mirror_zfs/module/zfs/vdev_draid.c
наб 94a4b7ec3d module: zfs: fix unused, remove argsused
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12844
2022-02-16 17:58:56 -08:00

2832 lines
93 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2018 Intel Corporation.
* Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_draid.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_rebuild.h>
#include <sys/abd.h>
#include <sys/zio.h>
#include <sys/nvpair.h>
#include <sys/zio_checksum.h>
#include <sys/fs/zfs.h>
#include <sys/fm/fs/zfs.h>
#include <zfs_fletcher.h>
#ifdef ZFS_DEBUG
#include <sys/vdev.h> /* For vdev_xlate() in vdev_draid_io_verify() */
#endif
/*
* dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
* comprised of multiple raidz redundancy groups which are spread over the
* dRAID children. To ensure an even distribution, and avoid hot spots, a
* permutation mapping is applied to the order of the dRAID children.
* This mixing effectively distributes the parity columns evenly over all
* of the disks in the dRAID.
*
* This is beneficial because it means when resilvering all of the disks
* can participate thereby increasing the available IOPs and bandwidth.
* Furthermore, by reserving a small fraction of each child's total capacity
* virtual distributed spare disks can be created. These spares similarly
* benefit from the performance gains of spanning all of the children. The
* consequence of which is that resilvering to a distributed spare can
* substantially reduce the time required to restore full parity to pool
* with a failed disks.
*
* === dRAID group layout ===
*
* First, let's define a "row" in the configuration to be a 16M chunk from
* each physical drive at the same offset. This is the minimum allowable
* size since it must be possible to store a full 16M block when there is
* only a single data column. Next, we define a "group" to be a set of
* sequential disks containing both the parity and data columns. We allow
* groups to span multiple rows in order to align any group size to any
* number of physical drives. Finally, a "slice" is comprised of the rows
* which contain the target number of groups. The permutation mappings
* are applied in a round robin fashion to each slice.
*
* Given D+P drives in a group (including parity drives) and C-S physical
* drives (not including the spare drives), we can distribute the groups
* across R rows without remainder by selecting the least common multiple
* of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
*
* In the example below, there are C=14 physical drives in the configuration
* with S=2 drives worth of spare capacity. Each group has a width of 9
* which includes D=8 data and P=1 parity drive. There are 4 groups and
* 3 rows per slice. Each group has a size of 144M (16M * 9) and a slice
* size is 576M (144M * 4). When allocating from a dRAID each group is
* filled before moving on to the next as show in slice0 below.
*
* data disks (8 data + 1 parity) spares (2)
* +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
* ^ | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
* | +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
* | | group 0 | group 1..| |
* | +-----------------------------------+-----------+-------|
* | | 0 1 2 3 4 5 6 7 8 | 36 37 38| | r
* | | 9 10 11 12 13 14 15 16 17| 45 46 47| | o
* | | 18 19 20 21 22 23 24 25 26| 54 55 56| | w
* | 27 28 29 30 31 32 33 34 35| 63 64 65| | 0
* s +-----------------------+-----------------------+-------+
* l | ..group 1 | group 2.. | |
* i +-----------------------+-----------------------+-------+
* c | 39 40 41 42 43 44| 72 73 74 75 76 77| | r
* e | 48 49 50 51 52 53| 81 82 83 84 85 86| | o
* 0 | 57 58 59 60 61 62| 90 91 92 93 94 95| | w
* | 66 67 68 69 70 71| 99 100 101 102 103 104| | 1
* | +-----------+-----------+-----------------------+-------+
* | |..group 2 | group 3 | |
* | +-----------+-----------+-----------------------+-------+
* | | 78 79 80|108 109 110 111 112 113 114 115 116| | r
* | | 87 88 89|117 118 119 120 121 122 123 124 125| | o
* | | 96 97 98|126 127 128 129 130 131 132 133 134| | w
* v |105 106 107|135 136 137 138 139 140 141 142 143| | 2
* +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
* | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
* s +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
* l | group 4 | group 5..| | row 3
* i +-----------------------+-----------+-----------+-------|
* c | ..group 5 | group 6.. | | row 4
* e +-----------+-----------+-----------------------+-------+
* 1 |..group 6 | group 7 | | row 5
* +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
* | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
* s +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
* l | group 8 | group 9..| | row 6
* i +-----------------------------------------------+-------|
* c | ..group 9 | group 10.. | | row 7
* e +-----------------------+-----------------------+-------+
* 2 |..group 10 | group 11 | | row 8
* +-----------+-----------------------------------+-------+
*
* This layout has several advantages over requiring that each row contain
* a whole number of groups.
*
* 1. The group count is not a relevant parameter when defining a dRAID
* layout. Only the group width is needed, and *all* groups will have
* the desired size.
*
* 2. All possible group widths (<= physical disk count) can be supported.
*
* 3. The logic within vdev_draid.c is simplified when the group width is
* the same for all groups (although some of the logic around computing
* permutation numbers and drive offsets is more complicated).
*
* N.B. The following array describes all valid dRAID permutation maps.
* Each row is used to generate a permutation map for a different number
* of children from a unique seed. The seeds were generated and carefully
* evaluated by the 'draid' utility in order to provide balanced mappings.
* In addition to the seed a checksum of the in-memory mapping is stored
* for verification.
*
* The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
* with a given permutation map) is the ratio of the amounts of I/O that will
* be sent to the least and most busy disks when resilvering. The average
* imbalance ratio (of a given number of disks and permutation map) is the
* average of the ratios of all possible single and double disk failures.
*
* In order to achieve a low imbalance ratio the number of permutations in
* the mapping must be significantly larger than the number of children.
* For dRAID the number of permutations has been limited to 512 to minimize
* the map size. This does result in a gradually increasing imbalance ratio
* as seen in the table below. Increasing the number of permutations for
* larger child counts would reduce the imbalance ratio. However, in practice
* when there are a large number of children each child is responsible for
* fewer total IOs so it's less of a concern.
*
* Note these values are hard coded and must never be changed. Existing
* pools depend on the same mapping always being generated in order to
* read and write from the correct locations. Any change would make
* existing pools completely inaccessible.
*/
static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
{ 2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d }, /* 1.000 */
{ 3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 }, /* 1.000 */
{ 4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 }, /* 1.000 */
{ 5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 }, /* 1.010 */
{ 6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 }, /* 1.031 */
{ 7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee }, /* 1.043 */
{ 8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 }, /* 1.059 */
{ 9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 }, /* 1.056 */
{ 10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 }, /* 1.072 */
{ 11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c }, /* 1.083 */
{ 12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e }, /* 1.097 */
{ 13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 }, /* 1.100 */
{ 14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 }, /* 1.121 */
{ 15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 }, /* 1.103 */
{ 16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 }, /* 1.111 */
{ 17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe }, /* 1.133 */
{ 18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 }, /* 1.131 */
{ 19, 256, 0x892e343f2f31d690, 0x00000029eb392835 }, /* 1.130 */
{ 20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c }, /* 1.141 */
{ 21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 }, /* 1.139 */
{ 22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 }, /* 1.150 */
{ 23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f }, /* 1.174 */
{ 24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 }, /* 1.168 */
{ 25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 }, /* 1.180 */
{ 26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba }, /* 1.226 */
{ 27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 }, /* 1.228 */
{ 28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c }, /* 1.217 */
{ 29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c }, /* 1.239 */
{ 30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 }, /* 1.238 */
{ 31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f }, /* 1.273 */
{ 32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 }, /* 1.191 */
{ 33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 }, /* 1.199 */
{ 34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 }, /* 1.195 */
{ 35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 }, /* 1.201 */
{ 36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef }, /* 1.194 */
{ 37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 }, /* 1.237 */
{ 38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 }, /* 1.242 */
{ 39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd }, /* 1.231 */
{ 40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 }, /* 1.233 */
{ 41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 }, /* 1.271 */
{ 42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 }, /* 1.263 */
{ 43, 512, 0xbaa5125faa781854, 0x000001c76789e278 }, /* 1.270 */
{ 44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb }, /* 1.281 */
{ 45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 }, /* 1.282 */
{ 46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b }, /* 1.286 */
{ 47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 }, /* 1.329 */
{ 48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b }, /* 1.286 */
{ 49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 }, /* 1.322 */
{ 50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 }, /* 1.335 */
{ 51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 }, /* 1.305 */
{ 52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf }, /* 1.330 */
{ 53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 }, /* 1.365 */
{ 54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 }, /* 1.334 */
{ 55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 }, /* 1.364 */
{ 56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e }, /* 1.374 */
{ 57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 }, /* 1.363 */
{ 58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 }, /* 1.401 */
{ 59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c }, /* 1.392 */
{ 60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 }, /* 1.360 */
{ 61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd }, /* 1.396 */
{ 62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c }, /* 1.453 */
{ 63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 }, /* 1.437 */
{ 64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 }, /* 1.402 */
{ 65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 }, /* 1.459 */
{ 66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 }, /* 1.423 */
{ 67, 512, 0x910b9714f698a877, 0x00000451ea65d5db }, /* 1.447 */
{ 68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 }, /* 1.450 */
{ 69, 512, 0x836d4968fbaa3706, 0x000004954068a380 }, /* 1.455 */
{ 70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d }, /* 1.463 */
{ 71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 }, /* 1.463 */
{ 72, 512, 0x42763a680d5bed8e, 0x000005084275c680 }, /* 1.452 */
{ 73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab }, /* 1.498 */
{ 74, 512, 0x9fa08548b1621a44, 0x0000054708019247 }, /* 1.526 */
{ 75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 }, /* 1.491 */
{ 76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 }, /* 1.470 */
{ 77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 }, /* 1.527 */
{ 78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 }, /* 1.509 */
{ 79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e }, /* 1.569 */
{ 80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c }, /* 1.555 */
{ 81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 }, /* 1.509 */
{ 82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 }, /* 1.596 */
{ 83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e }, /* 1.568 */
{ 84, 512, 0xba02545069ddc6dc, 0x000006d19861364f }, /* 1.541 */
{ 85, 512, 0x447c73192c35073e, 0x000006fce315ce35 }, /* 1.623 */
{ 86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b }, /* 1.620 */
{ 87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 }, /* 1.597 */
{ 88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b }, /* 1.575 */
{ 89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc }, /* 1.627 */
{ 90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb }, /* 1.596 */
{ 91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 }, /* 1.622 */
{ 92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e }, /* 1.695 */
{ 93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c }, /* 1.605 */
{ 94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc }, /* 1.625 */
{ 95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 }, /* 1.687 */
{ 96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a }, /* 1.621 */
{ 97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 }, /* 1.699 */
{ 98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b }, /* 1.688 */
{ 99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce }, /* 1.642 */
{ 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc }, /* 1.683 */
{ 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 }, /* 1.755 */
{ 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 }, /* 1.692 */
{ 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 }, /* 1.747 */
{ 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 }, /* 1.751 */
{ 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 }, /* 1.751 */
{ 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f }, /* 1.726 */
{ 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d }, /* 1.788 */
{ 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 }, /* 1.740 */
{ 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 }, /* 1.780 */
{ 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 }, /* 1.836 */
{ 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 }, /* 1.778 */
{ 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 }, /* 1.831 */
{ 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df }, /* 1.825 */
{ 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 }, /* 1.826 */
{ 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 }, /* 1.843 */
{ 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d }, /* 1.826 */
{ 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b }, /* 1.803 */
{ 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 }, /* 1.857 */
{ 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 }, /* 1.877 */
{ 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 }, /* 1.849 */
{ 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d }, /* 1.867 */
{ 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 }, /* 1.978 */
{ 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d }, /* 1.947 */
{ 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea }, /* 1.865 */
{ 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f }, /* 1.881 */
{ 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b }, /* 1.882 */
{ 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e }, /* 1.867 */
{ 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e }, /* 1.972 */
{ 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 }, /* 1.896 */
{ 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d }, /* 1.965 */
{ 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 }, /* 1.963 */
{ 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 }, /* 1.925 */
{ 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 }, /* 1.862 */
{ 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 }, /* 2.042 */
{ 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 }, /* 1.935 */
{ 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 }, /* 2.005 */
{ 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c }, /* 2.041 */
{ 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 }, /* 1.997 */
{ 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 }, /* 1.996 */
{ 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d }, /* 2.053 */
{ 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a }, /* 1.971 */
{ 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 }, /* 2.018 */
{ 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd }, /* 1.961 */
{ 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 }, /* 2.046 */
{ 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb }, /* 1.968 */
{ 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 }, /* 2.143 */
{ 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 }, /* 2.064 */
{ 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 }, /* 2.023 */
{ 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c }, /* 2.136 */
{ 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 }, /* 2.063 */
{ 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 }, /* 1.974 */
{ 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 }, /* 2.210 */
{ 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a }, /* 2.006 */
{ 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 }, /* 2.193 */
{ 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 }, /* 2.163 */
{ 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc }, /* 2.046 */
{ 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 }, /* 2.084 */
{ 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 }, /* 2.264 */
{ 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 }, /* 2.074 */
{ 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 }, /* 2.282 */
{ 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf }, /* 2.148 */
{ 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 }, /* 2.355 */
{ 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 }, /* 2.164 */
{ 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a }, /* 2.393 */
{ 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 }, /* 2.178 */
{ 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc }, /* 2.334 */
{ 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b }, /* 2.266 */
{ 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 }, /* 2.304 */
{ 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d }, /* 2.218 */
{ 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff }, /* 2.377 */
{ 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 }, /* 2.155 */
{ 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 }, /* 2.404 */
{ 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 }, /* 2.205 */
{ 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d }, /* 2.359 */
{ 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 }, /* 2.158 */
{ 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b }, /* 2.614 */
{ 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc }, /* 2.239 */
{ 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc }, /* 2.493 */
{ 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c }, /* 2.327 */
{ 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 }, /* 2.231 */
{ 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c }, /* 2.237 */
{ 182, 512, 0xe6035defea48f933, 0x00002038e3346658 }, /* 2.691 */
{ 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e }, /* 2.170 */
{ 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 }, /* 2.600 */
{ 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc }, /* 2.391 */
{ 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 }, /* 2.677 */
{ 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c }, /* 2.410 */
{ 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 }, /* 2.776 */
{ 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 }, /* 2.266 */
{ 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 }, /* 2.717 */
{ 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c }, /* 2.474 */
{ 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 }, /* 2.673 */
{ 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 }, /* 2.420 */
{ 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 }, /* 2.898 */
{ 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c }, /* 2.363 */
{ 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e }, /* 2.747 */
{ 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 }, /* 2.531 */
{ 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 }, /* 2.707 */
{ 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 }, /* 2.315 */
{ 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf }, /* 3.012 */
{ 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 }, /* 2.378 */
{ 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 }, /* 2.969 */
{ 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d }, /* 2.594 */
{ 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd }, /* 2.763 */
{ 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 }, /* 2.457 */
{ 206, 512, 0xc02fc96684715a16, 0x0000297515608601 }, /* 3.057 */
{ 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 }, /* 2.590 */
{ 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b }, /* 3.047 */
{ 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 }, /* 2.676 */
{ 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 }, /* 2.993 */
{ 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 }, /* 2.457 */
{ 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 }, /* 3.182 */
{ 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 }, /* 2.563 */
{ 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 }, /* 3.025 */
{ 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f }, /* 2.730 */
{ 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 }, /* 3.036 */
{ 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 }, /* 2.722 */
{ 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 }, /* 3.356 */
{ 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 }, /* 2.697 */
{ 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 }, /* 2.979 */
{ 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 }, /* 2.858 */
{ 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e }, /* 3.258 */
{ 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 }, /* 2.693 */
{ 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 }, /* 3.259 */
{ 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c }, /* 2.733 */
{ 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 }, /* 3.235 */
{ 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 }, /* 2.983 */
{ 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e }, /* 3.308 */
{ 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 }, /* 2.715 */
{ 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f }, /* 3.540 */
{ 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 }, /* 2.779 */
{ 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c }, /* 3.084 */
{ 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc }, /* 2.987 */
{ 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae }, /* 3.341 */
{ 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 }, /* 2.793 */
{ 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 }, /* 3.518 */
{ 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 }, /* 2.962 */
{ 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 }, /* 3.196 */
{ 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 }, /* 2.914 */
{ 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 }, /* 3.408 */
{ 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 }, /* 2.903 */
{ 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 }, /* 3.778 */
{ 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c }, /* 3.026 */
{ 244, 512, 0xc740263f0301efa8, 0x00003a147146512d }, /* 3.347 */
{ 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d }, /* 3.212 */
{ 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 }, /* 3.482 */
{ 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 }, /* 3.146 */
{ 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f }, /* 3.626 */
{ 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 }, /* 2.952 */
{ 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e }, /* 3.463 */
{ 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 }, /* 3.131 */
{ 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c }, /* 3.538 */
{ 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac }, /* 2.974 */
{ 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 }, /* 3.843 */
{ 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 }, /* 3.088 */
};
/*
* Verify the map is valid. Each device index must appear exactly
* once in every row, and the permutation array checksum must match.
*/
static int
verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
uint64_t checksum)
{
int countssz = sizeof (uint16_t) * children;
uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);
for (int i = 0; i < nperms; i++) {
for (int j = 0; j < children; j++) {
uint8_t val = perms[(i * children) + j];
if (val >= children || counts[val] != i) {
kmem_free(counts, countssz);
return (EINVAL);
}
counts[val]++;
}
}
if (checksum != 0) {
int permssz = sizeof (uint8_t) * children * nperms;
zio_cksum_t cksum;
fletcher_4_native_varsize(perms, permssz, &cksum);
if (checksum != cksum.zc_word[0]) {
kmem_free(counts, countssz);
return (ECKSUM);
}
}
kmem_free(counts, countssz);
return (0);
}
/*
* Generate the permutation array for the draid_map_t. These maps control
* the placement of all data in a dRAID. Therefore it's critical that the
* seed always generates the same mapping. We provide our own pseudo-random
* number generator for this purpose.
*/
int
vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
{
VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
VERIFY3U(map->dm_seed, !=, 0);
VERIFY3U(map->dm_nperms, !=, 0);
VERIFY3P(map->dm_perms, ==, NULL);
#ifdef _KERNEL
/*
* The kernel code always provides both a map_seed and checksum.
* Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
* a zero checksum when generating new candidate maps.
*/
VERIFY3U(map->dm_checksum, !=, 0);
#endif
uint64_t children = map->dm_children;
uint64_t nperms = map->dm_nperms;
int rowsz = sizeof (uint8_t) * children;
int permssz = rowsz * nperms;
uint8_t *perms;
/* Allocate the permutation array */
perms = vmem_alloc(permssz, KM_SLEEP);
/* Setup an initial row with a known pattern */
uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
for (int i = 0; i < children; i++)
initial_row[i] = i;
uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
uint8_t *current_row, *previous_row = initial_row;
/*
* Perform a Fisher-Yates shuffle of each row using the previous
* row as the starting point. An initial_row with known pattern
* is used as the input for the first row.
*/
for (int i = 0; i < nperms; i++) {
current_row = &perms[i * children];
memcpy(current_row, previous_row, rowsz);
for (int j = children - 1; j > 0; j--) {
uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
uint8_t val = current_row[j];
current_row[j] = current_row[k];
current_row[k] = val;
}
previous_row = current_row;
}
kmem_free(initial_row, rowsz);
int error = verify_perms(perms, children, nperms, map->dm_checksum);
if (error) {
vmem_free(perms, permssz);
return (error);
}
*permsp = perms;
return (0);
}
/*
* Lookup the fixed draid_map_t for the requested number of children.
*/
int
vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
{
for (int i = 0; i <= VDEV_DRAID_MAX_MAPS; i++) {
if (draid_maps[i].dm_children == children) {
*mapp = &draid_maps[i];
return (0);
}
}
return (ENOENT);
}
/*
* Lookup the permutation array and iteration id for the provided offset.
*/
static void
vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
uint8_t **base, uint64_t *iter)
{
uint64_t ncols = vdc->vdc_children;
uint64_t poff = pindex % (vdc->vdc_nperms * ncols);
*base = vdc->vdc_perms + (poff / ncols) * ncols;
*iter = poff % ncols;
}
static inline uint64_t
vdev_draid_permute_id(vdev_draid_config_t *vdc,
uint8_t *base, uint64_t iter, uint64_t index)
{
return ((base[index] + iter) % vdc->vdc_children);
}
/*
* Return the asize which is the psize rounded up to a full group width.
* i.e. vdev_draid_psize_to_asize().
*/
static uint64_t
vdev_draid_asize(vdev_t *vd, uint64_t psize)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
uint64_t ashift = vd->vdev_ashift;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;
ASSERT3U(asize, !=, 0);
ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0);
return (asize);
}
/*
* Deflate the asize to the psize, this includes stripping parity.
*/
uint64_t
vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT0(asize % vdc->vdc_groupwidth);
return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
}
/*
* Convert a logical offset to the corresponding group number.
*/
static uint64_t
vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
return (offset / vdc->vdc_groupsz);
}
/*
* Convert a group number to the logical starting offset for that group.
*/
static uint64_t
vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
return (group * vdc->vdc_groupsz);
}
/*
* Full stripe writes. When writing, all columns (D+P) are required. Parity
* is calculated over all the columns, including empty zero filled sectors,
* and each is written to disk. While only the data columns are needed for
* a normal read, all of the columns are required for reconstruction when
* performing a sequential resilver.
*
* For "big columns" it's sufficient to map the correct range of the zio ABD.
* Partial columns require allocating a gang ABD in order to zero fill the
* empty sectors. When the column is empty a zero filled sector must be
* mapped. In all cases the data ABDs must be the same size as the parity
* ABDs (e.g. rc->rc_size == parity_size).
*/
static void
vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
{
uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
uint64_t parity_size = rr->rr_col[0].rc_size;
uint64_t abd_off = abd_offset;
ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_size == 0) {
/* empty data column (small write), add a skip sector */
ASSERT3U(skip_size, ==, parity_size);
rc->rc_abd = abd_get_zeros(skip_size);
} else if (rc->rc_size == parity_size) {
/* this is a "big column" */
rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
zio->io_abd, abd_off, rc->rc_size);
} else {
/* short data column, add a skip sector */
ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
rc->rc_abd = abd_alloc_gang();
abd_gang_add(rc->rc_abd, abd_get_offset_size(
zio->io_abd, abd_off, rc->rc_size), B_TRUE);
abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
B_TRUE);
}
ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);
abd_off += rc->rc_size;
rc->rc_size = parity_size;
}
IMPLY(abd_offset != 0, abd_off == zio->io_size);
}
/*
* Scrub/resilver reads. In order to store the contents of the skip sectors
* an additional ABD is allocated. The columns are handled in the same way
* as a full stripe write except instead of using the zero ABD the newly
* allocated skip ABD is used to back the skip sectors. In all cases the
* data ABD must be the same size as the parity ABDs.
*/
static void
vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
{
uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
uint64_t parity_size = rr->rr_col[0].rc_size;
uint64_t abd_off = abd_offset;
uint64_t skip_off = 0;
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
ASSERT3P(rr->rr_abd_empty, ==, NULL);
if (rr->rr_nempty > 0) {
rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
B_FALSE);
}
for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_size == 0) {
/* empty data column (small read), add a skip sector */
ASSERT3U(skip_size, ==, parity_size);
ASSERT3U(rr->rr_nempty, !=, 0);
rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
skip_off, skip_size);
skip_off += skip_size;
} else if (rc->rc_size == parity_size) {
/* this is a "big column" */
rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
zio->io_abd, abd_off, rc->rc_size);
} else {
/* short data column, add a skip sector */
ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
ASSERT3U(rr->rr_nempty, !=, 0);
rc->rc_abd = abd_alloc_gang();
abd_gang_add(rc->rc_abd, abd_get_offset_size(
zio->io_abd, abd_off, rc->rc_size), B_TRUE);
abd_gang_add(rc->rc_abd, abd_get_offset_size(
rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
skip_off += skip_size;
}
uint64_t abd_size = abd_get_size(rc->rc_abd);
ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
/*
* Increase rc_size so the skip ABD is included in subsequent
* parity calculations.
*/
abd_off += rc->rc_size;
rc->rc_size = abd_size;
}
IMPLY(abd_offset != 0, abd_off == zio->io_size);
ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
}
/*
* Normal reads. In this common case only the columns containing data
* are read in to the zio ABDs. Neither the parity columns or empty skip
* sectors are read unless the checksum fails verification. In which case
* vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
* the raid map in order to allow reconstruction using the parity data and
* skip sectors.
*/
static void
vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
{
uint64_t abd_off = abd_offset;
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_size > 0) {
rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
zio->io_abd, abd_off, rc->rc_size);
abd_off += rc->rc_size;
}
}
IMPLY(abd_offset != 0, abd_off == zio->io_size);
}
/*
* Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
* difference is that an ABD is allocated to back skip sectors so they may
* be read in to memory, verified, and repaired if needed.
*/
void
vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
{
uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
uint64_t parity_size = rr->rr_col[0].rc_size;
uint64_t skip_off = 0;
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
ASSERT3P(rr->rr_abd_empty, ==, NULL);
if (rr->rr_nempty > 0) {
rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
B_FALSE);
}
for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_size == 0) {
/* empty data column (small read), add a skip sector */
ASSERT3U(skip_size, ==, parity_size);
ASSERT3U(rr->rr_nempty, !=, 0);
ASSERT3P(rc->rc_abd, ==, NULL);
rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
skip_off, skip_size);
skip_off += skip_size;
} else if (rc->rc_size == parity_size) {
/* this is a "big column", nothing to add */
ASSERT3P(rc->rc_abd, !=, NULL);
} else {
/*
* short data column, add a skip sector and clear
* rc_tried to force the entire column to be re-read
* thereby including the missing skip sector data
* which is needed for reconstruction.
*/
ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
ASSERT3U(rr->rr_nempty, !=, 0);
ASSERT3P(rc->rc_abd, !=, NULL);
ASSERT(!abd_is_gang(rc->rc_abd));
abd_t *read_abd = rc->rc_abd;
rc->rc_abd = abd_alloc_gang();
abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
abd_gang_add(rc->rc_abd, abd_get_offset_size(
rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
skip_off += skip_size;
rc->rc_tried = 0;
}
/*
* Increase rc_size so the empty ABD is included in subsequent
* parity calculations.
*/
rc->rc_size = parity_size;
}
ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
}
/*
* Verify that all empty sectors are zero filled before using them to
* calculate parity. Otherwise, silent corruption in an empty sector will
* result in bad parity being generated. That bad parity will then be
* considered authoritative and overwrite the good parity on disk. This
* is possible because the checksum is only calculated over the data,
* thus it cannot be used to detect damage in empty sectors.
*/
int
vdev_draid_map_verify_empty(zio_t *zio, raidz_row_t *rr)
{
uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
uint64_t parity_size = rr->rr_col[0].rc_size;
uint64_t skip_off = parity_size - skip_size;
uint64_t empty_off = 0;
int ret = 0;
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
ASSERT3P(rr->rr_abd_empty, !=, NULL);
ASSERT3U(rr->rr_bigcols, >, 0);
void *zero_buf = kmem_zalloc(skip_size, KM_SLEEP);
for (int c = rr->rr_bigcols; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
ASSERT3P(rc->rc_abd, !=, NULL);
ASSERT3U(rc->rc_size, ==, parity_size);
if (abd_cmp_buf_off(rc->rc_abd, zero_buf, skip_off,
skip_size) != 0) {
vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
abd_zero_off(rc->rc_abd, skip_off, skip_size);
rc->rc_error = SET_ERROR(ECKSUM);
ret++;
}
empty_off += skip_size;
}
ASSERT3U(empty_off, ==, abd_get_size(rr->rr_abd_empty));
kmem_free(zero_buf, skip_size);
return (ret);
}
/*
* Given a logical address within a dRAID configuration, return the physical
* address on the first drive in the group that this address maps to
* (at position 'start' in permutation number 'perm').
*/
static uint64_t
vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
uint64_t *perm, uint64_t *start)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
/* b is the dRAID (parent) sector offset. */
uint64_t ashift = vd->vdev_top->vdev_ashift;
uint64_t b_offset = logical_offset >> ashift;
/*
* The height of a row in units of the vdev's minimum sector size.
* This is the amount of data written to each disk of each group
* in a given permutation.
*/
uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;
/*
* We cycle through a disk permutation every groupsz * ngroups chunk
* of address space. Note that ngroups * groupsz must be a multiple
* of the number of data drives (ndisks) in order to guarantee
* alignment. So, for example, if our row height is 16MB, our group
* size is 10, and there are 13 data drives in the draid, then ngroups
* will be 13, we will change permutation every 2.08GB and each
* disk will have 160MB of data per chunk.
*/
uint64_t groupwidth = vdc->vdc_groupwidth;
uint64_t ngroups = vdc->vdc_ngroups;
uint64_t ndisks = vdc->vdc_ndisks;
/*
* groupstart is where the group this IO will land in "starts" in
* the permutation array.
*/
uint64_t group = logical_offset / vdc->vdc_groupsz;
uint64_t groupstart = (group * groupwidth) % ndisks;
ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
*start = groupstart;
/* b_offset is the sector offset within a group chunk */
b_offset = b_offset % (rowheight_sectors * groupwidth);
ASSERT0(b_offset % groupwidth);
/*
* Find the starting byte offset on each child vdev:
* - within a permutation there are ngroups groups spread over the
* rows, where each row covers a slice portion of the disk
* - each permutation has (groupwidth * ngroups) / ndisks rows
* - so each permutation covers rows * slice portion of the disk
* - so we need to find the row where this IO group target begins
*/
*perm = group / ngroups;
uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
(((group % ngroups) * groupwidth) / ndisks);
return (((rowheight_sectors * row) +
(b_offset / groupwidth)) << ashift);
}
static uint64_t
vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
uint64_t abd_offset, uint64_t abd_size)
{
vdev_t *vd = zio->io_vd;
vdev_draid_config_t *vdc = vd->vdev_tsd;
uint64_t ashift = vd->vdev_top->vdev_ashift;
uint64_t io_size = abd_size;
uint64_t io_asize = vdev_draid_asize(vd, io_size);
uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);
/*
* Limit the io_size to the space remaining in the group. A second
* row in the raidz_map_t is created for the remainder.
*/
if (io_offset + io_asize > start_offset) {
io_size = vdev_draid_asize_to_psize(vd,
start_offset - io_offset);
}
/*
* At most a block may span the logical end of one group and the start
* of the next group. Therefore, at the end of a group the io_size must
* span the group width evenly and the remainder must be aligned to the
* start of the next group.
*/
IMPLY(abd_offset == 0 && io_size < zio->io_size,
(io_asize >> ashift) % vdc->vdc_groupwidth == 0);
IMPLY(abd_offset != 0,
vdev_draid_group_to_offset(vd, group) == io_offset);
/* Lookup starting byte offset on each child vdev */
uint64_t groupstart, perm;
uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
io_offset, &perm, &groupstart);
/*
* If there is less than groupwidth drives available after the group
* start, the group is going to wrap onto the next row. 'wrap' is the
* group disk number that starts on the next row.
*/
uint64_t ndisks = vdc->vdc_ndisks;
uint64_t groupwidth = vdc->vdc_groupwidth;
uint64_t wrap = groupwidth;
if (groupstart + groupwidth > ndisks)
wrap = ndisks - groupstart;
/* The io size in units of the vdev's minimum sector size. */
const uint64_t psize = io_size >> ashift;
/*
* "Quotient": The number of data sectors for this stripe on all but
* the "big column" child vdevs that also contain "remainder" data.
*/
uint64_t q = psize / vdc->vdc_ndata;
/*
* "Remainder": The number of partial stripe data sectors in this I/O.
* This will add a sector to some, but not all, child vdevs.
*/
uint64_t r = psize - q * vdc->vdc_ndata;
/* The number of "big columns" - those which contain remainder data. */
uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
ASSERT3U(bc, <, groupwidth);
/* The total number of data and parity sectors for this I/O. */
uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));
raidz_row_t *rr;
rr = kmem_alloc(offsetof(raidz_row_t, rr_col[groupwidth]), KM_SLEEP);
rr->rr_cols = groupwidth;
rr->rr_scols = groupwidth;
rr->rr_bigcols = bc;
rr->rr_missingdata = 0;
rr->rr_missingparity = 0;
rr->rr_firstdatacol = vdc->vdc_nparity;
rr->rr_abd_empty = NULL;
#ifdef ZFS_DEBUG
rr->rr_offset = io_offset;
rr->rr_size = io_size;
#endif
*rrp = rr;
uint8_t *base;
uint64_t iter, asize = 0;
vdev_draid_get_perm(vdc, perm, &base, &iter);
for (uint64_t i = 0; i < groupwidth; i++) {
raidz_col_t *rc = &rr->rr_col[i];
uint64_t c = (groupstart + i) % ndisks;
/* increment the offset if we wrap to the next row */
if (i == wrap)
physical_offset += VDEV_DRAID_ROWHEIGHT;
rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
rc->rc_offset = physical_offset;
rc->rc_abd = NULL;
rc->rc_orig_data = NULL;
rc->rc_error = 0;
rc->rc_tried = 0;
rc->rc_skipped = 0;
rc->rc_force_repair = 0;
rc->rc_allow_repair = 1;
rc->rc_need_orig_restore = B_FALSE;
if (q == 0 && i >= bc)
rc->rc_size = 0;
else if (i < bc)
rc->rc_size = (q + 1) << ashift;
else
rc->rc_size = q << ashift;
asize += rc->rc_size;
}
ASSERT3U(asize, ==, tot << ashift);
rr->rr_nempty = roundup(tot, groupwidth) - tot;
IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);
/* Allocate buffers for the parity columns */
for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
raidz_col_t *rc = &rr->rr_col[c];
rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
}
/*
* Map buffers for data columns and allocate/map buffers for skip
* sectors. There are three distinct cases for dRAID which are
* required to support sequential rebuild.
*/
if (zio->io_type == ZIO_TYPE_WRITE) {
vdev_draid_map_alloc_write(zio, abd_offset, rr);
} else if ((rr->rr_nempty > 0) &&
(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
} else {
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
vdev_draid_map_alloc_read(zio, abd_offset, rr);
}
return (io_size);
}
/*
* Allocate the raidz mapping to be applied to the dRAID I/O. The parity
* calculations for dRAID are identical to raidz however there are a few
* differences in the layout.
*
* - dRAID always allocates a full stripe width. Any extra sectors due
* this padding are zero filled and written to disk. They will be read
* back during a scrub or repair operation since they are included in
* the parity calculation. This property enables sequential resilvering.
*
* - When the block at the logical offset spans redundancy groups then two
* rows are allocated in the raidz_map_t. One row resides at the end of
* the first group and the other at the start of the following group.
*/
static raidz_map_t *
vdev_draid_map_alloc(zio_t *zio)
{
raidz_row_t *rr[2];
uint64_t abd_offset = 0;
uint64_t abd_size = zio->io_size;
uint64_t io_offset = zio->io_offset;
uint64_t size;
int nrows = 1;
size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
abd_offset, abd_size);
if (size < abd_size) {
vdev_t *vd = zio->io_vd;
io_offset += vdev_draid_asize(vd, size);
abd_offset += size;
abd_size -= size;
nrows++;
ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
vd, vdev_draid_offset_to_group(vd, io_offset)));
ASSERT3U(abd_offset, <, zio->io_size);
ASSERT3U(abd_size, !=, 0);
size = vdev_draid_map_alloc_row(zio, &rr[1],
io_offset, abd_offset, abd_size);
VERIFY3U(size, ==, abd_size);
}
raidz_map_t *rm;
rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
rm->rm_ops = vdev_raidz_math_get_ops();
rm->rm_nrows = nrows;
rm->rm_row[0] = rr[0];
if (nrows == 2)
rm->rm_row[1] = rr[1];
return (rm);
}
/*
* Given an offset into a dRAID return the next group width aligned offset
* which can be used to start an allocation.
*/
static uint64_t
vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
}
/*
* Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
* rounded down to the last full slice. So each child must provide at least
* 1 / (children - nspares) of its asize.
*/
static uint64_t
vdev_draid_min_asize(vdev_t *vd)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
return (VDEV_DRAID_REFLOW_RESERVE +
(vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
}
/*
* When using dRAID the minimum allocation size is determined by the number
* of data disks in the redundancy group. Full stripes are always used.
*/
static uint64_t
vdev_draid_min_alloc(vdev_t *vd)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
return (vdc->vdc_ndata << vd->vdev_ashift);
}
/*
* Returns true if the txg range does not exist on any leaf vdev.
*
* A dRAID spare does not fit into the DTL model. While it has child vdevs
* there is no redundancy among them, and the effective child vdev is
* determined by offset. Essentially we do a vdev_dtl_reassess() on the
* fly by replacing a dRAID spare with the child vdev under the offset.
* Note that it is a recursive process because the child vdev can be
* another dRAID spare and so on.
*/
boolean_t
vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
uint64_t size)
{
if (vd->vdev_ops == &vdev_spare_ops ||
vd->vdev_ops == &vdev_replacing_ops) {
/*
* Check all of the readable children, if any child
* contains the txg range the data it is not missing.
*/
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
if (!vdev_readable(cvd))
continue;
if (!vdev_draid_missing(cvd, physical_offset,
txg, size))
return (B_FALSE);
}
return (B_TRUE);
}
if (vd->vdev_ops == &vdev_draid_spare_ops) {
/*
* When sequentially resilvering we don't have a proper
* txg range so instead we must presume all txgs are
* missing on this vdev until the resilver completes.
*/
if (vd->vdev_rebuild_txg != 0)
return (B_TRUE);
/*
* DTL_MISSING is set for all prior txgs when a resilver
* is started in spa_vdev_attach().
*/
if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
return (B_TRUE);
/*
* Consult the DTL on the relevant vdev. Either a vdev
* leaf or spare/replace mirror child may be returned so
* we must recursively call vdev_draid_missing_impl().
*/
vd = vdev_draid_spare_get_child(vd, physical_offset);
if (vd == NULL)
return (B_TRUE);
return (vdev_draid_missing(vd, physical_offset,
txg, size));
}
return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
}
/*
* Returns true if the txg is only partially replicated on the leaf vdevs.
*/
static boolean_t
vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
uint64_t size)
{
if (vd->vdev_ops == &vdev_spare_ops ||
vd->vdev_ops == &vdev_replacing_ops) {
/*
* Check all of the readable children, if any child is
* missing the txg range then it is partially replicated.
*/
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
if (!vdev_readable(cvd))
continue;
if (vdev_draid_partial(cvd, physical_offset, txg, size))
return (B_TRUE);
}
return (B_FALSE);
}
if (vd->vdev_ops == &vdev_draid_spare_ops) {
/*
* When sequentially resilvering we don't have a proper
* txg range so instead we must presume all txgs are
* missing on this vdev until the resilver completes.
*/
if (vd->vdev_rebuild_txg != 0)
return (B_TRUE);
/*
* DTL_MISSING is set for all prior txgs when a resilver
* is started in spa_vdev_attach().
*/
if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
return (B_TRUE);
/*
* Consult the DTL on the relevant vdev. Either a vdev
* leaf or spare/replace mirror child may be returned so
* we must recursively call vdev_draid_missing_impl().
*/
vd = vdev_draid_spare_get_child(vd, physical_offset);
if (vd == NULL)
return (B_TRUE);
return (vdev_draid_partial(vd, physical_offset, txg, size));
}
return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
}
/*
* Determine if the vdev is readable at the given offset.
*/
boolean_t
vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
{
if (vd->vdev_ops == &vdev_draid_spare_ops) {
vd = vdev_draid_spare_get_child(vd, physical_offset);
if (vd == NULL)
return (B_FALSE);
}
if (vd->vdev_ops == &vdev_spare_ops ||
vd->vdev_ops == &vdev_replacing_ops) {
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
if (!vdev_readable(cvd))
continue;
if (vdev_draid_readable(cvd, physical_offset))
return (B_TRUE);
}
return (B_FALSE);
}
return (vdev_readable(vd));
}
/*
* Returns the first distributed spare found under the provided vdev tree.
*/
static vdev_t *
vdev_draid_find_spare(vdev_t *vd)
{
if (vd->vdev_ops == &vdev_draid_spare_ops)
return (vd);
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
if (svd != NULL)
return (svd);
}
return (NULL);
}
/*
* Returns B_TRUE if the passed in vdev is currently "faulted".
* Faulted, in this context, means that the vdev represents a
* replacing or sparing vdev tree.
*/
static boolean_t
vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
{
if (vd->vdev_ops == &vdev_draid_spare_ops) {
vd = vdev_draid_spare_get_child(vd, physical_offset);
if (vd == NULL)
return (B_FALSE);
/*
* After resolving the distributed spare to a leaf vdev
* check the parent to determine if it's "faulted".
*/
vd = vd->vdev_parent;
}
return (vd->vdev_ops == &vdev_replacing_ops ||
vd->vdev_ops == &vdev_spare_ops);
}
/*
* Determine if the dRAID block at the logical offset is degraded.
* Used by sequential resilver.
*/
static boolean_t
vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
uint64_t groupstart, perm;
uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
offset, &perm, &groupstart);
uint8_t *base;
uint64_t iter;
vdev_draid_get_perm(vdc, perm, &base, &iter);
for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
vdev_t *cvd = vd->vdev_child[cid];
/* Group contains a faulted vdev. */
if (vdev_draid_faulted(cvd, physical_offset))
return (B_TRUE);
/*
* Always check groups with active distributed spares
* because any vdev failure in the pool will affect them.
*/
if (vdev_draid_find_spare(cvd) != NULL)
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Determine if the txg is missing. Used by healing resilver.
*/
static boolean_t
vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
uint64_t size)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
uint64_t groupstart, perm;
uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
offset, &perm, &groupstart);
uint8_t *base;
uint64_t iter;
vdev_draid_get_perm(vdc, perm, &base, &iter);
for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
vdev_t *cvd = vd->vdev_child[cid];
/* Transaction group is known to be partially replicated. */
if (vdev_draid_partial(cvd, physical_offset, txg, size))
return (B_TRUE);
/*
* Always check groups with active distributed spares
* because any vdev failure in the pool will affect them.
*/
if (vdev_draid_find_spare(cvd) != NULL)
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Find the smallest child asize and largest sector size to calculate the
* available capacity. Distributed spares are ignored since their capacity
* is also based of the minimum child size in the top-level dRAID.
*/
static void
vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
{
uint64_t logical_ashift = 0, physical_ashift = 0;
uint64_t asize = 0, max_asize = 0;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
if (cvd->vdev_ops == &vdev_draid_spare_ops)
continue;
asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
physical_ashift = MAX(physical_ashift,
cvd->vdev_physical_ashift);
}
*asizep = asize;
*max_asizep = max_asize;
*logical_ashiftp = logical_ashift;
*physical_ashiftp = physical_ashift;
}
/*
* Open spare vdevs.
*/
static boolean_t
vdev_draid_open_spares(vdev_t *vd)
{
return (vd->vdev_ops == &vdev_draid_spare_ops ||
vd->vdev_ops == &vdev_replacing_ops ||
vd->vdev_ops == &vdev_spare_ops);
}
/*
* Open all children, excluding spares.
*/
static boolean_t
vdev_draid_open_children(vdev_t *vd)
{
return (!vdev_draid_open_spares(vd));
}
/*
* Open a top-level dRAID vdev.
*/
static int
vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
uint64_t *logical_ashift, uint64_t *physical_ashift)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
uint64_t nparity = vdc->vdc_nparity;
int open_errors = 0;
if (nparity > VDEV_DRAID_MAXPARITY ||
vd->vdev_children < nparity + 1) {
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
return (SET_ERROR(EINVAL));
}
/*
* First open the normal children then the distributed spares. This
* ordering is important to ensure the distributed spares calculate
* the correct psize in the event that the dRAID vdevs were expanded.
*/
vdev_open_children_subset(vd, vdev_draid_open_children);
vdev_open_children_subset(vd, vdev_draid_open_spares);
/* Verify enough of the children are available to continue. */
for (int c = 0; c < vd->vdev_children; c++) {
if (vd->vdev_child[c]->vdev_open_error != 0) {
if ((++open_errors) > nparity) {
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
return (SET_ERROR(ENXIO));
}
}
}
/*
* Allocatable capacity is the sum of the space on all children less
* the number of distributed spares rounded down to last full row
* and then to the last full group. An additional 32MB of scratch
* space is reserved at the end of each child for use by the dRAID
* expansion feature.
*/
uint64_t child_asize, child_max_asize;
vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
logical_ashift, physical_ashift);
/*
* Should be unreachable since the minimum child size is 64MB, but
* we want to make sure an underflow absolutely cannot occur here.
*/
if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
return (SET_ERROR(ENXIO));
}
child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
*asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
vdc->vdc_groupsz);
*max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
vdc->vdc_groupsz);
return (0);
}
/*
* Close a top-level dRAID vdev.
*/
static void
vdev_draid_close(vdev_t *vd)
{
for (int c = 0; c < vd->vdev_children; c++) {
if (vd->vdev_child[c] != NULL)
vdev_close(vd->vdev_child[c]);
}
}
/*
* Return the maximum asize for a rebuild zio in the provided range
* given the following constraints. A dRAID chunks may not:
*
* - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
* - Span dRAID redundancy groups.
*/
static uint64_t
vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
uint64_t max_segment)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
uint64_t ashift = vd->vdev_ashift;
uint64_t ndata = vdc->vdc_ndata;
uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
SPA_MAXBLOCKSIZE);
ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0);
/* Chunks must evenly span all data columns in the group. */
psize = (((psize >> ashift) / ndata) * ndata) << ashift;
uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));
/* Reduce the chunk size to the group space remaining. */
uint64_t group = vdev_draid_offset_to_group(vd, start);
uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
chunk_size = MIN(chunk_size, left);
ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0);
ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
vdev_draid_offset_to_group(vd, start + chunk_size - 1));
return (chunk_size);
}
/*
* Align the start of the metaslab to the group width and slightly reduce
* its size to a multiple of the group width. Since full stripe writes are
* required by dRAID this space is unallocable. Furthermore, aligning the
* metaslab start is important for vdev initialize and TRIM which both operate
* on metaslab boundaries which vdev_xlate() expects to be aligned.
*/
static void
vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;
*ms_start = astart;
*ms_size = asize;
ASSERT0(*ms_start % sz);
ASSERT0(*ms_size % sz);
}
/*
* Add virtual dRAID spares to the list of valid spares. In order to accomplish
* this the existing array must be freed and reallocated with the additional
* entries.
*/
int
vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
uint64_t next_vdev_id)
{
uint64_t draid_nspares = 0;
uint64_t ndraid = 0;
int error;
for (uint64_t i = 0; i < vd->vdev_children; i++) {
vdev_t *cvd = vd->vdev_child[i];
if (cvd->vdev_ops == &vdev_draid_ops) {
vdev_draid_config_t *vdc = cvd->vdev_tsd;
draid_nspares += vdc->vdc_nspares;
ndraid++;
}
}
if (draid_nspares == 0) {
*ndraidp = ndraid;
return (0);
}
nvlist_t **old_spares, **new_spares;
uint_t old_nspares;
error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
&old_spares, &old_nspares);
if (error)
old_nspares = 0;
/* Allocate memory and copy of the existing spares. */
new_spares = kmem_alloc(sizeof (nvlist_t *) *
(draid_nspares + old_nspares), KM_SLEEP);
for (uint_t i = 0; i < old_nspares; i++)
new_spares[i] = fnvlist_dup(old_spares[i]);
/* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
uint64_t n = old_nspares;
for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
vdev_t *cvd = vd->vdev_child[vdev_id];
char path[64];
if (cvd->vdev_ops != &vdev_draid_ops)
continue;
vdev_draid_config_t *vdc = cvd->vdev_tsd;
uint64_t nspares = vdc->vdc_nspares;
uint64_t nparity = vdc->vdc_nparity;
for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
bzero(path, sizeof (path));
(void) snprintf(path, sizeof (path) - 1,
"%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
(u_longlong_t)nparity,
(u_longlong_t)next_vdev_id + vdev_id,
(u_longlong_t)spare_id);
nvlist_t *spare = fnvlist_alloc();
fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
VDEV_TYPE_DRAID_SPARE);
fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
cvd->vdev_guid);
fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
spare_id);
fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
cvd->vdev_ashift);
new_spares[n] = spare;
n++;
}
}
if (n > 0) {
(void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
new_spares, n);
}
for (int i = 0; i < n; i++)
nvlist_free(new_spares[i]);
kmem_free(new_spares, sizeof (*new_spares) * n);
*ndraidp = ndraid;
return (0);
}
/*
* Determine if any portion of the provided block resides on a child vdev
* with a dirty DTL and therefore needs to be resilvered.
*/
static boolean_t
vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
uint64_t phys_birth)
{
uint64_t offset = DVA_GET_OFFSET(dva);
uint64_t asize = vdev_draid_asize(vd, psize);
if (phys_birth == TXG_UNKNOWN) {
/*
* Sequential resilver. There is no meaningful phys_birth
* for this block, we can only determine if block resides
* in a degraded group in which case it must be resilvered.
*/
ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
vdev_draid_offset_to_group(vd, offset + asize - 1));
return (vdev_draid_group_degraded(vd, offset));
} else {
/*
* Healing resilver. TXGs not in DTL_PARTIAL are intact,
* as are blocks in non-degraded groups.
*/
if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
return (B_FALSE);
if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
return (B_TRUE);
/* The block may span groups in which case check both. */
if (vdev_draid_offset_to_group(vd, offset) !=
vdev_draid_offset_to_group(vd, offset + asize - 1)) {
if (vdev_draid_group_missing(vd,
offset + asize, phys_birth, 1))
return (B_TRUE);
}
return (B_FALSE);
}
}
static boolean_t
vdev_draid_rebuilding(vdev_t *vd)
{
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
return (B_TRUE);
for (int i = 0; i < vd->vdev_children; i++) {
if (vdev_draid_rebuilding(vd->vdev_child[i])) {
return (B_TRUE);
}
}
return (B_FALSE);
}
static void
vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
{
#ifdef ZFS_DEBUG
range_seg64_t logical_rs, physical_rs, remain_rs;
logical_rs.rs_start = rr->rr_offset;
logical_rs.rs_end = logical_rs.rs_start +
vdev_draid_asize(vd, rr->rr_size);
raidz_col_t *rc = &rr->rr_col[col];
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
ASSERT(vdev_xlate_is_empty(&remain_rs));
ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
#endif
}
/*
* For write operations:
* 1. Generate the parity data
* 2. Create child zio write operations to each column's vdev, for both
* data and parity. A gang ABD is allocated by vdev_draid_map_alloc()
* if a skip sector needs to be added to a column.
*/
static void
vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
{
vdev_t *vd = zio->io_vd;
raidz_map_t *rm = zio->io_vsd;
vdev_raidz_generate_parity_row(rm, rr);
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
/*
* Empty columns are zero filled and included in the parity
* calculation and therefore must be written.
*/
ASSERT3U(rc->rc_size, !=, 0);
/* Verify physical to logical translation */
vdev_draid_io_verify(vd, rr, c);
zio_nowait(zio_vdev_child_io(zio, NULL,
vd->vdev_child[rc->rc_devidx], rc->rc_offset,
rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
0, vdev_raidz_child_done, rc));
}
}
/*
* For read operations:
* 1. The vdev_draid_map_alloc() function will create a minimal raidz
* mapping for the read based on the zio->io_flags. There are two
* possible mappings either 1) a normal read, or 2) a scrub/resilver.
* 2. Create the zio read operations. This will include all parity
* columns and skip sectors for a scrub/resilver.
*/
static void
vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
{
vdev_t *vd = zio->io_vd;
/* Sequential rebuild must do IO at redundancy group boundary. */
IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);
/*
* Iterate over the columns in reverse order so that we hit the parity
* last. Any errors along the way will force us to read the parity.
* For scrub/resilver IOs which verify skip sectors, a gang ABD will
* have been allocated to store them and rc->rc_size is increased.
*/
for (int c = rr->rr_cols - 1; c >= 0; c--) {
raidz_col_t *rc = &rr->rr_col[c];
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
if (!vdev_draid_readable(cvd, rc->rc_offset)) {
if (c >= rr->rr_firstdatacol)
rr->rr_missingdata++;
else
rr->rr_missingparity++;
rc->rc_error = SET_ERROR(ENXIO);
rc->rc_tried = 1;
rc->rc_skipped = 1;
continue;
}
if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
if (c >= rr->rr_firstdatacol)
rr->rr_missingdata++;
else
rr->rr_missingparity++;
rc->rc_error = SET_ERROR(ESTALE);
rc->rc_skipped = 1;
continue;
}
/*
* Empty columns may be read during vdev_draid_io_done().
* Only skip them after the readable and missing checks
* verify they are available.
*/
if (rc->rc_size == 0) {
rc->rc_skipped = 1;
continue;
}
if (zio->io_flags & ZIO_FLAG_RESILVER) {
vdev_t *svd;
/*
* Sequential rebuilds need to always consider the data
* on the child being rebuilt to be stale. This is
* important when all columns are available to aid
* known reconstruction in identifing which columns
* contain incorrect data.
*
* Furthermore, all repairs need to be constrained to
* the devices being rebuilt because without a checksum
* we cannot verify the data is actually correct and
* performing an incorrect repair could result in
* locking in damage and making the data unrecoverable.
*/
if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
if (vdev_draid_rebuilding(cvd)) {
if (c >= rr->rr_firstdatacol)
rr->rr_missingdata++;
else
rr->rr_missingparity++;
rc->rc_error = SET_ERROR(ESTALE);
rc->rc_skipped = 1;
rc->rc_allow_repair = 1;
continue;
} else {
rc->rc_allow_repair = 0;
}
} else {
rc->rc_allow_repair = 1;
}
/*
* If this child is a distributed spare then the
* offset might reside on the vdev being replaced.
* In which case this data must be written to the
* new device. Failure to do so would result in
* checksum errors when the old device is detached
* and the pool is scrubbed.
*/
if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
svd = vdev_draid_spare_get_child(svd,
rc->rc_offset);
if (svd && (svd->vdev_ops == &vdev_spare_ops ||
svd->vdev_ops == &vdev_replacing_ops)) {
rc->rc_force_repair = 1;
if (vdev_draid_rebuilding(svd))
rc->rc_allow_repair = 1;
}
}
/*
* Always issue a repair IO to this child when its
* a spare or replacing vdev with an active rebuild.
*/
if ((cvd->vdev_ops == &vdev_spare_ops ||
cvd->vdev_ops == &vdev_replacing_ops) &&
vdev_draid_rebuilding(cvd)) {
rc->rc_force_repair = 1;
rc->rc_allow_repair = 1;
}
}
}
/*
* Either a parity or data column is missing this means a repair
* may be attempted by vdev_draid_io_done(). Expand the raid map
* to read in empty columns which are needed along with the parity
* during reconstruction.
*/
if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
vdev_draid_map_alloc_empty(zio, rr);
}
for (int c = rr->rr_cols - 1; c >= 0; c--) {
raidz_col_t *rc = &rr->rr_col[c];
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
if (rc->rc_error || rc->rc_size == 0)
continue;
if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_abd, rc->rc_size,
zio->io_type, zio->io_priority, 0,
vdev_raidz_child_done, rc));
}
}
}
/*
* Start an IO operation to a dRAID vdev.
*/
static void
vdev_draid_io_start(zio_t *zio)
{
vdev_t *vd __maybe_unused = zio->io_vd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));
raidz_map_t *rm = vdev_draid_map_alloc(zio);
zio->io_vsd = rm;
zio->io_vsd_ops = &vdev_raidz_vsd_ops;
if (zio->io_type == ZIO_TYPE_WRITE) {
for (int i = 0; i < rm->rm_nrows; i++) {
vdev_draid_io_start_write(zio, rm->rm_row[i]);
}
} else {
ASSERT(zio->io_type == ZIO_TYPE_READ);
for (int i = 0; i < rm->rm_nrows; i++) {
vdev_draid_io_start_read(zio, rm->rm_row[i]);
}
}
zio_execute(zio);
}
/*
* Complete an IO operation on a dRAID vdev. The raidz logic can be applied
* to dRAID since the layout is fully described by the raidz_map_t.
*/
static void
vdev_draid_io_done(zio_t *zio)
{
vdev_raidz_io_done(zio);
}
static void
vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
ASSERT(vd->vdev_ops == &vdev_draid_ops);
if (faulted > vdc->vdc_nparity)
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLICAS);
else if (degraded + faulted != 0)
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
else
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
}
static void
vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
range_seg64_t *physical_rs, range_seg64_t *remain_rs)
{
vdev_t *raidvd = cvd->vdev_parent;
ASSERT(raidvd->vdev_ops == &vdev_draid_ops);
vdev_draid_config_t *vdc = raidvd->vdev_tsd;
uint64_t ashift = raidvd->vdev_top->vdev_ashift;
/* Make sure the offsets are block-aligned */
ASSERT0(logical_rs->rs_start % (1 << ashift));
ASSERT0(logical_rs->rs_end % (1 << ashift));
uint64_t logical_start = logical_rs->rs_start;
uint64_t logical_end = logical_rs->rs_end;
/*
* Unaligned ranges must be skipped. All metaslabs are correctly
* aligned so this should not happen, but this case is handled in
* case it's needed by future callers.
*/
uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
if (astart != logical_start) {
physical_rs->rs_start = logical_start;
physical_rs->rs_end = logical_start;
remain_rs->rs_start = MIN(astart, logical_end);
remain_rs->rs_end = logical_end;
return;
}
/*
* Unlike with mirrors and raidz a dRAID logical range can map
* to multiple non-contiguous physical ranges. This is handled by
* limiting the size of the logical range to a single group and
* setting the remain argument such that it describes the remaining
* unmapped logical range. This is stricter than absolutely
* necessary but helps simplify the logic below.
*/
uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
if (logical_end > nextstart)
logical_end = nextstart;
/* Find the starting offset for each vdev in the group */
uint64_t perm, groupstart;
uint64_t start = vdev_draid_logical_to_physical(raidvd,
logical_start, &perm, &groupstart);
uint64_t end = start;
uint8_t *base;
uint64_t iter, id;
vdev_draid_get_perm(vdc, perm, &base, &iter);
/*
* Check if the passed child falls within the group. If it does
* update the start and end to reflect the physical range.
* Otherwise, leave them unmodified which will result in an empty
* (zero-length) physical range being returned.
*/
for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
if (c == 0 && i != 0) {
/* the group wrapped, increment the start */
start += VDEV_DRAID_ROWHEIGHT;
end = start;
}
id = vdev_draid_permute_id(vdc, base, iter, c);
if (id == cvd->vdev_id) {
uint64_t b_size = (logical_end >> ashift) -
(logical_start >> ashift);
ASSERT3U(b_size, >, 0);
end = start + ((((b_size - 1) /
vdc->vdc_groupwidth) + 1) << ashift);
break;
}
}
physical_rs->rs_start = start;
physical_rs->rs_end = end;
/*
* Only top-level vdevs are allowed to set remain_rs because
* when .vdev_op_xlate() is called for their children the full
* logical range is not provided by vdev_xlate().
*/
remain_rs->rs_start = logical_end;
remain_rs->rs_end = logical_rs->rs_end;
ASSERT3U(physical_rs->rs_start, <=, logical_start);
ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
logical_end - logical_start);
}
/*
* Add dRAID specific fields to the config nvlist.
*/
static void
vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
{
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
vdev_draid_config_t *vdc = vd->vdev_tsd;
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
}
/*
* Initialize private dRAID specific fields from the nvlist.
*/
static int
vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
{
(void) spa;
uint64_t ndata, nparity, nspares, ngroups;
int error;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
return (SET_ERROR(EINVAL));
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
return (SET_ERROR(EINVAL));
}
uint_t children;
nvlist_t **child;
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) != 0 || children == 0 ||
children > VDEV_DRAID_MAX_CHILDREN) {
return (SET_ERROR(EINVAL));
}
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
nspares > 100 || nspares > (children - (ndata + nparity))) {
return (SET_ERROR(EINVAL));
}
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
return (SET_ERROR(EINVAL));
}
/*
* Validate the minimum number of children exist per group for the
* specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
*/
if (children < (ndata + nparity + nspares))
return (SET_ERROR(EINVAL));
/*
* Create the dRAID configuration using the pool nvlist configuration
* and the fixed mapping for the correct number of children.
*/
vdev_draid_config_t *vdc;
const draid_map_t *map;
error = vdev_draid_lookup_map(children, &map);
if (error)
return (SET_ERROR(EINVAL));
vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
vdc->vdc_ndata = ndata;
vdc->vdc_nparity = nparity;
vdc->vdc_nspares = nspares;
vdc->vdc_children = children;
vdc->vdc_ngroups = ngroups;
vdc->vdc_nperms = map->dm_nperms;
error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
if (error) {
kmem_free(vdc, sizeof (*vdc));
return (SET_ERROR(EINVAL));
}
/*
* Derived constants.
*/
vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
vdc->vdc_ndisks;
ASSERT3U(vdc->vdc_groupwidth, >=, 2);
ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0);
ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
vdc->vdc_ndisks, ==, 0);
*tsd = vdc;
return (0);
}
static void
vdev_draid_fini(vdev_t *vd)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
vdc->vdc_children * vdc->vdc_nperms);
kmem_free(vdc, sizeof (*vdc));
}
static uint64_t
vdev_draid_nparity(vdev_t *vd)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
return (vdc->vdc_nparity);
}
static uint64_t
vdev_draid_ndisks(vdev_t *vd)
{
vdev_draid_config_t *vdc = vd->vdev_tsd;
return (vdc->vdc_ndisks);
}
vdev_ops_t vdev_draid_ops = {
.vdev_op_init = vdev_draid_init,
.vdev_op_fini = vdev_draid_fini,
.vdev_op_open = vdev_draid_open,
.vdev_op_close = vdev_draid_close,
.vdev_op_asize = vdev_draid_asize,
.vdev_op_min_asize = vdev_draid_min_asize,
.vdev_op_min_alloc = vdev_draid_min_alloc,
.vdev_op_io_start = vdev_draid_io_start,
.vdev_op_io_done = vdev_draid_io_done,
.vdev_op_state_change = vdev_draid_state_change,
.vdev_op_need_resilver = vdev_draid_need_resilver,
.vdev_op_hold = NULL,
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_draid_xlate,
.vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
.vdev_op_metaslab_init = vdev_draid_metaslab_init,
.vdev_op_config_generate = vdev_draid_config_generate,
.vdev_op_nparity = vdev_draid_nparity,
.vdev_op_ndisks = vdev_draid_ndisks,
.vdev_op_type = VDEV_TYPE_DRAID,
.vdev_op_leaf = B_FALSE,
};
/*
* A dRAID distributed spare is a virtual leaf vdev which is included in the
* parent dRAID configuration. The last N columns of the dRAID permutation
* table are used to determine on which dRAID children a specific offset
* should be written. These spare leaf vdevs can only be used to replace
* faulted children in the same dRAID configuration.
*/
/*
* Distributed spare state. All fields are set when the distributed spare is
* first opened and are immutable.
*/
typedef struct {
vdev_t *vds_draid_vdev; /* top-level parent dRAID vdev */
uint64_t vds_top_guid; /* top-level parent dRAID guid */
uint64_t vds_spare_id; /* spare id (0 - vdc->vdc_nspares-1) */
} vdev_draid_spare_t;
/*
* Returns the parent dRAID vdev to which the distributed spare belongs.
* This may be safely called even when the vdev is not open.
*/
vdev_t *
vdev_draid_spare_get_parent(vdev_t *vd)
{
vdev_draid_spare_t *vds = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
if (vds->vds_draid_vdev != NULL)
return (vds->vds_draid_vdev);
return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
vds->vds_top_guid));
}
/*
* A dRAID space is active when it's the child of a vdev using the
* vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
*/
static boolean_t
vdev_draid_spare_is_active(vdev_t *vd)
{
vdev_t *pvd = vd->vdev_parent;
if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
pvd->vdev_ops == &vdev_replacing_ops ||
pvd->vdev_ops == &vdev_draid_ops)) {
return (B_TRUE);
} else {
return (B_FALSE);
}
}
/*
* Given a dRAID distribute spare vdev, returns the physical child vdev
* on which the provided offset resides. This may involve recursing through
* multiple layers of distributed spares. Note that offset is relative to
* this vdev.
*/
vdev_t *
vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
{
vdev_draid_spare_t *vds = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
/* The vdev is closed */
if (vds->vds_draid_vdev == NULL)
return (NULL);
vdev_t *tvd = vds->vds_draid_vdev;
vdev_draid_config_t *vdc = tvd->vdev_tsd;
ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);
uint8_t *base;
uint64_t iter;
uint64_t perm = physical_offset / vdc->vdc_devslicesz;
vdev_draid_get_perm(vdc, perm, &base, &iter);
uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
(tvd->vdev_children - 1) - vds->vds_spare_id);
vdev_t *cvd = tvd->vdev_child[cid];
if (cvd->vdev_ops == &vdev_draid_spare_ops)
return (vdev_draid_spare_get_child(cvd, physical_offset));
return (cvd);
}
static void
vdev_draid_spare_close(vdev_t *vd)
{
vdev_draid_spare_t *vds = vd->vdev_tsd;
vds->vds_draid_vdev = NULL;
}
/*
* Opening a dRAID spare device is done by looking up the associated dRAID
* top-level vdev guid from the spare configuration.
*/
static int
vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
uint64_t *logical_ashift, uint64_t *physical_ashift)
{
vdev_draid_spare_t *vds = vd->vdev_tsd;
vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
uint64_t asize, max_asize;
vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
if (tvd == NULL) {
/*
* When spa_vdev_add() is labeling new spares the
* associated dRAID is not attached to the root vdev
* nor does this spare have a parent. Simulate a valid
* device in order to allow the label to be initialized
* and the distributed spare added to the configuration.
*/
if (vd->vdev_parent == NULL) {
*psize = *max_psize = SPA_MINDEVSIZE;
*logical_ashift = *physical_ashift = ASHIFT_MIN;
return (0);
}
return (SET_ERROR(EINVAL));
}
vdev_draid_config_t *vdc = tvd->vdev_tsd;
if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
return (SET_ERROR(EINVAL));
if (vds->vds_spare_id >= vdc->vdc_nspares)
return (SET_ERROR(EINVAL));
/*
* Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
* because the caller may be vdev_draid_open() in which case the
* values are stale as they haven't yet been updated by vdev_open().
* To avoid this always recalculate the dRAID asize and max_asize.
*/
vdev_draid_calculate_asize(tvd, &asize, &max_asize,
logical_ashift, physical_ashift);
*psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
*max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
vds->vds_draid_vdev = tvd;
return (0);
}
/*
* Completed distributed spare IO. Store the result in the parent zio
* as if it had performed the operation itself. Only the first error is
* preserved if there are multiple errors.
*/
static void
vdev_draid_spare_child_done(zio_t *zio)
{
zio_t *pio = zio->io_private;
/*
* IOs are issued to non-writable vdevs in order to keep their
* DTLs accurate. However, we don't want to propagate the
* error in to the distributed spare's DTL. When resilvering
* vdev_draid_need_resilver() will consult the relevant DTL
* to determine if the data is missing and must be repaired.
*/
if (!vdev_writeable(zio->io_vd))
return;
if (pio->io_error == 0)
pio->io_error = zio->io_error;
}
/*
* Returns a valid label nvlist for the distributed spare vdev. This is
* used to bypass the IO pipeline to avoid the complexity of constructing
* a complete label with valid checksum to return when read.
*/
nvlist_t *
vdev_draid_read_config_spare(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
spa_aux_vdev_t *sav = &spa->spa_spares;
uint64_t guid = vd->vdev_guid;
nvlist_t *nv = fnvlist_alloc();
fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
vdev_draid_spare_is_active(vd) ?
POOL_STATE_ACTIVE : POOL_STATE_SPARE);
/* Set the vdev guid based on the vdev list in sav_count. */
for (int i = 0; i < sav->sav_count; i++) {
if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
guid = sav->sav_vdevs[i]->vdev_guid;
break;
}
}
fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);
return (nv);
}
/*
* Handle any ioctl requested of the distributed spare. Only flushes
* are supported in which case all children must be flushed.
*/
static int
vdev_draid_spare_ioctl(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
int error = 0;
if (zio->io_cmd == DKIOCFLUSHWRITECACHE) {
for (int c = 0; c < vd->vdev_children; c++) {
zio_nowait(zio_vdev_child_io(zio, NULL,
vd->vdev_child[c], zio->io_offset, zio->io_abd,
zio->io_size, zio->io_type, zio->io_priority, 0,
vdev_draid_spare_child_done, zio));
}
} else {
error = SET_ERROR(ENOTSUP);
}
return (error);
}
/*
* Initiate an IO to the distributed spare. For normal IOs this entails using
* the zio->io_offset and permutation table to calculate which child dRAID vdev
* is responsible for the data. Then passing along the zio to that child to
* perform the actual IO. The label ranges are not stored on disk and require
* some special handling which is described below.
*/
static void
vdev_draid_spare_io_start(zio_t *zio)
{
vdev_t *cvd = NULL, *vd = zio->io_vd;
vdev_draid_spare_t *vds = vd->vdev_tsd;
uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;
/*
* If the vdev is closed, it's likely in the REMOVED or FAULTED state.
* Nothing to be done here but return failure.
*/
if (vds == NULL) {
zio->io_error = ENXIO;
zio_interrupt(zio);
return;
}
switch (zio->io_type) {
case ZIO_TYPE_IOCTL:
zio->io_error = vdev_draid_spare_ioctl(zio);
break;
case ZIO_TYPE_WRITE:
if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
/*
* Accept probe IOs and config writers to simulate the
* existence of an on disk label. vdev_label_sync(),
* vdev_uberblock_sync() and vdev_copy_uberblocks()
* skip the distributed spares. This only leaves
* vdev_label_init() which is allowed to succeed to
* avoid adding special cases the function.
*/
if (zio->io_flags & ZIO_FLAG_PROBE ||
zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
zio->io_error = 0;
} else {
zio->io_error = SET_ERROR(EIO);
}
} else {
cvd = vdev_draid_spare_get_child(vd, offset);
if (cvd == NULL) {
zio->io_error = SET_ERROR(ENXIO);
} else {
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
offset, zio->io_abd, zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_draid_spare_child_done, zio));
}
}
break;
case ZIO_TYPE_READ:
if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
/*
* Accept probe IOs to simulate the existence of a
* label. vdev_label_read_config() bypasses the
* pipeline to read the label configuration and
* vdev_uberblock_load() skips distributed spares
* when attempting to locate the best uberblock.
*/
if (zio->io_flags & ZIO_FLAG_PROBE) {
zio->io_error = 0;
} else {
zio->io_error = SET_ERROR(EIO);
}
} else {
cvd = vdev_draid_spare_get_child(vd, offset);
if (cvd == NULL || !vdev_readable(cvd)) {
zio->io_error = SET_ERROR(ENXIO);
} else {
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
offset, zio->io_abd, zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_draid_spare_child_done, zio));
}
}
break;
case ZIO_TYPE_TRIM:
/* The vdev label ranges are never trimmed */
ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));
cvd = vdev_draid_spare_get_child(vd, offset);
if (cvd == NULL || !cvd->vdev_has_trim) {
zio->io_error = SET_ERROR(ENXIO);
} else {
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
offset, zio->io_abd, zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_draid_spare_child_done, zio));
}
break;
default:
zio->io_error = SET_ERROR(ENOTSUP);
break;
}
zio_execute(zio);
}
static void
vdev_draid_spare_io_done(zio_t *zio)
{
(void) zio;
}
/*
* Lookup the full spare config in spa->spa_spares.sav_config and
* return the top_guid and spare_id for the named spare.
*/
static int
vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
uint64_t *spare_idp)
{
nvlist_t **spares;
uint_t nspares;
int error;
if ((spa->spa_spares.sav_config == NULL) ||
(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
return (SET_ERROR(ENOENT));
}
char *spare_name;
error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
if (error != 0)
return (SET_ERROR(EINVAL));
for (int i = 0; i < nspares; i++) {
nvlist_t *spare = spares[i];
uint64_t top_guid, spare_id;
char *type, *path;
/* Skip non-distributed spares */
error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
continue;
/* Skip spares with the wrong name */
error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
if (error != 0 || strcmp(path, spare_name) != 0)
continue;
/* Found the matching spare */
error = nvlist_lookup_uint64(spare,
ZPOOL_CONFIG_TOP_GUID, &top_guid);
if (error == 0) {
error = nvlist_lookup_uint64(spare,
ZPOOL_CONFIG_SPARE_ID, &spare_id);
}
if (error != 0) {
return (SET_ERROR(EINVAL));
} else {
*top_guidp = top_guid;
*spare_idp = spare_id;
return (0);
}
}
return (SET_ERROR(ENOENT));
}
/*
* Initialize private dRAID spare specific fields from the nvlist.
*/
static int
vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
{
vdev_draid_spare_t *vds;
uint64_t top_guid = 0;
uint64_t spare_id;
/*
* In the normal case check the list of spares stored in the spa
* to lookup the top_guid and spare_id for provided spare config.
* When creating a new pool or adding vdevs the spare list is not
* yet populated and the values are provided in the passed config.
*/
if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
&top_guid) != 0)
return (SET_ERROR(EINVAL));
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
&spare_id) != 0)
return (SET_ERROR(EINVAL));
}
vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
vds->vds_draid_vdev = NULL;
vds->vds_top_guid = top_guid;
vds->vds_spare_id = spare_id;
*tsd = vds;
return (0);
}
static void
vdev_draid_spare_fini(vdev_t *vd)
{
kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
}
static void
vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
{
vdev_draid_spare_t *vds = vd->vdev_tsd;
ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
}
vdev_ops_t vdev_draid_spare_ops = {
.vdev_op_init = vdev_draid_spare_init,
.vdev_op_fini = vdev_draid_spare_fini,
.vdev_op_open = vdev_draid_spare_open,
.vdev_op_close = vdev_draid_spare_close,
.vdev_op_asize = vdev_default_asize,
.vdev_op_min_asize = vdev_default_min_asize,
.vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_draid_spare_io_start,
.vdev_op_io_done = vdev_draid_spare_io_done,
.vdev_op_state_change = NULL,
.vdev_op_need_resilver = NULL,
.vdev_op_hold = NULL,
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
.vdev_op_rebuild_asize = NULL,
.vdev_op_metaslab_init = NULL,
.vdev_op_config_generate = vdev_draid_spare_config_generate,
.vdev_op_nparity = NULL,
.vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_DRAID_SPARE,
.vdev_op_leaf = B_TRUE,
};