mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-25 18:59:33 +03:00
9b67f60560
4757 ZFS embedded-data block pointers ("zero block compression") 4913 zfs release should not be subject to space checks Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Max Grossman <max.grossman@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan McDonald <danmcd@omniti.com> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/4757 https://www.illumos.org/issues/4913 https://github.com/illumos/illumos-gate/commit/5d7b4d4 Porting notes: For compatibility with the fastpath code the zio_done() function needed to be updated. Because embedded-data block pointers do not require DVAs to be allocated the associated vdevs will not be marked and therefore should not be unmarked. Ported by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #2544
2317 lines
63 KiB
C
2317 lines
63 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2014 by Delphix. All rights reserved.
|
|
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/space_map.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/spa_impl.h>
|
|
|
|
#define WITH_DF_BLOCK_ALLOCATOR
|
|
|
|
/*
|
|
* Allow allocations to switch to gang blocks quickly. We do this to
|
|
* avoid having to load lots of space_maps in a given txg. There are,
|
|
* however, some cases where we want to avoid "fast" ganging and instead
|
|
* we want to do an exhaustive search of all metaslabs on this device.
|
|
* Currently we don't allow any gang, slog, or dump device related allocations
|
|
* to "fast" gang.
|
|
*/
|
|
#define CAN_FASTGANG(flags) \
|
|
(!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
|
|
METASLAB_GANG_AVOID)))
|
|
|
|
#define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
|
|
#define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
|
|
#define METASLAB_ACTIVE_MASK \
|
|
(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
|
|
|
|
uint64_t metaslab_aliquot = 512ULL << 10;
|
|
uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
|
|
|
|
/*
|
|
* The in-core space map representation is more compact than its on-disk form.
|
|
* The zfs_condense_pct determines how much more compact the in-core
|
|
* space_map representation must be before we compact it on-disk.
|
|
* Values should be greater than or equal to 100.
|
|
*/
|
|
int zfs_condense_pct = 200;
|
|
|
|
/*
|
|
* The zfs_mg_noalloc_threshold defines which metaslab groups should
|
|
* be eligible for allocation. The value is defined as a percentage of
|
|
* a free space. Metaslab groups that have more free space than
|
|
* zfs_mg_noalloc_threshold are always eligible for allocations. Once
|
|
* a metaslab group's free space is less than or equal to the
|
|
* zfs_mg_noalloc_threshold the allocator will avoid allocating to that
|
|
* group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
|
|
* Once all groups in the pool reach zfs_mg_noalloc_threshold then all
|
|
* groups are allowed to accept allocations. Gang blocks are always
|
|
* eligible to allocate on any metaslab group. The default value of 0 means
|
|
* no metaslab group will be excluded based on this criterion.
|
|
*/
|
|
int zfs_mg_noalloc_threshold = 0;
|
|
|
|
/*
|
|
* When set will load all metaslabs when pool is first opened.
|
|
*/
|
|
int metaslab_debug_load = 0;
|
|
|
|
/*
|
|
* When set will prevent metaslabs from being unloaded.
|
|
*/
|
|
int metaslab_debug_unload = 0;
|
|
|
|
/*
|
|
* Minimum size which forces the dynamic allocator to change
|
|
* it's allocation strategy. Once the space map cannot satisfy
|
|
* an allocation of this size then it switches to using more
|
|
* aggressive strategy (i.e search by size rather than offset).
|
|
*/
|
|
uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
|
|
|
|
/*
|
|
* The minimum free space, in percent, which must be available
|
|
* in a space map to continue allocations in a first-fit fashion.
|
|
* Once the space_map's free space drops below this level we dynamically
|
|
* switch to using best-fit allocations.
|
|
*/
|
|
int metaslab_df_free_pct = 4;
|
|
|
|
/*
|
|
* A metaslab is considered "free" if it contains a contiguous
|
|
* segment which is greater than metaslab_min_alloc_size.
|
|
*/
|
|
uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
|
|
|
|
/*
|
|
* Percentage of all cpus that can be used by the metaslab taskq.
|
|
*/
|
|
int metaslab_load_pct = 50;
|
|
|
|
/*
|
|
* Determines how many txgs a metaslab may remain loaded without having any
|
|
* allocations from it. As long as a metaslab continues to be used we will
|
|
* keep it loaded.
|
|
*/
|
|
int metaslab_unload_delay = TXG_SIZE * 2;
|
|
|
|
/*
|
|
* Should we be willing to write data to degraded vdevs?
|
|
*/
|
|
boolean_t zfs_write_to_degraded = B_FALSE;
|
|
|
|
/*
|
|
* Max number of metaslabs per group to preload.
|
|
*/
|
|
int metaslab_preload_limit = SPA_DVAS_PER_BP;
|
|
|
|
/*
|
|
* Enable/disable preloading of metaslab.
|
|
*/
|
|
boolean_t metaslab_preload_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable additional weight factor for each metaslab.
|
|
*/
|
|
boolean_t metaslab_weight_factor_enable = B_FALSE;
|
|
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab classes
|
|
* ==========================================================================
|
|
*/
|
|
metaslab_class_t *
|
|
metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
|
|
{
|
|
metaslab_class_t *mc;
|
|
|
|
mc = kmem_zalloc(sizeof (metaslab_class_t), KM_PUSHPAGE);
|
|
|
|
mc->mc_spa = spa;
|
|
mc->mc_rotor = NULL;
|
|
mc->mc_ops = ops;
|
|
mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
return (mc);
|
|
}
|
|
|
|
void
|
|
metaslab_class_destroy(metaslab_class_t *mc)
|
|
{
|
|
ASSERT(mc->mc_rotor == NULL);
|
|
ASSERT(mc->mc_alloc == 0);
|
|
ASSERT(mc->mc_deferred == 0);
|
|
ASSERT(mc->mc_space == 0);
|
|
ASSERT(mc->mc_dspace == 0);
|
|
|
|
mutex_destroy(&mc->mc_fastwrite_lock);
|
|
kmem_free(mc, sizeof (metaslab_class_t));
|
|
}
|
|
|
|
int
|
|
metaslab_class_validate(metaslab_class_t *mc)
|
|
{
|
|
metaslab_group_t *mg;
|
|
vdev_t *vd;
|
|
|
|
/*
|
|
* Must hold one of the spa_config locks.
|
|
*/
|
|
ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
|
|
spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
|
|
|
|
if ((mg = mc->mc_rotor) == NULL)
|
|
return (0);
|
|
|
|
do {
|
|
vd = mg->mg_vd;
|
|
ASSERT(vd->vdev_mg != NULL);
|
|
ASSERT3P(vd->vdev_top, ==, vd);
|
|
ASSERT3P(mg->mg_class, ==, mc);
|
|
ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
|
|
} while ((mg = mg->mg_next) != mc->mc_rotor);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
|
|
int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
|
|
{
|
|
atomic_add_64(&mc->mc_alloc, alloc_delta);
|
|
atomic_add_64(&mc->mc_deferred, defer_delta);
|
|
atomic_add_64(&mc->mc_space, space_delta);
|
|
atomic_add_64(&mc->mc_dspace, dspace_delta);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_alloc(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_alloc);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_deferred(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_deferred);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_space(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_space);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_dspace(metaslab_class_t *mc)
|
|
{
|
|
return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab groups
|
|
* ==========================================================================
|
|
*/
|
|
static int
|
|
metaslab_compare(const void *x1, const void *x2)
|
|
{
|
|
const metaslab_t *m1 = x1;
|
|
const metaslab_t *m2 = x2;
|
|
|
|
if (m1->ms_weight < m2->ms_weight)
|
|
return (1);
|
|
if (m1->ms_weight > m2->ms_weight)
|
|
return (-1);
|
|
|
|
/*
|
|
* If the weights are identical, use the offset to force uniqueness.
|
|
*/
|
|
if (m1->ms_start < m2->ms_start)
|
|
return (-1);
|
|
if (m1->ms_start > m2->ms_start)
|
|
return (1);
|
|
|
|
ASSERT3P(m1, ==, m2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Update the allocatable flag and the metaslab group's capacity.
|
|
* The allocatable flag is set to true if the capacity is below
|
|
* the zfs_mg_noalloc_threshold. If a metaslab group transitions
|
|
* from allocatable to non-allocatable or vice versa then the metaslab
|
|
* group's class is updated to reflect the transition.
|
|
*/
|
|
static void
|
|
metaslab_group_alloc_update(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
boolean_t was_allocatable;
|
|
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
was_allocatable = mg->mg_allocatable;
|
|
|
|
mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
|
|
(vs->vs_space + 1);
|
|
|
|
mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold);
|
|
|
|
/*
|
|
* The mc_alloc_groups maintains a count of the number of
|
|
* groups in this metaslab class that are still above the
|
|
* zfs_mg_noalloc_threshold. This is used by the allocating
|
|
* threads to determine if they should avoid allocations to
|
|
* a given group. The allocator will avoid allocations to a group
|
|
* if that group has reached or is below the zfs_mg_noalloc_threshold
|
|
* and there are still other groups that are above the threshold.
|
|
* When a group transitions from allocatable to non-allocatable or
|
|
* vice versa we update the metaslab class to reflect that change.
|
|
* When the mc_alloc_groups value drops to 0 that means that all
|
|
* groups have reached the zfs_mg_noalloc_threshold making all groups
|
|
* eligible for allocations. This effectively means that all devices
|
|
* are balanced again.
|
|
*/
|
|
if (was_allocatable && !mg->mg_allocatable)
|
|
mc->mc_alloc_groups--;
|
|
else if (!was_allocatable && mg->mg_allocatable)
|
|
mc->mc_alloc_groups++;
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
metaslab_group_t *
|
|
metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
|
|
{
|
|
metaslab_group_t *mg;
|
|
|
|
mg = kmem_zalloc(sizeof (metaslab_group_t), KM_PUSHPAGE);
|
|
mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
avl_create(&mg->mg_metaslab_tree, metaslab_compare,
|
|
sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
|
|
mg->mg_vd = vd;
|
|
mg->mg_class = mc;
|
|
mg->mg_activation_count = 0;
|
|
|
|
mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
|
|
minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
|
|
|
|
return (mg);
|
|
}
|
|
|
|
void
|
|
metaslab_group_destroy(metaslab_group_t *mg)
|
|
{
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
/*
|
|
* We may have gone below zero with the activation count
|
|
* either because we never activated in the first place or
|
|
* because we're done, and possibly removing the vdev.
|
|
*/
|
|
ASSERT(mg->mg_activation_count <= 0);
|
|
|
|
taskq_destroy(mg->mg_taskq);
|
|
avl_destroy(&mg->mg_metaslab_tree);
|
|
mutex_destroy(&mg->mg_lock);
|
|
kmem_free(mg, sizeof (metaslab_group_t));
|
|
}
|
|
|
|
void
|
|
metaslab_group_activate(metaslab_group_t *mg)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
metaslab_group_t *mgprev, *mgnext;
|
|
|
|
ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
ASSERT(mc->mc_rotor != mg);
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
ASSERT(mg->mg_activation_count <= 0);
|
|
|
|
if (++mg->mg_activation_count <= 0)
|
|
return;
|
|
|
|
mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
|
|
metaslab_group_alloc_update(mg);
|
|
|
|
if ((mgprev = mc->mc_rotor) == NULL) {
|
|
mg->mg_prev = mg;
|
|
mg->mg_next = mg;
|
|
} else {
|
|
mgnext = mgprev->mg_next;
|
|
mg->mg_prev = mgprev;
|
|
mg->mg_next = mgnext;
|
|
mgprev->mg_next = mg;
|
|
mgnext->mg_prev = mg;
|
|
}
|
|
mc->mc_rotor = mg;
|
|
}
|
|
|
|
void
|
|
metaslab_group_passivate(metaslab_group_t *mg)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
metaslab_group_t *mgprev, *mgnext;
|
|
|
|
ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
if (--mg->mg_activation_count != 0) {
|
|
ASSERT(mc->mc_rotor != mg);
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
ASSERT(mg->mg_activation_count < 0);
|
|
return;
|
|
}
|
|
|
|
taskq_wait(mg->mg_taskq);
|
|
|
|
mgprev = mg->mg_prev;
|
|
mgnext = mg->mg_next;
|
|
|
|
if (mg == mgnext) {
|
|
mc->mc_rotor = NULL;
|
|
} else {
|
|
mc->mc_rotor = mgnext;
|
|
mgprev->mg_next = mgnext;
|
|
mgnext->mg_prev = mgprev;
|
|
}
|
|
|
|
mg->mg_prev = NULL;
|
|
mg->mg_next = NULL;
|
|
}
|
|
|
|
static void
|
|
metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
mutex_enter(&mg->mg_lock);
|
|
ASSERT(msp->ms_group == NULL);
|
|
msp->ms_group = mg;
|
|
msp->ms_weight = 0;
|
|
avl_add(&mg->mg_metaslab_tree, msp);
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
mutex_enter(&mg->mg_lock);
|
|
ASSERT(msp->ms_group == mg);
|
|
avl_remove(&mg->mg_metaslab_tree, msp);
|
|
msp->ms_group = NULL;
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
|
|
{
|
|
/*
|
|
* Although in principle the weight can be any value, in
|
|
* practice we do not use values in the range [1, 510].
|
|
*/
|
|
ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
ASSERT(msp->ms_group == mg);
|
|
avl_remove(&mg->mg_metaslab_tree, msp);
|
|
msp->ms_weight = weight;
|
|
avl_add(&mg->mg_metaslab_tree, msp);
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
/*
|
|
* Determine if a given metaslab group should skip allocations. A metaslab
|
|
* group should avoid allocations if its used capacity has crossed the
|
|
* zfs_mg_noalloc_threshold and there is at least one metaslab group
|
|
* that can still handle allocations.
|
|
*/
|
|
static boolean_t
|
|
metaslab_group_allocatable(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
|
|
/*
|
|
* A metaslab group is considered allocatable if its free capacity
|
|
* is greater than the set value of zfs_mg_noalloc_threshold, it's
|
|
* associated with a slog, or there are no other metaslab groups
|
|
* with free capacity greater than zfs_mg_noalloc_threshold.
|
|
*/
|
|
return (mg->mg_free_capacity > zfs_mg_noalloc_threshold ||
|
|
mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Range tree callbacks
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Comparison function for the private size-ordered tree. Tree is sorted
|
|
* by size, larger sizes at the end of the tree.
|
|
*/
|
|
static int
|
|
metaslab_rangesize_compare(const void *x1, const void *x2)
|
|
{
|
|
const range_seg_t *r1 = x1;
|
|
const range_seg_t *r2 = x2;
|
|
uint64_t rs_size1 = r1->rs_end - r1->rs_start;
|
|
uint64_t rs_size2 = r2->rs_end - r2->rs_start;
|
|
|
|
if (rs_size1 < rs_size2)
|
|
return (-1);
|
|
if (rs_size1 > rs_size2)
|
|
return (1);
|
|
|
|
if (r1->rs_start < r2->rs_start)
|
|
return (-1);
|
|
|
|
if (r1->rs_start > r2->rs_start)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create any block allocator specific components. The current allocators
|
|
* rely on using both a size-ordered range_tree_t and an array of uint64_t's.
|
|
*/
|
|
static void
|
|
metaslab_rt_create(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
ASSERT3P(rt->rt_arg, ==, msp);
|
|
ASSERT(msp->ms_tree == NULL);
|
|
|
|
avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
|
|
sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
|
|
}
|
|
|
|
/*
|
|
* Destroy the block allocator specific components.
|
|
*/
|
|
static void
|
|
metaslab_rt_destroy(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
ASSERT3P(rt->rt_arg, ==, msp);
|
|
ASSERT3P(msp->ms_tree, ==, rt);
|
|
ASSERT0(avl_numnodes(&msp->ms_size_tree));
|
|
|
|
avl_destroy(&msp->ms_size_tree);
|
|
}
|
|
|
|
static void
|
|
metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
ASSERT3P(rt->rt_arg, ==, msp);
|
|
ASSERT3P(msp->ms_tree, ==, rt);
|
|
VERIFY(!msp->ms_condensing);
|
|
avl_add(&msp->ms_size_tree, rs);
|
|
}
|
|
|
|
static void
|
|
metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
ASSERT3P(rt->rt_arg, ==, msp);
|
|
ASSERT3P(msp->ms_tree, ==, rt);
|
|
VERIFY(!msp->ms_condensing);
|
|
avl_remove(&msp->ms_size_tree, rs);
|
|
}
|
|
|
|
static void
|
|
metaslab_rt_vacate(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
ASSERT3P(rt->rt_arg, ==, msp);
|
|
ASSERT3P(msp->ms_tree, ==, rt);
|
|
|
|
/*
|
|
* Normally one would walk the tree freeing nodes along the way.
|
|
* Since the nodes are shared with the range trees we can avoid
|
|
* walking all nodes and just reinitialize the avl tree. The nodes
|
|
* will be freed by the range tree, so we don't want to free them here.
|
|
*/
|
|
avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
|
|
sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
|
|
}
|
|
|
|
static range_tree_ops_t metaslab_rt_ops = {
|
|
metaslab_rt_create,
|
|
metaslab_rt_destroy,
|
|
metaslab_rt_add,
|
|
metaslab_rt_remove,
|
|
metaslab_rt_vacate
|
|
};
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab block operations
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Return the maximum contiguous segment within the metaslab.
|
|
*/
|
|
uint64_t
|
|
metaslab_block_maxsize(metaslab_t *msp)
|
|
{
|
|
avl_tree_t *t = &msp->ms_size_tree;
|
|
range_seg_t *rs;
|
|
|
|
if (t == NULL || (rs = avl_last(t)) == NULL)
|
|
return (0ULL);
|
|
|
|
return (rs->rs_end - rs->rs_start);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_block_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
uint64_t start;
|
|
range_tree_t *rt = msp->ms_tree;
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
|
|
start = msp->ms_ops->msop_alloc(msp, size);
|
|
if (start != -1ULL) {
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
|
|
VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
|
|
range_tree_remove(rt, start, size);
|
|
}
|
|
return (start);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Common allocator routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
#if defined(WITH_FF_BLOCK_ALLOCATOR) || \
|
|
defined(WITH_DF_BLOCK_ALLOCATOR) || \
|
|
defined(WITH_CF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* This is a helper function that can be used by the allocator to find
|
|
* a suitable block to allocate. This will search the specified AVL
|
|
* tree looking for a block that matches the specified criteria.
|
|
*/
|
|
static uint64_t
|
|
metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
|
|
uint64_t align)
|
|
{
|
|
range_seg_t *rs, rsearch;
|
|
avl_index_t where;
|
|
|
|
rsearch.rs_start = *cursor;
|
|
rsearch.rs_end = *cursor + size;
|
|
|
|
rs = avl_find(t, &rsearch, &where);
|
|
if (rs == NULL)
|
|
rs = avl_nearest(t, where, AVL_AFTER);
|
|
|
|
while (rs != NULL) {
|
|
uint64_t offset = P2ROUNDUP(rs->rs_start, align);
|
|
|
|
if (offset + size <= rs->rs_end) {
|
|
*cursor = offset + size;
|
|
return (offset);
|
|
}
|
|
rs = AVL_NEXT(t, rs);
|
|
}
|
|
|
|
/*
|
|
* If we know we've searched the whole map (*cursor == 0), give up.
|
|
* Otherwise, reset the cursor to the beginning and try again.
|
|
*/
|
|
if (*cursor == 0)
|
|
return (-1ULL);
|
|
|
|
*cursor = 0;
|
|
return (metaslab_block_picker(t, cursor, size, align));
|
|
}
|
|
#endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_FF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* The first-fit block allocator
|
|
* ==========================================================================
|
|
*/
|
|
static uint64_t
|
|
metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
/*
|
|
* Find the largest power of 2 block size that evenly divides the
|
|
* requested size. This is used to try to allocate blocks with similar
|
|
* alignment from the same area of the metaslab (i.e. same cursor
|
|
* bucket) but it does not guarantee that other allocations sizes
|
|
* may exist in the same region.
|
|
*/
|
|
uint64_t align = size & -size;
|
|
uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
|
|
avl_tree_t *t = &msp->ms_tree->rt_root;
|
|
|
|
return (metaslab_block_picker(t, cursor, size, align));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static boolean_t
|
|
metaslab_ff_fragmented(metaslab_t *msp)
|
|
{
|
|
return (B_TRUE);
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_ff_ops = {
|
|
metaslab_ff_alloc,
|
|
metaslab_ff_fragmented
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
|
|
#endif /* WITH_FF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_DF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* Dynamic block allocator -
|
|
* Uses the first fit allocation scheme until space get low and then
|
|
* adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
|
|
* and metaslab_df_free_pct to determine when to switch the allocation scheme.
|
|
* ==========================================================================
|
|
*/
|
|
static uint64_t
|
|
metaslab_df_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
/*
|
|
* Find the largest power of 2 block size that evenly divides the
|
|
* requested size. This is used to try to allocate blocks with similar
|
|
* alignment from the same area of the metaslab (i.e. same cursor
|
|
* bucket) but it does not guarantee that other allocations sizes
|
|
* may exist in the same region.
|
|
*/
|
|
uint64_t align = size & -size;
|
|
uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
|
|
range_tree_t *rt = msp->ms_tree;
|
|
avl_tree_t *t = &rt->rt_root;
|
|
uint64_t max_size = metaslab_block_maxsize(msp);
|
|
int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
|
|
|
|
if (max_size < size)
|
|
return (-1ULL);
|
|
|
|
/*
|
|
* If we're running low on space switch to using the size
|
|
* sorted AVL tree (best-fit).
|
|
*/
|
|
if (max_size < metaslab_df_alloc_threshold ||
|
|
free_pct < metaslab_df_free_pct) {
|
|
t = &msp->ms_size_tree;
|
|
*cursor = 0;
|
|
}
|
|
|
|
return (metaslab_block_picker(t, cursor, size, 1ULL));
|
|
}
|
|
|
|
static boolean_t
|
|
metaslab_df_fragmented(metaslab_t *msp)
|
|
{
|
|
range_tree_t *rt = msp->ms_tree;
|
|
uint64_t max_size = metaslab_block_maxsize(msp);
|
|
int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
|
|
|
|
if (max_size >= metaslab_df_alloc_threshold &&
|
|
free_pct >= metaslab_df_free_pct)
|
|
return (B_FALSE);
|
|
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_df_ops = {
|
|
metaslab_df_alloc,
|
|
metaslab_df_fragmented
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
|
|
#endif /* WITH_DF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_CF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* Cursor fit block allocator -
|
|
* Select the largest region in the metaslab, set the cursor to the beginning
|
|
* of the range and the cursor_end to the end of the range. As allocations
|
|
* are made advance the cursor. Continue allocating from the cursor until
|
|
* the range is exhausted and then find a new range.
|
|
* ==========================================================================
|
|
*/
|
|
static uint64_t
|
|
metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
range_tree_t *rt = msp->ms_tree;
|
|
avl_tree_t *t = &msp->ms_size_tree;
|
|
uint64_t *cursor = &msp->ms_lbas[0];
|
|
uint64_t *cursor_end = &msp->ms_lbas[1];
|
|
uint64_t offset = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
|
|
|
|
ASSERT3U(*cursor_end, >=, *cursor);
|
|
|
|
if ((*cursor + size) > *cursor_end) {
|
|
range_seg_t *rs;
|
|
|
|
rs = avl_last(&msp->ms_size_tree);
|
|
if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
|
|
return (-1ULL);
|
|
|
|
*cursor = rs->rs_start;
|
|
*cursor_end = rs->rs_end;
|
|
}
|
|
|
|
offset = *cursor;
|
|
*cursor += size;
|
|
|
|
return (offset);
|
|
}
|
|
|
|
static boolean_t
|
|
metaslab_cf_fragmented(metaslab_t *msp)
|
|
{
|
|
return (metaslab_block_maxsize(msp) < metaslab_min_alloc_size);
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_cf_ops = {
|
|
metaslab_cf_alloc,
|
|
metaslab_cf_fragmented
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
|
|
#endif /* WITH_CF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_NDF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* New dynamic fit allocator -
|
|
* Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
|
|
* contiguous blocks. If no region is found then just use the largest segment
|
|
* that remains.
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
|
|
* to request from the allocator.
|
|
*/
|
|
uint64_t metaslab_ndf_clump_shift = 4;
|
|
|
|
static uint64_t
|
|
metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
avl_tree_t *t = &msp->ms_tree->rt_root;
|
|
avl_index_t where;
|
|
range_seg_t *rs, rsearch;
|
|
uint64_t hbit = highbit64(size);
|
|
uint64_t *cursor = &msp->ms_lbas[hbit - 1];
|
|
uint64_t max_size = metaslab_block_maxsize(msp);
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
|
|
|
|
if (max_size < size)
|
|
return (-1ULL);
|
|
|
|
rsearch.rs_start = *cursor;
|
|
rsearch.rs_end = *cursor + size;
|
|
|
|
rs = avl_find(t, &rsearch, &where);
|
|
if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
|
|
t = &msp->ms_size_tree;
|
|
|
|
rsearch.rs_start = 0;
|
|
rsearch.rs_end = MIN(max_size,
|
|
1ULL << (hbit + metaslab_ndf_clump_shift));
|
|
rs = avl_find(t, &rsearch, &where);
|
|
if (rs == NULL)
|
|
rs = avl_nearest(t, where, AVL_AFTER);
|
|
ASSERT(rs != NULL);
|
|
}
|
|
|
|
if ((rs->rs_end - rs->rs_start) >= size) {
|
|
*cursor = rs->rs_start + size;
|
|
return (rs->rs_start);
|
|
}
|
|
return (-1ULL);
|
|
}
|
|
|
|
static boolean_t
|
|
metaslab_ndf_fragmented(metaslab_t *msp)
|
|
{
|
|
return (metaslab_block_maxsize(msp) <=
|
|
(metaslab_min_alloc_size << metaslab_ndf_clump_shift));
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_ndf_ops = {
|
|
metaslab_ndf_alloc,
|
|
metaslab_ndf_fragmented
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
|
|
#endif /* WITH_NDF_BLOCK_ALLOCATOR */
|
|
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslabs
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Wait for any in-progress metaslab loads to complete.
|
|
*/
|
|
void
|
|
metaslab_load_wait(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
while (msp->ms_loading) {
|
|
ASSERT(!msp->ms_loaded);
|
|
cv_wait(&msp->ms_load_cv, &msp->ms_lock);
|
|
}
|
|
}
|
|
|
|
int
|
|
metaslab_load(metaslab_t *msp)
|
|
{
|
|
int error = 0;
|
|
int t;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(!msp->ms_loaded);
|
|
ASSERT(!msp->ms_loading);
|
|
|
|
msp->ms_loading = B_TRUE;
|
|
|
|
/*
|
|
* If the space map has not been allocated yet, then treat
|
|
* all the space in the metaslab as free and add it to the
|
|
* ms_tree.
|
|
*/
|
|
if (msp->ms_sm != NULL)
|
|
error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
|
|
else
|
|
range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
|
|
|
|
msp->ms_loaded = (error == 0);
|
|
msp->ms_loading = B_FALSE;
|
|
|
|
if (msp->ms_loaded) {
|
|
for (t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_walk(msp->ms_defertree[t],
|
|
range_tree_remove, msp->ms_tree);
|
|
}
|
|
}
|
|
cv_broadcast(&msp->ms_load_cv);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
metaslab_unload(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
range_tree_vacate(msp->ms_tree, NULL, NULL);
|
|
msp->ms_loaded = B_FALSE;
|
|
msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
|
|
}
|
|
|
|
metaslab_t *
|
|
metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
metaslab_t *msp;
|
|
|
|
msp = kmem_zalloc(sizeof (metaslab_t), KM_PUSHPAGE);
|
|
mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL);
|
|
msp->ms_id = id;
|
|
msp->ms_start = id << vd->vdev_ms_shift;
|
|
msp->ms_size = 1ULL << vd->vdev_ms_shift;
|
|
|
|
/*
|
|
* We only open space map objects that already exist. All others
|
|
* will be opened when we finally allocate an object for it.
|
|
*/
|
|
if (object != 0) {
|
|
VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start,
|
|
msp->ms_size, vd->vdev_ashift, &msp->ms_lock));
|
|
ASSERT(msp->ms_sm != NULL);
|
|
}
|
|
|
|
/*
|
|
* We create the main range tree here, but we don't create the
|
|
* alloctree and freetree until metaslab_sync_done(). This serves
|
|
* two purposes: it allows metaslab_sync_done() to detect the
|
|
* addition of new space; and for debugging, it ensures that we'd
|
|
* data fault on any attempt to use this metaslab before it's ready.
|
|
*/
|
|
msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock);
|
|
metaslab_group_add(mg, msp);
|
|
|
|
msp->ms_ops = mg->mg_class->mc_ops;
|
|
|
|
/*
|
|
* If we're opening an existing pool (txg == 0) or creating
|
|
* a new one (txg == TXG_INITIAL), all space is available now.
|
|
* If we're adding space to an existing pool, the new space
|
|
* does not become available until after this txg has synced.
|
|
*/
|
|
if (txg <= TXG_INITIAL)
|
|
metaslab_sync_done(msp, 0);
|
|
|
|
/*
|
|
* If metaslab_debug_load is set and we're initializing a metaslab
|
|
* that has an allocated space_map object then load the its space
|
|
* map so that can verify frees.
|
|
*/
|
|
if (metaslab_debug_load && msp->ms_sm != NULL) {
|
|
mutex_enter(&msp->ms_lock);
|
|
VERIFY0(metaslab_load(msp));
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
if (txg != 0) {
|
|
vdev_dirty(vd, 0, NULL, txg);
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg);
|
|
}
|
|
|
|
return (msp);
|
|
}
|
|
|
|
void
|
|
metaslab_fini(metaslab_t *msp)
|
|
{
|
|
int t;
|
|
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
|
|
metaslab_group_remove(mg, msp);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
VERIFY(msp->ms_group == NULL);
|
|
vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
|
|
0, -msp->ms_size);
|
|
space_map_close(msp->ms_sm);
|
|
|
|
metaslab_unload(msp);
|
|
range_tree_destroy(msp->ms_tree);
|
|
|
|
for (t = 0; t < TXG_SIZE; t++) {
|
|
range_tree_destroy(msp->ms_alloctree[t]);
|
|
range_tree_destroy(msp->ms_freetree[t]);
|
|
}
|
|
|
|
for (t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_destroy(msp->ms_defertree[t]);
|
|
}
|
|
|
|
ASSERT0(msp->ms_deferspace);
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
cv_destroy(&msp->ms_load_cv);
|
|
mutex_destroy(&msp->ms_lock);
|
|
|
|
kmem_free(msp, sizeof (metaslab_t));
|
|
}
|
|
|
|
/*
|
|
* Apply a weighting factor based on the histogram information for this
|
|
* metaslab. The current weighting factor is somewhat arbitrary and requires
|
|
* additional investigation. The implementation provides a measure of
|
|
* "weighted" free space and gives a higher weighting for larger contiguous
|
|
* regions. The weighting factor is determined by counting the number of
|
|
* sm_shift sectors that exist in each region represented by the histogram.
|
|
* That value is then multiplied by the power of 2 exponent and the sm_shift
|
|
* value.
|
|
*
|
|
* For example, assume the 2^21 histogram bucket has 4 2MB regions and the
|
|
* metaslab has an sm_shift value of 9 (512B):
|
|
*
|
|
* 1) calculate the number of sm_shift sectors in the region:
|
|
* 2^21 / 2^9 = 2^12 = 4096 * 4 (number of regions) = 16384
|
|
* 2) multiply by the power of 2 exponent and the sm_shift value:
|
|
* 16384 * 21 * 9 = 3096576
|
|
* This value will be added to the weighting of the metaslab.
|
|
*/
|
|
static uint64_t
|
|
metaslab_weight_factor(metaslab_t *msp)
|
|
{
|
|
uint64_t factor = 0;
|
|
uint64_t sectors;
|
|
int i;
|
|
|
|
/*
|
|
* A null space map means that the entire metaslab is free,
|
|
* calculate a weight factor that spans the entire size of the
|
|
* metaslab.
|
|
*/
|
|
if (msp->ms_sm == NULL) {
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
|
|
i = highbit64(msp->ms_size) - 1;
|
|
sectors = msp->ms_size >> vd->vdev_ashift;
|
|
return (sectors * i * vd->vdev_ashift);
|
|
}
|
|
|
|
if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
|
|
return (0);
|
|
|
|
for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE(msp->ms_sm); i++) {
|
|
if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Determine the number of sm_shift sectors in the region
|
|
* indicated by the histogram. For example, given an
|
|
* sm_shift value of 9 (512 bytes) and i = 4 then we know
|
|
* that we're looking at an 8K region in the histogram
|
|
* (i.e. 9 + 4 = 13, 2^13 = 8192). To figure out the
|
|
* number of sm_shift sectors (512 bytes in this example),
|
|
* we would take 8192 / 512 = 16. Since the histogram
|
|
* is offset by sm_shift we can simply use the value of
|
|
* of i to calculate this (i.e. 2^i = 16 where i = 4).
|
|
*/
|
|
sectors = msp->ms_sm->sm_phys->smp_histogram[i] << i;
|
|
factor += (i + msp->ms_sm->sm_shift) * sectors;
|
|
}
|
|
return (factor * msp->ms_sm->sm_shift);
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_weight(metaslab_t *msp)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
uint64_t weight, space;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* This vdev is in the process of being removed so there is nothing
|
|
* for us to do here.
|
|
*/
|
|
if (vd->vdev_removing) {
|
|
ASSERT0(space_map_allocated(msp->ms_sm));
|
|
ASSERT0(vd->vdev_ms_shift);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The baseline weight is the metaslab's free space.
|
|
*/
|
|
space = msp->ms_size - space_map_allocated(msp->ms_sm);
|
|
weight = space;
|
|
|
|
/*
|
|
* Modern disks have uniform bit density and constant angular velocity.
|
|
* Therefore, the outer recording zones are faster (higher bandwidth)
|
|
* than the inner zones by the ratio of outer to inner track diameter,
|
|
* which is typically around 2:1. We account for this by assigning
|
|
* higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
|
|
* In effect, this means that we'll select the metaslab with the most
|
|
* free bandwidth rather than simply the one with the most free space.
|
|
*/
|
|
weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
|
|
ASSERT(weight >= space && weight <= 2 * space);
|
|
|
|
msp->ms_factor = metaslab_weight_factor(msp);
|
|
if (metaslab_weight_factor_enable)
|
|
weight += msp->ms_factor;
|
|
|
|
if (msp->ms_loaded && !msp->ms_ops->msop_fragmented(msp)) {
|
|
/*
|
|
* If this metaslab is one we're actively using, adjust its
|
|
* weight to make it preferable to any inactive metaslab so
|
|
* we'll polish it off.
|
|
*/
|
|
weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
}
|
|
|
|
return (weight);
|
|
}
|
|
|
|
static int
|
|
metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
|
|
metaslab_load_wait(msp);
|
|
if (!msp->ms_loaded) {
|
|
int error = metaslab_load(msp);
|
|
if (error) {
|
|
metaslab_group_sort(msp->ms_group, msp, 0);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
metaslab_group_sort(msp->ms_group, msp,
|
|
msp->ms_weight | activation_weight);
|
|
}
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
metaslab_passivate(metaslab_t *msp, uint64_t size)
|
|
{
|
|
/*
|
|
* If size < SPA_MINBLOCKSIZE, then we will not allocate from
|
|
* this metaslab again. In that case, it had better be empty,
|
|
* or we would be leaving space on the table.
|
|
*/
|
|
ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
|
|
metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
|
|
ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
|
|
}
|
|
|
|
static void
|
|
metaslab_preload(void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
|
|
ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_load_wait(msp);
|
|
if (!msp->ms_loaded)
|
|
(void) metaslab_load(msp);
|
|
|
|
/*
|
|
* Set the ms_access_txg value so that we don't unload it right away.
|
|
*/
|
|
msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_preload(metaslab_group_t *mg)
|
|
{
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
metaslab_t *msp;
|
|
avl_tree_t *t = &mg->mg_metaslab_tree;
|
|
int m = 0;
|
|
|
|
if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
|
|
taskq_wait(mg->mg_taskq);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
/*
|
|
* Load the next potential metaslabs
|
|
*/
|
|
msp = avl_first(t);
|
|
while (msp != NULL) {
|
|
metaslab_t *msp_next = AVL_NEXT(t, msp);
|
|
|
|
/* If we have reached our preload limit then we're done */
|
|
if (++m > metaslab_preload_limit)
|
|
break;
|
|
|
|
/*
|
|
* We must drop the metaslab group lock here to preserve
|
|
* lock ordering with the ms_lock (when grabbing both
|
|
* the mg_lock and the ms_lock, the ms_lock must be taken
|
|
* first). As a result, it is possible that the ordering
|
|
* of the metaslabs within the avl tree may change before
|
|
* we reacquire the lock. The metaslab cannot be removed from
|
|
* the tree while we're in syncing context so it is safe to
|
|
* drop the mg_lock here. If the metaslabs are reordered
|
|
* nothing will break -- we just may end up loading a
|
|
* less than optimal one.
|
|
*/
|
|
mutex_exit(&mg->mg_lock);
|
|
VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
|
|
msp, TQ_PUSHPAGE) != 0);
|
|
mutex_enter(&mg->mg_lock);
|
|
msp = msp_next;
|
|
}
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
/*
|
|
* Determine if the space map's on-disk footprint is past our tolerance
|
|
* for inefficiency. We would like to use the following criteria to make
|
|
* our decision:
|
|
*
|
|
* 1. The size of the space map object should not dramatically increase as a
|
|
* result of writing out the free space range tree.
|
|
*
|
|
* 2. The minimal on-disk space map representation is zfs_condense_pct/100
|
|
* times the size than the free space range tree representation
|
|
* (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
|
|
*
|
|
* Checking the first condition is tricky since we don't want to walk
|
|
* the entire AVL tree calculating the estimated on-disk size. Instead we
|
|
* use the size-ordered range tree in the metaslab and calculate the
|
|
* size required to write out the largest segment in our free tree. If the
|
|
* size required to represent that segment on disk is larger than the space
|
|
* map object then we avoid condensing this map.
|
|
*
|
|
* To determine the second criterion we use a best-case estimate and assume
|
|
* each segment can be represented on-disk as a single 64-bit entry. We refer
|
|
* to this best-case estimate as the space map's minimal form.
|
|
*/
|
|
static boolean_t
|
|
metaslab_should_condense(metaslab_t *msp)
|
|
{
|
|
space_map_t *sm = msp->ms_sm;
|
|
range_seg_t *rs;
|
|
uint64_t size, entries, segsz;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
/*
|
|
* Use the ms_size_tree range tree, which is ordered by size, to
|
|
* obtain the largest segment in the free tree. If the tree is empty
|
|
* then we should condense the map.
|
|
*/
|
|
rs = avl_last(&msp->ms_size_tree);
|
|
if (rs == NULL)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* Calculate the number of 64-bit entries this segment would
|
|
* require when written to disk. If this single segment would be
|
|
* larger on-disk than the entire current on-disk structure, then
|
|
* clearly condensing will increase the on-disk structure size.
|
|
*/
|
|
size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
|
|
entries = size / (MIN(size, SM_RUN_MAX));
|
|
segsz = entries * sizeof (uint64_t);
|
|
|
|
return (segsz <= space_map_length(msp->ms_sm) &&
|
|
space_map_length(msp->ms_sm) >= (zfs_condense_pct *
|
|
sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root)) / 100);
|
|
}
|
|
|
|
/*
|
|
* Condense the on-disk space map representation to its minimized form.
|
|
* The minimized form consists of a small number of allocations followed by
|
|
* the entries of the free range tree.
|
|
*/
|
|
static void
|
|
metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
|
|
range_tree_t *condense_tree;
|
|
space_map_t *sm = msp->ms_sm;
|
|
int t;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT3U(spa_sync_pass(spa), ==, 1);
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
|
|
"smp size %llu, segments %lu", txg, msp->ms_id, msp,
|
|
space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root));
|
|
|
|
/*
|
|
* Create an range tree that is 100% allocated. We remove segments
|
|
* that have been freed in this txg, any deferred frees that exist,
|
|
* and any allocation in the future. Removing segments should be
|
|
* a relatively inexpensive operation since we expect these trees to
|
|
* have a small number of nodes.
|
|
*/
|
|
condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
|
|
range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
|
|
|
|
/*
|
|
* Remove what's been freed in this txg from the condense_tree.
|
|
* Since we're in sync_pass 1, we know that all the frees from
|
|
* this txg are in the freetree.
|
|
*/
|
|
range_tree_walk(freetree, range_tree_remove, condense_tree);
|
|
|
|
for (t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_walk(msp->ms_defertree[t],
|
|
range_tree_remove, condense_tree);
|
|
}
|
|
|
|
for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
|
|
range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
|
|
range_tree_remove, condense_tree);
|
|
}
|
|
|
|
/*
|
|
* We're about to drop the metaslab's lock thus allowing
|
|
* other consumers to change it's content. Set the
|
|
* metaslab's ms_condensing flag to ensure that
|
|
* allocations on this metaslab do not occur while we're
|
|
* in the middle of committing it to disk. This is only critical
|
|
* for the ms_tree as all other range trees use per txg
|
|
* views of their content.
|
|
*/
|
|
msp->ms_condensing = B_TRUE;
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
space_map_truncate(sm, tx);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* While we would ideally like to create a space_map representation
|
|
* that consists only of allocation records, doing so can be
|
|
* prohibitively expensive because the in-core free tree can be
|
|
* large, and therefore computationally expensive to subtract
|
|
* from the condense_tree. Instead we sync out two trees, a cheap
|
|
* allocation only tree followed by the in-core free tree. While not
|
|
* optimal, this is typically close to optimal, and much cheaper to
|
|
* compute.
|
|
*/
|
|
space_map_write(sm, condense_tree, SM_ALLOC, tx);
|
|
range_tree_vacate(condense_tree, NULL, NULL);
|
|
range_tree_destroy(condense_tree);
|
|
|
|
space_map_write(sm, msp->ms_tree, SM_FREE, tx);
|
|
msp->ms_condensing = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Write a metaslab to disk in the context of the specified transaction group.
|
|
*/
|
|
void
|
|
metaslab_sync(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa_meta_objset(spa);
|
|
range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
|
|
range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
|
|
range_tree_t **freed_tree =
|
|
&msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
|
|
dmu_tx_t *tx;
|
|
uint64_t object = space_map_object(msp->ms_sm);
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
/*
|
|
* This metaslab has just been added so there's no work to do now.
|
|
*/
|
|
if (*freetree == NULL) {
|
|
ASSERT3P(alloctree, ==, NULL);
|
|
return;
|
|
}
|
|
|
|
ASSERT3P(alloctree, !=, NULL);
|
|
ASSERT3P(*freetree, !=, NULL);
|
|
ASSERT3P(*freed_tree, !=, NULL);
|
|
|
|
if (range_tree_space(alloctree) == 0 &&
|
|
range_tree_space(*freetree) == 0)
|
|
return;
|
|
|
|
/*
|
|
* The only state that can actually be changing concurrently with
|
|
* metaslab_sync() is the metaslab's ms_tree. No other thread can
|
|
* be modifying this txg's alloctree, freetree, freed_tree, or
|
|
* space_map_phys_t. Therefore, we only hold ms_lock to satify
|
|
* space_map ASSERTs. We drop it whenever we call into the DMU,
|
|
* because the DMU can call down to us (e.g. via zio_free()) at
|
|
* any time.
|
|
*/
|
|
|
|
tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
|
|
|
|
if (msp->ms_sm == NULL) {
|
|
uint64_t new_object;
|
|
|
|
new_object = space_map_alloc(mos, tx);
|
|
VERIFY3U(new_object, !=, 0);
|
|
|
|
VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
|
|
msp->ms_start, msp->ms_size, vd->vdev_ashift,
|
|
&msp->ms_lock));
|
|
ASSERT(msp->ms_sm != NULL);
|
|
}
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
|
|
metaslab_should_condense(msp)) {
|
|
metaslab_condense(msp, txg, tx);
|
|
} else {
|
|
space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
|
|
space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
|
|
}
|
|
|
|
range_tree_vacate(alloctree, NULL, NULL);
|
|
|
|
if (msp->ms_loaded) {
|
|
/*
|
|
* When the space map is loaded, we have an accruate
|
|
* histogram in the range tree. This gives us an opportunity
|
|
* to bring the space map's histogram up-to-date so we clear
|
|
* it first before updating it.
|
|
*/
|
|
space_map_histogram_clear(msp->ms_sm);
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
|
|
} else {
|
|
/*
|
|
* Since the space map is not loaded we simply update the
|
|
* exisiting histogram with what was freed in this txg. This
|
|
* means that the on-disk histogram may not have an accurate
|
|
* view of the free space but it's close enough to allow
|
|
* us to make allocation decisions.
|
|
*/
|
|
space_map_histogram_add(msp->ms_sm, *freetree, tx);
|
|
}
|
|
|
|
/*
|
|
* For sync pass 1, we avoid traversing this txg's free range tree
|
|
* and instead will just swap the pointers for freetree and
|
|
* freed_tree. We can safely do this since the freed_tree is
|
|
* guaranteed to be empty on the initial pass.
|
|
*/
|
|
if (spa_sync_pass(spa) == 1) {
|
|
range_tree_swap(freetree, freed_tree);
|
|
} else {
|
|
range_tree_vacate(*freetree, range_tree_add, *freed_tree);
|
|
}
|
|
|
|
ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
|
|
ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
if (object != space_map_object(msp->ms_sm)) {
|
|
object = space_map_object(msp->ms_sm);
|
|
dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
|
|
msp->ms_id, sizeof (uint64_t), &object, tx);
|
|
}
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
/*
|
|
* Called after a transaction group has completely synced to mark
|
|
* all of the metaslab's free space as usable.
|
|
*/
|
|
void
|
|
metaslab_sync_done(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
range_tree_t **freed_tree;
|
|
range_tree_t **defer_tree;
|
|
int64_t alloc_delta, defer_delta;
|
|
int t;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* If this metaslab is just becoming available, initialize its
|
|
* alloctrees, freetrees, and defertree and add its capacity to
|
|
* the vdev.
|
|
*/
|
|
if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
|
|
for (t = 0; t < TXG_SIZE; t++) {
|
|
ASSERT(msp->ms_alloctree[t] == NULL);
|
|
ASSERT(msp->ms_freetree[t] == NULL);
|
|
|
|
msp->ms_alloctree[t] = range_tree_create(NULL, msp,
|
|
&msp->ms_lock);
|
|
msp->ms_freetree[t] = range_tree_create(NULL, msp,
|
|
&msp->ms_lock);
|
|
}
|
|
|
|
for (t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
ASSERT(msp->ms_defertree[t] == NULL);
|
|
|
|
msp->ms_defertree[t] = range_tree_create(NULL, msp,
|
|
&msp->ms_lock);
|
|
}
|
|
|
|
vdev_space_update(vd, 0, 0, msp->ms_size);
|
|
}
|
|
|
|
freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
|
|
defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
|
|
|
|
alloc_delta = space_map_alloc_delta(msp->ms_sm);
|
|
defer_delta = range_tree_space(*freed_tree) -
|
|
range_tree_space(*defer_tree);
|
|
|
|
vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
|
|
|
|
ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
|
|
ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
|
|
|
|
/*
|
|
* If there's a metaslab_load() in progress, wait for it to complete
|
|
* so that we have a consistent view of the in-core space map.
|
|
*/
|
|
metaslab_load_wait(msp);
|
|
|
|
/*
|
|
* Move the frees from the defer_tree back to the free
|
|
* range tree (if it's loaded). Swap the freed_tree and the
|
|
* defer_tree -- this is safe to do because we've just emptied out
|
|
* the defer_tree.
|
|
*/
|
|
range_tree_vacate(*defer_tree,
|
|
msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
|
|
range_tree_swap(freed_tree, defer_tree);
|
|
|
|
space_map_update(msp->ms_sm);
|
|
|
|
msp->ms_deferspace += defer_delta;
|
|
ASSERT3S(msp->ms_deferspace, >=, 0);
|
|
ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
|
|
if (msp->ms_deferspace != 0) {
|
|
/*
|
|
* Keep syncing this metaslab until all deferred frees
|
|
* are back in circulation.
|
|
*/
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
|
|
}
|
|
|
|
if (msp->ms_loaded && msp->ms_access_txg < txg) {
|
|
for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
|
|
VERIFY0(range_tree_space(
|
|
msp->ms_alloctree[(txg + t) & TXG_MASK]));
|
|
}
|
|
|
|
if (!metaslab_debug_unload)
|
|
metaslab_unload(msp);
|
|
}
|
|
|
|
metaslab_group_sort(mg, msp, metaslab_weight(msp));
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
}
|
|
|
|
void
|
|
metaslab_sync_reassess(metaslab_group_t *mg)
|
|
{
|
|
metaslab_group_alloc_update(mg);
|
|
|
|
/*
|
|
* Preload the next potential metaslabs
|
|
*/
|
|
metaslab_group_preload(mg);
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_distance(metaslab_t *msp, dva_t *dva)
|
|
{
|
|
uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
|
|
uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
|
|
uint64_t start = msp->ms_id;
|
|
|
|
if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
|
|
return (1ULL << 63);
|
|
|
|
if (offset < start)
|
|
return ((start - offset) << ms_shift);
|
|
if (offset > start)
|
|
return ((offset - start) << ms_shift);
|
|
return (0);
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
|
|
uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
|
|
{
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
metaslab_t *msp = NULL;
|
|
uint64_t offset = -1ULL;
|
|
avl_tree_t *t = &mg->mg_metaslab_tree;
|
|
uint64_t activation_weight;
|
|
uint64_t target_distance;
|
|
int i;
|
|
|
|
activation_weight = METASLAB_WEIGHT_PRIMARY;
|
|
for (i = 0; i < d; i++) {
|
|
if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
|
|
activation_weight = METASLAB_WEIGHT_SECONDARY;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
boolean_t was_active;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
|
|
if (msp->ms_weight < asize) {
|
|
spa_dbgmsg(spa, "%s: failed to meet weight "
|
|
"requirement: vdev %llu, txg %llu, mg %p, "
|
|
"msp %p, psize %llu, asize %llu, "
|
|
"weight %llu", spa_name(spa),
|
|
mg->mg_vd->vdev_id, txg,
|
|
mg, msp, psize, asize, msp->ms_weight);
|
|
mutex_exit(&mg->mg_lock);
|
|
return (-1ULL);
|
|
}
|
|
|
|
/*
|
|
* If the selected metaslab is condensing, skip it.
|
|
*/
|
|
if (msp->ms_condensing)
|
|
continue;
|
|
|
|
was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
|
|
if (activation_weight == METASLAB_WEIGHT_PRIMARY)
|
|
break;
|
|
|
|
target_distance = min_distance +
|
|
(space_map_allocated(msp->ms_sm) != 0 ? 0 :
|
|
min_distance >> 1);
|
|
|
|
for (i = 0; i < d; i++)
|
|
if (metaslab_distance(msp, &dva[i]) <
|
|
target_distance)
|
|
break;
|
|
if (i == d)
|
|
break;
|
|
}
|
|
mutex_exit(&mg->mg_lock);
|
|
if (msp == NULL)
|
|
return (-1ULL);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* Ensure that the metaslab we have selected is still
|
|
* capable of handling our request. It's possible that
|
|
* another thread may have changed the weight while we
|
|
* were blocked on the metaslab lock.
|
|
*/
|
|
if (msp->ms_weight < asize || (was_active &&
|
|
!(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
|
|
activation_weight == METASLAB_WEIGHT_PRIMARY)) {
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
|
|
activation_weight == METASLAB_WEIGHT_PRIMARY) {
|
|
metaslab_passivate(msp,
|
|
msp->ms_weight & ~METASLAB_ACTIVE_MASK);
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
if (metaslab_activate(msp, activation_weight) != 0) {
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If this metaslab is currently condensing then pick again as
|
|
* we can't manipulate this metaslab until it's committed
|
|
* to disk.
|
|
*/
|
|
if (msp->ms_condensing) {
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
|
|
break;
|
|
|
|
metaslab_passivate(msp, metaslab_block_maxsize(msp));
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
|
|
vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
|
|
|
|
range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
|
|
msp->ms_access_txg = txg + metaslab_unload_delay;
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
return (offset);
|
|
}
|
|
|
|
/*
|
|
* Allocate a block for the specified i/o.
|
|
*/
|
|
static int
|
|
metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
|
|
dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
|
|
{
|
|
metaslab_group_t *mg, *fast_mg, *rotor;
|
|
vdev_t *vd;
|
|
int dshift = 3;
|
|
int all_zero;
|
|
int zio_lock = B_FALSE;
|
|
boolean_t allocatable;
|
|
uint64_t offset = -1ULL;
|
|
uint64_t asize;
|
|
uint64_t distance;
|
|
|
|
ASSERT(!DVA_IS_VALID(&dva[d]));
|
|
|
|
/*
|
|
* For testing, make some blocks above a certain size be gang blocks.
|
|
*/
|
|
if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
|
|
return (SET_ERROR(ENOSPC));
|
|
|
|
if (flags & METASLAB_FASTWRITE)
|
|
mutex_enter(&mc->mc_fastwrite_lock);
|
|
|
|
/*
|
|
* Start at the rotor and loop through all mgs until we find something.
|
|
* Note that there's no locking on mc_rotor or mc_aliquot because
|
|
* nothing actually breaks if we miss a few updates -- we just won't
|
|
* allocate quite as evenly. It all balances out over time.
|
|
*
|
|
* If we are doing ditto or log blocks, try to spread them across
|
|
* consecutive vdevs. If we're forced to reuse a vdev before we've
|
|
* allocated all of our ditto blocks, then try and spread them out on
|
|
* that vdev as much as possible. If it turns out to not be possible,
|
|
* gradually lower our standards until anything becomes acceptable.
|
|
* Also, allocating on consecutive vdevs (as opposed to random vdevs)
|
|
* gives us hope of containing our fault domains to something we're
|
|
* able to reason about. Otherwise, any two top-level vdev failures
|
|
* will guarantee the loss of data. With consecutive allocation,
|
|
* only two adjacent top-level vdev failures will result in data loss.
|
|
*
|
|
* If we are doing gang blocks (hintdva is non-NULL), try to keep
|
|
* ourselves on the same vdev as our gang block header. That
|
|
* way, we can hope for locality in vdev_cache, plus it makes our
|
|
* fault domains something tractable.
|
|
*/
|
|
if (hintdva) {
|
|
vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
|
|
|
|
/*
|
|
* It's possible the vdev we're using as the hint no
|
|
* longer exists (i.e. removed). Consult the rotor when
|
|
* all else fails.
|
|
*/
|
|
if (vd != NULL) {
|
|
mg = vd->vdev_mg;
|
|
|
|
if (flags & METASLAB_HINTBP_AVOID &&
|
|
mg->mg_next != NULL)
|
|
mg = mg->mg_next;
|
|
} else {
|
|
mg = mc->mc_rotor;
|
|
}
|
|
} else if (d != 0) {
|
|
vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
|
|
mg = vd->vdev_mg->mg_next;
|
|
} else if (flags & METASLAB_FASTWRITE) {
|
|
mg = fast_mg = mc->mc_rotor;
|
|
|
|
do {
|
|
if (fast_mg->mg_vd->vdev_pending_fastwrite <
|
|
mg->mg_vd->vdev_pending_fastwrite)
|
|
mg = fast_mg;
|
|
} while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
|
|
|
|
} else {
|
|
mg = mc->mc_rotor;
|
|
}
|
|
|
|
/*
|
|
* If the hint put us into the wrong metaslab class, or into a
|
|
* metaslab group that has been passivated, just follow the rotor.
|
|
*/
|
|
if (mg->mg_class != mc || mg->mg_activation_count <= 0)
|
|
mg = mc->mc_rotor;
|
|
|
|
rotor = mg;
|
|
top:
|
|
all_zero = B_TRUE;
|
|
do {
|
|
ASSERT(mg->mg_activation_count == 1);
|
|
|
|
vd = mg->mg_vd;
|
|
|
|
/*
|
|
* Don't allocate from faulted devices.
|
|
*/
|
|
if (zio_lock) {
|
|
spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
|
|
allocatable = vdev_allocatable(vd);
|
|
spa_config_exit(spa, SCL_ZIO, FTAG);
|
|
} else {
|
|
allocatable = vdev_allocatable(vd);
|
|
}
|
|
|
|
/*
|
|
* Determine if the selected metaslab group is eligible
|
|
* for allocations. If we're ganging or have requested
|
|
* an allocation for the smallest gang block size
|
|
* then we don't want to avoid allocating to the this
|
|
* metaslab group. If we're in this condition we should
|
|
* try to allocate from any device possible so that we
|
|
* don't inadvertently return ENOSPC and suspend the pool
|
|
* even though space is still available.
|
|
*/
|
|
if (allocatable && CAN_FASTGANG(flags) &&
|
|
psize > SPA_GANGBLOCKSIZE)
|
|
allocatable = metaslab_group_allocatable(mg);
|
|
|
|
if (!allocatable)
|
|
goto next;
|
|
|
|
/*
|
|
* Avoid writing single-copy data to a failing vdev
|
|
* unless the user instructs us that it is okay.
|
|
*/
|
|
if ((vd->vdev_stat.vs_write_errors > 0 ||
|
|
vd->vdev_state < VDEV_STATE_HEALTHY) &&
|
|
d == 0 && dshift == 3 &&
|
|
!(zfs_write_to_degraded && vd->vdev_state ==
|
|
VDEV_STATE_DEGRADED)) {
|
|
all_zero = B_FALSE;
|
|
goto next;
|
|
}
|
|
|
|
ASSERT(mg->mg_class == mc);
|
|
|
|
distance = vd->vdev_asize >> dshift;
|
|
if (distance <= (1ULL << vd->vdev_ms_shift))
|
|
distance = 0;
|
|
else
|
|
all_zero = B_FALSE;
|
|
|
|
asize = vdev_psize_to_asize(vd, psize);
|
|
ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
|
|
|
|
offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
|
|
dva, d);
|
|
if (offset != -1ULL) {
|
|
/*
|
|
* If we've just selected this metaslab group,
|
|
* figure out whether the corresponding vdev is
|
|
* over- or under-used relative to the pool,
|
|
* and set an allocation bias to even it out.
|
|
*/
|
|
if (mc->mc_aliquot == 0) {
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
int64_t vu, cu;
|
|
|
|
vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
|
|
cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
|
|
|
|
/*
|
|
* Calculate how much more or less we should
|
|
* try to allocate from this device during
|
|
* this iteration around the rotor.
|
|
* For example, if a device is 80% full
|
|
* and the pool is 20% full then we should
|
|
* reduce allocations by 60% on this device.
|
|
*
|
|
* mg_bias = (20 - 80) * 512K / 100 = -307K
|
|
*
|
|
* This reduces allocations by 307K for this
|
|
* iteration.
|
|
*/
|
|
mg->mg_bias = ((cu - vu) *
|
|
(int64_t)mg->mg_aliquot) / 100;
|
|
}
|
|
|
|
if ((flags & METASLAB_FASTWRITE) ||
|
|
atomic_add_64_nv(&mc->mc_aliquot, asize) >=
|
|
mg->mg_aliquot + mg->mg_bias) {
|
|
mc->mc_rotor = mg->mg_next;
|
|
mc->mc_aliquot = 0;
|
|
}
|
|
|
|
DVA_SET_VDEV(&dva[d], vd->vdev_id);
|
|
DVA_SET_OFFSET(&dva[d], offset);
|
|
DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
|
|
DVA_SET_ASIZE(&dva[d], asize);
|
|
|
|
if (flags & METASLAB_FASTWRITE) {
|
|
atomic_add_64(&vd->vdev_pending_fastwrite,
|
|
psize);
|
|
mutex_exit(&mc->mc_fastwrite_lock);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
next:
|
|
mc->mc_rotor = mg->mg_next;
|
|
mc->mc_aliquot = 0;
|
|
} while ((mg = mg->mg_next) != rotor);
|
|
|
|
if (!all_zero) {
|
|
dshift++;
|
|
ASSERT(dshift < 64);
|
|
goto top;
|
|
}
|
|
|
|
if (!allocatable && !zio_lock) {
|
|
dshift = 3;
|
|
zio_lock = B_TRUE;
|
|
goto top;
|
|
}
|
|
|
|
bzero(&dva[d], sizeof (dva_t));
|
|
|
|
if (flags & METASLAB_FASTWRITE)
|
|
mutex_exit(&mc->mc_fastwrite_lock);
|
|
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
/*
|
|
* Free the block represented by DVA in the context of the specified
|
|
* transaction group.
|
|
*/
|
|
static void
|
|
metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
|
|
{
|
|
uint64_t vdev = DVA_GET_VDEV(dva);
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
vdev_t *vd;
|
|
metaslab_t *msp;
|
|
|
|
ASSERT(DVA_IS_VALID(dva));
|
|
|
|
if (txg > spa_freeze_txg(spa))
|
|
return;
|
|
|
|
if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
|
|
(offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
|
|
cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
|
|
(u_longlong_t)vdev, (u_longlong_t)offset);
|
|
ASSERT(0);
|
|
return;
|
|
}
|
|
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
if (DVA_GET_GANG(dva))
|
|
size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
if (now) {
|
|
range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
|
|
offset, size);
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY3U(offset, >=, msp->ms_start);
|
|
VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
|
|
VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
|
|
msp->ms_size);
|
|
VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
range_tree_add(msp->ms_tree, offset, size);
|
|
} else {
|
|
if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg);
|
|
range_tree_add(msp->ms_freetree[txg & TXG_MASK],
|
|
offset, size);
|
|
}
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
/*
|
|
* Intent log support: upon opening the pool after a crash, notify the SPA
|
|
* of blocks that the intent log has allocated for immediate write, but
|
|
* which are still considered free by the SPA because the last transaction
|
|
* group didn't commit yet.
|
|
*/
|
|
static int
|
|
metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
|
|
{
|
|
uint64_t vdev = DVA_GET_VDEV(dva);
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
vdev_t *vd;
|
|
metaslab_t *msp;
|
|
int error = 0;
|
|
|
|
ASSERT(DVA_IS_VALID(dva));
|
|
|
|
if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
|
|
(offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
if (DVA_GET_GANG(dva))
|
|
size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
|
|
error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
|
|
|
|
if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
|
|
error = SET_ERROR(ENOENT);
|
|
|
|
if (error || txg == 0) { /* txg == 0 indicates dry run */
|
|
mutex_exit(&msp->ms_lock);
|
|
return (error);
|
|
}
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
|
|
range_tree_remove(msp->ms_tree, offset, size);
|
|
|
|
if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
|
|
if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg);
|
|
range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
|
|
}
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
|
|
int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
|
|
{
|
|
dva_t *dva = bp->blk_dva;
|
|
dva_t *hintdva = hintbp->blk_dva;
|
|
int d, error = 0;
|
|
|
|
ASSERT(bp->blk_birth == 0);
|
|
ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
|
|
|
|
if (mc->mc_rotor == NULL) { /* no vdevs in this class */
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
|
|
ASSERT(BP_GET_NDVAS(bp) == 0);
|
|
ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
|
|
|
|
for (d = 0; d < ndvas; d++) {
|
|
error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
|
|
txg, flags);
|
|
if (error != 0) {
|
|
for (d--; d >= 0; d--) {
|
|
metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
|
|
bzero(&dva[d], sizeof (dva_t));
|
|
}
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
return (error);
|
|
}
|
|
}
|
|
ASSERT(error == 0);
|
|
ASSERT(BP_GET_NDVAS(bp) == ndvas);
|
|
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
BP_SET_BIRTH(bp, txg, txg);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int d, ndvas = BP_GET_NDVAS(bp);
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
|
|
|
|
spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < ndvas; d++)
|
|
metaslab_free_dva(spa, &dva[d], txg, now);
|
|
|
|
spa_config_exit(spa, SCL_FREE, FTAG);
|
|
}
|
|
|
|
int
|
|
metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
int d, error = 0;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
|
|
if (txg != 0) {
|
|
/*
|
|
* First do a dry run to make sure all DVAs are claimable,
|
|
* so we don't have to unwind from partial failures below.
|
|
*/
|
|
if ((error = metaslab_claim(spa, bp, 0)) != 0)
|
|
return (error);
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < ndvas; d++)
|
|
if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
|
|
break;
|
|
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
ASSERT(error == 0 || txg == 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
uint64_t psize = BP_GET_PSIZE(bp);
|
|
int d;
|
|
vdev_t *vd;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
ASSERT(psize > 0);
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < ndvas; d++) {
|
|
if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
|
|
continue;
|
|
atomic_add_64(&vd->vdev_pending_fastwrite, psize);
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
|
|
void
|
|
metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
uint64_t psize = BP_GET_PSIZE(bp);
|
|
int d;
|
|
vdev_t *vd;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
ASSERT(psize > 0);
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < ndvas; d++) {
|
|
if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
|
|
continue;
|
|
ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
|
|
atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
|
|
void
|
|
metaslab_check_free(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
int i, j;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
|
|
return;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
for (i = 0; i < BP_GET_NDVAS(bp); i++) {
|
|
uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev);
|
|
uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
|
|
uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
|
|
metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
if (msp->ms_loaded)
|
|
range_tree_verify(msp->ms_tree, offset, size);
|
|
|
|
for (j = 0; j < TXG_SIZE; j++)
|
|
range_tree_verify(msp->ms_freetree[j], offset, size);
|
|
for (j = 0; j < TXG_DEFER_SIZE; j++)
|
|
range_tree_verify(msp->ms_defertree[j], offset, size);
|
|
}
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
module_param(metaslab_debug_load, int, 0644);
|
|
module_param(metaslab_debug_unload, int, 0644);
|
|
MODULE_PARM_DESC(metaslab_debug_load,
|
|
"load all metaslabs when pool is first opened");
|
|
MODULE_PARM_DESC(metaslab_debug_unload,
|
|
"prevent metaslabs from being unloaded");
|
|
|
|
module_param(zfs_mg_noalloc_threshold, int, 0644);
|
|
MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
|
|
"percentage of free space for metaslab group to allow allocation");
|
|
#endif /* _KERNEL && HAVE_SPL */
|