET_VDEV(dva));
/* Compensate for vdev label added to leaves */
if (zio->io_vd->vdev_ops->vdev_op_leaf)
off += VDEV_LABEL_START_SIZE;
if (zio->io_vd == vd && zio->io_offset == off)
break;
}
}
return (i);
}
/*
* Determine if the I/O in question should return failure. Returns the errno
* to be returned to the caller.
*/
int
zio_handle_fault_injection(zio_t *zio, int error)
{
int ret = 0;
inject_handler_t *handler;
/*
* Ignore I/O not associated with any logical data.
*/
if (zio->io_logical == NULL)
return (0);
/*
* Currently, we only support fault injection on reads.
*/
if (zio->io_type != ZIO_TYPE_READ)
return (0);
/*
* A rebuild I/O has no checksum to verify.
*/
if (zio->io_priority == ZIO_PRIORITY_REBUILD && error == ECKSUM)
return (0);
rw_enter(&inject_lock, RW_READER);
for (handler = list_head(&inject_handlers); handler != NULL;
handler = list_next(&inject_handlers, handler)) {
if (zio->io_spa != handler->zi_spa ||
handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
continue;
/* If this handler matches, return the specified error */
if (zio_match_handler(&zio->io_logical->io_bookmark,
zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
zio_match_dva(zio), &handler->zi_record, error)) {
ret = error;
break;
}
}
rw_exit(&inject_lock);
return (ret);
}
/*
* Determine if the zio is part of a label update and has an injection
* handler associated with that portion of the label. Currently, we
* allow error injection in either the nvlist or the uberblock region of
* of the vdev label.
*/
int
zio_handle_label_injection(zio_t *zio, int error)
{
inject_handler_t *handler;
vdev_t *vd = zio->io_vd;
uint64_t offset = zio->io_offset;
int label;
int ret = 0;
if (offset >= VDEV_LABEL_START_SIZE &&
offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
return (0);
rw_enter(&inject_lock, RW_READER);
for (handler = list_head(&inject_handlers); handler != NULL;
handler = list_next(&inject_handlers, handler)) {
uint64_t start = handler->zi_record.zi_start;
uint64_t end = handler->zi_record.zi_end;
if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
continue;
/*
* The injection region is the relative offsets within a
* vdev label. We must determine the label which is being
* updated and adjust our region accordingly.
*/
label = vdev_label_number(vd->vdev_psize, offset);
start = vdev_label_offset(vd->vdev_psize, label, start);
end = vdev_label_offset(vd->vdev_psize, label, end);
if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
(offset >= start && offset <= end)) {
ret = error;
break;
}
}
rw_exit(&inject_lock);
return (ret);
}
/*ARGSUSED*/
static int
zio_inject_bitflip_cb(void *data, size_t len, void *private)
{
zio_t *zio __maybe_unused = private;
uint8_t *buffer = data;
uint_t byte = random_in_range(len);
ASSERT(zio->io_type == ZIO_TYPE_READ);
/* flip a single random bit in an abd data buffer */
buffer[byte] ^= 1 << random_in_range(8);
return (1); /* stop after first flip */
}
static int
zio_handle_device_injection_impl(vdev_t *vd, zio_t *zio, int err1, int err2)
{
inject_handler_t *handler;
int ret = 0;
/*
* We skip over faults in the labels unless it's during
* device open (i.e. zio == NULL).
*/
if (zio != NULL) {
uint64_t offset = zio->io_offset;
if (offset < VDEV_LABEL_START_SIZE ||
offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
return (0);
}
rw_enter(&inject_lock, RW_READER);
for (handler = list_head(&inject_handlers); handler != NULL;
handler = list_next(&inject_handlers, handler)) {
if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
continue;
if (vd->vdev_guid == handler->zi_record.zi_guid) {
if (handler->zi_record.zi_failfast &&
(zio == NULL || (zio->io_flags &
(ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
continue;
}
/* Handle type specific I/O failures */
if (zio != NULL &&
handler->zi_record.zi_iotype != ZIO_TYPES &&
handler->zi_record.zi_iotype != zio->io_type)
continue;
if (handler->zi_record.zi_error == err1 ||
handler->zi_record.zi_error == err2) {
/*
* limit error injection if requested
*/
if (!freq_triggered(handler->zi_record.zi_freq))
continue;
/*
* For a failed open, pretend like the device
* has gone away.
*/
if (err1 == ENXIO)
vd->vdev_stat.vs_aux =
VDEV_AUX_OPEN_FAILED;
/*
* Treat these errors as if they had been
* retried so that all the appropriate stats
* and FMA events are generated.
*/
if (!handler->zi_record.zi_failfast &&
zio != NULL)
zio->io_flags |= ZIO_FLAG_IO_RETRY;
/*
* EILSEQ means flip a bit after a read
*/
if (handler->zi_record.zi_error == EILSEQ) {
if (zio == NULL)
break;
/* locate buffer data and flip a bit */
(void) abd_iterate_func(zio->io_abd, 0,
zio->io_size, zio_inject_bitflip_cb,
zio);
break;
}
ret = handler->zi_record.zi_error;
break;
}
if (handler->zi_record.zi_error == ENXIO) {
ret = SET_ERROR(EIO);
break;
}
}
}
rw_exit(&inject_lock);
return (ret);
}
int
zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
{
return (zio_handle_device_injection_impl(vd, zio, error, INT_MAX));
}
int
zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2)
{
return (zio_handle_device_injection_impl(vd, zio, err1, err2));
}
/*
* Simulate hardware that ignores cache flushes. For requested number
* of seconds nix the actual writing to disk.
*/
void
zio_handle_ignored_writes(zio_t *zio)
{
inject_handler_t *handler;
rw_enter(&inject_lock, RW_READER);
for (handler = list_head(&inject_handlers); handler != NULL;
handler = list_next(&inject_handlers, handler)) {
/* Ignore errors not destined for this pool */
if (zio->io_spa != handler->zi_spa ||
handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
continue;
/*
* Positive duration implies # of seconds, negative
* a number of txgs
*/
if (handler->zi_record.zi_timer == 0) {
if (handler->zi_record.zi_duration > 0)
handler->zi_record.zi_timer = ddi_get_lbolt64();
else
handler->zi_record.zi_timer = zio->io_txg;
}
/* Have a "problem" writing 60% of the time */
if (random_in_range(100) < 60)
zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
break;
}
rw_exit(&inject_lock);
}
void
spa_handle_ignored_writes(spa_t *spa)
{
inject_handler_t *handler;
if (zio_injection_enabled == 0)
return;
rw_enter(&inject_lock, RW_READER);
for (handler = list_head(&inject_handlers); handler != NULL;
handler = list_next(&inject_handlers, handler)) {
if (spa != handler->zi_spa ||
handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
continue;
if (handler->zi_record.zi_duration > 0) {
VERIFY(handler->zi_record.zi_timer == 0 ||
ddi_time_after64(
(int64_t)handler->zi_record.zi_timer +
handler->zi_record.zi_duration * hz,
ddi_get_lbolt64()));
} else {
/* duration is negative so the subtraction here adds */
VERIFY(handler->zi_record.zi_timer == 0 ||
handler->zi_record.zi_timer -
handler->zi_record.zi_duration >=
spa_syncing_txg(spa));
}
}
rw_exit(&inject_lock);
}
hrtime_t
zio_handle_io_delay(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
inject_handler_t *min_handler = NULL;
hrtime_t min_target = 0;
rw_enter(&inject_lock, RW_READER);
/*
* inject_delay_count is a subset of zio_injection_enabled that
* is only incremented for delay handlers. These checks are
* mainly added to remind the reader why we're not explicitly
* checking zio_injection_enabled like the other functions.
*/
IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
/*
* If there aren't any inject delay handlers registered, then we
* can short circuit and simply return 0 here. A value of zero
* informs zio_delay_interrupt() that this request should not be
* delayed. This short circuit keeps us from acquiring the
* inject_delay_mutex unnecessarily.
*/
if (inject_delay_count == 0) {
rw_exit(&inject_lock);
return (0);
}
/*
* Each inject handler has a number of "lanes" associated with
* it. Each lane is able to handle requests independently of one
* another, and at a latency defined by the inject handler
* record's zi_timer field. Thus if a handler in configured with
* a single lane with a 10ms latency, it will delay requests
* such that only a single request is completed every 10ms. So,
* if more than one request is attempted per each 10ms interval,
* the average latency of the requests will be greater than
* 10ms; but if only a single request is submitted each 10ms
* interval the average latency will be 10ms.
*
* We need to acquire this mutex to prevent multiple concurrent
* threads being assigned to the same lane of a given inject
* handler. The mutex allows us to perform the following two
* operations atomically:
*
* 1. determine the minimum handler and minimum target
* value of all the possible handlers
* 2. update that minimum handler's lane array
*
* Without atomicity, two (or more) threads could pick the same
* lane in step (1), and then conflict with each other in step
* (2). This could allow a single lane handler to process
* multiple requests simultaneously, which shouldn't be possible.
*/
mutex_enter(&inject_delay_mtx);
for (inject_handler_t *handler = list_head(&inject_handlers);
handler != NULL; handler = list_next(&inject_handlers, handler)) {
if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
continue;
if (!freq_triggered(handler->zi_record.zi_freq))
continue;
if (vd->vdev_guid != handler->zi_record.zi_guid)
continue;
/*
* Defensive; should never happen as the array allocation
* occurs prior to inserting this handler on the list.
*/
ASSERT3P(handler->zi_lanes, !=, NULL);
/*
* This should never happen, the zinject command should
* prevent a user from setting an IO delay with zero lanes.
*/
ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
ASSERT3U(handler->zi_record.zi_nlanes, >,
handler->zi_next_lane);
/*
* We want to issue this IO to the lane that will become
* idle the soonest, so we compare the soonest this
* specific handler can complete the IO with all other
* handlers, to find the lowest value of all possible
* lanes. We then use this lane to submit the request.
*
* Since each handler has a constant value for its
* delay, we can just use the "next" lane for that
* handler; as it will always be the lane with the
* lowest value for that particular handler (i.e. the
* lane that will become idle the soonest). This saves a
* scan of each handler's lanes array.
*
* There's two cases to consider when determining when
* this specific IO request should complete. If this
* lane is idle, we want to "submit" the request now so
* it will complete after zi_timer milliseconds. Thus,
* we set the target to now + zi_timer.
*
* If the lane is busy, we want this request to complete
* zi_timer milliseconds after the lane becomes idle.
* Since the 'zi_lanes' array holds the time at which
* each lane will become idle, we use that value to
* determine when this request should complete.
*/
hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
hrtime_t busy = handler->zi_record.zi_timer +
handler->zi_lanes[handler->zi_next_lane];
hrtime_t target = MAX(idle, busy);
if (min_handler == NULL) {
min_handler = handler;
min_target = target;
continue;
}
ASSERT3P(min_handler, !=, NULL);
ASSERT3U(min_target, !=, 0);
/*
* We don't yet increment the "next lane" variable since
* we still might find a lower value lane in another
* handler during any remaining iterations. Once we're
* sure we've selected the absolute minimum, we'll claim
* the lane and increment the handler's "next lane"
* field below.
*/
if (target < min_target) {
min_handler = handler;
min_target = target;
}
}
/*
* 'min_handler' will be NULL if no IO delays are registered for
* this vdev, otherwise it will point to the handler containing
* the lane that will become idle the soonest.
*/
if (min_handler != NULL) {
ASSERT3U(min_target, !=, 0);
min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
/*
* If we've used all possible lanes for this handler,
* loop back and start using the first lane again;
* otherwise, just increment the lane index.
*/
min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
min_handler->zi_record.zi_nlanes;
}
mutex_exit(&inject_delay_mtx);
rw_exit(&inject_lock);
return (min_target);
}
static int
zio_calculate_range(const char *pool, zinject_record_t *record)
{
dsl_pool_t *dp;
dsl_dataset_t *ds;
objset_t *os = NULL;
dnode_t *dn = NULL;
int error;
/*
* Obtain the dnode for object using pool, objset, and object
*/
error = dsl_pool_hold(pool, FTAG, &dp);
if (error)
return (error);
error = dsl_dataset_hold_obj(dp, record->zi_objset, FTAG, &ds);
dsl_pool_rele(dp, FTAG);
if (error)
return (error);
error = dmu_objset_from_ds(ds, &os);
dsl_dataset_rele(ds, FTAG);
if (error)
return (error);
error = dnode_hold(os, record->zi_object, FTAG, &dn);
if (error)
return (error);
/*
* Translate the range into block IDs
*/
if (record->zi_start != 0 || record->zi_end != -1ULL) {
record->zi_start >>= dn->dn_datablkshift;
record->zi_end >>= dn->dn_datablkshift;
}
if (record->zi_level > 0) {
if (record->zi_level >= dn->dn_nlevels) {
dnode_rele(dn, FTAG);
return (SET_ERROR(EDOM));
}
if (record->zi_start != 0 || record->zi_end != 0) {
int shift = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
for (int level = record->zi_level; level > 0; level--) {
record->zi_start >>= shift;
record->zi_end >>= shift;
}
}
}
dnode_rele(dn, FTAG);
return (0);
}
/*
* Create a new handler for the given record. We add it to the list, adding
* a reference to the spa_t in the process. We increment zio_injection_enabled,
* which is the switch to trigger all fault injection.
*/
int
zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
{
inject_handler_t *handler;
int error;
spa_t *spa;
/*
* If this is pool-wide metadata, make sure we unload the corresponding
* spa_t, so that the next attempt to load it will trigger the fault.
* We call spa_reset() to unload the pool appropriately.
*/
if (flags & ZINJECT_UNLOAD_SPA)
if ((error = spa_reset(name)) != 0)
return (error);
if (record->zi_cmd == ZINJECT_DELAY_IO) {
/*
* A value of zero for the number of lanes or for the
* delay time doesn't make sense.
*/
if (record->zi_timer == 0 || record->zi_nlanes == 0)
return (SET_ERROR(EINVAL));
/*
* The number of lanes is directly mapped to the size of
* an array used by the handler. Thus, to ensure the
* user doesn't trigger an allocation that's "too large"
* we cap the number of lanes here.
*/
if (record->zi_nlanes >= UINT16_MAX)
return (SET_ERROR(EINVAL));
}
/*
* If the supplied range was in bytes -- calculate the actual blkid
*/
if (flags & ZINJECT_CALC_RANGE) {
error = zio_calculate_range(name, record);
if (error != 0)
return (error);
}
if (!(flags & ZINJECT_NULL)) {
/*
* spa_inject_ref() will add an injection reference, which will
* prevent the pool from being removed from the namespace while
* still allowing it to be unloaded.
*/
if ((spa = spa_inject_addref(name)) == NULL)
return (SET_ERROR(ENOENT));
handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
handler->zi_spa = spa;
handler->zi_record = *record;
if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
handler->zi_lanes = kmem_zalloc(
sizeof (*handler->zi_lanes) *
handler->zi_record.zi_nlanes, KM_SLEEP);
handler->zi_next_lane = 0;
} else {
handler->zi_lanes = NULL;
handler->zi_next_lane = 0;
}
rw_enter(&inject_lock, RW_WRITER);
/*
* We can't move this increment into the conditional
* above because we need to hold the RW_WRITER lock of
* inject_lock, and we don't want to hold that while
* allocating the handler's zi_lanes array.
*/
if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
ASSERT3S(inject_delay_count, >=, 0);
inject_delay_count++;
ASSERT3S(inject_delay_count, >, 0);
}
*id = handler->zi_id = inject_next_id++;
list_insert_tail(&inject_handlers, handler);
atomic_inc_32(&zio_injection_enabled);
rw_exit(&inject_lock);
}
/*
* Flush the ARC, so that any attempts to read this data will end up
* going to the ZIO layer. Note that this is a little overkill, but
* we don't have the necessary ARC interfaces to do anything else, and
* fault injection isn't a performance critical path.
*/
if (flags & ZINJECT_FLUSH_ARC)
/*
* We must use FALSE to ensure arc_flush returns, since
* we're not preventing concurrent ARC insertions.
*/
arc_flush(NULL, FALSE);
return (0);
}
/*
* Returns the next record with an ID greater than that supplied to the
* function. Used to iterate over all handlers in the system.
*/
int
zio_inject_list_next(int *id, char *name, size_t buflen,
zinject_record_t *record)
{
inject_handler_t *handler;
int ret;
mutex_enter(&spa_namespace_lock);
rw_enter(&inject_lock, RW_READER);
for (handler = list_head(&inject_handlers); handler != NULL;
handler = list_next(&inject_handlers, handler))
if (handler->zi_id > *id)
break;
if (handler) {
*record = handler->zi_record;
*id = handler->zi_id;
(void) strncpy(name, spa_name(handler->zi_spa), buflen);
ret = 0;
} else {
ret = SET_ERROR(ENOENT);
}
rw_exit(&inject_lock);
mutex_exit(&spa_namespace_lock);
return (ret);
}
/*
* Clear the fault handler with the given identifier, or return ENOENT if none
* exists.
*/
int
zio_clear_fault(int id)
{
inject_handler_t *handler;
rw_enter(&inject_lock, RW_WRITER);
for (handler = list_head(&inject_handlers); handler != NULL;
handler = list_next(&inject_handlers, handler))
if (handler->zi_id == id)
break;
if (handler == NULL) {
rw_exit(&inject_lock);
return (SET_ERROR(ENOENT));
}
if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
ASSERT3S(inject_delay_count, >, 0);
inject_delay_count--;
ASSERT3S(inject_delay_count, >=, 0);
}
list_remove(&inject_handlers, handler);
rw_exit(&inject_lock);
if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
ASSERT3P(handler->zi_lanes, !=, NULL);
kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
handler->zi_record.zi_nlanes);
} else {
ASSERT3P(handler->zi_lanes, ==, NULL);
}
spa_inject_delref(handler->zi_spa);
kmem_free(handler, sizeof (inject_handler_t));
atomic_dec_32(&zio_injection_enabled);
return (0);
}
void
zio_inject_init(void)
{
rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
list_create(&inject_handlers, sizeof (inject_handler_t),
offsetof(inject_handler_t, zi_link));
}
void
zio_inject_fini(void)
{
list_destroy(&inject_handlers);
mutex_destroy(&inject_delay_mtx);
rw_destroy(&inject_lock);
}
#if defined(_KERNEL)
EXPORT_SYMBOL(zio_injection_enabled);
EXPORT_SYMBOL(zio_inject_fault);
EXPORT_SYMBOL(zio_inject_list_next);
EXPORT_SYMBOL(zio_clear_fault);
EXPORT_SYMBOL(zio_handle_fault_injection);
EXPORT_SYMBOL(zio_handle_device_injection);
EXPORT_SYMBOL(zio_handle_label_injection);
#endif