mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-27 18:34:22 +03:00
126400a1ca
In the original implementation the zfs_open()/zfs_close() hooks were dropped for simplicity. This was functional but not 100% correct with the expected ZFS sematics. Updating and re-adding the zfs_open()/zfs_close() hooks resolves the following issues. 1) The ZFS_APPENDONLY file attribute is once again honored. While there are still no Linux tools to set/clear these attributes once there are it should behave correctly. 2) Minimal virus scan file attribute hooks were added. Once again this support in disabled but the infrastructure is back in place. 3) Most importantly correctly handle assigning files which were opened syncronously to the intent log. Without this change O_SYNC modifications could be lost during a system crash even though they were marked synchronous.
366 lines
9.2 KiB
C
366 lines
9.2 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
|
|
*/
|
|
|
|
|
|
#include <sys/zfs_vfsops.h>
|
|
#include <sys/zfs_vnops.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/zpl.h>
|
|
|
|
|
|
static int
|
|
zpl_open(struct inode *ip, struct file *filp)
|
|
{
|
|
cred_t *cr;
|
|
int error;
|
|
|
|
cr = (cred_t *)get_current_cred();
|
|
error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
|
|
put_cred(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
if (error)
|
|
return (error);
|
|
|
|
return generic_file_open(ip, filp);
|
|
}
|
|
|
|
static int
|
|
zpl_release(struct inode *ip, struct file *filp)
|
|
{
|
|
cred_t *cr;
|
|
int error;
|
|
|
|
cr = (cred_t *)get_current_cred();
|
|
error = -zfs_close(ip, filp->f_flags, cr);
|
|
put_cred(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
|
|
{
|
|
struct dentry *dentry = filp->f_path.dentry;
|
|
cred_t *cr;
|
|
int error;
|
|
|
|
cr = (cred_t *)get_current_cred();
|
|
error = -zfs_readdir(dentry->d_inode, dirent, filldir,
|
|
&filp->f_pos, cr);
|
|
put_cred(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
ZPL_FSYNC_PROTO(zpl_fsync, filp, unused_dentry, datasync)
|
|
{
|
|
cred_t *cr;
|
|
int error;
|
|
|
|
cr = (cred_t *)get_current_cred();
|
|
error = -zfs_fsync(filp->f_path.dentry->d_inode, datasync, cr);
|
|
put_cred(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
ssize_t
|
|
zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
|
|
uio_seg_t segment, int flags, cred_t *cr)
|
|
{
|
|
int error;
|
|
struct iovec iov;
|
|
uio_t uio;
|
|
|
|
iov.iov_base = (void *)buf;
|
|
iov.iov_len = len;
|
|
|
|
uio.uio_iov = &iov;
|
|
uio.uio_resid = len;
|
|
uio.uio_iovcnt = 1;
|
|
uio.uio_loffset = pos;
|
|
uio.uio_limit = MAXOFFSET_T;
|
|
uio.uio_segflg = segment;
|
|
|
|
error = -zfs_read(ip, &uio, flags, cr);
|
|
if (error < 0)
|
|
return (error);
|
|
|
|
return (len - uio.uio_resid);
|
|
}
|
|
|
|
static ssize_t
|
|
zpl_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
|
|
{
|
|
cred_t *cr;
|
|
ssize_t read;
|
|
|
|
cr = (cred_t *)get_current_cred();
|
|
read = zpl_read_common(filp->f_mapping->host, buf, len, *ppos,
|
|
UIO_USERSPACE, filp->f_flags, cr);
|
|
put_cred(cr);
|
|
|
|
if (read < 0)
|
|
return (read);
|
|
|
|
*ppos += read;
|
|
return (read);
|
|
}
|
|
|
|
ssize_t
|
|
zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
|
|
uio_seg_t segment, int flags, cred_t *cr)
|
|
{
|
|
int error;
|
|
struct iovec iov;
|
|
uio_t uio;
|
|
|
|
iov.iov_base = (void *)buf;
|
|
iov.iov_len = len;
|
|
|
|
uio.uio_iov = &iov;
|
|
uio.uio_resid = len,
|
|
uio.uio_iovcnt = 1;
|
|
uio.uio_loffset = pos;
|
|
uio.uio_limit = MAXOFFSET_T;
|
|
uio.uio_segflg = segment;
|
|
|
|
error = -zfs_write(ip, &uio, flags, cr);
|
|
if (error < 0)
|
|
return (error);
|
|
|
|
return (len - uio.uio_resid);
|
|
}
|
|
|
|
static ssize_t
|
|
zpl_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
|
|
{
|
|
cred_t *cr;
|
|
ssize_t wrote;
|
|
|
|
cr = (cred_t *)get_current_cred();
|
|
wrote = zpl_write_common(filp->f_mapping->host, buf, len, *ppos,
|
|
UIO_USERSPACE, filp->f_flags, cr);
|
|
put_cred(cr);
|
|
|
|
if (wrote < 0)
|
|
return (wrote);
|
|
|
|
*ppos += wrote;
|
|
return (wrote);
|
|
}
|
|
|
|
/*
|
|
* It's worth taking a moment to describe how mmap is implemented
|
|
* for zfs because it differs considerably from other Linux filesystems.
|
|
* However, this issue is handled the same way under OpenSolaris.
|
|
*
|
|
* The issue is that by design zfs bypasses the Linux page cache and
|
|
* leaves all caching up to the ARC. This has been shown to work
|
|
* well for the common read(2)/write(2) case. However, mmap(2)
|
|
* is problem because it relies on being tightly integrated with the
|
|
* page cache. To handle this we cache mmap'ed files twice, once in
|
|
* the ARC and a second time in the page cache. The code is careful
|
|
* to keep both copies synchronized.
|
|
*
|
|
* When a file with an mmap'ed region is written to using write(2)
|
|
* both the data in the ARC and existing pages in the page cache
|
|
* are updated. For a read(2) data will be read first from the page
|
|
* cache then the ARC if needed. Neither a write(2) or read(2) will
|
|
* will ever result in new pages being added to the page cache.
|
|
*
|
|
* New pages are added to the page cache only via .readpage() which
|
|
* is called when the vfs needs to read a page off disk to back the
|
|
* virtual memory region. These pages may be modified without
|
|
* notifying the ARC and will be written out periodically via
|
|
* .writepage(). This will occur due to either a sync or the usual
|
|
* page aging behavior. Note because a read(2) of a mmap'ed file
|
|
* will always check the page cache first even when the ARC is out
|
|
* of date correct data will still be returned.
|
|
*
|
|
* While this implementation ensures correct behavior it does have
|
|
* have some drawbacks. The most obvious of which is that it
|
|
* increases the required memory footprint when access mmap'ed
|
|
* files. It also adds additional complexity to the code keeping
|
|
* both caches synchronized.
|
|
*
|
|
* Longer term it may be possible to cleanly resolve this wart by
|
|
* mapping page cache pages directly on to the ARC buffers. The
|
|
* Linux address space operations are flexible enough to allow
|
|
* selection of which pages back a particular index. The trick
|
|
* would be working out the details of which subsystem is in
|
|
* charge, the ARC, the page cache, or both. It may also prove
|
|
* helpful to move the ARC buffers to a scatter-gather lists
|
|
* rather than a vmalloc'ed region.
|
|
*/
|
|
static int
|
|
zpl_mmap(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
znode_t *zp = ITOZ(filp->f_mapping->host);
|
|
int error;
|
|
|
|
error = generic_file_mmap(filp, vma);
|
|
if (error)
|
|
return (error);
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
zp->z_is_mapped = 1;
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Populate a page with data for the Linux page cache. This function is
|
|
* only used to support mmap(2). There will be an identical copy of the
|
|
* data in the ARC which is kept up to date via .write() and .writepage().
|
|
*
|
|
* Current this function relies on zpl_read_common() and the O_DIRECT
|
|
* flag to read in a page. This works but the more correct way is to
|
|
* update zfs_fillpage() to be Linux friendly and use that interface.
|
|
*/
|
|
static int
|
|
zpl_readpage(struct file *filp, struct page *pp)
|
|
{
|
|
struct inode *ip;
|
|
loff_t off, i_size;
|
|
size_t len, wrote;
|
|
cred_t *cr;
|
|
void *pb;
|
|
int error = 0;
|
|
|
|
ASSERT(PageLocked(pp));
|
|
ip = pp->mapping->host;
|
|
off = page_offset(pp);
|
|
i_size = i_size_read(ip);
|
|
ASSERT3S(off, <, i_size);
|
|
|
|
cr = (cred_t *)get_current_cred();
|
|
len = MIN(PAGE_CACHE_SIZE, i_size - off);
|
|
|
|
pb = kmap(pp);
|
|
|
|
/* O_DIRECT is passed to bypass the page cache and avoid deadlock. */
|
|
wrote = zpl_read_common(ip, pb, len, off, UIO_SYSSPACE, O_DIRECT, cr);
|
|
if (wrote != len)
|
|
error = -EIO;
|
|
|
|
if (!error && (len < PAGE_CACHE_SIZE))
|
|
memset(pb + len, 0, PAGE_CACHE_SIZE - len);
|
|
|
|
kunmap(pp);
|
|
put_cred(cr);
|
|
|
|
if (error) {
|
|
SetPageError(pp);
|
|
ClearPageUptodate(pp);
|
|
} else {
|
|
ClearPageError(pp);
|
|
SetPageUptodate(pp);
|
|
flush_dcache_page(pp);
|
|
}
|
|
|
|
unlock_page(pp);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Write out dirty pages to the ARC, this function is only required to
|
|
* support mmap(2). Mapped pages may be dirtied by memory operations
|
|
* which never call .write(). These dirty pages are kept in sync with
|
|
* the ARC buffers via this hook.
|
|
*
|
|
* Currently this function relies on zpl_write_common() and the O_DIRECT
|
|
* flag to push out the page. This works but the more correct way is
|
|
* to update zfs_putapage() to be Linux friendly and use that interface.
|
|
*/
|
|
static int
|
|
zpl_writepage(struct page *pp, struct writeback_control *wbc)
|
|
{
|
|
struct inode *ip;
|
|
loff_t off, i_size;
|
|
size_t len, read;
|
|
cred_t *cr;
|
|
void *pb;
|
|
int error = 0;
|
|
|
|
ASSERT(PageLocked(pp));
|
|
ip = pp->mapping->host;
|
|
off = page_offset(pp);
|
|
i_size = i_size_read(ip);
|
|
|
|
cr = (cred_t *)get_current_cred();
|
|
len = MIN(PAGE_CACHE_SIZE, i_size - off);
|
|
|
|
pb = kmap(pp);
|
|
|
|
/* O_DIRECT is passed to bypass the page cache and avoid deadlock. */
|
|
read = zpl_write_common(ip, pb, len, off, UIO_SYSSPACE, O_DIRECT, cr);
|
|
if (read != len)
|
|
error = -EIO;
|
|
|
|
kunmap(pp);
|
|
put_cred(cr);
|
|
|
|
if (error) {
|
|
SetPageError(pp);
|
|
ClearPageUptodate(pp);
|
|
} else {
|
|
ClearPageError(pp);
|
|
SetPageUptodate(pp);
|
|
}
|
|
|
|
unlock_page(pp);
|
|
|
|
return (error);
|
|
}
|
|
|
|
const struct address_space_operations zpl_address_space_operations = {
|
|
.readpage = zpl_readpage,
|
|
.writepage = zpl_writepage,
|
|
};
|
|
|
|
const struct file_operations zpl_file_operations = {
|
|
.open = zpl_open,
|
|
.release = zpl_release,
|
|
.llseek = generic_file_llseek,
|
|
.read = zpl_read,
|
|
.write = zpl_write,
|
|
.readdir = zpl_readdir,
|
|
.mmap = zpl_mmap,
|
|
.fsync = zpl_fsync,
|
|
};
|
|
|
|
const struct file_operations zpl_dir_file_operations = {
|
|
.llseek = generic_file_llseek,
|
|
.read = generic_read_dir,
|
|
.readdir = zpl_readdir,
|
|
.fsync = zpl_fsync,
|
|
};
|