mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-14 04:00:31 +03:00
ca5777793e
This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2937 lines
75 KiB
C
2937 lines
75 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
|
|
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
* Copyright 2013 Saso Kiselkov. All rights reserved.
|
|
* Copyright (c) 2017 Datto Inc.
|
|
* Copyright (c) 2017, Intel Corporation.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zio_compress.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/vdev_initialize.h>
|
|
#include <sys/vdev_trim.h>
|
|
#include <sys/vdev_file.h>
|
|
#include <sys/vdev_raidz.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/unique.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/fm/util.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/kstat.h>
|
|
#include "zfs_prop.h"
|
|
#include <sys/btree.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/qat.h>
|
|
|
|
/*
|
|
* SPA locking
|
|
*
|
|
* There are three basic locks for managing spa_t structures:
|
|
*
|
|
* spa_namespace_lock (global mutex)
|
|
*
|
|
* This lock must be acquired to do any of the following:
|
|
*
|
|
* - Lookup a spa_t by name
|
|
* - Add or remove a spa_t from the namespace
|
|
* - Increase spa_refcount from non-zero
|
|
* - Check if spa_refcount is zero
|
|
* - Rename a spa_t
|
|
* - add/remove/attach/detach devices
|
|
* - Held for the duration of create/destroy/import/export
|
|
*
|
|
* It does not need to handle recursion. A create or destroy may
|
|
* reference objects (files or zvols) in other pools, but by
|
|
* definition they must have an existing reference, and will never need
|
|
* to lookup a spa_t by name.
|
|
*
|
|
* spa_refcount (per-spa zfs_refcount_t protected by mutex)
|
|
*
|
|
* This reference count keep track of any active users of the spa_t. The
|
|
* spa_t cannot be destroyed or freed while this is non-zero. Internally,
|
|
* the refcount is never really 'zero' - opening a pool implicitly keeps
|
|
* some references in the DMU. Internally we check against spa_minref, but
|
|
* present the image of a zero/non-zero value to consumers.
|
|
*
|
|
* spa_config_lock[] (per-spa array of rwlocks)
|
|
*
|
|
* This protects the spa_t from config changes, and must be held in
|
|
* the following circumstances:
|
|
*
|
|
* - RW_READER to perform I/O to the spa
|
|
* - RW_WRITER to change the vdev config
|
|
*
|
|
* The locking order is fairly straightforward:
|
|
*
|
|
* spa_namespace_lock -> spa_refcount
|
|
*
|
|
* The namespace lock must be acquired to increase the refcount from 0
|
|
* or to check if it is zero.
|
|
*
|
|
* spa_refcount -> spa_config_lock[]
|
|
*
|
|
* There must be at least one valid reference on the spa_t to acquire
|
|
* the config lock.
|
|
*
|
|
* spa_namespace_lock -> spa_config_lock[]
|
|
*
|
|
* The namespace lock must always be taken before the config lock.
|
|
*
|
|
*
|
|
* The spa_namespace_lock can be acquired directly and is globally visible.
|
|
*
|
|
* The namespace is manipulated using the following functions, all of which
|
|
* require the spa_namespace_lock to be held.
|
|
*
|
|
* spa_lookup() Lookup a spa_t by name.
|
|
*
|
|
* spa_add() Create a new spa_t in the namespace.
|
|
*
|
|
* spa_remove() Remove a spa_t from the namespace. This also
|
|
* frees up any memory associated with the spa_t.
|
|
*
|
|
* spa_next() Returns the next spa_t in the system, or the
|
|
* first if NULL is passed.
|
|
*
|
|
* spa_evict_all() Shutdown and remove all spa_t structures in
|
|
* the system.
|
|
*
|
|
* spa_guid_exists() Determine whether a pool/device guid exists.
|
|
*
|
|
* The spa_refcount is manipulated using the following functions:
|
|
*
|
|
* spa_open_ref() Adds a reference to the given spa_t. Must be
|
|
* called with spa_namespace_lock held if the
|
|
* refcount is currently zero.
|
|
*
|
|
* spa_close() Remove a reference from the spa_t. This will
|
|
* not free the spa_t or remove it from the
|
|
* namespace. No locking is required.
|
|
*
|
|
* spa_refcount_zero() Returns true if the refcount is currently
|
|
* zero. Must be called with spa_namespace_lock
|
|
* held.
|
|
*
|
|
* The spa_config_lock[] is an array of rwlocks, ordered as follows:
|
|
* SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
|
|
* spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
|
|
*
|
|
* To read the configuration, it suffices to hold one of these locks as reader.
|
|
* To modify the configuration, you must hold all locks as writer. To modify
|
|
* vdev state without altering the vdev tree's topology (e.g. online/offline),
|
|
* you must hold SCL_STATE and SCL_ZIO as writer.
|
|
*
|
|
* We use these distinct config locks to avoid recursive lock entry.
|
|
* For example, spa_sync() (which holds SCL_CONFIG as reader) induces
|
|
* block allocations (SCL_ALLOC), which may require reading space maps
|
|
* from disk (dmu_read() -> zio_read() -> SCL_ZIO).
|
|
*
|
|
* The spa config locks cannot be normal rwlocks because we need the
|
|
* ability to hand off ownership. For example, SCL_ZIO is acquired
|
|
* by the issuing thread and later released by an interrupt thread.
|
|
* They do, however, obey the usual write-wanted semantics to prevent
|
|
* writer (i.e. system administrator) starvation.
|
|
*
|
|
* The lock acquisition rules are as follows:
|
|
*
|
|
* SCL_CONFIG
|
|
* Protects changes to the vdev tree topology, such as vdev
|
|
* add/remove/attach/detach. Protects the dirty config list
|
|
* (spa_config_dirty_list) and the set of spares and l2arc devices.
|
|
*
|
|
* SCL_STATE
|
|
* Protects changes to pool state and vdev state, such as vdev
|
|
* online/offline/fault/degrade/clear. Protects the dirty state list
|
|
* (spa_state_dirty_list) and global pool state (spa_state).
|
|
*
|
|
* SCL_ALLOC
|
|
* Protects changes to metaslab groups and classes.
|
|
* Held as reader by metaslab_alloc() and metaslab_claim().
|
|
*
|
|
* SCL_ZIO
|
|
* Held by bp-level zios (those which have no io_vd upon entry)
|
|
* to prevent changes to the vdev tree. The bp-level zio implicitly
|
|
* protects all of its vdev child zios, which do not hold SCL_ZIO.
|
|
*
|
|
* SCL_FREE
|
|
* Protects changes to metaslab groups and classes.
|
|
* Held as reader by metaslab_free(). SCL_FREE is distinct from
|
|
* SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
|
|
* blocks in zio_done() while another i/o that holds either
|
|
* SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
|
|
*
|
|
* SCL_VDEV
|
|
* Held as reader to prevent changes to the vdev tree during trivial
|
|
* inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
|
|
* other locks, and lower than all of them, to ensure that it's safe
|
|
* to acquire regardless of caller context.
|
|
*
|
|
* In addition, the following rules apply:
|
|
*
|
|
* (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
|
|
* The lock ordering is SCL_CONFIG > spa_props_lock.
|
|
*
|
|
* (b) I/O operations on leaf vdevs. For any zio operation that takes
|
|
* an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
|
|
* or zio_write_phys() -- the caller must ensure that the config cannot
|
|
* cannot change in the interim, and that the vdev cannot be reopened.
|
|
* SCL_STATE as reader suffices for both.
|
|
*
|
|
* The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
|
|
*
|
|
* spa_vdev_enter() Acquire the namespace lock and the config lock
|
|
* for writing.
|
|
*
|
|
* spa_vdev_exit() Release the config lock, wait for all I/O
|
|
* to complete, sync the updated configs to the
|
|
* cache, and release the namespace lock.
|
|
*
|
|
* vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
|
|
* Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
|
|
* locking is, always, based on spa_namespace_lock and spa_config_lock[].
|
|
*/
|
|
|
|
static avl_tree_t spa_namespace_avl;
|
|
kmutex_t spa_namespace_lock;
|
|
static kcondvar_t spa_namespace_cv;
|
|
int spa_max_replication_override = SPA_DVAS_PER_BP;
|
|
|
|
static kmutex_t spa_spare_lock;
|
|
static avl_tree_t spa_spare_avl;
|
|
static kmutex_t spa_l2cache_lock;
|
|
static avl_tree_t spa_l2cache_avl;
|
|
|
|
kmem_cache_t *spa_buffer_pool;
|
|
int spa_mode_global;
|
|
|
|
#ifdef ZFS_DEBUG
|
|
/*
|
|
* Everything except dprintf, set_error, spa, and indirect_remap is on
|
|
* by default in debug builds.
|
|
*/
|
|
int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
|
|
ZFS_DEBUG_INDIRECT_REMAP);
|
|
#else
|
|
int zfs_flags = 0;
|
|
#endif
|
|
|
|
/*
|
|
* zfs_recover can be set to nonzero to attempt to recover from
|
|
* otherwise-fatal errors, typically caused by on-disk corruption. When
|
|
* set, calls to zfs_panic_recover() will turn into warning messages.
|
|
* This should only be used as a last resort, as it typically results
|
|
* in leaked space, or worse.
|
|
*/
|
|
int zfs_recover = B_FALSE;
|
|
|
|
/*
|
|
* If destroy encounters an EIO while reading metadata (e.g. indirect
|
|
* blocks), space referenced by the missing metadata can not be freed.
|
|
* Normally this causes the background destroy to become "stalled", as
|
|
* it is unable to make forward progress. While in this stalled state,
|
|
* all remaining space to free from the error-encountering filesystem is
|
|
* "temporarily leaked". Set this flag to cause it to ignore the EIO,
|
|
* permanently leak the space from indirect blocks that can not be read,
|
|
* and continue to free everything else that it can.
|
|
*
|
|
* The default, "stalling" behavior is useful if the storage partially
|
|
* fails (i.e. some but not all i/os fail), and then later recovers. In
|
|
* this case, we will be able to continue pool operations while it is
|
|
* partially failed, and when it recovers, we can continue to free the
|
|
* space, with no leaks. However, note that this case is actually
|
|
* fairly rare.
|
|
*
|
|
* Typically pools either (a) fail completely (but perhaps temporarily,
|
|
* e.g. a top-level vdev going offline), or (b) have localized,
|
|
* permanent errors (e.g. disk returns the wrong data due to bit flip or
|
|
* firmware bug). In case (a), this setting does not matter because the
|
|
* pool will be suspended and the sync thread will not be able to make
|
|
* forward progress regardless. In case (b), because the error is
|
|
* permanent, the best we can do is leak the minimum amount of space,
|
|
* which is what setting this flag will do. Therefore, it is reasonable
|
|
* for this flag to normally be set, but we chose the more conservative
|
|
* approach of not setting it, so that there is no possibility of
|
|
* leaking space in the "partial temporary" failure case.
|
|
*/
|
|
int zfs_free_leak_on_eio = B_FALSE;
|
|
|
|
/*
|
|
* Expiration time in milliseconds. This value has two meanings. First it is
|
|
* used to determine when the spa_deadman() logic should fire. By default the
|
|
* spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
|
|
* Secondly, the value determines if an I/O is considered "hung". Any I/O that
|
|
* has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
|
|
* in one of three behaviors controlled by zfs_deadman_failmode.
|
|
*/
|
|
unsigned long zfs_deadman_synctime_ms = 600000ULL;
|
|
|
|
/*
|
|
* This value controls the maximum amount of time zio_wait() will block for an
|
|
* outstanding IO. By default this is 300 seconds at which point the "hung"
|
|
* behavior will be applied as described for zfs_deadman_synctime_ms.
|
|
*/
|
|
unsigned long zfs_deadman_ziotime_ms = 300000ULL;
|
|
|
|
/*
|
|
* Check time in milliseconds. This defines the frequency at which we check
|
|
* for hung I/O.
|
|
*/
|
|
unsigned long zfs_deadman_checktime_ms = 60000ULL;
|
|
|
|
/*
|
|
* By default the deadman is enabled.
|
|
*/
|
|
int zfs_deadman_enabled = 1;
|
|
|
|
/*
|
|
* Controls the behavior of the deadman when it detects a "hung" I/O.
|
|
* Valid values are zfs_deadman_failmode=<wait|continue|panic>.
|
|
*
|
|
* wait - Wait for the "hung" I/O (default)
|
|
* continue - Attempt to recover from a "hung" I/O
|
|
* panic - Panic the system
|
|
*/
|
|
char *zfs_deadman_failmode = "wait";
|
|
|
|
/*
|
|
* The worst case is single-sector max-parity RAID-Z blocks, in which
|
|
* case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
|
|
* times the size; so just assume that. Add to this the fact that
|
|
* we can have up to 3 DVAs per bp, and one more factor of 2 because
|
|
* the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
|
|
* the worst case is:
|
|
* (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
|
|
*/
|
|
int spa_asize_inflation = 24;
|
|
|
|
/*
|
|
* Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
|
|
* the pool to be consumed. This ensures that we don't run the pool
|
|
* completely out of space, due to unaccounted changes (e.g. to the MOS).
|
|
* It also limits the worst-case time to allocate space. If we have
|
|
* less than this amount of free space, most ZPL operations (e.g. write,
|
|
* create) will return ENOSPC.
|
|
*
|
|
* Certain operations (e.g. file removal, most administrative actions) can
|
|
* use half the slop space. They will only return ENOSPC if less than half
|
|
* the slop space is free. Typically, once the pool has less than the slop
|
|
* space free, the user will use these operations to free up space in the pool.
|
|
* These are the operations that call dsl_pool_adjustedsize() with the netfree
|
|
* argument set to TRUE.
|
|
*
|
|
* Operations that are almost guaranteed to free up space in the absence of
|
|
* a pool checkpoint can use up to three quarters of the slop space
|
|
* (e.g zfs destroy).
|
|
*
|
|
* A very restricted set of operations are always permitted, regardless of
|
|
* the amount of free space. These are the operations that call
|
|
* dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
|
|
* increase in the amount of space used, it is possible to run the pool
|
|
* completely out of space, causing it to be permanently read-only.
|
|
*
|
|
* Note that on very small pools, the slop space will be larger than
|
|
* 3.2%, in an effort to have it be at least spa_min_slop (128MB),
|
|
* but we never allow it to be more than half the pool size.
|
|
*
|
|
* See also the comments in zfs_space_check_t.
|
|
*/
|
|
int spa_slop_shift = 5;
|
|
uint64_t spa_min_slop = 128 * 1024 * 1024;
|
|
int spa_allocators = 4;
|
|
|
|
|
|
/*PRINTFLIKE2*/
|
|
void
|
|
spa_load_failed(spa_t *spa, const char *fmt, ...)
|
|
{
|
|
va_list adx;
|
|
char buf[256];
|
|
|
|
va_start(adx, fmt);
|
|
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
|
|
va_end(adx);
|
|
|
|
zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
|
|
spa->spa_trust_config ? "trusted" : "untrusted", buf);
|
|
}
|
|
|
|
/*PRINTFLIKE2*/
|
|
void
|
|
spa_load_note(spa_t *spa, const char *fmt, ...)
|
|
{
|
|
va_list adx;
|
|
char buf[256];
|
|
|
|
va_start(adx, fmt);
|
|
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
|
|
va_end(adx);
|
|
|
|
zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
|
|
spa->spa_trust_config ? "trusted" : "untrusted", buf);
|
|
}
|
|
|
|
/*
|
|
* By default dedup and user data indirects land in the special class
|
|
*/
|
|
int zfs_ddt_data_is_special = B_TRUE;
|
|
int zfs_user_indirect_is_special = B_TRUE;
|
|
|
|
/*
|
|
* The percentage of special class final space reserved for metadata only.
|
|
* Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
|
|
* let metadata into the class.
|
|
*/
|
|
int zfs_special_class_metadata_reserve_pct = 25;
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA config locking
|
|
* ==========================================================================
|
|
*/
|
|
static void
|
|
spa_config_lock_init(spa_t *spa)
|
|
{
|
|
for (int i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
|
|
zfs_refcount_create_untracked(&scl->scl_count);
|
|
scl->scl_writer = NULL;
|
|
scl->scl_write_wanted = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_config_lock_destroy(spa_t *spa)
|
|
{
|
|
for (int i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
mutex_destroy(&scl->scl_lock);
|
|
cv_destroy(&scl->scl_cv);
|
|
zfs_refcount_destroy(&scl->scl_count);
|
|
ASSERT(scl->scl_writer == NULL);
|
|
ASSERT(scl->scl_write_wanted == 0);
|
|
}
|
|
}
|
|
|
|
int
|
|
spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
|
|
{
|
|
for (int i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
mutex_enter(&scl->scl_lock);
|
|
if (rw == RW_READER) {
|
|
if (scl->scl_writer || scl->scl_write_wanted) {
|
|
mutex_exit(&scl->scl_lock);
|
|
spa_config_exit(spa, locks & ((1 << i) - 1),
|
|
tag);
|
|
return (0);
|
|
}
|
|
} else {
|
|
ASSERT(scl->scl_writer != curthread);
|
|
if (!zfs_refcount_is_zero(&scl->scl_count)) {
|
|
mutex_exit(&scl->scl_lock);
|
|
spa_config_exit(spa, locks & ((1 << i) - 1),
|
|
tag);
|
|
return (0);
|
|
}
|
|
scl->scl_writer = curthread;
|
|
}
|
|
(void) zfs_refcount_add(&scl->scl_count, tag);
|
|
mutex_exit(&scl->scl_lock);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
|
|
{
|
|
int wlocks_held = 0;
|
|
|
|
ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
|
|
|
|
for (int i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (scl->scl_writer == curthread)
|
|
wlocks_held |= (1 << i);
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
mutex_enter(&scl->scl_lock);
|
|
if (rw == RW_READER) {
|
|
while (scl->scl_writer || scl->scl_write_wanted) {
|
|
cv_wait(&scl->scl_cv, &scl->scl_lock);
|
|
}
|
|
} else {
|
|
ASSERT(scl->scl_writer != curthread);
|
|
while (!zfs_refcount_is_zero(&scl->scl_count)) {
|
|
scl->scl_write_wanted++;
|
|
cv_wait(&scl->scl_cv, &scl->scl_lock);
|
|
scl->scl_write_wanted--;
|
|
}
|
|
scl->scl_writer = curthread;
|
|
}
|
|
(void) zfs_refcount_add(&scl->scl_count, tag);
|
|
mutex_exit(&scl->scl_lock);
|
|
}
|
|
ASSERT3U(wlocks_held, <=, locks);
|
|
}
|
|
|
|
void
|
|
spa_config_exit(spa_t *spa, int locks, const void *tag)
|
|
{
|
|
for (int i = SCL_LOCKS - 1; i >= 0; i--) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
mutex_enter(&scl->scl_lock);
|
|
ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
|
|
if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
|
|
ASSERT(scl->scl_writer == NULL ||
|
|
scl->scl_writer == curthread);
|
|
scl->scl_writer = NULL; /* OK in either case */
|
|
cv_broadcast(&scl->scl_cv);
|
|
}
|
|
mutex_exit(&scl->scl_lock);
|
|
}
|
|
}
|
|
|
|
int
|
|
spa_config_held(spa_t *spa, int locks, krw_t rw)
|
|
{
|
|
int locks_held = 0;
|
|
|
|
for (int i = 0; i < SCL_LOCKS; i++) {
|
|
spa_config_lock_t *scl = &spa->spa_config_lock[i];
|
|
if (!(locks & (1 << i)))
|
|
continue;
|
|
if ((rw == RW_READER &&
|
|
!zfs_refcount_is_zero(&scl->scl_count)) ||
|
|
(rw == RW_WRITER && scl->scl_writer == curthread))
|
|
locks_held |= 1 << i;
|
|
}
|
|
|
|
return (locks_held);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA namespace functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
|
|
* Returns NULL if no matching spa_t is found.
|
|
*/
|
|
spa_t *
|
|
spa_lookup(const char *name)
|
|
{
|
|
static spa_t search; /* spa_t is large; don't allocate on stack */
|
|
spa_t *spa;
|
|
avl_index_t where;
|
|
char *cp;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
|
|
|
|
/*
|
|
* If it's a full dataset name, figure out the pool name and
|
|
* just use that.
|
|
*/
|
|
cp = strpbrk(search.spa_name, "/@#");
|
|
if (cp != NULL)
|
|
*cp = '\0';
|
|
|
|
spa = avl_find(&spa_namespace_avl, &search, &where);
|
|
|
|
return (spa);
|
|
}
|
|
|
|
/*
|
|
* Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
|
|
* If the zfs_deadman_enabled flag is set then it inspects all vdev queues
|
|
* looking for potentially hung I/Os.
|
|
*/
|
|
void
|
|
spa_deadman(void *arg)
|
|
{
|
|
spa_t *spa = arg;
|
|
|
|
/* Disable the deadman if the pool is suspended. */
|
|
if (spa_suspended(spa))
|
|
return;
|
|
|
|
zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
|
|
(gethrtime() - spa->spa_sync_starttime) / NANOSEC,
|
|
++spa->spa_deadman_calls);
|
|
if (zfs_deadman_enabled)
|
|
vdev_deadman(spa->spa_root_vdev, FTAG);
|
|
|
|
spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
|
|
spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
|
|
MSEC_TO_TICK(zfs_deadman_checktime_ms));
|
|
}
|
|
|
|
int
|
|
spa_log_sm_sort_by_txg(const void *va, const void *vb)
|
|
{
|
|
const spa_log_sm_t *a = va;
|
|
const spa_log_sm_t *b = vb;
|
|
|
|
return (TREE_CMP(a->sls_txg, b->sls_txg));
|
|
}
|
|
|
|
/*
|
|
* Create an uninitialized spa_t with the given name. Requires
|
|
* spa_namespace_lock. The caller must ensure that the spa_t doesn't already
|
|
* exist by calling spa_lookup() first.
|
|
*/
|
|
spa_t *
|
|
spa_add(const char *name, nvlist_t *config, const char *altroot)
|
|
{
|
|
spa_t *spa;
|
|
spa_config_dirent_t *dp;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
|
|
|
|
mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
for (int t = 0; t < TXG_SIZE; t++)
|
|
bplist_create(&spa->spa_free_bplist[t]);
|
|
|
|
(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
|
|
spa->spa_state = POOL_STATE_UNINITIALIZED;
|
|
spa->spa_freeze_txg = UINT64_MAX;
|
|
spa->spa_final_txg = UINT64_MAX;
|
|
spa->spa_load_max_txg = UINT64_MAX;
|
|
spa->spa_proc = &p0;
|
|
spa->spa_proc_state = SPA_PROC_NONE;
|
|
spa->spa_trust_config = B_TRUE;
|
|
spa->spa_hostid = zone_get_hostid(NULL);
|
|
|
|
spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
|
|
spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
|
|
spa_set_deadman_failmode(spa, zfs_deadman_failmode);
|
|
|
|
zfs_refcount_create(&spa->spa_refcount);
|
|
spa_config_lock_init(spa);
|
|
spa_stats_init(spa);
|
|
|
|
avl_add(&spa_namespace_avl, spa);
|
|
|
|
/*
|
|
* Set the alternate root, if there is one.
|
|
*/
|
|
if (altroot)
|
|
spa->spa_root = spa_strdup(altroot);
|
|
|
|
spa->spa_alloc_count = spa_allocators;
|
|
spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
|
|
sizeof (kmutex_t), KM_SLEEP);
|
|
spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
|
|
sizeof (avl_tree_t), KM_SLEEP);
|
|
for (int i = 0; i < spa->spa_alloc_count; i++) {
|
|
mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
|
|
avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
|
|
sizeof (zio_t), offsetof(zio_t, io_alloc_node));
|
|
}
|
|
avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
|
|
sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
|
|
avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
|
|
sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
|
|
list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
|
|
offsetof(log_summary_entry_t, lse_node));
|
|
|
|
/*
|
|
* Every pool starts with the default cachefile
|
|
*/
|
|
list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
|
|
offsetof(spa_config_dirent_t, scd_link));
|
|
|
|
dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
|
|
dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
|
|
list_insert_head(&spa->spa_config_list, dp);
|
|
|
|
VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
|
|
KM_SLEEP) == 0);
|
|
|
|
if (config != NULL) {
|
|
nvlist_t *features;
|
|
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
|
|
&features) == 0) {
|
|
VERIFY(nvlist_dup(features, &spa->spa_label_features,
|
|
0) == 0);
|
|
}
|
|
|
|
VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
|
|
}
|
|
|
|
if (spa->spa_label_features == NULL) {
|
|
VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
|
|
KM_SLEEP) == 0);
|
|
}
|
|
|
|
spa->spa_min_ashift = INT_MAX;
|
|
spa->spa_max_ashift = 0;
|
|
|
|
/* Reset cached value */
|
|
spa->spa_dedup_dspace = ~0ULL;
|
|
|
|
/*
|
|
* As a pool is being created, treat all features as disabled by
|
|
* setting SPA_FEATURE_DISABLED for all entries in the feature
|
|
* refcount cache.
|
|
*/
|
|
for (int i = 0; i < SPA_FEATURES; i++) {
|
|
spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
|
|
}
|
|
|
|
list_create(&spa->spa_leaf_list, sizeof (vdev_t),
|
|
offsetof(vdev_t, vdev_leaf_node));
|
|
|
|
return (spa);
|
|
}
|
|
|
|
/*
|
|
* Removes a spa_t from the namespace, freeing up any memory used. Requires
|
|
* spa_namespace_lock. This is called only after the spa_t has been closed and
|
|
* deactivated.
|
|
*/
|
|
void
|
|
spa_remove(spa_t *spa)
|
|
{
|
|
spa_config_dirent_t *dp;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
|
|
ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
|
|
ASSERT0(spa->spa_waiters);
|
|
|
|
nvlist_free(spa->spa_config_splitting);
|
|
|
|
avl_remove(&spa_namespace_avl, spa);
|
|
cv_broadcast(&spa_namespace_cv);
|
|
|
|
if (spa->spa_root)
|
|
spa_strfree(spa->spa_root);
|
|
|
|
while ((dp = list_head(&spa->spa_config_list)) != NULL) {
|
|
list_remove(&spa->spa_config_list, dp);
|
|
if (dp->scd_path != NULL)
|
|
spa_strfree(dp->scd_path);
|
|
kmem_free(dp, sizeof (spa_config_dirent_t));
|
|
}
|
|
|
|
for (int i = 0; i < spa->spa_alloc_count; i++) {
|
|
avl_destroy(&spa->spa_alloc_trees[i]);
|
|
mutex_destroy(&spa->spa_alloc_locks[i]);
|
|
}
|
|
kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
|
|
sizeof (kmutex_t));
|
|
kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
|
|
sizeof (avl_tree_t));
|
|
|
|
avl_destroy(&spa->spa_metaslabs_by_flushed);
|
|
avl_destroy(&spa->spa_sm_logs_by_txg);
|
|
list_destroy(&spa->spa_log_summary);
|
|
list_destroy(&spa->spa_config_list);
|
|
list_destroy(&spa->spa_leaf_list);
|
|
|
|
nvlist_free(spa->spa_label_features);
|
|
nvlist_free(spa->spa_load_info);
|
|
nvlist_free(spa->spa_feat_stats);
|
|
spa_config_set(spa, NULL);
|
|
|
|
zfs_refcount_destroy(&spa->spa_refcount);
|
|
|
|
spa_stats_destroy(spa);
|
|
spa_config_lock_destroy(spa);
|
|
|
|
for (int t = 0; t < TXG_SIZE; t++)
|
|
bplist_destroy(&spa->spa_free_bplist[t]);
|
|
|
|
zio_checksum_templates_free(spa);
|
|
|
|
cv_destroy(&spa->spa_async_cv);
|
|
cv_destroy(&spa->spa_evicting_os_cv);
|
|
cv_destroy(&spa->spa_proc_cv);
|
|
cv_destroy(&spa->spa_scrub_io_cv);
|
|
cv_destroy(&spa->spa_suspend_cv);
|
|
cv_destroy(&spa->spa_activities_cv);
|
|
cv_destroy(&spa->spa_waiters_cv);
|
|
|
|
mutex_destroy(&spa->spa_flushed_ms_lock);
|
|
mutex_destroy(&spa->spa_async_lock);
|
|
mutex_destroy(&spa->spa_errlist_lock);
|
|
mutex_destroy(&spa->spa_errlog_lock);
|
|
mutex_destroy(&spa->spa_evicting_os_lock);
|
|
mutex_destroy(&spa->spa_history_lock);
|
|
mutex_destroy(&spa->spa_proc_lock);
|
|
mutex_destroy(&spa->spa_props_lock);
|
|
mutex_destroy(&spa->spa_cksum_tmpls_lock);
|
|
mutex_destroy(&spa->spa_scrub_lock);
|
|
mutex_destroy(&spa->spa_suspend_lock);
|
|
mutex_destroy(&spa->spa_vdev_top_lock);
|
|
mutex_destroy(&spa->spa_feat_stats_lock);
|
|
mutex_destroy(&spa->spa_activities_lock);
|
|
|
|
kmem_free(spa, sizeof (spa_t));
|
|
}
|
|
|
|
/*
|
|
* Given a pool, return the next pool in the namespace, or NULL if there is
|
|
* none. If 'prev' is NULL, return the first pool.
|
|
*/
|
|
spa_t *
|
|
spa_next(spa_t *prev)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
if (prev)
|
|
return (AVL_NEXT(&spa_namespace_avl, prev));
|
|
else
|
|
return (avl_first(&spa_namespace_avl));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA refcount functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Add a reference to the given spa_t. Must have at least one reference, or
|
|
* have the namespace lock held.
|
|
*/
|
|
void
|
|
spa_open_ref(spa_t *spa, void *tag)
|
|
{
|
|
ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
|
|
MUTEX_HELD(&spa_namespace_lock));
|
|
(void) zfs_refcount_add(&spa->spa_refcount, tag);
|
|
}
|
|
|
|
/*
|
|
* Remove a reference to the given spa_t. Must have at least one reference, or
|
|
* have the namespace lock held.
|
|
*/
|
|
void
|
|
spa_close(spa_t *spa, void *tag)
|
|
{
|
|
ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
|
|
MUTEX_HELD(&spa_namespace_lock));
|
|
(void) zfs_refcount_remove(&spa->spa_refcount, tag);
|
|
}
|
|
|
|
/*
|
|
* Remove a reference to the given spa_t held by a dsl dir that is
|
|
* being asynchronously released. Async releases occur from a taskq
|
|
* performing eviction of dsl datasets and dirs. The namespace lock
|
|
* isn't held and the hold by the object being evicted may contribute to
|
|
* spa_minref (e.g. dataset or directory released during pool export),
|
|
* so the asserts in spa_close() do not apply.
|
|
*/
|
|
void
|
|
spa_async_close(spa_t *spa, void *tag)
|
|
{
|
|
(void) zfs_refcount_remove(&spa->spa_refcount, tag);
|
|
}
|
|
|
|
/*
|
|
* Check to see if the spa refcount is zero. Must be called with
|
|
* spa_namespace_lock held. We really compare against spa_minref, which is the
|
|
* number of references acquired when opening a pool
|
|
*/
|
|
boolean_t
|
|
spa_refcount_zero(spa_t *spa)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA spare and l2cache tracking
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Hot spares and cache devices are tracked using the same code below,
|
|
* for 'auxiliary' devices.
|
|
*/
|
|
|
|
typedef struct spa_aux {
|
|
uint64_t aux_guid;
|
|
uint64_t aux_pool;
|
|
avl_node_t aux_avl;
|
|
int aux_count;
|
|
} spa_aux_t;
|
|
|
|
static inline int
|
|
spa_aux_compare(const void *a, const void *b)
|
|
{
|
|
const spa_aux_t *sa = (const spa_aux_t *)a;
|
|
const spa_aux_t *sb = (const spa_aux_t *)b;
|
|
|
|
return (TREE_CMP(sa->aux_guid, sb->aux_guid));
|
|
}
|
|
|
|
void
|
|
spa_aux_add(vdev_t *vd, avl_tree_t *avl)
|
|
{
|
|
avl_index_t where;
|
|
spa_aux_t search;
|
|
spa_aux_t *aux;
|
|
|
|
search.aux_guid = vd->vdev_guid;
|
|
if ((aux = avl_find(avl, &search, &where)) != NULL) {
|
|
aux->aux_count++;
|
|
} else {
|
|
aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
|
|
aux->aux_guid = vd->vdev_guid;
|
|
aux->aux_count = 1;
|
|
avl_insert(avl, aux, where);
|
|
}
|
|
}
|
|
|
|
void
|
|
spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
|
|
{
|
|
spa_aux_t search;
|
|
spa_aux_t *aux;
|
|
avl_index_t where;
|
|
|
|
search.aux_guid = vd->vdev_guid;
|
|
aux = avl_find(avl, &search, &where);
|
|
|
|
ASSERT(aux != NULL);
|
|
|
|
if (--aux->aux_count == 0) {
|
|
avl_remove(avl, aux);
|
|
kmem_free(aux, sizeof (spa_aux_t));
|
|
} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
|
|
aux->aux_pool = 0ULL;
|
|
}
|
|
}
|
|
|
|
boolean_t
|
|
spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
|
|
{
|
|
spa_aux_t search, *found;
|
|
|
|
search.aux_guid = guid;
|
|
found = avl_find(avl, &search, NULL);
|
|
|
|
if (pool) {
|
|
if (found)
|
|
*pool = found->aux_pool;
|
|
else
|
|
*pool = 0ULL;
|
|
}
|
|
|
|
if (refcnt) {
|
|
if (found)
|
|
*refcnt = found->aux_count;
|
|
else
|
|
*refcnt = 0;
|
|
}
|
|
|
|
return (found != NULL);
|
|
}
|
|
|
|
void
|
|
spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
|
|
{
|
|
spa_aux_t search, *found;
|
|
avl_index_t where;
|
|
|
|
search.aux_guid = vd->vdev_guid;
|
|
found = avl_find(avl, &search, &where);
|
|
ASSERT(found != NULL);
|
|
ASSERT(found->aux_pool == 0ULL);
|
|
|
|
found->aux_pool = spa_guid(vd->vdev_spa);
|
|
}
|
|
|
|
/*
|
|
* Spares are tracked globally due to the following constraints:
|
|
*
|
|
* - A spare may be part of multiple pools.
|
|
* - A spare may be added to a pool even if it's actively in use within
|
|
* another pool.
|
|
* - A spare in use in any pool can only be the source of a replacement if
|
|
* the target is a spare in the same pool.
|
|
*
|
|
* We keep track of all spares on the system through the use of a reference
|
|
* counted AVL tree. When a vdev is added as a spare, or used as a replacement
|
|
* spare, then we bump the reference count in the AVL tree. In addition, we set
|
|
* the 'vdev_isspare' member to indicate that the device is a spare (active or
|
|
* inactive). When a spare is made active (used to replace a device in the
|
|
* pool), we also keep track of which pool its been made a part of.
|
|
*
|
|
* The 'spa_spare_lock' protects the AVL tree. These functions are normally
|
|
* called under the spa_namespace lock as part of vdev reconfiguration. The
|
|
* separate spare lock exists for the status query path, which does not need to
|
|
* be completely consistent with respect to other vdev configuration changes.
|
|
*/
|
|
|
|
static int
|
|
spa_spare_compare(const void *a, const void *b)
|
|
{
|
|
return (spa_aux_compare(a, b));
|
|
}
|
|
|
|
void
|
|
spa_spare_add(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_spare_lock);
|
|
ASSERT(!vd->vdev_isspare);
|
|
spa_aux_add(vd, &spa_spare_avl);
|
|
vd->vdev_isspare = B_TRUE;
|
|
mutex_exit(&spa_spare_lock);
|
|
}
|
|
|
|
void
|
|
spa_spare_remove(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_spare_lock);
|
|
ASSERT(vd->vdev_isspare);
|
|
spa_aux_remove(vd, &spa_spare_avl);
|
|
vd->vdev_isspare = B_FALSE;
|
|
mutex_exit(&spa_spare_lock);
|
|
}
|
|
|
|
boolean_t
|
|
spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
|
|
{
|
|
boolean_t found;
|
|
|
|
mutex_enter(&spa_spare_lock);
|
|
found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
|
|
mutex_exit(&spa_spare_lock);
|
|
|
|
return (found);
|
|
}
|
|
|
|
void
|
|
spa_spare_activate(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_spare_lock);
|
|
ASSERT(vd->vdev_isspare);
|
|
spa_aux_activate(vd, &spa_spare_avl);
|
|
mutex_exit(&spa_spare_lock);
|
|
}
|
|
|
|
/*
|
|
* Level 2 ARC devices are tracked globally for the same reasons as spares.
|
|
* Cache devices currently only support one pool per cache device, and so
|
|
* for these devices the aux reference count is currently unused beyond 1.
|
|
*/
|
|
|
|
static int
|
|
spa_l2cache_compare(const void *a, const void *b)
|
|
{
|
|
return (spa_aux_compare(a, b));
|
|
}
|
|
|
|
void
|
|
spa_l2cache_add(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_l2cache_lock);
|
|
ASSERT(!vd->vdev_isl2cache);
|
|
spa_aux_add(vd, &spa_l2cache_avl);
|
|
vd->vdev_isl2cache = B_TRUE;
|
|
mutex_exit(&spa_l2cache_lock);
|
|
}
|
|
|
|
void
|
|
spa_l2cache_remove(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_l2cache_lock);
|
|
ASSERT(vd->vdev_isl2cache);
|
|
spa_aux_remove(vd, &spa_l2cache_avl);
|
|
vd->vdev_isl2cache = B_FALSE;
|
|
mutex_exit(&spa_l2cache_lock);
|
|
}
|
|
|
|
boolean_t
|
|
spa_l2cache_exists(uint64_t guid, uint64_t *pool)
|
|
{
|
|
boolean_t found;
|
|
|
|
mutex_enter(&spa_l2cache_lock);
|
|
found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
|
|
mutex_exit(&spa_l2cache_lock);
|
|
|
|
return (found);
|
|
}
|
|
|
|
void
|
|
spa_l2cache_activate(vdev_t *vd)
|
|
{
|
|
mutex_enter(&spa_l2cache_lock);
|
|
ASSERT(vd->vdev_isl2cache);
|
|
spa_aux_activate(vd, &spa_l2cache_avl);
|
|
mutex_exit(&spa_l2cache_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA vdev locking
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Lock the given spa_t for the purpose of adding or removing a vdev.
|
|
* Grabs the global spa_namespace_lock plus the spa config lock for writing.
|
|
* It returns the next transaction group for the spa_t.
|
|
*/
|
|
uint64_t
|
|
spa_vdev_enter(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_vdev_top_lock);
|
|
mutex_enter(&spa_namespace_lock);
|
|
|
|
vdev_autotrim_stop_all(spa);
|
|
|
|
return (spa_vdev_config_enter(spa));
|
|
}
|
|
|
|
/*
|
|
* Internal implementation for spa_vdev_enter(). Used when a vdev
|
|
* operation requires multiple syncs (i.e. removing a device) while
|
|
* keeping the spa_namespace_lock held.
|
|
*/
|
|
uint64_t
|
|
spa_vdev_config_enter(spa_t *spa)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
|
|
|
|
return (spa_last_synced_txg(spa) + 1);
|
|
}
|
|
|
|
/*
|
|
* Used in combination with spa_vdev_config_enter() to allow the syncing
|
|
* of multiple transactions without releasing the spa_namespace_lock.
|
|
*/
|
|
void
|
|
spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
int config_changed = B_FALSE;
|
|
|
|
ASSERT(txg > spa_last_synced_txg(spa));
|
|
|
|
spa->spa_pending_vdev = NULL;
|
|
|
|
/*
|
|
* Reassess the DTLs.
|
|
*/
|
|
vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
|
|
|
|
if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
|
|
config_changed = B_TRUE;
|
|
spa->spa_config_generation++;
|
|
}
|
|
|
|
/*
|
|
* Verify the metaslab classes.
|
|
*/
|
|
ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
|
|
ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
|
|
ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
|
|
ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
|
|
|
|
spa_config_exit(spa, SCL_ALL, spa);
|
|
|
|
/*
|
|
* Panic the system if the specified tag requires it. This
|
|
* is useful for ensuring that configurations are updated
|
|
* transactionally.
|
|
*/
|
|
if (zio_injection_enabled)
|
|
zio_handle_panic_injection(spa, tag, 0);
|
|
|
|
/*
|
|
* Note: this txg_wait_synced() is important because it ensures
|
|
* that there won't be more than one config change per txg.
|
|
* This allows us to use the txg as the generation number.
|
|
*/
|
|
if (error == 0)
|
|
txg_wait_synced(spa->spa_dsl_pool, txg);
|
|
|
|
if (vd != NULL) {
|
|
ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
|
|
NULL);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
mutex_enter(&vd->vdev_trim_lock);
|
|
vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
|
|
mutex_exit(&vd->vdev_trim_lock);
|
|
}
|
|
|
|
/*
|
|
* The vdev may be both a leaf and top-level device.
|
|
*/
|
|
vdev_autotrim_stop_wait(vd);
|
|
|
|
spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
|
|
vdev_free(vd);
|
|
spa_config_exit(spa, SCL_ALL, spa);
|
|
}
|
|
|
|
/*
|
|
* If the config changed, update the config cache.
|
|
*/
|
|
if (config_changed)
|
|
spa_write_cachefile(spa, B_FALSE, B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Unlock the spa_t after adding or removing a vdev. Besides undoing the
|
|
* locking of spa_vdev_enter(), we also want make sure the transactions have
|
|
* synced to disk, and then update the global configuration cache with the new
|
|
* information.
|
|
*/
|
|
int
|
|
spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
|
|
{
|
|
vdev_autotrim_restart(spa);
|
|
|
|
spa_vdev_config_exit(spa, vd, txg, error, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
mutex_exit(&spa->spa_vdev_top_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Lock the given spa_t for the purpose of changing vdev state.
|
|
*/
|
|
void
|
|
spa_vdev_state_enter(spa_t *spa, int oplocks)
|
|
{
|
|
int locks = SCL_STATE_ALL | oplocks;
|
|
|
|
/*
|
|
* Root pools may need to read of the underlying devfs filesystem
|
|
* when opening up a vdev. Unfortunately if we're holding the
|
|
* SCL_ZIO lock it will result in a deadlock when we try to issue
|
|
* the read from the root filesystem. Instead we "prefetch"
|
|
* the associated vnodes that we need prior to opening the
|
|
* underlying devices and cache them so that we can prevent
|
|
* any I/O when we are doing the actual open.
|
|
*/
|
|
if (spa_is_root(spa)) {
|
|
int low = locks & ~(SCL_ZIO - 1);
|
|
int high = locks & ~low;
|
|
|
|
spa_config_enter(spa, high, spa, RW_WRITER);
|
|
vdev_hold(spa->spa_root_vdev);
|
|
spa_config_enter(spa, low, spa, RW_WRITER);
|
|
} else {
|
|
spa_config_enter(spa, locks, spa, RW_WRITER);
|
|
}
|
|
spa->spa_vdev_locks = locks;
|
|
}
|
|
|
|
int
|
|
spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
|
|
{
|
|
boolean_t config_changed = B_FALSE;
|
|
vdev_t *vdev_top;
|
|
|
|
if (vd == NULL || vd == spa->spa_root_vdev) {
|
|
vdev_top = spa->spa_root_vdev;
|
|
} else {
|
|
vdev_top = vd->vdev_top;
|
|
}
|
|
|
|
if (vd != NULL || error == 0)
|
|
vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE);
|
|
|
|
if (vd != NULL) {
|
|
if (vd != spa->spa_root_vdev)
|
|
vdev_state_dirty(vdev_top);
|
|
|
|
config_changed = B_TRUE;
|
|
spa->spa_config_generation++;
|
|
}
|
|
|
|
if (spa_is_root(spa))
|
|
vdev_rele(spa->spa_root_vdev);
|
|
|
|
ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
|
|
spa_config_exit(spa, spa->spa_vdev_locks, spa);
|
|
|
|
/*
|
|
* If anything changed, wait for it to sync. This ensures that,
|
|
* from the system administrator's perspective, zpool(1M) commands
|
|
* are synchronous. This is important for things like zpool offline:
|
|
* when the command completes, you expect no further I/O from ZFS.
|
|
*/
|
|
if (vd != NULL)
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
|
|
/*
|
|
* If the config changed, update the config cache.
|
|
*/
|
|
if (config_changed) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_write_cachefile(spa, B_FALSE, B_TRUE);
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Miscellaneous functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
void
|
|
spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
|
|
{
|
|
if (!nvlist_exists(spa->spa_label_features, feature)) {
|
|
fnvlist_add_boolean(spa->spa_label_features, feature);
|
|
/*
|
|
* When we are creating the pool (tx_txg==TXG_INITIAL), we can't
|
|
* dirty the vdev config because lock SCL_CONFIG is not held.
|
|
* Thankfully, in this case we don't need to dirty the config
|
|
* because it will be written out anyway when we finish
|
|
* creating the pool.
|
|
*/
|
|
if (tx->tx_txg != TXG_INITIAL)
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
}
|
|
}
|
|
|
|
void
|
|
spa_deactivate_mos_feature(spa_t *spa, const char *feature)
|
|
{
|
|
if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
}
|
|
|
|
/*
|
|
* Return the spa_t associated with given pool_guid, if it exists. If
|
|
* device_guid is non-zero, determine whether the pool exists *and* contains
|
|
* a device with the specified device_guid.
|
|
*/
|
|
spa_t *
|
|
spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
|
|
{
|
|
spa_t *spa;
|
|
avl_tree_t *t = &spa_namespace_avl;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
|
|
continue;
|
|
if (spa->spa_root_vdev == NULL)
|
|
continue;
|
|
if (spa_guid(spa) == pool_guid) {
|
|
if (device_guid == 0)
|
|
break;
|
|
|
|
if (vdev_lookup_by_guid(spa->spa_root_vdev,
|
|
device_guid) != NULL)
|
|
break;
|
|
|
|
/*
|
|
* Check any devices we may be in the process of adding.
|
|
*/
|
|
if (spa->spa_pending_vdev) {
|
|
if (vdev_lookup_by_guid(spa->spa_pending_vdev,
|
|
device_guid) != NULL)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (spa);
|
|
}
|
|
|
|
/*
|
|
* Determine whether a pool with the given pool_guid exists.
|
|
*/
|
|
boolean_t
|
|
spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
|
|
{
|
|
return (spa_by_guid(pool_guid, device_guid) != NULL);
|
|
}
|
|
|
|
char *
|
|
spa_strdup(const char *s)
|
|
{
|
|
size_t len;
|
|
char *new;
|
|
|
|
len = strlen(s);
|
|
new = kmem_alloc(len + 1, KM_SLEEP);
|
|
bcopy(s, new, len);
|
|
new[len] = '\0';
|
|
|
|
return (new);
|
|
}
|
|
|
|
void
|
|
spa_strfree(char *s)
|
|
{
|
|
kmem_free(s, strlen(s) + 1);
|
|
}
|
|
|
|
uint64_t
|
|
spa_get_random(uint64_t range)
|
|
{
|
|
uint64_t r;
|
|
|
|
ASSERT(range != 0);
|
|
|
|
if (range == 1)
|
|
return (0);
|
|
|
|
(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
|
|
|
|
return (r % range);
|
|
}
|
|
|
|
uint64_t
|
|
spa_generate_guid(spa_t *spa)
|
|
{
|
|
uint64_t guid = spa_get_random(-1ULL);
|
|
|
|
if (spa != NULL) {
|
|
while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
|
|
guid = spa_get_random(-1ULL);
|
|
} else {
|
|
while (guid == 0 || spa_guid_exists(guid, 0))
|
|
guid = spa_get_random(-1ULL);
|
|
}
|
|
|
|
return (guid);
|
|
}
|
|
|
|
void
|
|
snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
|
|
{
|
|
char type[256];
|
|
char *checksum = NULL;
|
|
char *compress = NULL;
|
|
|
|
if (bp != NULL) {
|
|
if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
|
|
dmu_object_byteswap_t bswap =
|
|
DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
|
|
(void) snprintf(type, sizeof (type), "bswap %s %s",
|
|
DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
|
|
"metadata" : "data",
|
|
dmu_ot_byteswap[bswap].ob_name);
|
|
} else {
|
|
(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
|
|
sizeof (type));
|
|
}
|
|
if (!BP_IS_EMBEDDED(bp)) {
|
|
checksum =
|
|
zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
|
|
}
|
|
compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
|
|
}
|
|
|
|
SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
|
|
compress);
|
|
}
|
|
|
|
void
|
|
spa_freeze(spa_t *spa)
|
|
{
|
|
uint64_t freeze_txg = 0;
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
if (spa->spa_freeze_txg == UINT64_MAX) {
|
|
freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
|
|
spa->spa_freeze_txg = freeze_txg;
|
|
}
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
if (freeze_txg != 0)
|
|
txg_wait_synced(spa_get_dsl(spa), freeze_txg);
|
|
}
|
|
|
|
void
|
|
zfs_panic_recover(const char *fmt, ...)
|
|
{
|
|
va_list adx;
|
|
|
|
va_start(adx, fmt);
|
|
vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
|
|
va_end(adx);
|
|
}
|
|
|
|
/*
|
|
* This is a stripped-down version of strtoull, suitable only for converting
|
|
* lowercase hexadecimal numbers that don't overflow.
|
|
*/
|
|
uint64_t
|
|
zfs_strtonum(const char *str, char **nptr)
|
|
{
|
|
uint64_t val = 0;
|
|
char c;
|
|
int digit;
|
|
|
|
while ((c = *str) != '\0') {
|
|
if (c >= '0' && c <= '9')
|
|
digit = c - '0';
|
|
else if (c >= 'a' && c <= 'f')
|
|
digit = 10 + c - 'a';
|
|
else
|
|
break;
|
|
|
|
val *= 16;
|
|
val += digit;
|
|
|
|
str++;
|
|
}
|
|
|
|
if (nptr)
|
|
*nptr = (char *)str;
|
|
|
|
return (val);
|
|
}
|
|
|
|
void
|
|
spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
|
|
{
|
|
/*
|
|
* We bump the feature refcount for each special vdev added to the pool
|
|
*/
|
|
ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
|
|
spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Accessor functions
|
|
* ==========================================================================
|
|
*/
|
|
|
|
boolean_t
|
|
spa_shutting_down(spa_t *spa)
|
|
{
|
|
return (spa->spa_async_suspended);
|
|
}
|
|
|
|
dsl_pool_t *
|
|
spa_get_dsl(spa_t *spa)
|
|
{
|
|
return (spa->spa_dsl_pool);
|
|
}
|
|
|
|
boolean_t
|
|
spa_is_initializing(spa_t *spa)
|
|
{
|
|
return (spa->spa_is_initializing);
|
|
}
|
|
|
|
boolean_t
|
|
spa_indirect_vdevs_loaded(spa_t *spa)
|
|
{
|
|
return (spa->spa_indirect_vdevs_loaded);
|
|
}
|
|
|
|
blkptr_t *
|
|
spa_get_rootblkptr(spa_t *spa)
|
|
{
|
|
return (&spa->spa_ubsync.ub_rootbp);
|
|
}
|
|
|
|
void
|
|
spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
spa->spa_uberblock.ub_rootbp = *bp;
|
|
}
|
|
|
|
void
|
|
spa_altroot(spa_t *spa, char *buf, size_t buflen)
|
|
{
|
|
if (spa->spa_root == NULL)
|
|
buf[0] = '\0';
|
|
else
|
|
(void) strncpy(buf, spa->spa_root, buflen);
|
|
}
|
|
|
|
int
|
|
spa_sync_pass(spa_t *spa)
|
|
{
|
|
return (spa->spa_sync_pass);
|
|
}
|
|
|
|
char *
|
|
spa_name(spa_t *spa)
|
|
{
|
|
return (spa->spa_name);
|
|
}
|
|
|
|
uint64_t
|
|
spa_guid(spa_t *spa)
|
|
{
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
uint64_t guid;
|
|
|
|
/*
|
|
* If we fail to parse the config during spa_load(), we can go through
|
|
* the error path (which posts an ereport) and end up here with no root
|
|
* vdev. We stash the original pool guid in 'spa_config_guid' to handle
|
|
* this case.
|
|
*/
|
|
if (spa->spa_root_vdev == NULL)
|
|
return (spa->spa_config_guid);
|
|
|
|
guid = spa->spa_last_synced_guid != 0 ?
|
|
spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
|
|
|
|
/*
|
|
* Return the most recently synced out guid unless we're
|
|
* in syncing context.
|
|
*/
|
|
if (dp && dsl_pool_sync_context(dp))
|
|
return (spa->spa_root_vdev->vdev_guid);
|
|
else
|
|
return (guid);
|
|
}
|
|
|
|
uint64_t
|
|
spa_load_guid(spa_t *spa)
|
|
{
|
|
/*
|
|
* This is a GUID that exists solely as a reference for the
|
|
* purposes of the arc. It is generated at load time, and
|
|
* is never written to persistent storage.
|
|
*/
|
|
return (spa->spa_load_guid);
|
|
}
|
|
|
|
uint64_t
|
|
spa_last_synced_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_ubsync.ub_txg);
|
|
}
|
|
|
|
uint64_t
|
|
spa_first_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_first_txg);
|
|
}
|
|
|
|
uint64_t
|
|
spa_syncing_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_syncing_txg);
|
|
}
|
|
|
|
/*
|
|
* Return the last txg where data can be dirtied. The final txgs
|
|
* will be used to just clear out any deferred frees that remain.
|
|
*/
|
|
uint64_t
|
|
spa_final_dirty_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_final_txg - TXG_DEFER_SIZE);
|
|
}
|
|
|
|
pool_state_t
|
|
spa_state(spa_t *spa)
|
|
{
|
|
return (spa->spa_state);
|
|
}
|
|
|
|
spa_load_state_t
|
|
spa_load_state(spa_t *spa)
|
|
{
|
|
return (spa->spa_load_state);
|
|
}
|
|
|
|
uint64_t
|
|
spa_freeze_txg(spa_t *spa)
|
|
{
|
|
return (spa->spa_freeze_txg);
|
|
}
|
|
|
|
/*
|
|
* Return the inflated asize for a logical write in bytes. This is used by the
|
|
* DMU to calculate the space a logical write will require on disk.
|
|
* If lsize is smaller than the largest physical block size allocatable on this
|
|
* pool we use its value instead, since the write will end up using the whole
|
|
* block anyway.
|
|
*/
|
|
uint64_t
|
|
spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
|
|
{
|
|
if (lsize == 0)
|
|
return (0); /* No inflation needed */
|
|
return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
|
|
}
|
|
|
|
/*
|
|
* Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
|
|
* or at least 128MB, unless that would cause it to be more than half the
|
|
* pool size.
|
|
*
|
|
* See the comment above spa_slop_shift for details.
|
|
*/
|
|
uint64_t
|
|
spa_get_slop_space(spa_t *spa)
|
|
{
|
|
uint64_t space = spa_get_dspace(spa);
|
|
return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
|
|
}
|
|
|
|
uint64_t
|
|
spa_get_dspace(spa_t *spa)
|
|
{
|
|
return (spa->spa_dspace);
|
|
}
|
|
|
|
uint64_t
|
|
spa_get_checkpoint_space(spa_t *spa)
|
|
{
|
|
return (spa->spa_checkpoint_info.sci_dspace);
|
|
}
|
|
|
|
void
|
|
spa_update_dspace(spa_t *spa)
|
|
{
|
|
spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
|
|
ddt_get_dedup_dspace(spa);
|
|
if (spa->spa_vdev_removal != NULL) {
|
|
/*
|
|
* We can't allocate from the removing device, so
|
|
* subtract its size. This prevents the DMU/DSL from
|
|
* filling up the (now smaller) pool while we are in the
|
|
* middle of removing the device.
|
|
*
|
|
* Note that the DMU/DSL doesn't actually know or care
|
|
* how much space is allocated (it does its own tracking
|
|
* of how much space has been logically used). So it
|
|
* doesn't matter that the data we are moving may be
|
|
* allocated twice (on the old device and the new
|
|
* device).
|
|
*/
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
vdev_t *vd =
|
|
vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
|
|
spa->spa_dspace -= spa_deflate(spa) ?
|
|
vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the failure mode that has been set to this pool. The default
|
|
* behavior will be to block all I/Os when a complete failure occurs.
|
|
*/
|
|
uint64_t
|
|
spa_get_failmode(spa_t *spa)
|
|
{
|
|
return (spa->spa_failmode);
|
|
}
|
|
|
|
boolean_t
|
|
spa_suspended(spa_t *spa)
|
|
{
|
|
return (spa->spa_suspended != ZIO_SUSPEND_NONE);
|
|
}
|
|
|
|
uint64_t
|
|
spa_version(spa_t *spa)
|
|
{
|
|
return (spa->spa_ubsync.ub_version);
|
|
}
|
|
|
|
boolean_t
|
|
spa_deflate(spa_t *spa)
|
|
{
|
|
return (spa->spa_deflate);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_normal_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_normal_class);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_log_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_log_class);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_special_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_special_class);
|
|
}
|
|
|
|
metaslab_class_t *
|
|
spa_dedup_class(spa_t *spa)
|
|
{
|
|
return (spa->spa_dedup_class);
|
|
}
|
|
|
|
/*
|
|
* Locate an appropriate allocation class
|
|
*/
|
|
metaslab_class_t *
|
|
spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
|
|
uint_t level, uint_t special_smallblk)
|
|
{
|
|
if (DMU_OT_IS_ZIL(objtype)) {
|
|
if (spa->spa_log_class->mc_groups != 0)
|
|
return (spa_log_class(spa));
|
|
else
|
|
return (spa_normal_class(spa));
|
|
}
|
|
|
|
boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
|
|
|
|
if (DMU_OT_IS_DDT(objtype)) {
|
|
if (spa->spa_dedup_class->mc_groups != 0)
|
|
return (spa_dedup_class(spa));
|
|
else if (has_special_class && zfs_ddt_data_is_special)
|
|
return (spa_special_class(spa));
|
|
else
|
|
return (spa_normal_class(spa));
|
|
}
|
|
|
|
/* Indirect blocks for user data can land in special if allowed */
|
|
if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
|
|
if (has_special_class && zfs_user_indirect_is_special)
|
|
return (spa_special_class(spa));
|
|
else
|
|
return (spa_normal_class(spa));
|
|
}
|
|
|
|
if (DMU_OT_IS_METADATA(objtype) || level > 0) {
|
|
if (has_special_class)
|
|
return (spa_special_class(spa));
|
|
else
|
|
return (spa_normal_class(spa));
|
|
}
|
|
|
|
/*
|
|
* Allow small file blocks in special class in some cases (like
|
|
* for the dRAID vdev feature). But always leave a reserve of
|
|
* zfs_special_class_metadata_reserve_pct exclusively for metadata.
|
|
*/
|
|
if (DMU_OT_IS_FILE(objtype) &&
|
|
has_special_class && size <= special_smallblk) {
|
|
metaslab_class_t *special = spa_special_class(spa);
|
|
uint64_t alloc = metaslab_class_get_alloc(special);
|
|
uint64_t space = metaslab_class_get_space(special);
|
|
uint64_t limit =
|
|
(space * (100 - zfs_special_class_metadata_reserve_pct))
|
|
/ 100;
|
|
|
|
if (alloc < limit)
|
|
return (special);
|
|
}
|
|
|
|
return (spa_normal_class(spa));
|
|
}
|
|
|
|
void
|
|
spa_evicting_os_register(spa_t *spa, objset_t *os)
|
|
{
|
|
mutex_enter(&spa->spa_evicting_os_lock);
|
|
list_insert_head(&spa->spa_evicting_os_list, os);
|
|
mutex_exit(&spa->spa_evicting_os_lock);
|
|
}
|
|
|
|
void
|
|
spa_evicting_os_deregister(spa_t *spa, objset_t *os)
|
|
{
|
|
mutex_enter(&spa->spa_evicting_os_lock);
|
|
list_remove(&spa->spa_evicting_os_list, os);
|
|
cv_broadcast(&spa->spa_evicting_os_cv);
|
|
mutex_exit(&spa->spa_evicting_os_lock);
|
|
}
|
|
|
|
void
|
|
spa_evicting_os_wait(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_evicting_os_lock);
|
|
while (!list_is_empty(&spa->spa_evicting_os_list))
|
|
cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
|
|
mutex_exit(&spa->spa_evicting_os_lock);
|
|
|
|
dmu_buf_user_evict_wait();
|
|
}
|
|
|
|
int
|
|
spa_max_replication(spa_t *spa)
|
|
{
|
|
/*
|
|
* As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
|
|
* handle BPs with more than one DVA allocated. Set our max
|
|
* replication level accordingly.
|
|
*/
|
|
if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
|
|
return (1);
|
|
return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
|
|
}
|
|
|
|
int
|
|
spa_prev_software_version(spa_t *spa)
|
|
{
|
|
return (spa->spa_prev_software_version);
|
|
}
|
|
|
|
uint64_t
|
|
spa_deadman_synctime(spa_t *spa)
|
|
{
|
|
return (spa->spa_deadman_synctime);
|
|
}
|
|
|
|
spa_autotrim_t
|
|
spa_get_autotrim(spa_t *spa)
|
|
{
|
|
return (spa->spa_autotrim);
|
|
}
|
|
|
|
uint64_t
|
|
spa_deadman_ziotime(spa_t *spa)
|
|
{
|
|
return (spa->spa_deadman_ziotime);
|
|
}
|
|
|
|
uint64_t
|
|
spa_get_deadman_failmode(spa_t *spa)
|
|
{
|
|
return (spa->spa_deadman_failmode);
|
|
}
|
|
|
|
void
|
|
spa_set_deadman_failmode(spa_t *spa, const char *failmode)
|
|
{
|
|
if (strcmp(failmode, "wait") == 0)
|
|
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
|
|
else if (strcmp(failmode, "continue") == 0)
|
|
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
|
|
else if (strcmp(failmode, "panic") == 0)
|
|
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
|
|
else
|
|
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
|
|
}
|
|
|
|
uint64_t
|
|
dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
|
|
{
|
|
uint64_t asize = DVA_GET_ASIZE(dva);
|
|
uint64_t dsize = asize;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
|
|
|
|
if (asize != 0 && spa->spa_deflate) {
|
|
vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
|
|
if (vd != NULL)
|
|
dsize = (asize >> SPA_MINBLOCKSHIFT) *
|
|
vd->vdev_deflate_ratio;
|
|
}
|
|
|
|
return (dsize);
|
|
}
|
|
|
|
uint64_t
|
|
bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
uint64_t dsize = 0;
|
|
|
|
for (int d = 0; d < BP_GET_NDVAS(bp); d++)
|
|
dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
|
|
|
|
return (dsize);
|
|
}
|
|
|
|
uint64_t
|
|
bp_get_dsize(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
uint64_t dsize = 0;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (int d = 0; d < BP_GET_NDVAS(bp); d++)
|
|
dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
return (dsize);
|
|
}
|
|
|
|
uint64_t
|
|
spa_dirty_data(spa_t *spa)
|
|
{
|
|
return (spa->spa_dsl_pool->dp_dirty_total);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA Import Progress Routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
typedef struct spa_import_progress {
|
|
uint64_t pool_guid; /* unique id for updates */
|
|
char *pool_name;
|
|
spa_load_state_t spa_load_state;
|
|
uint64_t mmp_sec_remaining; /* MMP activity check */
|
|
uint64_t spa_load_max_txg; /* rewind txg */
|
|
procfs_list_node_t smh_node;
|
|
} spa_import_progress_t;
|
|
|
|
spa_history_list_t *spa_import_progress_list = NULL;
|
|
|
|
static int
|
|
spa_import_progress_show_header(struct seq_file *f)
|
|
{
|
|
seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
|
|
"load_state", "multihost_secs", "max_txg",
|
|
"pool_name");
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_import_progress_show(struct seq_file *f, void *data)
|
|
{
|
|
spa_import_progress_t *sip = (spa_import_progress_t *)data;
|
|
|
|
seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
|
|
(u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
|
|
(u_longlong_t)sip->mmp_sec_remaining,
|
|
(u_longlong_t)sip->spa_load_max_txg,
|
|
(sip->pool_name ? sip->pool_name : "-"));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Remove oldest elements from list until there are no more than 'size' left */
|
|
static void
|
|
spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
|
|
{
|
|
spa_import_progress_t *sip;
|
|
while (shl->size > size) {
|
|
sip = list_remove_head(&shl->procfs_list.pl_list);
|
|
if (sip->pool_name)
|
|
spa_strfree(sip->pool_name);
|
|
kmem_free(sip, sizeof (spa_import_progress_t));
|
|
shl->size--;
|
|
}
|
|
|
|
IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
|
|
}
|
|
|
|
static void
|
|
spa_import_progress_init(void)
|
|
{
|
|
spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
|
|
KM_SLEEP);
|
|
|
|
spa_import_progress_list->size = 0;
|
|
|
|
spa_import_progress_list->procfs_list.pl_private =
|
|
spa_import_progress_list;
|
|
|
|
procfs_list_install("zfs",
|
|
"import_progress",
|
|
0644,
|
|
&spa_import_progress_list->procfs_list,
|
|
spa_import_progress_show,
|
|
spa_import_progress_show_header,
|
|
NULL,
|
|
offsetof(spa_import_progress_t, smh_node));
|
|
}
|
|
|
|
static void
|
|
spa_import_progress_destroy(void)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
procfs_list_uninstall(&shl->procfs_list);
|
|
spa_import_progress_truncate(shl, 0);
|
|
procfs_list_destroy(&shl->procfs_list);
|
|
kmem_free(shl, sizeof (spa_history_list_t));
|
|
}
|
|
|
|
int
|
|
spa_import_progress_set_state(uint64_t pool_guid,
|
|
spa_load_state_t load_state)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
spa_import_progress_t *sip;
|
|
int error = ENOENT;
|
|
|
|
if (shl->size == 0)
|
|
return (0);
|
|
|
|
mutex_enter(&shl->procfs_list.pl_lock);
|
|
for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
|
|
sip = list_prev(&shl->procfs_list.pl_list, sip)) {
|
|
if (sip->pool_guid == pool_guid) {
|
|
sip->spa_load_state = load_state;
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
mutex_exit(&shl->procfs_list.pl_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
spa_import_progress_t *sip;
|
|
int error = ENOENT;
|
|
|
|
if (shl->size == 0)
|
|
return (0);
|
|
|
|
mutex_enter(&shl->procfs_list.pl_lock);
|
|
for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
|
|
sip = list_prev(&shl->procfs_list.pl_list, sip)) {
|
|
if (sip->pool_guid == pool_guid) {
|
|
sip->spa_load_max_txg = load_max_txg;
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
mutex_exit(&shl->procfs_list.pl_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
spa_import_progress_set_mmp_check(uint64_t pool_guid,
|
|
uint64_t mmp_sec_remaining)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
spa_import_progress_t *sip;
|
|
int error = ENOENT;
|
|
|
|
if (shl->size == 0)
|
|
return (0);
|
|
|
|
mutex_enter(&shl->procfs_list.pl_lock);
|
|
for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
|
|
sip = list_prev(&shl->procfs_list.pl_list, sip)) {
|
|
if (sip->pool_guid == pool_guid) {
|
|
sip->mmp_sec_remaining = mmp_sec_remaining;
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
mutex_exit(&shl->procfs_list.pl_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* A new import is in progress, add an entry.
|
|
*/
|
|
void
|
|
spa_import_progress_add(spa_t *spa)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
spa_import_progress_t *sip;
|
|
char *poolname = NULL;
|
|
|
|
sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
|
|
sip->pool_guid = spa_guid(spa);
|
|
|
|
(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
|
|
&poolname);
|
|
if (poolname == NULL)
|
|
poolname = spa_name(spa);
|
|
sip->pool_name = spa_strdup(poolname);
|
|
sip->spa_load_state = spa_load_state(spa);
|
|
|
|
mutex_enter(&shl->procfs_list.pl_lock);
|
|
procfs_list_add(&shl->procfs_list, sip);
|
|
shl->size++;
|
|
mutex_exit(&shl->procfs_list.pl_lock);
|
|
}
|
|
|
|
void
|
|
spa_import_progress_remove(uint64_t pool_guid)
|
|
{
|
|
spa_history_list_t *shl = spa_import_progress_list;
|
|
spa_import_progress_t *sip;
|
|
|
|
mutex_enter(&shl->procfs_list.pl_lock);
|
|
for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
|
|
sip = list_prev(&shl->procfs_list.pl_list, sip)) {
|
|
if (sip->pool_guid == pool_guid) {
|
|
if (sip->pool_name)
|
|
spa_strfree(sip->pool_name);
|
|
list_remove(&shl->procfs_list.pl_list, sip);
|
|
shl->size--;
|
|
kmem_free(sip, sizeof (spa_import_progress_t));
|
|
break;
|
|
}
|
|
}
|
|
mutex_exit(&shl->procfs_list.pl_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Initialization and Termination
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static int
|
|
spa_name_compare(const void *a1, const void *a2)
|
|
{
|
|
const spa_t *s1 = a1;
|
|
const spa_t *s2 = a2;
|
|
int s;
|
|
|
|
s = strcmp(s1->spa_name, s2->spa_name);
|
|
|
|
return (TREE_ISIGN(s));
|
|
}
|
|
|
|
void
|
|
spa_boot_init(void)
|
|
{
|
|
spa_config_load();
|
|
}
|
|
|
|
void
|
|
spa_init(int mode)
|
|
{
|
|
mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
|
|
offsetof(spa_t, spa_avl));
|
|
|
|
avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
|
|
offsetof(spa_aux_t, aux_avl));
|
|
|
|
avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
|
|
offsetof(spa_aux_t, aux_avl));
|
|
|
|
spa_mode_global = mode;
|
|
|
|
#ifndef _KERNEL
|
|
if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
|
|
struct sigaction sa;
|
|
|
|
sa.sa_flags = SA_SIGINFO;
|
|
sigemptyset(&sa.sa_mask);
|
|
sa.sa_sigaction = arc_buf_sigsegv;
|
|
|
|
if (sigaction(SIGSEGV, &sa, NULL) == -1) {
|
|
perror("could not enable watchpoints: "
|
|
"sigaction(SIGSEGV, ...) = ");
|
|
} else {
|
|
arc_watch = B_TRUE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
fm_init();
|
|
zfs_refcount_init();
|
|
unique_init();
|
|
zfs_btree_init();
|
|
metaslab_stat_init();
|
|
ddt_init();
|
|
zio_init();
|
|
dmu_init();
|
|
zil_init();
|
|
vdev_cache_stat_init();
|
|
vdev_mirror_stat_init();
|
|
vdev_raidz_math_init();
|
|
vdev_file_init();
|
|
zfs_prop_init();
|
|
zpool_prop_init();
|
|
zpool_feature_init();
|
|
spa_config_load();
|
|
l2arc_start();
|
|
scan_init();
|
|
qat_init();
|
|
spa_import_progress_init();
|
|
}
|
|
|
|
void
|
|
spa_fini(void)
|
|
{
|
|
l2arc_stop();
|
|
|
|
spa_evict_all();
|
|
|
|
vdev_file_fini();
|
|
vdev_cache_stat_fini();
|
|
vdev_mirror_stat_fini();
|
|
vdev_raidz_math_fini();
|
|
zil_fini();
|
|
dmu_fini();
|
|
zio_fini();
|
|
ddt_fini();
|
|
metaslab_stat_fini();
|
|
zfs_btree_fini();
|
|
unique_fini();
|
|
zfs_refcount_fini();
|
|
fm_fini();
|
|
scan_fini();
|
|
qat_fini();
|
|
spa_import_progress_destroy();
|
|
|
|
avl_destroy(&spa_namespace_avl);
|
|
avl_destroy(&spa_spare_avl);
|
|
avl_destroy(&spa_l2cache_avl);
|
|
|
|
cv_destroy(&spa_namespace_cv);
|
|
mutex_destroy(&spa_namespace_lock);
|
|
mutex_destroy(&spa_spare_lock);
|
|
mutex_destroy(&spa_l2cache_lock);
|
|
}
|
|
|
|
/*
|
|
* Return whether this pool has slogs. No locking needed.
|
|
* It's not a problem if the wrong answer is returned as it's only for
|
|
* performance and not correctness
|
|
*/
|
|
boolean_t
|
|
spa_has_slogs(spa_t *spa)
|
|
{
|
|
return (spa->spa_log_class->mc_rotor != NULL);
|
|
}
|
|
|
|
spa_log_state_t
|
|
spa_get_log_state(spa_t *spa)
|
|
{
|
|
return (spa->spa_log_state);
|
|
}
|
|
|
|
void
|
|
spa_set_log_state(spa_t *spa, spa_log_state_t state)
|
|
{
|
|
spa->spa_log_state = state;
|
|
}
|
|
|
|
boolean_t
|
|
spa_is_root(spa_t *spa)
|
|
{
|
|
return (spa->spa_is_root);
|
|
}
|
|
|
|
boolean_t
|
|
spa_writeable(spa_t *spa)
|
|
{
|
|
return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
|
|
}
|
|
|
|
/*
|
|
* Returns true if there is a pending sync task in any of the current
|
|
* syncing txg, the current quiescing txg, or the current open txg.
|
|
*/
|
|
boolean_t
|
|
spa_has_pending_synctask(spa_t *spa)
|
|
{
|
|
return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
|
|
!txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
|
|
}
|
|
|
|
int
|
|
spa_mode(spa_t *spa)
|
|
{
|
|
return (spa->spa_mode);
|
|
}
|
|
|
|
uint64_t
|
|
spa_bootfs(spa_t *spa)
|
|
{
|
|
return (spa->spa_bootfs);
|
|
}
|
|
|
|
uint64_t
|
|
spa_delegation(spa_t *spa)
|
|
{
|
|
return (spa->spa_delegation);
|
|
}
|
|
|
|
objset_t *
|
|
spa_meta_objset(spa_t *spa)
|
|
{
|
|
return (spa->spa_meta_objset);
|
|
}
|
|
|
|
enum zio_checksum
|
|
spa_dedup_checksum(spa_t *spa)
|
|
{
|
|
return (spa->spa_dedup_checksum);
|
|
}
|
|
|
|
/*
|
|
* Reset pool scan stat per scan pass (or reboot).
|
|
*/
|
|
void
|
|
spa_scan_stat_init(spa_t *spa)
|
|
{
|
|
/* data not stored on disk */
|
|
spa->spa_scan_pass_start = gethrestime_sec();
|
|
if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
|
|
spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
|
|
else
|
|
spa->spa_scan_pass_scrub_pause = 0;
|
|
spa->spa_scan_pass_scrub_spent_paused = 0;
|
|
spa->spa_scan_pass_exam = 0;
|
|
spa->spa_scan_pass_issued = 0;
|
|
vdev_scan_stat_init(spa->spa_root_vdev);
|
|
}
|
|
|
|
/*
|
|
* Get scan stats for zpool status reports
|
|
*/
|
|
int
|
|
spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
|
|
{
|
|
dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
|
|
|
|
if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
|
|
return (SET_ERROR(ENOENT));
|
|
bzero(ps, sizeof (pool_scan_stat_t));
|
|
|
|
/* data stored on disk */
|
|
ps->pss_func = scn->scn_phys.scn_func;
|
|
ps->pss_state = scn->scn_phys.scn_state;
|
|
ps->pss_start_time = scn->scn_phys.scn_start_time;
|
|
ps->pss_end_time = scn->scn_phys.scn_end_time;
|
|
ps->pss_to_examine = scn->scn_phys.scn_to_examine;
|
|
ps->pss_examined = scn->scn_phys.scn_examined;
|
|
ps->pss_to_process = scn->scn_phys.scn_to_process;
|
|
ps->pss_processed = scn->scn_phys.scn_processed;
|
|
ps->pss_errors = scn->scn_phys.scn_errors;
|
|
|
|
/* data not stored on disk */
|
|
ps->pss_pass_exam = spa->spa_scan_pass_exam;
|
|
ps->pss_pass_start = spa->spa_scan_pass_start;
|
|
ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
|
|
ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
|
|
ps->pss_pass_issued = spa->spa_scan_pass_issued;
|
|
ps->pss_issued =
|
|
scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
spa_maxblocksize(spa_t *spa)
|
|
{
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
|
|
return (SPA_MAXBLOCKSIZE);
|
|
else
|
|
return (SPA_OLD_MAXBLOCKSIZE);
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns the txg that the last device removal completed. No indirect mappings
|
|
* have been added since this txg.
|
|
*/
|
|
uint64_t
|
|
spa_get_last_removal_txg(spa_t *spa)
|
|
{
|
|
uint64_t vdevid;
|
|
uint64_t ret = -1ULL;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
/*
|
|
* sr_prev_indirect_vdev is only modified while holding all the
|
|
* config locks, so it is sufficient to hold SCL_VDEV as reader when
|
|
* examining it.
|
|
*/
|
|
vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
|
|
|
|
while (vdevid != -1ULL) {
|
|
vdev_t *vd = vdev_lookup_top(spa, vdevid);
|
|
vdev_indirect_births_t *vib = vd->vdev_indirect_births;
|
|
|
|
ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
|
|
|
|
/*
|
|
* If the removal did not remap any data, we don't care.
|
|
*/
|
|
if (vdev_indirect_births_count(vib) != 0) {
|
|
ret = vdev_indirect_births_last_entry_txg(vib);
|
|
break;
|
|
}
|
|
|
|
vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
|
|
}
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
IMPLY(ret != -1ULL,
|
|
spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
spa_maxdnodesize(spa_t *spa)
|
|
{
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
|
|
return (DNODE_MAX_SIZE);
|
|
else
|
|
return (DNODE_MIN_SIZE);
|
|
}
|
|
|
|
boolean_t
|
|
spa_multihost(spa_t *spa)
|
|
{
|
|
return (spa->spa_multihost ? B_TRUE : B_FALSE);
|
|
}
|
|
|
|
uint32_t
|
|
spa_get_hostid(spa_t *spa)
|
|
{
|
|
return (spa->spa_hostid);
|
|
}
|
|
|
|
boolean_t
|
|
spa_trust_config(spa_t *spa)
|
|
{
|
|
return (spa->spa_trust_config);
|
|
}
|
|
|
|
uint64_t
|
|
spa_missing_tvds_allowed(spa_t *spa)
|
|
{
|
|
return (spa->spa_missing_tvds_allowed);
|
|
}
|
|
|
|
space_map_t *
|
|
spa_syncing_log_sm(spa_t *spa)
|
|
{
|
|
return (spa->spa_syncing_log_sm);
|
|
}
|
|
|
|
void
|
|
spa_set_missing_tvds(spa_t *spa, uint64_t missing)
|
|
{
|
|
spa->spa_missing_tvds = missing;
|
|
}
|
|
|
|
/*
|
|
* Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
|
|
*/
|
|
const char *
|
|
spa_state_to_name(spa_t *spa)
|
|
{
|
|
ASSERT3P(spa, !=, NULL);
|
|
|
|
/*
|
|
* it is possible for the spa to exist, without root vdev
|
|
* as the spa transitions during import/export
|
|
*/
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
if (rvd == NULL) {
|
|
return ("TRANSITIONING");
|
|
}
|
|
vdev_state_t state = rvd->vdev_state;
|
|
vdev_aux_t aux = rvd->vdev_stat.vs_aux;
|
|
|
|
if (spa_suspended(spa) &&
|
|
(spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
|
|
return ("SUSPENDED");
|
|
|
|
switch (state) {
|
|
case VDEV_STATE_CLOSED:
|
|
case VDEV_STATE_OFFLINE:
|
|
return ("OFFLINE");
|
|
case VDEV_STATE_REMOVED:
|
|
return ("REMOVED");
|
|
case VDEV_STATE_CANT_OPEN:
|
|
if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
|
|
return ("FAULTED");
|
|
else if (aux == VDEV_AUX_SPLIT_POOL)
|
|
return ("SPLIT");
|
|
else
|
|
return ("UNAVAIL");
|
|
case VDEV_STATE_FAULTED:
|
|
return ("FAULTED");
|
|
case VDEV_STATE_DEGRADED:
|
|
return ("DEGRADED");
|
|
case VDEV_STATE_HEALTHY:
|
|
return ("ONLINE");
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ("UNKNOWN");
|
|
}
|
|
|
|
boolean_t
|
|
spa_top_vdevs_spacemap_addressable(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
|
|
if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
|
|
return (B_FALSE);
|
|
}
|
|
return (B_TRUE);
|
|
}
|
|
|
|
boolean_t
|
|
spa_has_checkpoint(spa_t *spa)
|
|
{
|
|
return (spa->spa_checkpoint_txg != 0);
|
|
}
|
|
|
|
boolean_t
|
|
spa_importing_readonly_checkpoint(spa_t *spa)
|
|
{
|
|
return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
|
|
spa->spa_mode == FREAD);
|
|
}
|
|
|
|
uint64_t
|
|
spa_min_claim_txg(spa_t *spa)
|
|
{
|
|
uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
|
|
|
|
if (checkpoint_txg != 0)
|
|
return (checkpoint_txg + 1);
|
|
|
|
return (spa->spa_first_txg);
|
|
}
|
|
|
|
/*
|
|
* If there is a checkpoint, async destroys may consume more space from
|
|
* the pool instead of freeing it. In an attempt to save the pool from
|
|
* getting suspended when it is about to run out of space, we stop
|
|
* processing async destroys.
|
|
*/
|
|
boolean_t
|
|
spa_suspend_async_destroy(spa_t *spa)
|
|
{
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
|
|
uint64_t unreserved = dsl_pool_unreserved_space(dp,
|
|
ZFS_SPACE_CHECK_EXTRA_RESERVED);
|
|
uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
|
|
uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
|
|
|
|
if (spa_has_checkpoint(spa) && avail == 0)
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
|
|
static int
|
|
param_set_deadman_failmode(const char *val, zfs_kernel_param_t *kp)
|
|
{
|
|
spa_t *spa = NULL;
|
|
char *p;
|
|
|
|
if (val == NULL)
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
if ((p = strchr(val, '\n')) != NULL)
|
|
*p = '\0';
|
|
|
|
if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
|
|
strcmp(val, "panic"))
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
if (spa_mode_global != 0) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL)
|
|
spa_set_deadman_failmode(spa, val);
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
return (param_set_charp(val, kp));
|
|
}
|
|
|
|
static int
|
|
param_set_deadman_ziotime(const char *val, zfs_kernel_param_t *kp)
|
|
{
|
|
spa_t *spa = NULL;
|
|
int error;
|
|
|
|
error = param_set_ulong(val, kp);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
if (spa_mode_global != 0) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL)
|
|
spa->spa_deadman_ziotime =
|
|
MSEC2NSEC(zfs_deadman_ziotime_ms);
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
param_set_deadman_synctime(const char *val, zfs_kernel_param_t *kp)
|
|
{
|
|
spa_t *spa = NULL;
|
|
int error;
|
|
|
|
error = param_set_ulong(val, kp);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
if (spa_mode_global != 0) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL)
|
|
spa->spa_deadman_synctime =
|
|
MSEC2NSEC(zfs_deadman_synctime_ms);
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
param_set_slop_shift(const char *buf, zfs_kernel_param_t *kp)
|
|
{
|
|
unsigned long val;
|
|
int error;
|
|
|
|
error = kstrtoul(buf, 0, &val);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
if (val < 1 || val > 31)
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
error = param_set_int(buf, kp);
|
|
if (error < 0)
|
|
return (SET_ERROR(error));
|
|
|
|
return (0);
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Namespace manipulation */
|
|
EXPORT_SYMBOL(spa_lookup);
|
|
EXPORT_SYMBOL(spa_add);
|
|
EXPORT_SYMBOL(spa_remove);
|
|
EXPORT_SYMBOL(spa_next);
|
|
|
|
/* Refcount functions */
|
|
EXPORT_SYMBOL(spa_open_ref);
|
|
EXPORT_SYMBOL(spa_close);
|
|
EXPORT_SYMBOL(spa_refcount_zero);
|
|
|
|
/* Pool configuration lock */
|
|
EXPORT_SYMBOL(spa_config_tryenter);
|
|
EXPORT_SYMBOL(spa_config_enter);
|
|
EXPORT_SYMBOL(spa_config_exit);
|
|
EXPORT_SYMBOL(spa_config_held);
|
|
|
|
/* Pool vdev add/remove lock */
|
|
EXPORT_SYMBOL(spa_vdev_enter);
|
|
EXPORT_SYMBOL(spa_vdev_exit);
|
|
|
|
/* Pool vdev state change lock */
|
|
EXPORT_SYMBOL(spa_vdev_state_enter);
|
|
EXPORT_SYMBOL(spa_vdev_state_exit);
|
|
|
|
/* Accessor functions */
|
|
EXPORT_SYMBOL(spa_shutting_down);
|
|
EXPORT_SYMBOL(spa_get_dsl);
|
|
EXPORT_SYMBOL(spa_get_rootblkptr);
|
|
EXPORT_SYMBOL(spa_set_rootblkptr);
|
|
EXPORT_SYMBOL(spa_altroot);
|
|
EXPORT_SYMBOL(spa_sync_pass);
|
|
EXPORT_SYMBOL(spa_name);
|
|
EXPORT_SYMBOL(spa_guid);
|
|
EXPORT_SYMBOL(spa_last_synced_txg);
|
|
EXPORT_SYMBOL(spa_first_txg);
|
|
EXPORT_SYMBOL(spa_syncing_txg);
|
|
EXPORT_SYMBOL(spa_version);
|
|
EXPORT_SYMBOL(spa_state);
|
|
EXPORT_SYMBOL(spa_load_state);
|
|
EXPORT_SYMBOL(spa_freeze_txg);
|
|
EXPORT_SYMBOL(spa_get_dspace);
|
|
EXPORT_SYMBOL(spa_update_dspace);
|
|
EXPORT_SYMBOL(spa_deflate);
|
|
EXPORT_SYMBOL(spa_normal_class);
|
|
EXPORT_SYMBOL(spa_log_class);
|
|
EXPORT_SYMBOL(spa_special_class);
|
|
EXPORT_SYMBOL(spa_preferred_class);
|
|
EXPORT_SYMBOL(spa_max_replication);
|
|
EXPORT_SYMBOL(spa_prev_software_version);
|
|
EXPORT_SYMBOL(spa_get_failmode);
|
|
EXPORT_SYMBOL(spa_suspended);
|
|
EXPORT_SYMBOL(spa_bootfs);
|
|
EXPORT_SYMBOL(spa_delegation);
|
|
EXPORT_SYMBOL(spa_meta_objset);
|
|
EXPORT_SYMBOL(spa_maxblocksize);
|
|
EXPORT_SYMBOL(spa_maxdnodesize);
|
|
|
|
/* Miscellaneous support routines */
|
|
EXPORT_SYMBOL(spa_guid_exists);
|
|
EXPORT_SYMBOL(spa_strdup);
|
|
EXPORT_SYMBOL(spa_strfree);
|
|
EXPORT_SYMBOL(spa_get_random);
|
|
EXPORT_SYMBOL(spa_generate_guid);
|
|
EXPORT_SYMBOL(snprintf_blkptr);
|
|
EXPORT_SYMBOL(spa_freeze);
|
|
EXPORT_SYMBOL(spa_upgrade);
|
|
EXPORT_SYMBOL(spa_evict_all);
|
|
EXPORT_SYMBOL(spa_lookup_by_guid);
|
|
EXPORT_SYMBOL(spa_has_spare);
|
|
EXPORT_SYMBOL(dva_get_dsize_sync);
|
|
EXPORT_SYMBOL(bp_get_dsize_sync);
|
|
EXPORT_SYMBOL(bp_get_dsize);
|
|
EXPORT_SYMBOL(spa_has_slogs);
|
|
EXPORT_SYMBOL(spa_is_root);
|
|
EXPORT_SYMBOL(spa_writeable);
|
|
EXPORT_SYMBOL(spa_mode);
|
|
EXPORT_SYMBOL(spa_namespace_lock);
|
|
EXPORT_SYMBOL(spa_trust_config);
|
|
EXPORT_SYMBOL(spa_missing_tvds_allowed);
|
|
EXPORT_SYMBOL(spa_set_missing_tvds);
|
|
EXPORT_SYMBOL(spa_state_to_name);
|
|
EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
|
|
EXPORT_SYMBOL(spa_min_claim_txg);
|
|
EXPORT_SYMBOL(spa_suspend_async_destroy);
|
|
EXPORT_SYMBOL(spa_has_checkpoint);
|
|
EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
|
|
"Set additional debugging flags");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
|
|
"Set to attempt to recover from fatal errors");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
|
|
"Set to ignore IO errors during free and permanently leak the space");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, deadman_checktime_ms, ULONG, ZMOD_RW,
|
|
"Dead I/O check interval in milliseconds");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, deadman_enabled, INT, ZMOD_RW,
|
|
"Enable deadman timer");
|
|
|
|
ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
|
|
"SPA size estimate multiplication factor");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
|
|
"Place DDT data into the special class");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
|
|
"Place user data indirect blocks into the special class");
|
|
|
|
#ifdef _KERNEL
|
|
module_param_call(zfs_deadman_synctime_ms, param_set_deadman_synctime,
|
|
param_get_ulong, &zfs_deadman_synctime_ms, 0644);
|
|
MODULE_PARM_DESC(zfs_deadman_synctime_ms,
|
|
"Pool sync expiration time in milliseconds");
|
|
|
|
module_param_call(zfs_deadman_ziotime_ms, param_set_deadman_ziotime,
|
|
param_get_ulong, &zfs_deadman_ziotime_ms, 0644);
|
|
MODULE_PARM_DESC(zfs_deadman_ziotime_ms,
|
|
"IO expiration time in milliseconds");
|
|
|
|
module_param_call(spa_slop_shift, param_set_slop_shift, param_get_int,
|
|
&spa_slop_shift, 0644);
|
|
MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool");
|
|
|
|
module_param_call(zfs_deadman_failmode, param_set_deadman_failmode,
|
|
param_get_charp, &zfs_deadman_failmode, 0644);
|
|
MODULE_PARM_DESC(zfs_deadman_failmode, "Failmode for deadman timer");
|
|
#endif
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
|
|
"Small file blocks in special vdevs depends on this much "
|
|
"free space available");
|
|
/* END CSTYLED */
|