mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-14 20:20:26 +03:00
473c976a0c
A memory leak occurs on lines 209 and 213 because the config is not freed in the error case. The interface to add_config() seems less than ideal - it would be better if it copied any data necessary from the config and the caller freed it. Porting notes: * This issue had already been resolved on Linux by adding the missing calls to nvlist_free(). But we'll adopt the upstream fix to keep the behavior of the code consistent. Authored by: Sara Hartse <sara.hartse@delphix.com> Reviewed by: Matt Ahrens <matt@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Giuseppe Di Natale <guss80@gmail.com> Reviewed by: George Melikov <mail@gmelikov.ru> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9457 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/be86bb8a Closes #7713
2629 lines
64 KiB
C
2629 lines
64 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
|
|
* Copyright 2015 RackTop Systems.
|
|
* Copyright (c) 2016, Intel Corporation.
|
|
*/
|
|
|
|
/*
|
|
* Pool import support functions.
|
|
*
|
|
* To import a pool, we rely on reading the configuration information from the
|
|
* ZFS label of each device. If we successfully read the label, then we
|
|
* organize the configuration information in the following hierarchy:
|
|
*
|
|
* pool guid -> toplevel vdev guid -> label txg
|
|
*
|
|
* Duplicate entries matching this same tuple will be discarded. Once we have
|
|
* examined every device, we pick the best label txg config for each toplevel
|
|
* vdev. We then arrange these toplevel vdevs into a complete pool config, and
|
|
* update any paths that have changed. Finally, we attempt to import the pool
|
|
* using our derived config, and record the results.
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <devid.h>
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <libintl.h>
|
|
#include <libgen.h>
|
|
#ifdef HAVE_LIBUDEV
|
|
#include <libudev.h>
|
|
#include <sched.h>
|
|
#endif
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <sys/vtoc.h>
|
|
#include <sys/dktp/fdisk.h>
|
|
#include <sys/efi_partition.h>
|
|
#include <thread_pool.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <blkid/blkid.h>
|
|
#include "libzfs.h"
|
|
#include "libzfs_impl.h"
|
|
#include <libzfs.h>
|
|
|
|
/*
|
|
* Intermediate structures used to gather configuration information.
|
|
*/
|
|
typedef struct config_entry {
|
|
uint64_t ce_txg;
|
|
nvlist_t *ce_config;
|
|
struct config_entry *ce_next;
|
|
} config_entry_t;
|
|
|
|
typedef struct vdev_entry {
|
|
uint64_t ve_guid;
|
|
config_entry_t *ve_configs;
|
|
struct vdev_entry *ve_next;
|
|
} vdev_entry_t;
|
|
|
|
typedef struct pool_entry {
|
|
uint64_t pe_guid;
|
|
vdev_entry_t *pe_vdevs;
|
|
struct pool_entry *pe_next;
|
|
} pool_entry_t;
|
|
|
|
typedef struct name_entry {
|
|
char *ne_name;
|
|
uint64_t ne_guid;
|
|
uint64_t ne_order;
|
|
uint64_t ne_num_labels;
|
|
struct name_entry *ne_next;
|
|
} name_entry_t;
|
|
|
|
typedef struct pool_list {
|
|
pool_entry_t *pools;
|
|
name_entry_t *names;
|
|
} pool_list_t;
|
|
|
|
#define DEV_BYID_PATH "/dev/disk/by-id/"
|
|
|
|
/*
|
|
* Linux persistent device strings for vdev labels
|
|
*
|
|
* based on libudev for consistency with libudev disk add/remove events
|
|
*/
|
|
#ifdef HAVE_LIBUDEV
|
|
|
|
typedef struct vdev_dev_strs {
|
|
char vds_devid[128];
|
|
char vds_devphys[128];
|
|
} vdev_dev_strs_t;
|
|
|
|
/*
|
|
* Obtain the persistent device id string (describes what)
|
|
*
|
|
* used by ZED vdev matching for auto-{online,expand,replace}
|
|
*/
|
|
int
|
|
zfs_device_get_devid(struct udev_device *dev, char *bufptr, size_t buflen)
|
|
{
|
|
struct udev_list_entry *entry;
|
|
const char *bus;
|
|
char devbyid[MAXPATHLEN];
|
|
|
|
/* The bus based by-id path is preferred */
|
|
bus = udev_device_get_property_value(dev, "ID_BUS");
|
|
|
|
if (bus == NULL) {
|
|
const char *dm_uuid;
|
|
|
|
/*
|
|
* For multipath nodes use the persistent uuid based identifier
|
|
*
|
|
* Example: /dev/disk/by-id/dm-uuid-mpath-35000c5006304de3f
|
|
*/
|
|
dm_uuid = udev_device_get_property_value(dev, "DM_UUID");
|
|
if (dm_uuid != NULL) {
|
|
(void) snprintf(bufptr, buflen, "dm-uuid-%s", dm_uuid);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* For volumes use the persistent /dev/zvol/dataset identifier
|
|
*/
|
|
entry = udev_device_get_devlinks_list_entry(dev);
|
|
while (entry != NULL) {
|
|
const char *name;
|
|
|
|
name = udev_list_entry_get_name(entry);
|
|
if (strncmp(name, ZVOL_ROOT, strlen(ZVOL_ROOT)) == 0) {
|
|
(void) strlcpy(bufptr, name, buflen);
|
|
return (0);
|
|
}
|
|
entry = udev_list_entry_get_next(entry);
|
|
}
|
|
|
|
/*
|
|
* NVME 'by-id' symlinks are similar to bus case
|
|
*/
|
|
struct udev_device *parent;
|
|
|
|
parent = udev_device_get_parent_with_subsystem_devtype(dev,
|
|
"nvme", NULL);
|
|
if (parent != NULL)
|
|
bus = "nvme"; /* continue with bus symlink search */
|
|
else
|
|
return (ENODATA);
|
|
}
|
|
|
|
/*
|
|
* locate the bus specific by-id link
|
|
*/
|
|
(void) snprintf(devbyid, sizeof (devbyid), "%s%s-", DEV_BYID_PATH, bus);
|
|
entry = udev_device_get_devlinks_list_entry(dev);
|
|
while (entry != NULL) {
|
|
const char *name;
|
|
|
|
name = udev_list_entry_get_name(entry);
|
|
if (strncmp(name, devbyid, strlen(devbyid)) == 0) {
|
|
name += strlen(DEV_BYID_PATH);
|
|
(void) strlcpy(bufptr, name, buflen);
|
|
return (0);
|
|
}
|
|
entry = udev_list_entry_get_next(entry);
|
|
}
|
|
|
|
return (ENODATA);
|
|
}
|
|
|
|
/*
|
|
* Obtain the persistent physical location string (describes where)
|
|
*
|
|
* used by ZED vdev matching for auto-{online,expand,replace}
|
|
*/
|
|
int
|
|
zfs_device_get_physical(struct udev_device *dev, char *bufptr, size_t buflen)
|
|
{
|
|
const char *physpath = NULL;
|
|
struct udev_list_entry *entry;
|
|
|
|
/*
|
|
* Normal disks use ID_PATH for their physical path.
|
|
*/
|
|
physpath = udev_device_get_property_value(dev, "ID_PATH");
|
|
if (physpath != NULL && strlen(physpath) > 0) {
|
|
(void) strlcpy(bufptr, physpath, buflen);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Device mapper devices are virtual and don't have a physical
|
|
* path. For them we use ID_VDEV instead, which is setup via the
|
|
* /etc/vdev_id.conf file. ID_VDEV provides a persistent path
|
|
* to a virtual device. If you don't have vdev_id.conf setup,
|
|
* you cannot use multipath autoreplace with device mapper.
|
|
*/
|
|
physpath = udev_device_get_property_value(dev, "ID_VDEV");
|
|
if (physpath != NULL && strlen(physpath) > 0) {
|
|
(void) strlcpy(bufptr, physpath, buflen);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* For ZFS volumes use the persistent /dev/zvol/dataset identifier
|
|
*/
|
|
entry = udev_device_get_devlinks_list_entry(dev);
|
|
while (entry != NULL) {
|
|
physpath = udev_list_entry_get_name(entry);
|
|
if (strncmp(physpath, ZVOL_ROOT, strlen(ZVOL_ROOT)) == 0) {
|
|
(void) strlcpy(bufptr, physpath, buflen);
|
|
return (0);
|
|
}
|
|
entry = udev_list_entry_get_next(entry);
|
|
}
|
|
|
|
/*
|
|
* For all other devices fallback to using the by-uuid name.
|
|
*/
|
|
entry = udev_device_get_devlinks_list_entry(dev);
|
|
while (entry != NULL) {
|
|
physpath = udev_list_entry_get_name(entry);
|
|
if (strncmp(physpath, "/dev/disk/by-uuid", 17) == 0) {
|
|
(void) strlcpy(bufptr, physpath, buflen);
|
|
return (0);
|
|
}
|
|
entry = udev_list_entry_get_next(entry);
|
|
}
|
|
|
|
return (ENODATA);
|
|
}
|
|
|
|
boolean_t
|
|
udev_is_mpath(struct udev_device *dev)
|
|
{
|
|
return udev_device_get_property_value(dev, "DM_UUID") &&
|
|
udev_device_get_property_value(dev, "MPATH_SBIN_PATH");
|
|
}
|
|
|
|
/*
|
|
* A disk is considered a multipath whole disk when:
|
|
* DEVNAME key value has "dm-"
|
|
* DM_NAME key value has "mpath" prefix
|
|
* DM_UUID key exists
|
|
* ID_PART_TABLE_TYPE key does not exist or is not gpt
|
|
*/
|
|
static boolean_t
|
|
udev_mpath_whole_disk(struct udev_device *dev)
|
|
{
|
|
const char *devname, *type, *uuid;
|
|
|
|
devname = udev_device_get_property_value(dev, "DEVNAME");
|
|
type = udev_device_get_property_value(dev, "ID_PART_TABLE_TYPE");
|
|
uuid = udev_device_get_property_value(dev, "DM_UUID");
|
|
|
|
if ((devname != NULL && strncmp(devname, "/dev/dm-", 8) == 0) &&
|
|
((type == NULL) || (strcmp(type, "gpt") != 0)) &&
|
|
(uuid != NULL)) {
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Check if a disk is effectively a multipath whole disk
|
|
*/
|
|
boolean_t
|
|
is_mpath_whole_disk(const char *path)
|
|
{
|
|
struct udev *udev;
|
|
struct udev_device *dev = NULL;
|
|
char nodepath[MAXPATHLEN];
|
|
char *sysname;
|
|
boolean_t wholedisk = B_FALSE;
|
|
|
|
if (realpath(path, nodepath) == NULL)
|
|
return (B_FALSE);
|
|
sysname = strrchr(nodepath, '/') + 1;
|
|
if (strncmp(sysname, "dm-", 3) != 0)
|
|
return (B_FALSE);
|
|
if ((udev = udev_new()) == NULL)
|
|
return (B_FALSE);
|
|
if ((dev = udev_device_new_from_subsystem_sysname(udev, "block",
|
|
sysname)) == NULL) {
|
|
udev_device_unref(dev);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
wholedisk = udev_mpath_whole_disk(dev);
|
|
|
|
udev_device_unref(dev);
|
|
return (wholedisk);
|
|
}
|
|
|
|
static int
|
|
udev_device_is_ready(struct udev_device *dev)
|
|
{
|
|
#ifdef HAVE_LIBUDEV_UDEV_DEVICE_GET_IS_INITIALIZED
|
|
return (udev_device_get_is_initialized(dev));
|
|
#else
|
|
/* wait for DEVLINKS property to be initialized */
|
|
return (udev_device_get_property_value(dev, "DEVLINKS") != NULL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Wait up to timeout_ms for udev to set up the device node. The device is
|
|
* considered ready when libudev determines it has been initialized, all of
|
|
* the device links have been verified to exist, and it has been allowed to
|
|
* settle. At this point the device the device can be accessed reliably.
|
|
* Depending on the complexity of the udev rules this process could take
|
|
* several seconds.
|
|
*/
|
|
int
|
|
zpool_label_disk_wait(char *path, int timeout_ms)
|
|
{
|
|
struct udev *udev;
|
|
struct udev_device *dev = NULL;
|
|
char nodepath[MAXPATHLEN];
|
|
char *sysname = NULL;
|
|
int ret = ENODEV;
|
|
int settle_ms = 50;
|
|
long sleep_ms = 10;
|
|
hrtime_t start, settle;
|
|
|
|
if ((udev = udev_new()) == NULL)
|
|
return (ENXIO);
|
|
|
|
start = gethrtime();
|
|
settle = 0;
|
|
|
|
do {
|
|
if (sysname == NULL) {
|
|
if (realpath(path, nodepath) != NULL) {
|
|
sysname = strrchr(nodepath, '/') + 1;
|
|
} else {
|
|
(void) usleep(sleep_ms * MILLISEC);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
dev = udev_device_new_from_subsystem_sysname(udev,
|
|
"block", sysname);
|
|
if ((dev != NULL) && udev_device_is_ready(dev)) {
|
|
struct udev_list_entry *links, *link = NULL;
|
|
|
|
ret = 0;
|
|
links = udev_device_get_devlinks_list_entry(dev);
|
|
|
|
udev_list_entry_foreach(link, links) {
|
|
struct stat64 statbuf;
|
|
const char *name;
|
|
|
|
name = udev_list_entry_get_name(link);
|
|
errno = 0;
|
|
if (stat64(name, &statbuf) == 0 && errno == 0)
|
|
continue;
|
|
|
|
settle = 0;
|
|
ret = ENODEV;
|
|
break;
|
|
}
|
|
|
|
if (ret == 0) {
|
|
if (settle == 0) {
|
|
settle = gethrtime();
|
|
} else if (NSEC2MSEC(gethrtime() - settle) >=
|
|
settle_ms) {
|
|
udev_device_unref(dev);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
udev_device_unref(dev);
|
|
(void) usleep(sleep_ms * MILLISEC);
|
|
|
|
} while (NSEC2MSEC(gethrtime() - start) < timeout_ms);
|
|
|
|
udev_unref(udev);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
|
|
/*
|
|
* Encode the persistent devices strings
|
|
* used for the vdev disk label
|
|
*/
|
|
static int
|
|
encode_device_strings(const char *path, vdev_dev_strs_t *ds,
|
|
boolean_t wholedisk)
|
|
{
|
|
struct udev *udev;
|
|
struct udev_device *dev = NULL;
|
|
char nodepath[MAXPATHLEN];
|
|
char *sysname;
|
|
int ret = ENODEV;
|
|
hrtime_t start;
|
|
|
|
if ((udev = udev_new()) == NULL)
|
|
return (ENXIO);
|
|
|
|
/* resolve path to a runtime device node instance */
|
|
if (realpath(path, nodepath) == NULL)
|
|
goto no_dev;
|
|
|
|
sysname = strrchr(nodepath, '/') + 1;
|
|
|
|
/*
|
|
* Wait up to 3 seconds for udev to set up the device node context
|
|
*/
|
|
start = gethrtime();
|
|
do {
|
|
dev = udev_device_new_from_subsystem_sysname(udev, "block",
|
|
sysname);
|
|
if (dev == NULL)
|
|
goto no_dev;
|
|
if (udev_device_is_ready(dev))
|
|
break; /* udev ready */
|
|
|
|
udev_device_unref(dev);
|
|
dev = NULL;
|
|
|
|
if (NSEC2MSEC(gethrtime() - start) < 10)
|
|
(void) sched_yield(); /* yield/busy wait up to 10ms */
|
|
else
|
|
(void) usleep(10 * MILLISEC);
|
|
|
|
} while (NSEC2MSEC(gethrtime() - start) < (3 * MILLISEC));
|
|
|
|
if (dev == NULL)
|
|
goto no_dev;
|
|
|
|
/*
|
|
* Only whole disks require extra device strings
|
|
*/
|
|
if (!wholedisk && !udev_mpath_whole_disk(dev))
|
|
goto no_dev;
|
|
|
|
ret = zfs_device_get_devid(dev, ds->vds_devid, sizeof (ds->vds_devid));
|
|
if (ret != 0)
|
|
goto no_dev_ref;
|
|
|
|
/* physical location string (optional) */
|
|
if (zfs_device_get_physical(dev, ds->vds_devphys,
|
|
sizeof (ds->vds_devphys)) != 0) {
|
|
ds->vds_devphys[0] = '\0'; /* empty string --> not available */
|
|
}
|
|
|
|
no_dev_ref:
|
|
udev_device_unref(dev);
|
|
no_dev:
|
|
udev_unref(udev);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Update a leaf vdev's persistent device strings (Linux only)
|
|
*
|
|
* - only applies for a dedicated leaf vdev (aka whole disk)
|
|
* - updated during pool create|add|attach|import
|
|
* - used for matching device matching during auto-{online,expand,replace}
|
|
* - stored in a leaf disk config label (i.e. alongside 'path' NVP)
|
|
* - these strings are currently not used in kernel (i.e. for vdev_disk_open)
|
|
*
|
|
* single device node example:
|
|
* devid: 'scsi-MG03SCA300_350000494a8cb3d67-part1'
|
|
* phys_path: 'pci-0000:04:00.0-sas-0x50000394a8cb3d67-lun-0'
|
|
*
|
|
* multipath device node example:
|
|
* devid: 'dm-uuid-mpath-35000c5006304de3f'
|
|
*
|
|
* We also store the enclosure sysfs path for turning on enclosure LEDs
|
|
* (if applicable):
|
|
* vdev_enc_sysfs_path: '/sys/class/enclosure/11:0:1:0/SLOT 4'
|
|
*/
|
|
void
|
|
update_vdev_config_dev_strs(nvlist_t *nv)
|
|
{
|
|
vdev_dev_strs_t vds;
|
|
char *env, *type, *path;
|
|
uint64_t wholedisk = 0;
|
|
char *upath, *spath;
|
|
|
|
/*
|
|
* For the benefit of legacy ZFS implementations, allow
|
|
* for opting out of devid strings in the vdev label.
|
|
*
|
|
* example use:
|
|
* env ZFS_VDEV_DEVID_OPT_OUT=YES zpool import dozer
|
|
*
|
|
* explanation:
|
|
* Older ZFS on Linux implementations had issues when attempting to
|
|
* display pool config VDEV names if a "devid" NVP value is present
|
|
* in the pool's config.
|
|
*
|
|
* For example, a pool that originated on illumos platform would
|
|
* have a devid value in the config and "zpool status" would fail
|
|
* when listing the config.
|
|
*
|
|
* A pool can be stripped of any "devid" values on import or
|
|
* prevented from adding them on zpool create|add by setting
|
|
* ZFS_VDEV_DEVID_OPT_OUT.
|
|
*/
|
|
env = getenv("ZFS_VDEV_DEVID_OPT_OUT");
|
|
if (env && (strtoul(env, NULL, 0) > 0 ||
|
|
!strncasecmp(env, "YES", 3) || !strncasecmp(env, "ON", 2))) {
|
|
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
|
|
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_PHYS_PATH);
|
|
return;
|
|
}
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0 ||
|
|
strcmp(type, VDEV_TYPE_DISK) != 0) {
|
|
return;
|
|
}
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
|
|
return;
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
|
|
|
|
/*
|
|
* Update device string values in config nvlist
|
|
*/
|
|
if (encode_device_strings(path, &vds, (boolean_t)wholedisk) == 0) {
|
|
(void) nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vds.vds_devid);
|
|
if (vds.vds_devphys[0] != '\0') {
|
|
(void) nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
|
|
vds.vds_devphys);
|
|
}
|
|
|
|
/* Add enclosure sysfs path (if disk is in an enclosure) */
|
|
upath = zfs_get_underlying_path(path);
|
|
spath = zfs_get_enclosure_sysfs_path(upath);
|
|
if (spath)
|
|
nvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
|
|
spath);
|
|
else
|
|
nvlist_remove_all(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
|
|
|
|
free(upath);
|
|
free(spath);
|
|
} else {
|
|
/* clear out any stale entries */
|
|
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
|
|
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_PHYS_PATH);
|
|
(void) nvlist_remove_all(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
|
|
}
|
|
}
|
|
#else
|
|
|
|
boolean_t
|
|
is_mpath_whole_disk(const char *path)
|
|
{
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Wait up to timeout_ms for udev to set up the device node. The device is
|
|
* considered ready when the provided path have been verified to exist and
|
|
* it has been allowed to settle. At this point the device the device can
|
|
* be accessed reliably. Depending on the complexity of the udev rules thisi
|
|
* process could take several seconds.
|
|
*/
|
|
int
|
|
zpool_label_disk_wait(char *path, int timeout_ms)
|
|
{
|
|
int settle_ms = 50;
|
|
long sleep_ms = 10;
|
|
hrtime_t start, settle;
|
|
struct stat64 statbuf;
|
|
|
|
start = gethrtime();
|
|
settle = 0;
|
|
|
|
do {
|
|
errno = 0;
|
|
if ((stat64(path, &statbuf) == 0) && (errno == 0)) {
|
|
if (settle == 0)
|
|
settle = gethrtime();
|
|
else if (NSEC2MSEC(gethrtime() - settle) >= settle_ms)
|
|
return (0);
|
|
} else if (errno != ENOENT) {
|
|
return (errno);
|
|
}
|
|
|
|
usleep(sleep_ms * MILLISEC);
|
|
} while (NSEC2MSEC(gethrtime() - start) < timeout_ms);
|
|
|
|
return (ENODEV);
|
|
}
|
|
|
|
void
|
|
update_vdev_config_dev_strs(nvlist_t *nv)
|
|
{
|
|
}
|
|
|
|
#endif /* HAVE_LIBUDEV */
|
|
|
|
/*
|
|
* Go through and fix up any path and/or devid information for the given vdev
|
|
* configuration.
|
|
*/
|
|
static int
|
|
fix_paths(nvlist_t *nv, name_entry_t *names)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t c, children;
|
|
uint64_t guid;
|
|
name_entry_t *ne, *best;
|
|
char *path;
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) == 0) {
|
|
for (c = 0; c < children; c++)
|
|
if (fix_paths(child[c], names) != 0)
|
|
return (-1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This is a leaf (file or disk) vdev. In either case, go through
|
|
* the name list and see if we find a matching guid. If so, replace
|
|
* the path and see if we can calculate a new devid.
|
|
*
|
|
* There may be multiple names associated with a particular guid, in
|
|
* which case we have overlapping partitions or multiple paths to the
|
|
* same disk. In this case we prefer to use the path name which
|
|
* matches the ZPOOL_CONFIG_PATH. If no matching entry is found we
|
|
* use the lowest order device which corresponds to the first match
|
|
* while traversing the ZPOOL_IMPORT_PATH search path.
|
|
*/
|
|
verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
|
|
path = NULL;
|
|
|
|
best = NULL;
|
|
for (ne = names; ne != NULL; ne = ne->ne_next) {
|
|
if (ne->ne_guid == guid) {
|
|
if (path == NULL) {
|
|
best = ne;
|
|
break;
|
|
}
|
|
|
|
if ((strlen(path) == strlen(ne->ne_name)) &&
|
|
strncmp(path, ne->ne_name, strlen(path)) == 0) {
|
|
best = ne;
|
|
break;
|
|
}
|
|
|
|
if (best == NULL) {
|
|
best = ne;
|
|
continue;
|
|
}
|
|
|
|
/* Prefer paths with move vdev labels. */
|
|
if (ne->ne_num_labels > best->ne_num_labels) {
|
|
best = ne;
|
|
continue;
|
|
}
|
|
|
|
/* Prefer paths earlier in the search order. */
|
|
if (ne->ne_num_labels == best->ne_num_labels &&
|
|
ne->ne_order < best->ne_order) {
|
|
best = ne;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best == NULL)
|
|
return (0);
|
|
|
|
if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
|
|
return (-1);
|
|
|
|
/* Linux only - update ZPOOL_CONFIG_DEVID and ZPOOL_CONFIG_PHYS_PATH */
|
|
update_vdev_config_dev_strs(nv);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add the given configuration to the list of known devices.
|
|
*/
|
|
static int
|
|
add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
|
|
int order, int num_labels, nvlist_t *config)
|
|
{
|
|
uint64_t pool_guid, vdev_guid, top_guid, txg, state;
|
|
pool_entry_t *pe;
|
|
vdev_entry_t *ve;
|
|
config_entry_t *ce;
|
|
name_entry_t *ne;
|
|
|
|
/*
|
|
* If this is a hot spare not currently in use or level 2 cache
|
|
* device, add it to the list of names to translate, but don't do
|
|
* anything else.
|
|
*/
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) == 0 &&
|
|
(state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
|
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
|
|
if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
|
|
return (-1);
|
|
|
|
if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
|
|
free(ne);
|
|
return (-1);
|
|
}
|
|
ne->ne_guid = vdev_guid;
|
|
ne->ne_order = order;
|
|
ne->ne_num_labels = num_labels;
|
|
ne->ne_next = pl->names;
|
|
pl->names = ne;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If we have a valid config but cannot read any of these fields, then
|
|
* it means we have a half-initialized label. In vdev_label_init()
|
|
* we write a label with txg == 0 so that we can identify the device
|
|
* in case the user refers to the same disk later on. If we fail to
|
|
* create the pool, we'll be left with a label in this state
|
|
* which should not be considered part of a valid pool.
|
|
*/
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
&pool_guid) != 0 ||
|
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
|
|
&vdev_guid) != 0 ||
|
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
|
|
&top_guid) != 0 ||
|
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0 || txg == 0) {
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* First, see if we know about this pool. If not, then add it to the
|
|
* list of known pools.
|
|
*/
|
|
for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
|
|
if (pe->pe_guid == pool_guid)
|
|
break;
|
|
}
|
|
|
|
if (pe == NULL) {
|
|
if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
|
|
return (-1);
|
|
}
|
|
pe->pe_guid = pool_guid;
|
|
pe->pe_next = pl->pools;
|
|
pl->pools = pe;
|
|
}
|
|
|
|
/*
|
|
* Second, see if we know about this toplevel vdev. Add it if its
|
|
* missing.
|
|
*/
|
|
for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
|
|
if (ve->ve_guid == top_guid)
|
|
break;
|
|
}
|
|
|
|
if (ve == NULL) {
|
|
if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
|
|
return (-1);
|
|
}
|
|
ve->ve_guid = top_guid;
|
|
ve->ve_next = pe->pe_vdevs;
|
|
pe->pe_vdevs = ve;
|
|
}
|
|
|
|
/*
|
|
* Third, see if we have a config with a matching transaction group. If
|
|
* so, then we do nothing. Otherwise, add it to the list of known
|
|
* configs.
|
|
*/
|
|
for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
|
|
if (ce->ce_txg == txg)
|
|
break;
|
|
}
|
|
|
|
if (ce == NULL) {
|
|
if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
|
|
return (-1);
|
|
}
|
|
ce->ce_txg = txg;
|
|
ce->ce_config = fnvlist_dup(config);
|
|
ce->ce_next = ve->ve_configs;
|
|
ve->ve_configs = ce;
|
|
}
|
|
|
|
/*
|
|
* At this point we've successfully added our config to the list of
|
|
* known configs. The last thing to do is add the vdev guid -> path
|
|
* mappings so that we can fix up the configuration as necessary before
|
|
* doing the import.
|
|
*/
|
|
if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
|
|
return (-1);
|
|
|
|
if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
|
|
free(ne);
|
|
return (-1);
|
|
}
|
|
|
|
ne->ne_guid = vdev_guid;
|
|
ne->ne_order = order;
|
|
ne->ne_num_labels = num_labels;
|
|
ne->ne_next = pl->names;
|
|
pl->names = ne;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the named pool matches the given GUID.
|
|
*/
|
|
static int
|
|
pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
|
|
boolean_t *isactive)
|
|
{
|
|
zpool_handle_t *zhp;
|
|
uint64_t theguid;
|
|
|
|
if (zpool_open_silent(hdl, name, &zhp) != 0)
|
|
return (-1);
|
|
|
|
if (zhp == NULL) {
|
|
*isactive = B_FALSE;
|
|
return (0);
|
|
}
|
|
|
|
verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
|
|
&theguid) == 0);
|
|
|
|
zpool_close(zhp);
|
|
|
|
*isactive = (theguid == guid);
|
|
return (0);
|
|
}
|
|
|
|
static nvlist_t *
|
|
refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
|
|
{
|
|
nvlist_t *nvl;
|
|
zfs_cmd_t zc = {"\0"};
|
|
int err, dstbuf_size;
|
|
|
|
if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
|
|
return (NULL);
|
|
|
|
dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4);
|
|
|
|
if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) {
|
|
zcmd_free_nvlists(&zc);
|
|
return (NULL);
|
|
}
|
|
|
|
while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
|
|
&zc)) != 0 && errno == ENOMEM) {
|
|
if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
|
|
zcmd_free_nvlists(&zc);
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
zcmd_free_nvlists(&zc);
|
|
return (NULL);
|
|
}
|
|
|
|
if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
|
|
zcmd_free_nvlists(&zc);
|
|
return (NULL);
|
|
}
|
|
|
|
zcmd_free_nvlists(&zc);
|
|
return (nvl);
|
|
}
|
|
|
|
/*
|
|
* Determine if the vdev id is a hole in the namespace.
|
|
*/
|
|
boolean_t
|
|
vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
|
|
{
|
|
int c;
|
|
|
|
for (c = 0; c < holes; c++) {
|
|
|
|
/* Top-level is a hole */
|
|
if (hole_array[c] == id)
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Convert our list of pools into the definitive set of configurations. We
|
|
* start by picking the best config for each toplevel vdev. Once that's done,
|
|
* we assemble the toplevel vdevs into a full config for the pool. We make a
|
|
* pass to fix up any incorrect paths, and then add it to the main list to
|
|
* return to the user.
|
|
*/
|
|
static nvlist_t *
|
|
get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
|
|
nvlist_t *policy)
|
|
{
|
|
pool_entry_t *pe;
|
|
vdev_entry_t *ve;
|
|
config_entry_t *ce;
|
|
nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t i, nspares, nl2cache;
|
|
boolean_t config_seen;
|
|
uint64_t best_txg;
|
|
char *name, *hostname = NULL;
|
|
uint64_t guid;
|
|
uint_t children = 0;
|
|
nvlist_t **child = NULL;
|
|
uint_t holes;
|
|
uint64_t *hole_array, max_id;
|
|
uint_t c;
|
|
boolean_t isactive;
|
|
uint64_t hostid;
|
|
nvlist_t *nvl;
|
|
boolean_t valid_top_config = B_FALSE;
|
|
|
|
if (nvlist_alloc(&ret, 0, 0) != 0)
|
|
goto nomem;
|
|
|
|
for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
|
|
uint64_t id, max_txg = 0;
|
|
|
|
if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
|
|
goto nomem;
|
|
config_seen = B_FALSE;
|
|
|
|
/*
|
|
* Iterate over all toplevel vdevs. Grab the pool configuration
|
|
* from the first one we find, and then go through the rest and
|
|
* add them as necessary to the 'vdevs' member of the config.
|
|
*/
|
|
for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
|
|
|
|
/*
|
|
* Determine the best configuration for this vdev by
|
|
* selecting the config with the latest transaction
|
|
* group.
|
|
*/
|
|
best_txg = 0;
|
|
for (ce = ve->ve_configs; ce != NULL;
|
|
ce = ce->ce_next) {
|
|
|
|
if (ce->ce_txg > best_txg) {
|
|
tmp = ce->ce_config;
|
|
best_txg = ce->ce_txg;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We rely on the fact that the max txg for the
|
|
* pool will contain the most up-to-date information
|
|
* about the valid top-levels in the vdev namespace.
|
|
*/
|
|
if (best_txg > max_txg) {
|
|
(void) nvlist_remove(config,
|
|
ZPOOL_CONFIG_VDEV_CHILDREN,
|
|
DATA_TYPE_UINT64);
|
|
(void) nvlist_remove(config,
|
|
ZPOOL_CONFIG_HOLE_ARRAY,
|
|
DATA_TYPE_UINT64_ARRAY);
|
|
|
|
max_txg = best_txg;
|
|
hole_array = NULL;
|
|
holes = 0;
|
|
max_id = 0;
|
|
valid_top_config = B_FALSE;
|
|
|
|
if (nvlist_lookup_uint64(tmp,
|
|
ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
|
|
verify(nvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_VDEV_CHILDREN,
|
|
max_id) == 0);
|
|
valid_top_config = B_TRUE;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64_array(tmp,
|
|
ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
|
|
&holes) == 0) {
|
|
verify(nvlist_add_uint64_array(config,
|
|
ZPOOL_CONFIG_HOLE_ARRAY,
|
|
hole_array, holes) == 0);
|
|
}
|
|
}
|
|
|
|
if (!config_seen) {
|
|
/*
|
|
* Copy the relevant pieces of data to the pool
|
|
* configuration:
|
|
*
|
|
* version
|
|
* pool guid
|
|
* name
|
|
* comment (if available)
|
|
* pool state
|
|
* hostid (if available)
|
|
* hostname (if available)
|
|
*/
|
|
uint64_t state, version;
|
|
char *comment = NULL;
|
|
|
|
version = fnvlist_lookup_uint64(tmp,
|
|
ZPOOL_CONFIG_VERSION);
|
|
fnvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_VERSION, version);
|
|
guid = fnvlist_lookup_uint64(tmp,
|
|
ZPOOL_CONFIG_POOL_GUID);
|
|
fnvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_POOL_GUID, guid);
|
|
name = fnvlist_lookup_string(tmp,
|
|
ZPOOL_CONFIG_POOL_NAME);
|
|
fnvlist_add_string(config,
|
|
ZPOOL_CONFIG_POOL_NAME, name);
|
|
|
|
if (nvlist_lookup_string(tmp,
|
|
ZPOOL_CONFIG_COMMENT, &comment) == 0)
|
|
fnvlist_add_string(config,
|
|
ZPOOL_CONFIG_COMMENT, comment);
|
|
|
|
state = fnvlist_lookup_uint64(tmp,
|
|
ZPOOL_CONFIG_POOL_STATE);
|
|
fnvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_POOL_STATE, state);
|
|
|
|
hostid = 0;
|
|
if (nvlist_lookup_uint64(tmp,
|
|
ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
|
|
fnvlist_add_uint64(config,
|
|
ZPOOL_CONFIG_HOSTID, hostid);
|
|
hostname = fnvlist_lookup_string(tmp,
|
|
ZPOOL_CONFIG_HOSTNAME);
|
|
fnvlist_add_string(config,
|
|
ZPOOL_CONFIG_HOSTNAME, hostname);
|
|
}
|
|
|
|
config_seen = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Add this top-level vdev to the child array.
|
|
*/
|
|
verify(nvlist_lookup_nvlist(tmp,
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
|
|
verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
|
|
&id) == 0);
|
|
|
|
if (id >= children) {
|
|
nvlist_t **newchild;
|
|
|
|
newchild = zfs_alloc(hdl, (id + 1) *
|
|
sizeof (nvlist_t *));
|
|
if (newchild == NULL)
|
|
goto nomem;
|
|
|
|
for (c = 0; c < children; c++)
|
|
newchild[c] = child[c];
|
|
|
|
free(child);
|
|
child = newchild;
|
|
children = id + 1;
|
|
}
|
|
if (nvlist_dup(nvtop, &child[id], 0) != 0)
|
|
goto nomem;
|
|
|
|
}
|
|
|
|
/*
|
|
* If we have information about all the top-levels then
|
|
* clean up the nvlist which we've constructed. This
|
|
* means removing any extraneous devices that are
|
|
* beyond the valid range or adding devices to the end
|
|
* of our array which appear to be missing.
|
|
*/
|
|
if (valid_top_config) {
|
|
if (max_id < children) {
|
|
for (c = max_id; c < children; c++)
|
|
nvlist_free(child[c]);
|
|
children = max_id;
|
|
} else if (max_id > children) {
|
|
nvlist_t **newchild;
|
|
|
|
newchild = zfs_alloc(hdl, (max_id) *
|
|
sizeof (nvlist_t *));
|
|
if (newchild == NULL)
|
|
goto nomem;
|
|
|
|
for (c = 0; c < children; c++)
|
|
newchild[c] = child[c];
|
|
|
|
free(child);
|
|
child = newchild;
|
|
children = max_id;
|
|
}
|
|
}
|
|
|
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
&guid) == 0);
|
|
|
|
/*
|
|
* The vdev namespace may contain holes as a result of
|
|
* device removal. We must add them back into the vdev
|
|
* tree before we process any missing devices.
|
|
*/
|
|
if (holes > 0) {
|
|
ASSERT(valid_top_config);
|
|
|
|
for (c = 0; c < children; c++) {
|
|
nvlist_t *holey;
|
|
|
|
if (child[c] != NULL ||
|
|
!vdev_is_hole(hole_array, holes, c))
|
|
continue;
|
|
|
|
if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
|
|
0) != 0)
|
|
goto nomem;
|
|
|
|
/*
|
|
* Holes in the namespace are treated as
|
|
* "hole" top-level vdevs and have a
|
|
* special flag set on them.
|
|
*/
|
|
if (nvlist_add_string(holey,
|
|
ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_HOLE) != 0 ||
|
|
nvlist_add_uint64(holey,
|
|
ZPOOL_CONFIG_ID, c) != 0 ||
|
|
nvlist_add_uint64(holey,
|
|
ZPOOL_CONFIG_GUID, 0ULL) != 0) {
|
|
nvlist_free(holey);
|
|
goto nomem;
|
|
}
|
|
child[c] = holey;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look for any missing top-level vdevs. If this is the case,
|
|
* create a faked up 'missing' vdev as a placeholder. We cannot
|
|
* simply compress the child array, because the kernel performs
|
|
* certain checks to make sure the vdev IDs match their location
|
|
* in the configuration.
|
|
*/
|
|
for (c = 0; c < children; c++) {
|
|
if (child[c] == NULL) {
|
|
nvlist_t *missing;
|
|
if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
|
|
0) != 0)
|
|
goto nomem;
|
|
if (nvlist_add_string(missing,
|
|
ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_MISSING) != 0 ||
|
|
nvlist_add_uint64(missing,
|
|
ZPOOL_CONFIG_ID, c) != 0 ||
|
|
nvlist_add_uint64(missing,
|
|
ZPOOL_CONFIG_GUID, 0ULL) != 0) {
|
|
nvlist_free(missing);
|
|
goto nomem;
|
|
}
|
|
child[c] = missing;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Put all of this pool's top-level vdevs into a root vdev.
|
|
*/
|
|
if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
|
|
goto nomem;
|
|
if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_ROOT) != 0 ||
|
|
nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
|
|
nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
|
|
nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
|
|
child, children) != 0) {
|
|
nvlist_free(nvroot);
|
|
goto nomem;
|
|
}
|
|
|
|
for (c = 0; c < children; c++)
|
|
nvlist_free(child[c]);
|
|
free(child);
|
|
children = 0;
|
|
child = NULL;
|
|
|
|
/*
|
|
* Go through and fix up any paths and/or devids based on our
|
|
* known list of vdev GUID -> path mappings.
|
|
*/
|
|
if (fix_paths(nvroot, pl->names) != 0) {
|
|
nvlist_free(nvroot);
|
|
goto nomem;
|
|
}
|
|
|
|
/*
|
|
* Add the root vdev to this pool's configuration.
|
|
*/
|
|
if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
nvroot) != 0) {
|
|
nvlist_free(nvroot);
|
|
goto nomem;
|
|
}
|
|
nvlist_free(nvroot);
|
|
|
|
/*
|
|
* zdb uses this path to report on active pools that were
|
|
* imported or created using -R.
|
|
*/
|
|
if (active_ok)
|
|
goto add_pool;
|
|
|
|
/*
|
|
* Determine if this pool is currently active, in which case we
|
|
* can't actually import it.
|
|
*/
|
|
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
|
|
&name) == 0);
|
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
&guid) == 0);
|
|
|
|
if (pool_active(hdl, name, guid, &isactive) != 0)
|
|
goto error;
|
|
|
|
if (isactive) {
|
|
nvlist_free(config);
|
|
config = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (policy != NULL) {
|
|
if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
|
|
policy) != 0)
|
|
goto nomem;
|
|
}
|
|
|
|
if ((nvl = refresh_config(hdl, config)) == NULL) {
|
|
nvlist_free(config);
|
|
config = NULL;
|
|
continue;
|
|
}
|
|
|
|
nvlist_free(config);
|
|
config = nvl;
|
|
|
|
/*
|
|
* Go through and update the paths for spares, now that we have
|
|
* them.
|
|
*/
|
|
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&nvroot) == 0);
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
|
&spares, &nspares) == 0) {
|
|
for (i = 0; i < nspares; i++) {
|
|
if (fix_paths(spares[i], pl->names) != 0)
|
|
goto nomem;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the paths for l2cache devices.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
|
|
&l2cache, &nl2cache) == 0) {
|
|
for (i = 0; i < nl2cache; i++) {
|
|
if (fix_paths(l2cache[i], pl->names) != 0)
|
|
goto nomem;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore the original information read from the actual label.
|
|
*/
|
|
(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
|
|
DATA_TYPE_UINT64);
|
|
(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
|
|
DATA_TYPE_STRING);
|
|
if (hostid != 0) {
|
|
verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
|
|
hostid) == 0);
|
|
verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
|
|
hostname) == 0);
|
|
}
|
|
|
|
add_pool:
|
|
/*
|
|
* Add this pool to the list of configs.
|
|
*/
|
|
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
|
|
&name) == 0);
|
|
if (nvlist_add_nvlist(ret, name, config) != 0)
|
|
goto nomem;
|
|
|
|
nvlist_free(config);
|
|
config = NULL;
|
|
}
|
|
|
|
return (ret);
|
|
|
|
nomem:
|
|
(void) no_memory(hdl);
|
|
error:
|
|
nvlist_free(config);
|
|
nvlist_free(ret);
|
|
for (c = 0; c < children; c++)
|
|
nvlist_free(child[c]);
|
|
free(child);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Return the offset of the given label.
|
|
*/
|
|
static uint64_t
|
|
label_offset(uint64_t size, int l)
|
|
{
|
|
ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
|
|
return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
|
|
0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
|
|
}
|
|
|
|
/*
|
|
* Given a file descriptor, read the label information and return an nvlist
|
|
* describing the configuration, if there is one. The number of valid
|
|
* labels found will be returned in num_labels when non-NULL.
|
|
*/
|
|
int
|
|
zpool_read_label(int fd, nvlist_t **config, int *num_labels)
|
|
{
|
|
struct stat64 statbuf;
|
|
int l, count = 0;
|
|
vdev_label_t *label;
|
|
nvlist_t *expected_config = NULL;
|
|
uint64_t expected_guid = 0, size;
|
|
int error;
|
|
|
|
*config = NULL;
|
|
|
|
if (fstat64_blk(fd, &statbuf) == -1)
|
|
return (0);
|
|
size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
|
|
|
|
error = posix_memalign((void **)&label, PAGESIZE, sizeof (*label));
|
|
if (error)
|
|
return (-1);
|
|
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
|
uint64_t state, guid, txg;
|
|
|
|
if (pread64(fd, label, sizeof (vdev_label_t),
|
|
label_offset(size, l)) != sizeof (vdev_label_t))
|
|
continue;
|
|
|
|
if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
|
|
sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
|
|
continue;
|
|
|
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
|
|
&guid) != 0 || guid == 0) {
|
|
nvlist_free(*config);
|
|
continue;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0 || state > POOL_STATE_L2CACHE) {
|
|
nvlist_free(*config);
|
|
continue;
|
|
}
|
|
|
|
if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
|
|
(nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0 || txg == 0)) {
|
|
nvlist_free(*config);
|
|
continue;
|
|
}
|
|
|
|
if (expected_guid) {
|
|
if (expected_guid == guid)
|
|
count++;
|
|
|
|
nvlist_free(*config);
|
|
} else {
|
|
expected_config = *config;
|
|
expected_guid = guid;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
if (num_labels != NULL)
|
|
*num_labels = count;
|
|
|
|
free(label);
|
|
*config = expected_config;
|
|
|
|
return (0);
|
|
}
|
|
|
|
typedef struct rdsk_node {
|
|
char *rn_name; /* Full path to device */
|
|
int rn_order; /* Preferred order (low to high) */
|
|
int rn_num_labels; /* Number of valid labels */
|
|
uint64_t rn_vdev_guid; /* Expected vdev guid when set */
|
|
libzfs_handle_t *rn_hdl;
|
|
nvlist_t *rn_config; /* Label config */
|
|
avl_tree_t *rn_avl;
|
|
avl_node_t rn_node;
|
|
pthread_mutex_t *rn_lock;
|
|
boolean_t rn_labelpaths;
|
|
} rdsk_node_t;
|
|
|
|
/*
|
|
* Sorted by vdev guid and full path to allow for multiple entries with
|
|
* the same full path name. This is required because it's possible to
|
|
* have multiple block devices with labels that refer to the same
|
|
* ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both
|
|
* entries need to be added to the cache. Scenarios where this can occur
|
|
* include overwritten pool labels, devices which are visible from multiple
|
|
* hosts and multipath devices.
|
|
*/
|
|
static int
|
|
slice_cache_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
|
|
const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
|
|
uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid;
|
|
uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid;
|
|
int rv;
|
|
|
|
rv = AVL_CMP(guid1, guid2);
|
|
if (rv)
|
|
return (rv);
|
|
|
|
return (AVL_ISIGN(strcmp(nm1, nm2)));
|
|
}
|
|
|
|
static boolean_t
|
|
is_watchdog_dev(char *dev)
|
|
{
|
|
/* For 'watchdog' dev */
|
|
if (strcmp(dev, "watchdog") == 0)
|
|
return (B_TRUE);
|
|
|
|
/* For 'watchdog<digit><whatever> */
|
|
if (strstr(dev, "watchdog") == dev && isdigit(dev[8]))
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
static int
|
|
label_paths_impl(libzfs_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid,
|
|
uint64_t vdev_guid, char **path, char **devid)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t c, children;
|
|
uint64_t guid;
|
|
char *val;
|
|
int error;
|
|
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) == 0) {
|
|
for (c = 0; c < children; c++) {
|
|
error = label_paths_impl(hdl, child[c],
|
|
pool_guid, vdev_guid, path, devid);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
if (nvroot == NULL)
|
|
return (0);
|
|
|
|
error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid);
|
|
if ((error != 0) || (guid != vdev_guid))
|
|
return (0);
|
|
|
|
error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val);
|
|
if (error == 0)
|
|
*path = val;
|
|
|
|
error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val);
|
|
if (error == 0)
|
|
*devid = val;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID
|
|
* and store these strings as config_path and devid_path respectively.
|
|
* The returned pointers are only valid as long as label remains valid.
|
|
*/
|
|
static int
|
|
label_paths(libzfs_handle_t *hdl, nvlist_t *label, char **path, char **devid)
|
|
{
|
|
nvlist_t *nvroot;
|
|
uint64_t pool_guid;
|
|
uint64_t vdev_guid;
|
|
|
|
*path = NULL;
|
|
*devid = NULL;
|
|
|
|
if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid))
|
|
return (ENOENT);
|
|
|
|
return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path,
|
|
devid));
|
|
}
|
|
|
|
static void
|
|
zpool_open_func(void *arg)
|
|
{
|
|
rdsk_node_t *rn = arg;
|
|
libzfs_handle_t *hdl = rn->rn_hdl;
|
|
struct stat64 statbuf;
|
|
nvlist_t *config;
|
|
char *bname, *dupname;
|
|
uint64_t vdev_guid = 0;
|
|
int error;
|
|
int num_labels;
|
|
int fd;
|
|
|
|
/*
|
|
* Skip devices with well known prefixes there can be side effects
|
|
* when opening devices which need to be avoided.
|
|
*
|
|
* hpet - High Precision Event Timer
|
|
* watchdog - Watchdog must be closed in a special way.
|
|
*/
|
|
dupname = zfs_strdup(hdl, rn->rn_name);
|
|
bname = basename(dupname);
|
|
error = ((strcmp(bname, "hpet") == 0) || is_watchdog_dev(bname));
|
|
free(dupname);
|
|
if (error)
|
|
return;
|
|
|
|
/*
|
|
* Ignore failed stats. We only want regular files and block devices.
|
|
*/
|
|
if (stat64(rn->rn_name, &statbuf) != 0 ||
|
|
(!S_ISREG(statbuf.st_mode) && !S_ISBLK(statbuf.st_mode)))
|
|
return;
|
|
|
|
/*
|
|
* Preferentially open using O_DIRECT to bypass the block device
|
|
* cache which may be stale for multipath devices. An EINVAL errno
|
|
* indicates O_DIRECT is unsupported so fallback to just O_RDONLY.
|
|
*/
|
|
fd = open(rn->rn_name, O_RDONLY | O_DIRECT);
|
|
if ((fd < 0) && (errno == EINVAL))
|
|
fd = open(rn->rn_name, O_RDONLY);
|
|
|
|
if (fd < 0)
|
|
return;
|
|
|
|
/*
|
|
* This file is too small to hold a zpool
|
|
*/
|
|
if (S_ISREG(statbuf.st_mode) && statbuf.st_size < SPA_MINDEVSIZE) {
|
|
(void) close(fd);
|
|
return;
|
|
}
|
|
|
|
error = zpool_read_label(fd, &config, &num_labels);
|
|
if (error != 0) {
|
|
(void) close(fd);
|
|
return;
|
|
}
|
|
|
|
if (num_labels == 0) {
|
|
(void) close(fd);
|
|
nvlist_free(config);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check that the vdev is for the expected guid. Additional entries
|
|
* are speculatively added based on the paths stored in the labels.
|
|
* Entries with valid paths but incorrect guids must be removed.
|
|
*/
|
|
error = nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid);
|
|
if (error || (rn->rn_vdev_guid && rn->rn_vdev_guid != vdev_guid)) {
|
|
(void) close(fd);
|
|
nvlist_free(config);
|
|
return;
|
|
}
|
|
|
|
(void) close(fd);
|
|
|
|
rn->rn_config = config;
|
|
rn->rn_num_labels = num_labels;
|
|
|
|
/*
|
|
* Add additional entries for paths described by this label.
|
|
*/
|
|
if (rn->rn_labelpaths) {
|
|
char *path = NULL;
|
|
char *devid = NULL;
|
|
rdsk_node_t *slice;
|
|
avl_index_t where;
|
|
int error;
|
|
|
|
if (label_paths(rn->rn_hdl, rn->rn_config, &path, &devid))
|
|
return;
|
|
|
|
/*
|
|
* Allow devlinks to stabilize so all paths are available.
|
|
*/
|
|
zpool_label_disk_wait(rn->rn_name, DISK_LABEL_WAIT);
|
|
|
|
if (path != NULL) {
|
|
slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
|
|
slice->rn_name = zfs_strdup(hdl, path);
|
|
slice->rn_vdev_guid = vdev_guid;
|
|
slice->rn_avl = rn->rn_avl;
|
|
slice->rn_hdl = hdl;
|
|
slice->rn_order = IMPORT_ORDER_PREFERRED_1;
|
|
slice->rn_labelpaths = B_FALSE;
|
|
pthread_mutex_lock(rn->rn_lock);
|
|
if (avl_find(rn->rn_avl, slice, &where)) {
|
|
pthread_mutex_unlock(rn->rn_lock);
|
|
free(slice->rn_name);
|
|
free(slice);
|
|
} else {
|
|
avl_insert(rn->rn_avl, slice, where);
|
|
pthread_mutex_unlock(rn->rn_lock);
|
|
zpool_open_func(slice);
|
|
}
|
|
}
|
|
|
|
if (devid != NULL) {
|
|
slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
|
|
error = asprintf(&slice->rn_name, "%s%s",
|
|
DEV_BYID_PATH, devid);
|
|
if (error == -1) {
|
|
free(slice);
|
|
return;
|
|
}
|
|
|
|
slice->rn_vdev_guid = vdev_guid;
|
|
slice->rn_avl = rn->rn_avl;
|
|
slice->rn_hdl = hdl;
|
|
slice->rn_order = IMPORT_ORDER_PREFERRED_2;
|
|
slice->rn_labelpaths = B_FALSE;
|
|
pthread_mutex_lock(rn->rn_lock);
|
|
if (avl_find(rn->rn_avl, slice, &where)) {
|
|
pthread_mutex_unlock(rn->rn_lock);
|
|
free(slice->rn_name);
|
|
free(slice);
|
|
} else {
|
|
avl_insert(rn->rn_avl, slice, where);
|
|
pthread_mutex_unlock(rn->rn_lock);
|
|
zpool_open_func(slice);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given a file descriptor, clear (zero) the label information. This function
|
|
* is used in the appliance stack as part of the ZFS sysevent module and
|
|
* to implement the "zpool labelclear" command.
|
|
*/
|
|
int
|
|
zpool_clear_label(int fd)
|
|
{
|
|
struct stat64 statbuf;
|
|
int l;
|
|
vdev_label_t *label;
|
|
uint64_t size;
|
|
|
|
if (fstat64_blk(fd, &statbuf) == -1)
|
|
return (0);
|
|
size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
|
|
|
|
if ((label = calloc(1, sizeof (vdev_label_t))) == NULL)
|
|
return (-1);
|
|
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
|
if (pwrite64(fd, label, sizeof (vdev_label_t),
|
|
label_offset(size, l)) != sizeof (vdev_label_t)) {
|
|
free(label);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
free(label);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zpool_find_import_scan_add_slice(libzfs_handle_t *hdl, pthread_mutex_t *lock,
|
|
avl_tree_t *cache, char *path, const char *name, int order)
|
|
{
|
|
avl_index_t where;
|
|
rdsk_node_t *slice;
|
|
|
|
slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
|
|
if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) {
|
|
free(slice);
|
|
return;
|
|
}
|
|
slice->rn_vdev_guid = 0;
|
|
slice->rn_lock = lock;
|
|
slice->rn_avl = cache;
|
|
slice->rn_hdl = hdl;
|
|
slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET;
|
|
slice->rn_labelpaths = B_FALSE;
|
|
|
|
pthread_mutex_lock(lock);
|
|
if (avl_find(cache, slice, &where)) {
|
|
free(slice->rn_name);
|
|
free(slice);
|
|
} else {
|
|
avl_insert(cache, slice, where);
|
|
}
|
|
pthread_mutex_unlock(lock);
|
|
}
|
|
|
|
static int
|
|
zpool_find_import_scan_dir(libzfs_handle_t *hdl, pthread_mutex_t *lock,
|
|
avl_tree_t *cache, char *dir, int order)
|
|
{
|
|
int error;
|
|
char path[MAXPATHLEN];
|
|
struct dirent64 *dp;
|
|
DIR *dirp;
|
|
|
|
if (realpath(dir, path) == NULL) {
|
|
error = errno;
|
|
if (error == ENOENT)
|
|
return (0);
|
|
|
|
zfs_error_aux(hdl, strerror(error));
|
|
(void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(
|
|
TEXT_DOMAIN, "cannot resolve path '%s'"), dir);
|
|
return (error);
|
|
}
|
|
|
|
dirp = opendir(path);
|
|
if (dirp == NULL) {
|
|
error = errno;
|
|
zfs_error_aux(hdl, strerror(error));
|
|
(void) zfs_error_fmt(hdl, EZFS_BADPATH,
|
|
dgettext(TEXT_DOMAIN, "cannot open '%s'"), path);
|
|
return (error);
|
|
}
|
|
|
|
while ((dp = readdir64(dirp)) != NULL) {
|
|
const char *name = dp->d_name;
|
|
if (name[0] == '.' &&
|
|
(name[1] == 0 || (name[1] == '.' && name[2] == 0)))
|
|
continue;
|
|
|
|
zpool_find_import_scan_add_slice(hdl, lock, cache, path, name,
|
|
order);
|
|
}
|
|
|
|
(void) closedir(dirp);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zpool_find_import_scan_path(libzfs_handle_t *hdl, pthread_mutex_t *lock,
|
|
avl_tree_t *cache, char *dir, int order)
|
|
{
|
|
int error = 0;
|
|
char path[MAXPATHLEN];
|
|
char *d, *b;
|
|
char *dpath, *name;
|
|
|
|
/*
|
|
* Seperate the directory part and last part of the
|
|
* path. We do this so that we can get the realpath of
|
|
* the directory. We don't get the realpath on the
|
|
* whole path because if it's a symlink, we want the
|
|
* path of the symlink not where it points to.
|
|
*/
|
|
d = zfs_strdup(hdl, dir);
|
|
b = zfs_strdup(hdl, dir);
|
|
dpath = dirname(d);
|
|
name = basename(b);
|
|
|
|
if (realpath(dpath, path) == NULL) {
|
|
error = errno;
|
|
if (error == ENOENT) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
zfs_error_aux(hdl, strerror(error));
|
|
(void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(
|
|
TEXT_DOMAIN, "cannot resolve path '%s'"), dir);
|
|
goto out;
|
|
}
|
|
|
|
zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order);
|
|
|
|
out:
|
|
free(b);
|
|
free(d);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Scan a list of directories for zfs devices.
|
|
*/
|
|
static int
|
|
zpool_find_import_scan(libzfs_handle_t *hdl, pthread_mutex_t *lock,
|
|
avl_tree_t **slice_cache, char **dir, int dirs)
|
|
{
|
|
avl_tree_t *cache;
|
|
rdsk_node_t *slice;
|
|
void *cookie;
|
|
int i, error;
|
|
|
|
*slice_cache = NULL;
|
|
cache = zfs_alloc(hdl, sizeof (avl_tree_t));
|
|
avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t),
|
|
offsetof(rdsk_node_t, rn_node));
|
|
|
|
for (i = 0; i < dirs; i++) {
|
|
struct stat sbuf;
|
|
|
|
if (stat(dir[i], &sbuf) != 0) {
|
|
error = errno;
|
|
if (error == ENOENT)
|
|
continue;
|
|
|
|
zfs_error_aux(hdl, strerror(error));
|
|
(void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(
|
|
TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]);
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* If dir[i] is a directory, we walk through it and add all
|
|
* the entry to the cache. If it's not a directory, we just
|
|
* add it to the cache.
|
|
*/
|
|
if (S_ISDIR(sbuf.st_mode)) {
|
|
if ((error = zpool_find_import_scan_dir(hdl, lock,
|
|
cache, dir[i], i)) != 0)
|
|
goto error;
|
|
} else {
|
|
if ((error = zpool_find_import_scan_path(hdl, lock,
|
|
cache, dir[i], i)) != 0)
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
*slice_cache = cache;
|
|
return (0);
|
|
|
|
error:
|
|
cookie = NULL;
|
|
while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
|
|
free(slice->rn_name);
|
|
free(slice);
|
|
}
|
|
free(cache);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Use libblkid to quickly enumerate all known zfs devices.
|
|
*/
|
|
static int
|
|
zpool_find_import_blkid(libzfs_handle_t *hdl, pthread_mutex_t *lock,
|
|
avl_tree_t **slice_cache)
|
|
{
|
|
rdsk_node_t *slice;
|
|
blkid_cache cache;
|
|
blkid_dev_iterate iter;
|
|
blkid_dev dev;
|
|
avl_index_t where;
|
|
int error;
|
|
|
|
*slice_cache = NULL;
|
|
|
|
error = blkid_get_cache(&cache, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = blkid_probe_all_new(cache);
|
|
if (error != 0) {
|
|
blkid_put_cache(cache);
|
|
return (error);
|
|
}
|
|
|
|
iter = blkid_dev_iterate_begin(cache);
|
|
if (iter == NULL) {
|
|
blkid_put_cache(cache);
|
|
return (EINVAL);
|
|
}
|
|
|
|
error = blkid_dev_set_search(iter, "TYPE", "zfs_member");
|
|
if (error != 0) {
|
|
blkid_dev_iterate_end(iter);
|
|
blkid_put_cache(cache);
|
|
return (error);
|
|
}
|
|
|
|
*slice_cache = zfs_alloc(hdl, sizeof (avl_tree_t));
|
|
avl_create(*slice_cache, slice_cache_compare, sizeof (rdsk_node_t),
|
|
offsetof(rdsk_node_t, rn_node));
|
|
|
|
while (blkid_dev_next(iter, &dev) == 0) {
|
|
slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
|
|
slice->rn_name = zfs_strdup(hdl, blkid_dev_devname(dev));
|
|
slice->rn_vdev_guid = 0;
|
|
slice->rn_lock = lock;
|
|
slice->rn_avl = *slice_cache;
|
|
slice->rn_hdl = hdl;
|
|
slice->rn_labelpaths = B_TRUE;
|
|
|
|
error = zfs_path_order(slice->rn_name, &slice->rn_order);
|
|
if (error == 0)
|
|
slice->rn_order += IMPORT_ORDER_SCAN_OFFSET;
|
|
else
|
|
slice->rn_order = IMPORT_ORDER_DEFAULT;
|
|
|
|
pthread_mutex_lock(lock);
|
|
if (avl_find(*slice_cache, slice, &where)) {
|
|
free(slice->rn_name);
|
|
free(slice);
|
|
} else {
|
|
avl_insert(*slice_cache, slice, where);
|
|
}
|
|
pthread_mutex_unlock(lock);
|
|
}
|
|
|
|
blkid_dev_iterate_end(iter);
|
|
blkid_put_cache(cache);
|
|
|
|
return (0);
|
|
}
|
|
|
|
char *
|
|
zpool_default_import_path[DEFAULT_IMPORT_PATH_SIZE] = {
|
|
"/dev/disk/by-vdev", /* Custom rules, use first if they exist */
|
|
"/dev/mapper", /* Use multipath devices before components */
|
|
"/dev/disk/by-partlabel", /* Single unique entry set by user */
|
|
"/dev/disk/by-partuuid", /* Generated partition uuid */
|
|
"/dev/disk/by-label", /* Custom persistent labels */
|
|
"/dev/disk/by-uuid", /* Single unique entry and persistent */
|
|
"/dev/disk/by-id", /* May be multiple entries and persistent */
|
|
"/dev/disk/by-path", /* Encodes physical location and persistent */
|
|
"/dev" /* UNSAFE device names will change */
|
|
};
|
|
|
|
/*
|
|
* Given a list of directories to search, find all pools stored on disk. This
|
|
* includes partial pools which are not available to import. If no args are
|
|
* given (argc is 0), then the default directory (/dev/dsk) is searched.
|
|
* poolname or guid (but not both) are provided by the caller when trying
|
|
* to import a specific pool.
|
|
*/
|
|
static nvlist_t *
|
|
zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
|
|
{
|
|
nvlist_t *ret = NULL;
|
|
pool_list_t pools = { 0 };
|
|
pool_entry_t *pe, *penext;
|
|
vdev_entry_t *ve, *venext;
|
|
config_entry_t *ce, *cenext;
|
|
name_entry_t *ne, *nenext;
|
|
pthread_mutex_t lock;
|
|
avl_tree_t *cache;
|
|
rdsk_node_t *slice;
|
|
void *cookie;
|
|
tpool_t *t;
|
|
|
|
verify(iarg->poolname == NULL || iarg->guid == 0);
|
|
pthread_mutex_init(&lock, NULL);
|
|
|
|
/*
|
|
* Locate pool member vdevs using libblkid or by directory scanning.
|
|
* On success a newly allocated AVL tree which is populated with an
|
|
* entry for each discovered vdev will be returned as the cache.
|
|
* It's the callers responsibility to consume and destroy this tree.
|
|
*/
|
|
if (iarg->scan || iarg->paths != 0) {
|
|
int dirs = iarg->paths;
|
|
char **dir = iarg->path;
|
|
|
|
if (dirs == 0) {
|
|
dir = zpool_default_import_path;
|
|
dirs = DEFAULT_IMPORT_PATH_SIZE;
|
|
}
|
|
|
|
if (zpool_find_import_scan(hdl, &lock, &cache, dir, dirs) != 0)
|
|
return (NULL);
|
|
} else {
|
|
if (zpool_find_import_blkid(hdl, &lock, &cache) != 0)
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Create a thread pool to parallelize the process of reading and
|
|
* validating labels, a large number of threads can be used due to
|
|
* minimal contention.
|
|
*/
|
|
t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL);
|
|
for (slice = avl_first(cache); slice;
|
|
(slice = avl_walk(cache, slice, AVL_AFTER)))
|
|
(void) tpool_dispatch(t, zpool_open_func, slice);
|
|
|
|
tpool_wait(t);
|
|
tpool_destroy(t);
|
|
|
|
/*
|
|
* Process the cache filtering out any entries which are not
|
|
* for the specificed pool then adding matching label configs.
|
|
*/
|
|
cookie = NULL;
|
|
while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
|
|
if (slice->rn_config != NULL) {
|
|
nvlist_t *config = slice->rn_config;
|
|
boolean_t matched = B_TRUE;
|
|
boolean_t aux = B_FALSE;
|
|
int fd;
|
|
|
|
/*
|
|
* Check if it's a spare or l2cache device. If it is,
|
|
* we need to skip the name and guid check since they
|
|
* don't exist on aux device label.
|
|
*/
|
|
if (iarg->poolname != NULL || iarg->guid != 0) {
|
|
uint64_t state;
|
|
aux = nvlist_lookup_uint64(config,
|
|
ZPOOL_CONFIG_POOL_STATE, &state) == 0 &&
|
|
(state == POOL_STATE_SPARE ||
|
|
state == POOL_STATE_L2CACHE);
|
|
}
|
|
|
|
if (iarg->poolname != NULL && !aux) {
|
|
char *pname;
|
|
|
|
matched = nvlist_lookup_string(config,
|
|
ZPOOL_CONFIG_POOL_NAME, &pname) == 0 &&
|
|
strcmp(iarg->poolname, pname) == 0;
|
|
} else if (iarg->guid != 0 && !aux) {
|
|
uint64_t this_guid;
|
|
|
|
matched = nvlist_lookup_uint64(config,
|
|
ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 &&
|
|
iarg->guid == this_guid;
|
|
}
|
|
if (matched) {
|
|
/*
|
|
* Verify all remaining entries can be opened
|
|
* exclusively. This will prune all underlying
|
|
* multipath devices which otherwise could
|
|
* result in the vdev appearing as UNAVAIL.
|
|
*
|
|
* Under zdb, this step isn't required and
|
|
* would prevent a zdb -e of active pools with
|
|
* no cachefile.
|
|
*/
|
|
fd = open(slice->rn_name, O_RDONLY | O_EXCL);
|
|
if (fd >= 0 || iarg->can_be_active) {
|
|
if (fd >= 0)
|
|
close(fd);
|
|
add_config(hdl, &pools,
|
|
slice->rn_name, slice->rn_order,
|
|
slice->rn_num_labels, config);
|
|
}
|
|
}
|
|
nvlist_free(config);
|
|
}
|
|
free(slice->rn_name);
|
|
free(slice);
|
|
}
|
|
avl_destroy(cache);
|
|
free(cache);
|
|
pthread_mutex_destroy(&lock);
|
|
|
|
ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
|
|
|
|
for (pe = pools.pools; pe != NULL; pe = penext) {
|
|
penext = pe->pe_next;
|
|
for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
|
|
venext = ve->ve_next;
|
|
for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
|
|
cenext = ce->ce_next;
|
|
nvlist_free(ce->ce_config);
|
|
free(ce);
|
|
}
|
|
free(ve);
|
|
}
|
|
free(pe);
|
|
}
|
|
|
|
for (ne = pools.names; ne != NULL; ne = nenext) {
|
|
nenext = ne->ne_next;
|
|
free(ne->ne_name);
|
|
free(ne);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
nvlist_t *
|
|
zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
|
|
{
|
|
importargs_t iarg = { 0 };
|
|
|
|
iarg.paths = argc;
|
|
iarg.path = argv;
|
|
|
|
return (zpool_find_import_impl(hdl, &iarg));
|
|
}
|
|
|
|
/*
|
|
* Given a cache file, return the contents as a list of importable pools.
|
|
* poolname or guid (but not both) are provided by the caller when trying
|
|
* to import a specific pool.
|
|
*/
|
|
nvlist_t *
|
|
zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
|
|
char *poolname, uint64_t guid)
|
|
{
|
|
char *buf;
|
|
int fd;
|
|
struct stat64 statbuf;
|
|
nvlist_t *raw, *src, *dst;
|
|
nvlist_t *pools;
|
|
nvpair_t *elem;
|
|
char *name;
|
|
uint64_t this_guid;
|
|
boolean_t active;
|
|
|
|
verify(poolname == NULL || guid == 0);
|
|
|
|
if ((fd = open(cachefile, O_RDONLY)) < 0) {
|
|
zfs_error_aux(hdl, "%s", strerror(errno));
|
|
(void) zfs_error(hdl, EZFS_BADCACHE,
|
|
dgettext(TEXT_DOMAIN, "failed to open cache file"));
|
|
return (NULL);
|
|
}
|
|
|
|
if (fstat64(fd, &statbuf) != 0) {
|
|
zfs_error_aux(hdl, "%s", strerror(errno));
|
|
(void) close(fd);
|
|
(void) zfs_error(hdl, EZFS_BADCACHE,
|
|
dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
|
|
return (NULL);
|
|
}
|
|
|
|
if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
|
|
(void) close(fd);
|
|
return (NULL);
|
|
}
|
|
|
|
if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
|
|
(void) close(fd);
|
|
free(buf);
|
|
(void) zfs_error(hdl, EZFS_BADCACHE,
|
|
dgettext(TEXT_DOMAIN,
|
|
"failed to read cache file contents"));
|
|
return (NULL);
|
|
}
|
|
|
|
(void) close(fd);
|
|
|
|
if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
|
|
free(buf);
|
|
(void) zfs_error(hdl, EZFS_BADCACHE,
|
|
dgettext(TEXT_DOMAIN,
|
|
"invalid or corrupt cache file contents"));
|
|
return (NULL);
|
|
}
|
|
|
|
free(buf);
|
|
|
|
/*
|
|
* Go through and get the current state of the pools and refresh their
|
|
* state.
|
|
*/
|
|
if (nvlist_alloc(&pools, 0, 0) != 0) {
|
|
(void) no_memory(hdl);
|
|
nvlist_free(raw);
|
|
return (NULL);
|
|
}
|
|
|
|
elem = NULL;
|
|
while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
|
|
src = fnvpair_value_nvlist(elem);
|
|
|
|
name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
|
|
if (poolname != NULL && strcmp(poolname, name) != 0)
|
|
continue;
|
|
|
|
this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
|
|
if (guid != 0 && guid != this_guid)
|
|
continue;
|
|
|
|
if (pool_active(hdl, name, this_guid, &active) != 0) {
|
|
nvlist_free(raw);
|
|
nvlist_free(pools);
|
|
return (NULL);
|
|
}
|
|
|
|
if (active)
|
|
continue;
|
|
|
|
if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
|
|
cachefile) != 0) {
|
|
(void) no_memory(hdl);
|
|
nvlist_free(raw);
|
|
nvlist_free(pools);
|
|
return (NULL);
|
|
}
|
|
|
|
if ((dst = refresh_config(hdl, src)) == NULL) {
|
|
nvlist_free(raw);
|
|
nvlist_free(pools);
|
|
return (NULL);
|
|
}
|
|
|
|
if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
|
|
(void) no_memory(hdl);
|
|
nvlist_free(dst);
|
|
nvlist_free(raw);
|
|
nvlist_free(pools);
|
|
return (NULL);
|
|
}
|
|
nvlist_free(dst);
|
|
}
|
|
|
|
nvlist_free(raw);
|
|
return (pools);
|
|
}
|
|
|
|
static int
|
|
name_or_guid_exists(zpool_handle_t *zhp, void *data)
|
|
{
|
|
importargs_t *import = data;
|
|
int found = 0;
|
|
|
|
if (import->poolname != NULL) {
|
|
char *pool_name;
|
|
|
|
verify(nvlist_lookup_string(zhp->zpool_config,
|
|
ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
|
|
if (strcmp(pool_name, import->poolname) == 0)
|
|
found = 1;
|
|
} else {
|
|
uint64_t pool_guid;
|
|
|
|
verify(nvlist_lookup_uint64(zhp->zpool_config,
|
|
ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
|
|
if (pool_guid == import->guid)
|
|
found = 1;
|
|
}
|
|
|
|
zpool_close(zhp);
|
|
return (found);
|
|
}
|
|
|
|
nvlist_t *
|
|
zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
|
|
{
|
|
verify(import->poolname == NULL || import->guid == 0);
|
|
|
|
if (import->unique)
|
|
import->exists = zpool_iter(hdl, name_or_guid_exists, import);
|
|
|
|
if (import->cachefile != NULL)
|
|
return (zpool_find_import_cached(hdl, import->cachefile,
|
|
import->poolname, import->guid));
|
|
|
|
return (zpool_find_import_impl(hdl, import));
|
|
}
|
|
|
|
static boolean_t
|
|
pool_match(nvlist_t *cfg, char *tgt)
|
|
{
|
|
uint64_t v, guid = strtoull(tgt, NULL, 0);
|
|
char *s;
|
|
|
|
if (guid != 0) {
|
|
if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0)
|
|
return (v == guid);
|
|
} else {
|
|
if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0)
|
|
return (strcmp(s, tgt) == 0);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
int
|
|
zpool_tryimport(libzfs_handle_t *hdl, char *target, nvlist_t **configp,
|
|
importargs_t *args)
|
|
{
|
|
nvlist_t *pools;
|
|
nvlist_t *match = NULL;
|
|
nvlist_t *config = NULL;
|
|
char *name = NULL, *sepp = NULL;
|
|
char sep = '\0';
|
|
int count = 0;
|
|
char *targetdup = strdup(target);
|
|
|
|
*configp = NULL;
|
|
|
|
if ((sepp = strpbrk(targetdup, "/@")) != NULL) {
|
|
sep = *sepp;
|
|
*sepp = '\0';
|
|
}
|
|
|
|
pools = zpool_search_import(hdl, args);
|
|
|
|
if (pools != NULL) {
|
|
nvpair_t *elem = NULL;
|
|
while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
|
|
VERIFY0(nvpair_value_nvlist(elem, &config));
|
|
if (pool_match(config, targetdup)) {
|
|
count++;
|
|
if (match != NULL) {
|
|
/* multiple matches found */
|
|
continue;
|
|
} else {
|
|
match = config;
|
|
name = nvpair_name(elem);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (count == 0) {
|
|
(void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"no pools found"));
|
|
free(targetdup);
|
|
return (ENOENT);
|
|
}
|
|
|
|
if (count > 1) {
|
|
(void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
|
"%d pools found, use pool GUID\n"), count);
|
|
free(targetdup);
|
|
return (EINVAL);
|
|
}
|
|
|
|
*configp = match;
|
|
free(targetdup);
|
|
|
|
return (0);
|
|
}
|
|
|
|
boolean_t
|
|
find_guid(nvlist_t *nv, uint64_t guid)
|
|
{
|
|
uint64_t tmp;
|
|
nvlist_t **child;
|
|
uint_t c, children;
|
|
|
|
verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
|
|
if (tmp == guid)
|
|
return (B_TRUE);
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) == 0) {
|
|
for (c = 0; c < children; c++)
|
|
if (find_guid(child[c], guid))
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
typedef struct aux_cbdata {
|
|
const char *cb_type;
|
|
uint64_t cb_guid;
|
|
zpool_handle_t *cb_zhp;
|
|
} aux_cbdata_t;
|
|
|
|
static int
|
|
find_aux(zpool_handle_t *zhp, void *data)
|
|
{
|
|
aux_cbdata_t *cbp = data;
|
|
nvlist_t **list;
|
|
uint_t i, count;
|
|
uint64_t guid;
|
|
nvlist_t *nvroot;
|
|
|
|
verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&nvroot) == 0);
|
|
|
|
if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
|
|
&list, &count) == 0) {
|
|
for (i = 0; i < count; i++) {
|
|
verify(nvlist_lookup_uint64(list[i],
|
|
ZPOOL_CONFIG_GUID, &guid) == 0);
|
|
if (guid == cbp->cb_guid) {
|
|
cbp->cb_zhp = zhp;
|
|
return (1);
|
|
}
|
|
}
|
|
}
|
|
|
|
zpool_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determines if the pool is in use. If so, it returns true and the state of
|
|
* the pool as well as the name of the pool. Name string is allocated and
|
|
* must be freed by the caller.
|
|
*/
|
|
int
|
|
zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
|
|
boolean_t *inuse)
|
|
{
|
|
nvlist_t *config;
|
|
char *name;
|
|
boolean_t ret;
|
|
uint64_t guid, vdev_guid;
|
|
zpool_handle_t *zhp;
|
|
nvlist_t *pool_config;
|
|
uint64_t stateval, isspare;
|
|
aux_cbdata_t cb = { 0 };
|
|
boolean_t isactive;
|
|
|
|
*inuse = B_FALSE;
|
|
|
|
if (zpool_read_label(fd, &config, NULL) != 0) {
|
|
(void) no_memory(hdl);
|
|
return (-1);
|
|
}
|
|
|
|
if (config == NULL)
|
|
return (0);
|
|
|
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
|
&stateval) == 0);
|
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
|
|
&vdev_guid) == 0);
|
|
|
|
if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
|
|
verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
|
|
&name) == 0);
|
|
verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
&guid) == 0);
|
|
}
|
|
|
|
switch (stateval) {
|
|
case POOL_STATE_EXPORTED:
|
|
/*
|
|
* A pool with an exported state may in fact be imported
|
|
* read-only, so check the in-core state to see if it's
|
|
* active and imported read-only. If it is, set
|
|
* its state to active.
|
|
*/
|
|
if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
|
|
(zhp = zpool_open_canfail(hdl, name)) != NULL) {
|
|
if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
|
|
stateval = POOL_STATE_ACTIVE;
|
|
|
|
/*
|
|
* All we needed the zpool handle for is the
|
|
* readonly prop check.
|
|
*/
|
|
zpool_close(zhp);
|
|
}
|
|
|
|
ret = B_TRUE;
|
|
break;
|
|
|
|
case POOL_STATE_ACTIVE:
|
|
/*
|
|
* For an active pool, we have to determine if it's really part
|
|
* of a currently active pool (in which case the pool will exist
|
|
* and the guid will be the same), or whether it's part of an
|
|
* active pool that was disconnected without being explicitly
|
|
* exported.
|
|
*/
|
|
if (pool_active(hdl, name, guid, &isactive) != 0) {
|
|
nvlist_free(config);
|
|
return (-1);
|
|
}
|
|
|
|
if (isactive) {
|
|
/*
|
|
* Because the device may have been removed while
|
|
* offlined, we only report it as active if the vdev is
|
|
* still present in the config. Otherwise, pretend like
|
|
* it's not in use.
|
|
*/
|
|
if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
|
|
(pool_config = zpool_get_config(zhp, NULL))
|
|
!= NULL) {
|
|
nvlist_t *nvroot;
|
|
|
|
verify(nvlist_lookup_nvlist(pool_config,
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
|
|
ret = find_guid(nvroot, vdev_guid);
|
|
} else {
|
|
ret = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* If this is an active spare within another pool, we
|
|
* treat it like an unused hot spare. This allows the
|
|
* user to create a pool with a hot spare that currently
|
|
* in use within another pool. Since we return B_TRUE,
|
|
* libdiskmgt will continue to prevent generic consumers
|
|
* from using the device.
|
|
*/
|
|
if (ret && nvlist_lookup_uint64(config,
|
|
ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
|
|
stateval = POOL_STATE_SPARE;
|
|
|
|
if (zhp != NULL)
|
|
zpool_close(zhp);
|
|
} else {
|
|
stateval = POOL_STATE_POTENTIALLY_ACTIVE;
|
|
ret = B_TRUE;
|
|
}
|
|
break;
|
|
|
|
case POOL_STATE_SPARE:
|
|
/*
|
|
* For a hot spare, it can be either definitively in use, or
|
|
* potentially active. To determine if it's in use, we iterate
|
|
* over all pools in the system and search for one with a spare
|
|
* with a matching guid.
|
|
*
|
|
* Due to the shared nature of spares, we don't actually report
|
|
* the potentially active case as in use. This means the user
|
|
* can freely create pools on the hot spares of exported pools,
|
|
* but to do otherwise makes the resulting code complicated, and
|
|
* we end up having to deal with this case anyway.
|
|
*/
|
|
cb.cb_zhp = NULL;
|
|
cb.cb_guid = vdev_guid;
|
|
cb.cb_type = ZPOOL_CONFIG_SPARES;
|
|
if (zpool_iter(hdl, find_aux, &cb) == 1) {
|
|
name = (char *)zpool_get_name(cb.cb_zhp);
|
|
ret = B_TRUE;
|
|
} else {
|
|
ret = B_FALSE;
|
|
}
|
|
break;
|
|
|
|
case POOL_STATE_L2CACHE:
|
|
|
|
/*
|
|
* Check if any pool is currently using this l2cache device.
|
|
*/
|
|
cb.cb_zhp = NULL;
|
|
cb.cb_guid = vdev_guid;
|
|
cb.cb_type = ZPOOL_CONFIG_L2CACHE;
|
|
if (zpool_iter(hdl, find_aux, &cb) == 1) {
|
|
name = (char *)zpool_get_name(cb.cb_zhp);
|
|
ret = B_TRUE;
|
|
} else {
|
|
ret = B_FALSE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ret = B_FALSE;
|
|
}
|
|
|
|
|
|
if (ret) {
|
|
if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
|
|
if (cb.cb_zhp)
|
|
zpool_close(cb.cb_zhp);
|
|
nvlist_free(config);
|
|
return (-1);
|
|
}
|
|
*state = (pool_state_t)stateval;
|
|
}
|
|
|
|
if (cb.cb_zhp)
|
|
zpool_close(cb.cb_zhp);
|
|
|
|
nvlist_free(config);
|
|
*inuse = ret;
|
|
return (0);
|
|
}
|