mirror_zfs/module/zfs/brt.c
oromenahar 895cb689d3 zfs_clone_range should return a descriptive error codes
Return the more descriptive error codes instead of `EXDEV` when
the parameters don't match the requirements of the clone function.
Updated the comments in `brt.c` accordingly.
The first three errors are just invalid parameters, which zfs can
not handle.
The fourth error indicates that the block which should be cloned
is created and cloned or modified in the same transaction
group (`txg`).

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rob Norris <rob.norris@klarasystems.com>
Signed-off-by: Kay Pedersen <mail@mkwg.de>
Closes #15148
2023-08-25 13:33:40 -07:00

1916 lines
54 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/brt.h>
#include <sys/ddt.h>
#include <sys/bitmap.h>
#include <sys/zap.h>
#include <sys/dmu_tx.h>
#include <sys/arc.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_scan.h>
#include <sys/vdev_impl.h>
#include <sys/kstat.h>
#include <sys/wmsum.h>
/*
* Block Cloning design.
*
* Block Cloning allows to manually clone a file (or a subset of its blocks)
* into another (or the same) file by just creating additional references to
* the data blocks without copying the data itself. Those references are kept
* in the Block Reference Tables (BRTs).
*
* In many ways this is similar to the existing deduplication, but there are
* some important differences:
*
* - Deduplication is automatic and Block Cloning is not - one has to use a
* dedicated system call(s) to clone the given file/blocks.
* - Deduplication keeps all data blocks in its table, even those referenced
* just once. Block Cloning creates an entry in its tables only when there
* are at least two references to the given data block. If the block was
* never explicitly cloned or the second to last reference was dropped,
* there will be neither space nor performance overhead.
* - Deduplication needs data to work - one needs to pass real data to the
* write(2) syscall, so hash can be calculated. Block Cloning doesn't require
* data, just block pointers to the data, so it is extremely fast, as we pay
* neither the cost of reading the data, nor the cost of writing the data -
* we operate exclusively on metadata.
* - If the D (dedup) bit is not set in the block pointer, it means that
* the block is not in the dedup table (DDT) and we won't consult the DDT
* when we need to free the block. Block Cloning must be consulted on every
* free, because we cannot modify the source BP (eg. by setting something
* similar to the D bit), thus we have no hint if the block is in the
* Block Reference Table (BRT), so we need to look into the BRT. There is
* an optimization in place that allows us to eliminate the majority of BRT
* lookups which is described below in the "Minimizing free penalty" section.
* - The BRT entry is much smaller than the DDT entry - for BRT we only store
* 64bit offset and 64bit reference counter.
* - Dedup keys are cryptographic hashes, so two blocks that are close to each
* other on disk are most likely in totally different parts of the DDT.
* The BRT entry keys are offsets into a single top-level VDEV, so data blocks
* from one file should have BRT entries close to each other.
* - Scrub will only do a single pass over a block that is referenced multiple
* times in the DDT. Unfortunately it is not currently (if at all) possible
* with Block Cloning and block referenced multiple times will be scrubbed
* multiple times. The new, sorted scrub should be able to eliminate
* duplicated reads given enough memory.
* - Deduplication requires cryptographically strong hash as a checksum or
* additional data verification. Block Cloning works with any checksum
* algorithm or even with checksumming disabled.
*
* As mentioned above, the BRT entries are much smaller than the DDT entries.
* To uniquely identify a block we just need its vdev id and offset. We also
* need to maintain a reference counter. The vdev id will often repeat, as there
* is a small number of top-level VDEVs and a large number of blocks stored in
* each VDEV. We take advantage of that to reduce the BRT entry size further by
* maintaining one BRT for each top-level VDEV, so we can then have only offset
* and counter as the BRT entry.
*
* Minimizing free penalty.
*
* Block Cloning allows creating additional references to any existing block.
* When we free a block there is no hint in the block pointer whether the block
* was cloned or not, so on each free we have to check if there is a
* corresponding entry in the BRT or not. If there is, we need to decrease
* the reference counter. Doing BRT lookup on every free can potentially be
* expensive by requiring additional I/Os if the BRT doesn't fit into memory.
* This is the main problem with deduplication, so we've learned our lesson and
* try not to repeat the same mistake here. How do we do that? We divide each
* top-level VDEV into 16MB regions. For each region we maintain a counter that
* is a sum of all the BRT entries that have offsets within the region. This
* creates the entries count array of 16bit numbers for each top-level VDEV.
* The entries count array is always kept in memory and updated on disk in the
* same transaction group as the BRT updates to keep everything in-sync. We can
* keep the array in memory, because it is very small. With 16MB regions and
* 1TB VDEV the array requires only 128kB of memory (we may decide to decrease
* the region size even further in the future). Now, when we want to free
* a block, we first consult the array. If the counter for the whole region is
* zero, there is no need to look for the BRT entry, as there isn't one for
* sure. If the counter for the region is greater than zero, only then we will
* do a BRT lookup and if an entry is found we will decrease the reference
* counter in the BRT entry and in the entry counters array.
*
* The entry counters array is small, but can potentially be larger for very
* large VDEVs or smaller regions. In this case we don't want to rewrite entire
* array on every change. We then divide the array into 32kB block and keep
* a bitmap of dirty blocks within a transaction group. When we sync the
* transaction group we can only update the parts of the entry counters array
* that were modified. Note: Keeping track of the dirty parts of the entry
* counters array is implemented, but updating only parts of the array on disk
* is not yet implemented - for now we will update entire array if there was
* any change.
*
* The implementation tries to be economic: if BRT is not used, or no longer
* used, there will be no entries in the MOS and no additional memory used (eg.
* the entry counters array is only allocated if needed).
*
* Interaction between Deduplication and Block Cloning.
*
* If both functionalities are in use, we could end up with a block that is
* referenced multiple times in both DDT and BRT. When we free one of the
* references we couldn't tell where it belongs, so we would have to decide
* what table takes the precedence: do we first clear DDT references or BRT
* references? To avoid this dilemma BRT cooperates with DDT - if a given block
* is being cloned using BRT and the BP has the D (dedup) bit set, BRT will
* lookup DDT entry instead and increase the counter there. No BRT entry
* will be created for a block which has the D (dedup) bit set.
* BRT may be more efficient for manual deduplication, but if the block is
* already in the DDT, then creating additional BRT entry would be less
* efficient. This clever idea was proposed by Allan Jude.
*
* Block Cloning across datasets.
*
* Block Cloning is not limited to cloning blocks within the same dataset.
* It is possible (and very useful) to clone blocks between different datasets.
* One use case is recovering files from snapshots. By cloning the files into
* dataset we need no additional storage. Without Block Cloning we would need
* additional space for those files.
* Another interesting use case is moving the files between datasets
* (copying the file content to the new dataset and removing the source file).
* In that case Block Cloning will only be used briefly, because the BRT entries
* will be removed when the source is removed.
* Note: currently it is not possible to clone blocks between encrypted
* datasets, even if those datasets use the same encryption key (this includes
* snapshots of encrypted datasets). Cloning blocks between datasets that use
* the same keys should be possible and should be implemented in the future.
*
* Block Cloning flow through ZFS layers.
*
* Note: Block Cloning can be used both for cloning file system blocks and ZVOL
* blocks. As of this writing no interface is implemented that allows for block
* cloning within a ZVOL.
* FreeBSD and Linux provides copy_file_range(2) system call and we will use it
* for blocking cloning.
*
* ssize_t
* copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp,
* size_t len, unsigned int flags);
*
* Even though offsets and length represent bytes, they have to be
* block-aligned or we will return an error so the upper layer can
* fallback to the generic mechanism that will just copy the data.
* Using copy_file_range(2) will call OS-independent zfs_clone_range() function.
* This function was implemented based on zfs_write(), but instead of writing
* the given data we first read block pointers using the new dmu_read_l0_bps()
* function from the source file. Once we have BPs from the source file we call
* the dmu_brt_clone() function on the destination file. This function
* allocates BPs for us. We iterate over all source BPs. If the given BP is
* a hole or an embedded block, we just copy BP as-is. If it points to a real
* data we place this BP on a BRT pending list using the brt_pending_add()
* function.
*
* We use this pending list to keep track of all BPs that got new references
* within this transaction group.
*
* Some special cases to consider and how we address them:
* - The block we want to clone may have been created within the same
* transaction group that we are trying to clone. Such block has no BP
* allocated yet, so cannot be immediately cloned. We return EAGAIN.
* - The block we want to clone may have been modified within the same
* transaction group. We return EAGAIN.
* - A block may be cloned multiple times during one transaction group (that's
* why pending list is actually a tree and not an append-only list - this
* way we can figure out faster if this block is cloned for the first time
* in this txg or consecutive time).
* - A block may be cloned and freed within the same transaction group
* (see dbuf_undirty()).
* - A block may be cloned and within the same transaction group the clone
* can be cloned again (see dmu_read_l0_bps()).
* - A file might have been deleted, but the caller still has a file descriptor
* open to this file and clones it.
*
* When we free a block we have an additional step in the ZIO pipeline where we
* call the zio_brt_free() function. We then call the brt_entry_decref()
* that loads the corresponding BRT entry (if one exists) and decreases
* reference counter. If this is not the last reference we will stop ZIO
* pipeline here. If this is the last reference or the block is not in the
* BRT, we continue the pipeline and free the block as usual.
*
* At the beginning of spa_sync() where there can be no more block cloning,
* but before issuing frees we call brt_pending_apply(). This function applies
* all the new clones to the BRT table - we load BRT entries and update
* reference counters. To sync new BRT entries to disk, we use brt_sync()
* function. This function will sync all dirty per-top-level-vdev BRTs,
* the entry counters arrays, etc.
*
* Block Cloning and ZIL.
*
* Every clone operation is divided into chunks (similar to write) and each
* chunk is cloned in a separate transaction. The chunk size is determined by
* how many BPs we can fit into a single ZIL entry.
* Replaying clone operation is different from the regular clone operation,
* as when we log clone operations we cannot use the source object - it may
* reside on a different dataset, so we log BPs we want to clone.
* The ZIL is replayed when we mount the given dataset, not when the pool is
* imported. Taking this into account it is possible that the pool is imported
* without mounting datasets and the source dataset is destroyed before the
* destination dataset is mounted and its ZIL replayed.
* To address this situation we leverage zil_claim() mechanism where ZFS will
* parse all the ZILs on pool import. When we come across TX_CLONE_RANGE
* entries, we will bump reference counters for their BPs in the BRT and then
* on mount and ZIL replay we will just attach BPs to the file without
* bumping reference counters.
* Note it is still possible that after zil_claim() we never mount the
* destination, so we never replay its ZIL and we destroy it. This way we would
* end up with leaked references in BRT. We address that too as ZFS gives us
* a chance to clean this up on dataset destroy (see zil_free_clone_range()).
*/
/*
* BRT - Block Reference Table.
*/
#define BRT_OBJECT_VDEV_PREFIX "com.fudosecurity:brt:vdev:"
/*
* We divide each VDEV into 16MB chunks. Each chunk is represented in memory
* by a 16bit counter, thus 1TB VDEV requires 128kB of memory: (1TB / 16MB) * 2B
* Each element in this array represents how many BRT entries do we have in this
* chunk of storage. We always load this entire array into memory and update as
* needed. By having it in memory we can quickly tell (during zio_free()) if
* there are any BRT entries that we might need to update.
*
* This value cannot be larger than 16MB, at least as long as we support
* 512 byte block sizes. With 512 byte block size we can have exactly
* 32768 blocks in 16MB. In 32MB we could have 65536 blocks, which is one too
* many for a 16bit counter.
*/
#define BRT_RANGESIZE (16 * 1024 * 1024)
_Static_assert(BRT_RANGESIZE / SPA_MINBLOCKSIZE <= UINT16_MAX,
"BRT_RANGESIZE is too large.");
/*
* We don't want to update the whole structure every time. Maintain bitmap
* of dirty blocks within the regions, so that a single bit represents a
* block size of entcounts. For example if we have a 1PB vdev then all
* entcounts take 128MB of memory ((64TB / 16MB) * 2B). We can divide this
* 128MB array of entcounts into 32kB disk blocks, as we don't want to update
* the whole 128MB on disk when we have updated only a single entcount.
* We maintain a bitmap where each 32kB disk block within 128MB entcounts array
* is represented by a single bit. This gives us 4096 bits. A set bit in the
* bitmap means that we had a change in at least one of the 16384 entcounts
* that reside on a 32kB disk block (32kB / sizeof (uint16_t)).
*/
#define BRT_BLOCKSIZE (32 * 1024)
#define BRT_RANGESIZE_TO_NBLOCKS(size) \
(((size) - 1) / BRT_BLOCKSIZE / sizeof (uint16_t) + 1)
#define BRT_LITTLE_ENDIAN 0
#define BRT_BIG_ENDIAN 1
#ifdef _ZFS_LITTLE_ENDIAN
#define BRT_NATIVE_BYTEORDER BRT_LITTLE_ENDIAN
#define BRT_NON_NATIVE_BYTEORDER BRT_BIG_ENDIAN
#else
#define BRT_NATIVE_BYTEORDER BRT_BIG_ENDIAN
#define BRT_NON_NATIVE_BYTEORDER BRT_LITTLE_ENDIAN
#endif
typedef struct brt_vdev_phys {
uint64_t bvp_mos_entries;
uint64_t bvp_size;
uint64_t bvp_byteorder;
uint64_t bvp_totalcount;
uint64_t bvp_rangesize;
uint64_t bvp_usedspace;
uint64_t bvp_savedspace;
} brt_vdev_phys_t;
typedef struct brt_vdev {
/*
* VDEV id.
*/
uint64_t bv_vdevid;
/*
* Is the structure initiated?
* (bv_entcount and bv_bitmap are allocated?)
*/
boolean_t bv_initiated;
/*
* Object number in the MOS for the entcount array and brt_vdev_phys.
*/
uint64_t bv_mos_brtvdev;
/*
* Object number in the MOS for the entries table.
*/
uint64_t bv_mos_entries;
/*
* Entries to sync.
*/
avl_tree_t bv_tree;
/*
* Does the bv_entcount[] array needs byte swapping?
*/
boolean_t bv_need_byteswap;
/*
* Number of entries in the bv_entcount[] array.
*/
uint64_t bv_size;
/*
* This is the array with BRT entry count per BRT_RANGESIZE.
*/
uint16_t *bv_entcount;
/*
* Sum of all bv_entcount[]s.
*/
uint64_t bv_totalcount;
/*
* Space on disk occupied by cloned blocks (without compression).
*/
uint64_t bv_usedspace;
/*
* How much additional space would be occupied without block cloning.
*/
uint64_t bv_savedspace;
/*
* brt_vdev_phys needs updating on disk.
*/
boolean_t bv_meta_dirty;
/*
* bv_entcount[] needs updating on disk.
*/
boolean_t bv_entcount_dirty;
/*
* bv_entcount[] potentially can be a bit too big to sychronize it all
* when we just changed few entcounts. The fields below allow us to
* track updates to bv_entcount[] array since the last sync.
* A single bit in the bv_bitmap represents as many entcounts as can
* fit into a single BRT_BLOCKSIZE.
* For example we have 65536 entcounts in the bv_entcount array
* (so the whole array is 128kB). We updated bv_entcount[2] and
* bv_entcount[5]. In that case only first bit in the bv_bitmap will
* be set and we will write only first BRT_BLOCKSIZE out of 128kB.
*/
ulong_t *bv_bitmap;
uint64_t bv_nblocks;
} brt_vdev_t;
/*
* In-core brt
*/
typedef struct brt {
krwlock_t brt_lock;
spa_t *brt_spa;
#define brt_mos brt_spa->spa_meta_objset
uint64_t brt_rangesize;
uint64_t brt_usedspace;
uint64_t brt_savedspace;
avl_tree_t brt_pending_tree[TXG_SIZE];
kmutex_t brt_pending_lock[TXG_SIZE];
/* Sum of all entries across all bv_trees. */
uint64_t brt_nentries;
brt_vdev_t *brt_vdevs;
uint64_t brt_nvdevs;
} brt_t;
/* Size of bre_offset / sizeof (uint64_t). */
#define BRT_KEY_WORDS (1)
/*
* In-core brt entry.
* On-disk we use bre_offset as the key and bre_refcount as the value.
*/
typedef struct brt_entry {
uint64_t bre_offset;
uint64_t bre_refcount;
avl_node_t bre_node;
} brt_entry_t;
typedef struct brt_pending_entry {
blkptr_t bpe_bp;
int bpe_count;
avl_node_t bpe_node;
} brt_pending_entry_t;
static kmem_cache_t *brt_entry_cache;
static kmem_cache_t *brt_pending_entry_cache;
/*
* Enable/disable prefetching of BRT entries that we are going to modify.
*/
int zfs_brt_prefetch = 1;
#ifdef ZFS_DEBUG
#define BRT_DEBUG(...) do { \
if ((zfs_flags & ZFS_DEBUG_BRT) != 0) { \
__dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__); \
} \
} while (0)
#else
#define BRT_DEBUG(...) do { } while (0)
#endif
int brt_zap_leaf_blockshift = 12;
int brt_zap_indirect_blockshift = 12;
static kstat_t *brt_ksp;
typedef struct brt_stats {
kstat_named_t brt_addref_entry_in_memory;
kstat_named_t brt_addref_entry_not_on_disk;
kstat_named_t brt_addref_entry_on_disk;
kstat_named_t brt_addref_entry_read_lost_race;
kstat_named_t brt_decref_entry_in_memory;
kstat_named_t brt_decref_entry_loaded_from_disk;
kstat_named_t brt_decref_entry_not_in_memory;
kstat_named_t brt_decref_entry_not_on_disk;
kstat_named_t brt_decref_entry_read_lost_race;
kstat_named_t brt_decref_entry_still_referenced;
kstat_named_t brt_decref_free_data_later;
kstat_named_t brt_decref_free_data_now;
kstat_named_t brt_decref_no_entry;
} brt_stats_t;
static brt_stats_t brt_stats = {
{ "addref_entry_in_memory", KSTAT_DATA_UINT64 },
{ "addref_entry_not_on_disk", KSTAT_DATA_UINT64 },
{ "addref_entry_on_disk", KSTAT_DATA_UINT64 },
{ "addref_entry_read_lost_race", KSTAT_DATA_UINT64 },
{ "decref_entry_in_memory", KSTAT_DATA_UINT64 },
{ "decref_entry_loaded_from_disk", KSTAT_DATA_UINT64 },
{ "decref_entry_not_in_memory", KSTAT_DATA_UINT64 },
{ "decref_entry_not_on_disk", KSTAT_DATA_UINT64 },
{ "decref_entry_read_lost_race", KSTAT_DATA_UINT64 },
{ "decref_entry_still_referenced", KSTAT_DATA_UINT64 },
{ "decref_free_data_later", KSTAT_DATA_UINT64 },
{ "decref_free_data_now", KSTAT_DATA_UINT64 },
{ "decref_no_entry", KSTAT_DATA_UINT64 }
};
struct {
wmsum_t brt_addref_entry_in_memory;
wmsum_t brt_addref_entry_not_on_disk;
wmsum_t brt_addref_entry_on_disk;
wmsum_t brt_addref_entry_read_lost_race;
wmsum_t brt_decref_entry_in_memory;
wmsum_t brt_decref_entry_loaded_from_disk;
wmsum_t brt_decref_entry_not_in_memory;
wmsum_t brt_decref_entry_not_on_disk;
wmsum_t brt_decref_entry_read_lost_race;
wmsum_t brt_decref_entry_still_referenced;
wmsum_t brt_decref_free_data_later;
wmsum_t brt_decref_free_data_now;
wmsum_t brt_decref_no_entry;
} brt_sums;
#define BRTSTAT_BUMP(stat) wmsum_add(&brt_sums.stat, 1)
static int brt_entry_compare(const void *x1, const void *x2);
static int brt_pending_entry_compare(const void *x1, const void *x2);
static void
brt_rlock(brt_t *brt)
{
rw_enter(&brt->brt_lock, RW_READER);
}
static void
brt_wlock(brt_t *brt)
{
rw_enter(&brt->brt_lock, RW_WRITER);
}
static void
brt_unlock(brt_t *brt)
{
rw_exit(&brt->brt_lock);
}
static uint16_t
brt_vdev_entcount_get(const brt_vdev_t *brtvd, uint64_t idx)
{
ASSERT3U(idx, <, brtvd->bv_size);
if (brtvd->bv_need_byteswap) {
return (BSWAP_16(brtvd->bv_entcount[idx]));
} else {
return (brtvd->bv_entcount[idx]);
}
}
static void
brt_vdev_entcount_set(brt_vdev_t *brtvd, uint64_t idx, uint16_t entcnt)
{
ASSERT3U(idx, <, brtvd->bv_size);
if (brtvd->bv_need_byteswap) {
brtvd->bv_entcount[idx] = BSWAP_16(entcnt);
} else {
brtvd->bv_entcount[idx] = entcnt;
}
}
static void
brt_vdev_entcount_inc(brt_vdev_t *brtvd, uint64_t idx)
{
uint16_t entcnt;
ASSERT3U(idx, <, brtvd->bv_size);
entcnt = brt_vdev_entcount_get(brtvd, idx);
ASSERT(entcnt < UINT16_MAX);
brt_vdev_entcount_set(brtvd, idx, entcnt + 1);
}
static void
brt_vdev_entcount_dec(brt_vdev_t *brtvd, uint64_t idx)
{
uint16_t entcnt;
ASSERT3U(idx, <, brtvd->bv_size);
entcnt = brt_vdev_entcount_get(brtvd, idx);
ASSERT(entcnt > 0);
brt_vdev_entcount_set(brtvd, idx, entcnt - 1);
}
#ifdef ZFS_DEBUG
static void
brt_vdev_dump(brt_t *brt)
{
brt_vdev_t *brtvd;
uint64_t vdevid;
if ((zfs_flags & ZFS_DEBUG_BRT) == 0) {
return;
}
if (brt->brt_nvdevs == 0) {
zfs_dbgmsg("BRT empty");
return;
}
zfs_dbgmsg("BRT vdev dump:");
for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
uint64_t idx;
brtvd = &brt->brt_vdevs[vdevid];
zfs_dbgmsg(" vdevid=%llu/%llu meta_dirty=%d entcount_dirty=%d "
"size=%llu totalcount=%llu nblocks=%llu bitmapsize=%zu\n",
(u_longlong_t)vdevid, (u_longlong_t)brtvd->bv_vdevid,
brtvd->bv_meta_dirty, brtvd->bv_entcount_dirty,
(u_longlong_t)brtvd->bv_size,
(u_longlong_t)brtvd->bv_totalcount,
(u_longlong_t)brtvd->bv_nblocks,
(size_t)BT_SIZEOFMAP(brtvd->bv_nblocks));
if (brtvd->bv_totalcount > 0) {
zfs_dbgmsg(" entcounts:");
for (idx = 0; idx < brtvd->bv_size; idx++) {
if (brt_vdev_entcount_get(brtvd, idx) > 0) {
zfs_dbgmsg(" [%04llu] %hu",
(u_longlong_t)idx,
brt_vdev_entcount_get(brtvd, idx));
}
}
}
if (brtvd->bv_entcount_dirty) {
char *bitmap;
bitmap = kmem_alloc(brtvd->bv_nblocks + 1, KM_SLEEP);
for (idx = 0; idx < brtvd->bv_nblocks; idx++) {
bitmap[idx] =
BT_TEST(brtvd->bv_bitmap, idx) ? 'x' : '.';
}
bitmap[idx] = '\0';
zfs_dbgmsg(" bitmap: %s", bitmap);
kmem_free(bitmap, brtvd->bv_nblocks + 1);
}
}
}
#endif
static brt_vdev_t *
brt_vdev(brt_t *brt, uint64_t vdevid)
{
brt_vdev_t *brtvd;
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
if (vdevid < brt->brt_nvdevs) {
brtvd = &brt->brt_vdevs[vdevid];
} else {
brtvd = NULL;
}
return (brtvd);
}
static void
brt_vdev_create(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
{
char name[64];
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
ASSERT0(brtvd->bv_mos_brtvdev);
ASSERT0(brtvd->bv_mos_entries);
ASSERT(brtvd->bv_entcount != NULL);
ASSERT(brtvd->bv_size > 0);
ASSERT(brtvd->bv_bitmap != NULL);
ASSERT(brtvd->bv_nblocks > 0);
brtvd->bv_mos_entries = zap_create_flags(brt->brt_mos, 0,
ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY, DMU_OTN_ZAP_METADATA,
brt_zap_leaf_blockshift, brt_zap_indirect_blockshift, DMU_OT_NONE,
0, tx);
VERIFY(brtvd->bv_mos_entries != 0);
BRT_DEBUG("MOS entries created, object=%llu",
(u_longlong_t)brtvd->bv_mos_entries);
/*
* We allocate DMU buffer to store the bv_entcount[] array.
* We will keep array size (bv_size) and cummulative count for all
* bv_entcount[]s (bv_totalcount) in the bonus buffer.
*/
brtvd->bv_mos_brtvdev = dmu_object_alloc(brt->brt_mos,
DMU_OTN_UINT64_METADATA, BRT_BLOCKSIZE,
DMU_OTN_UINT64_METADATA, sizeof (brt_vdev_phys_t), tx);
VERIFY(brtvd->bv_mos_brtvdev != 0);
BRT_DEBUG("MOS BRT VDEV created, object=%llu",
(u_longlong_t)brtvd->bv_mos_brtvdev);
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
(u_longlong_t)brtvd->bv_vdevid);
VERIFY0(zap_add(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name,
sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev, tx));
BRT_DEBUG("Pool directory object created, object=%s", name);
spa_feature_incr(brt->brt_spa, SPA_FEATURE_BLOCK_CLONING, tx);
}
static void
brt_vdev_realloc(brt_t *brt, brt_vdev_t *brtvd)
{
vdev_t *vd;
uint16_t *entcount;
ulong_t *bitmap;
uint64_t nblocks, size;
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
spa_config_enter(brt->brt_spa, SCL_VDEV, FTAG, RW_READER);
vd = vdev_lookup_top(brt->brt_spa, brtvd->bv_vdevid);
size = (vdev_get_min_asize(vd) - 1) / brt->brt_rangesize + 1;
spa_config_exit(brt->brt_spa, SCL_VDEV, FTAG);
entcount = vmem_zalloc(sizeof (entcount[0]) * size, KM_SLEEP);
nblocks = BRT_RANGESIZE_TO_NBLOCKS(size);
bitmap = kmem_zalloc(BT_SIZEOFMAP(nblocks), KM_SLEEP);
if (!brtvd->bv_initiated) {
ASSERT0(brtvd->bv_size);
ASSERT(brtvd->bv_entcount == NULL);
ASSERT(brtvd->bv_bitmap == NULL);
ASSERT0(brtvd->bv_nblocks);
avl_create(&brtvd->bv_tree, brt_entry_compare,
sizeof (brt_entry_t), offsetof(brt_entry_t, bre_node));
} else {
ASSERT(brtvd->bv_size > 0);
ASSERT(brtvd->bv_entcount != NULL);
ASSERT(brtvd->bv_bitmap != NULL);
ASSERT(brtvd->bv_nblocks > 0);
/*
* TODO: Allow vdev shrinking. We only need to implement
* shrinking the on-disk BRT VDEV object.
* dmu_free_range(brt->brt_mos, brtvd->bv_mos_brtvdev, offset,
* size, tx);
*/
ASSERT3U(brtvd->bv_size, <=, size);
memcpy(entcount, brtvd->bv_entcount,
sizeof (entcount[0]) * MIN(size, brtvd->bv_size));
memcpy(bitmap, brtvd->bv_bitmap, MIN(BT_SIZEOFMAP(nblocks),
BT_SIZEOFMAP(brtvd->bv_nblocks)));
vmem_free(brtvd->bv_entcount,
sizeof (entcount[0]) * brtvd->bv_size);
kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(brtvd->bv_nblocks));
}
brtvd->bv_size = size;
brtvd->bv_entcount = entcount;
brtvd->bv_bitmap = bitmap;
brtvd->bv_nblocks = nblocks;
if (!brtvd->bv_initiated) {
brtvd->bv_need_byteswap = FALSE;
brtvd->bv_initiated = TRUE;
BRT_DEBUG("BRT VDEV %llu initiated.",
(u_longlong_t)brtvd->bv_vdevid);
}
}
static void
brt_vdev_load(brt_t *brt, brt_vdev_t *brtvd)
{
char name[64];
dmu_buf_t *db;
brt_vdev_phys_t *bvphys;
int error;
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
(u_longlong_t)brtvd->bv_vdevid);
error = zap_lookup(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name,
sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev);
if (error != 0)
return;
ASSERT(brtvd->bv_mos_brtvdev != 0);
error = dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db);
ASSERT0(error);
if (error != 0)
return;
bvphys = db->db_data;
if (brt->brt_rangesize == 0) {
brt->brt_rangesize = bvphys->bvp_rangesize;
} else {
ASSERT3U(brt->brt_rangesize, ==, bvphys->bvp_rangesize);
}
ASSERT(!brtvd->bv_initiated);
brt_vdev_realloc(brt, brtvd);
/* TODO: We don't support VDEV shrinking. */
ASSERT3U(bvphys->bvp_size, <=, brtvd->bv_size);
/*
* If VDEV grew, we will leave new bv_entcount[] entries zeroed out.
*/
error = dmu_read(brt->brt_mos, brtvd->bv_mos_brtvdev, 0,
MIN(brtvd->bv_size, bvphys->bvp_size) * sizeof (uint16_t),
brtvd->bv_entcount, DMU_READ_NO_PREFETCH);
ASSERT0(error);
brtvd->bv_mos_entries = bvphys->bvp_mos_entries;
ASSERT(brtvd->bv_mos_entries != 0);
brtvd->bv_need_byteswap =
(bvphys->bvp_byteorder != BRT_NATIVE_BYTEORDER);
brtvd->bv_totalcount = bvphys->bvp_totalcount;
brtvd->bv_usedspace = bvphys->bvp_usedspace;
brtvd->bv_savedspace = bvphys->bvp_savedspace;
brt->brt_usedspace += brtvd->bv_usedspace;
brt->brt_savedspace += brtvd->bv_savedspace;
dmu_buf_rele(db, FTAG);
BRT_DEBUG("MOS BRT VDEV %s loaded: mos_brtvdev=%llu, mos_entries=%llu",
name, (u_longlong_t)brtvd->bv_mos_brtvdev,
(u_longlong_t)brtvd->bv_mos_entries);
}
static void
brt_vdev_dealloc(brt_t *brt, brt_vdev_t *brtvd)
{
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
ASSERT(brtvd->bv_initiated);
vmem_free(brtvd->bv_entcount, sizeof (uint16_t) * brtvd->bv_size);
brtvd->bv_entcount = NULL;
kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(brtvd->bv_nblocks));
brtvd->bv_bitmap = NULL;
ASSERT0(avl_numnodes(&brtvd->bv_tree));
avl_destroy(&brtvd->bv_tree);
brtvd->bv_size = 0;
brtvd->bv_nblocks = 0;
brtvd->bv_initiated = FALSE;
BRT_DEBUG("BRT VDEV %llu deallocated.", (u_longlong_t)brtvd->bv_vdevid);
}
static void
brt_vdev_destroy(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
{
char name[64];
uint64_t count;
dmu_buf_t *db;
brt_vdev_phys_t *bvphys;
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
ASSERT(brtvd->bv_mos_brtvdev != 0);
ASSERT(brtvd->bv_mos_entries != 0);
VERIFY0(zap_count(brt->brt_mos, brtvd->bv_mos_entries, &count));
VERIFY0(count);
VERIFY0(zap_destroy(brt->brt_mos, brtvd->bv_mos_entries, tx));
BRT_DEBUG("MOS entries destroyed, object=%llu",
(u_longlong_t)brtvd->bv_mos_entries);
brtvd->bv_mos_entries = 0;
VERIFY0(dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db));
bvphys = db->db_data;
ASSERT0(bvphys->bvp_totalcount);
ASSERT0(bvphys->bvp_usedspace);
ASSERT0(bvphys->bvp_savedspace);
dmu_buf_rele(db, FTAG);
VERIFY0(dmu_object_free(brt->brt_mos, brtvd->bv_mos_brtvdev, tx));
BRT_DEBUG("MOS BRT VDEV destroyed, object=%llu",
(u_longlong_t)brtvd->bv_mos_brtvdev);
brtvd->bv_mos_brtvdev = 0;
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
(u_longlong_t)brtvd->bv_vdevid);
VERIFY0(zap_remove(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name, tx));
BRT_DEBUG("Pool directory object removed, object=%s", name);
brt_vdev_dealloc(brt, brtvd);
spa_feature_decr(brt->brt_spa, SPA_FEATURE_BLOCK_CLONING, tx);
}
static void
brt_vdevs_expand(brt_t *brt, uint64_t nvdevs)
{
brt_vdev_t *brtvd, *vdevs;
uint64_t vdevid;
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
ASSERT3U(nvdevs, >, brt->brt_nvdevs);
vdevs = kmem_zalloc(sizeof (vdevs[0]) * nvdevs, KM_SLEEP);
if (brt->brt_nvdevs > 0) {
ASSERT(brt->brt_vdevs != NULL);
memcpy(vdevs, brt->brt_vdevs,
sizeof (brt_vdev_t) * brt->brt_nvdevs);
kmem_free(brt->brt_vdevs,
sizeof (brt_vdev_t) * brt->brt_nvdevs);
}
for (vdevid = brt->brt_nvdevs; vdevid < nvdevs; vdevid++) {
brtvd = &vdevs[vdevid];
brtvd->bv_vdevid = vdevid;
brtvd->bv_initiated = FALSE;
}
BRT_DEBUG("BRT VDEVs expanded from %llu to %llu.",
(u_longlong_t)brt->brt_nvdevs, (u_longlong_t)nvdevs);
brt->brt_vdevs = vdevs;
brt->brt_nvdevs = nvdevs;
}
static boolean_t
brt_vdev_lookup(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre)
{
uint64_t idx;
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
idx = bre->bre_offset / brt->brt_rangesize;
if (brtvd->bv_entcount != NULL && idx < brtvd->bv_size) {
/* VDEV wasn't expanded. */
return (brt_vdev_entcount_get(brtvd, idx) > 0);
}
return (FALSE);
}
static void
brt_vdev_addref(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre,
uint64_t dsize)
{
uint64_t idx;
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
ASSERT(brtvd != NULL);
ASSERT(brtvd->bv_entcount != NULL);
brt->brt_savedspace += dsize;
brtvd->bv_savedspace += dsize;
brtvd->bv_meta_dirty = TRUE;
if (bre->bre_refcount > 1) {
return;
}
brt->brt_usedspace += dsize;
brtvd->bv_usedspace += dsize;
idx = bre->bre_offset / brt->brt_rangesize;
if (idx >= brtvd->bv_size) {
/* VDEV has been expanded. */
brt_vdev_realloc(brt, brtvd);
}
ASSERT3U(idx, <, brtvd->bv_size);
brtvd->bv_totalcount++;
brt_vdev_entcount_inc(brtvd, idx);
brtvd->bv_entcount_dirty = TRUE;
idx = idx / BRT_BLOCKSIZE / 8;
BT_SET(brtvd->bv_bitmap, idx);
#ifdef ZFS_DEBUG
brt_vdev_dump(brt);
#endif
}
static void
brt_vdev_decref(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre,
uint64_t dsize)
{
uint64_t idx;
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
ASSERT(brtvd != NULL);
ASSERT(brtvd->bv_entcount != NULL);
brt->brt_savedspace -= dsize;
brtvd->bv_savedspace -= dsize;
brtvd->bv_meta_dirty = TRUE;
if (bre->bre_refcount > 0) {
return;
}
brt->brt_usedspace -= dsize;
brtvd->bv_usedspace -= dsize;
idx = bre->bre_offset / brt->brt_rangesize;
ASSERT3U(idx, <, brtvd->bv_size);
ASSERT(brtvd->bv_totalcount > 0);
brtvd->bv_totalcount--;
brt_vdev_entcount_dec(brtvd, idx);
brtvd->bv_entcount_dirty = TRUE;
idx = idx / BRT_BLOCKSIZE / 8;
BT_SET(brtvd->bv_bitmap, idx);
#ifdef ZFS_DEBUG
brt_vdev_dump(brt);
#endif
}
static void
brt_vdev_sync(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
{
dmu_buf_t *db;
brt_vdev_phys_t *bvphys;
ASSERT(brtvd->bv_meta_dirty);
ASSERT(brtvd->bv_mos_brtvdev != 0);
ASSERT(dmu_tx_is_syncing(tx));
VERIFY0(dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db));
if (brtvd->bv_entcount_dirty) {
/*
* TODO: Walk brtvd->bv_bitmap and write only the dirty blocks.
*/
dmu_write(brt->brt_mos, brtvd->bv_mos_brtvdev, 0,
brtvd->bv_size * sizeof (brtvd->bv_entcount[0]),
brtvd->bv_entcount, tx);
memset(brtvd->bv_bitmap, 0, BT_SIZEOFMAP(brtvd->bv_nblocks));
brtvd->bv_entcount_dirty = FALSE;
}
dmu_buf_will_dirty(db, tx);
bvphys = db->db_data;
bvphys->bvp_mos_entries = brtvd->bv_mos_entries;
bvphys->bvp_size = brtvd->bv_size;
if (brtvd->bv_need_byteswap) {
bvphys->bvp_byteorder = BRT_NON_NATIVE_BYTEORDER;
} else {
bvphys->bvp_byteorder = BRT_NATIVE_BYTEORDER;
}
bvphys->bvp_totalcount = brtvd->bv_totalcount;
bvphys->bvp_rangesize = brt->brt_rangesize;
bvphys->bvp_usedspace = brtvd->bv_usedspace;
bvphys->bvp_savedspace = brtvd->bv_savedspace;
dmu_buf_rele(db, FTAG);
brtvd->bv_meta_dirty = FALSE;
}
static void
brt_vdevs_alloc(brt_t *brt, boolean_t load)
{
brt_vdev_t *brtvd;
uint64_t vdevid;
brt_wlock(brt);
brt_vdevs_expand(brt, brt->brt_spa->spa_root_vdev->vdev_children);
if (load) {
for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
brtvd = &brt->brt_vdevs[vdevid];
ASSERT(brtvd->bv_entcount == NULL);
brt_vdev_load(brt, brtvd);
}
}
if (brt->brt_rangesize == 0) {
brt->brt_rangesize = BRT_RANGESIZE;
}
brt_unlock(brt);
}
static void
brt_vdevs_free(brt_t *brt)
{
brt_vdev_t *brtvd;
uint64_t vdevid;
brt_wlock(brt);
for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
brtvd = &brt->brt_vdevs[vdevid];
if (brtvd->bv_initiated)
brt_vdev_dealloc(brt, brtvd);
}
kmem_free(brt->brt_vdevs, sizeof (brt_vdev_t) * brt->brt_nvdevs);
brt_unlock(brt);
}
static void
brt_entry_fill(const blkptr_t *bp, brt_entry_t *bre, uint64_t *vdevidp)
{
bre->bre_offset = DVA_GET_OFFSET(&bp->blk_dva[0]);
bre->bre_refcount = 0;
*vdevidp = DVA_GET_VDEV(&bp->blk_dva[0]);
}
static int
brt_entry_compare(const void *x1, const void *x2)
{
const brt_entry_t *bre1 = x1;
const brt_entry_t *bre2 = x2;
return (TREE_CMP(bre1->bre_offset, bre2->bre_offset));
}
static int
brt_entry_lookup(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre)
{
uint64_t mos_entries;
uint64_t one, physsize;
int error;
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
if (!brt_vdev_lookup(brt, brtvd, bre))
return (SET_ERROR(ENOENT));
/*
* Remember mos_entries object number. After we reacquire the BRT lock,
* the brtvd pointer may be invalid.
*/
mos_entries = brtvd->bv_mos_entries;
if (mos_entries == 0)
return (SET_ERROR(ENOENT));
brt_unlock(brt);
error = zap_length_uint64(brt->brt_mos, mos_entries, &bre->bre_offset,
BRT_KEY_WORDS, &one, &physsize);
if (error == 0) {
ASSERT3U(one, ==, 1);
ASSERT3U(physsize, ==, sizeof (bre->bre_refcount));
error = zap_lookup_uint64(brt->brt_mos, mos_entries,
&bre->bre_offset, BRT_KEY_WORDS, 1,
sizeof (bre->bre_refcount), &bre->bre_refcount);
BRT_DEBUG("ZAP lookup: object=%llu vdev=%llu offset=%llu "
"count=%llu error=%d", (u_longlong_t)mos_entries,
(u_longlong_t)brtvd->bv_vdevid,
(u_longlong_t)bre->bre_offset,
error == 0 ? (u_longlong_t)bre->bre_refcount : 0, error);
}
brt_wlock(brt);
return (error);
}
static void
brt_entry_prefetch(brt_t *brt, uint64_t vdevid, brt_entry_t *bre)
{
brt_vdev_t *brtvd;
uint64_t mos_entries = 0;
brt_rlock(brt);
brtvd = brt_vdev(brt, vdevid);
if (brtvd != NULL)
mos_entries = brtvd->bv_mos_entries;
brt_unlock(brt);
if (mos_entries == 0)
return;
BRT_DEBUG("ZAP prefetch: object=%llu vdev=%llu offset=%llu",
(u_longlong_t)mos_entries, (u_longlong_t)vdevid,
(u_longlong_t)bre->bre_offset);
(void) zap_prefetch_uint64(brt->brt_mos, mos_entries,
(uint64_t *)&bre->bre_offset, BRT_KEY_WORDS);
}
static int
brt_entry_update(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre, dmu_tx_t *tx)
{
int error;
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
ASSERT(brtvd->bv_mos_entries != 0);
ASSERT(bre->bre_refcount > 0);
error = zap_update_uint64(brt->brt_mos, brtvd->bv_mos_entries,
(uint64_t *)&bre->bre_offset, BRT_KEY_WORDS, 1,
sizeof (bre->bre_refcount), &bre->bre_refcount, tx);
BRT_DEBUG("ZAP update: object=%llu vdev=%llu offset=%llu count=%llu "
"error=%d", (u_longlong_t)brtvd->bv_mos_entries,
(u_longlong_t)brtvd->bv_vdevid, (u_longlong_t)bre->bre_offset,
(u_longlong_t)bre->bre_refcount, error);
return (error);
}
static int
brt_entry_remove(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre, dmu_tx_t *tx)
{
int error;
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
ASSERT(brtvd->bv_mos_entries != 0);
ASSERT0(bre->bre_refcount);
error = zap_remove_uint64(brt->brt_mos, brtvd->bv_mos_entries,
(uint64_t *)&bre->bre_offset, BRT_KEY_WORDS, tx);
BRT_DEBUG("ZAP remove: object=%llu vdev=%llu offset=%llu count=%llu "
"error=%d", (u_longlong_t)brtvd->bv_mos_entries,
(u_longlong_t)brtvd->bv_vdevid, (u_longlong_t)bre->bre_offset,
(u_longlong_t)bre->bre_refcount, error);
return (error);
}
/*
* Return TRUE if we _can_ have BRT entry for this bp. It might be false
* positive, but gives us quick answer if we should look into BRT, which
* may require reads and thus will be more expensive.
*/
boolean_t
brt_maybe_exists(spa_t *spa, const blkptr_t *bp)
{
brt_t *brt = spa->spa_brt;
brt_vdev_t *brtvd;
brt_entry_t bre_search;
boolean_t mayexists = FALSE;
uint64_t vdevid;
brt_entry_fill(bp, &bre_search, &vdevid);
brt_rlock(brt);
brtvd = brt_vdev(brt, vdevid);
if (brtvd != NULL && brtvd->bv_initiated) {
if (!avl_is_empty(&brtvd->bv_tree) ||
brt_vdev_lookup(brt, brtvd, &bre_search)) {
mayexists = TRUE;
}
}
brt_unlock(brt);
return (mayexists);
}
uint64_t
brt_get_dspace(spa_t *spa)
{
brt_t *brt = spa->spa_brt;
if (brt == NULL)
return (0);
return (brt->brt_savedspace);
}
uint64_t
brt_get_used(spa_t *spa)
{
brt_t *brt = spa->spa_brt;
if (brt == NULL)
return (0);
return (brt->brt_usedspace);
}
uint64_t
brt_get_saved(spa_t *spa)
{
brt_t *brt = spa->spa_brt;
if (brt == NULL)
return (0);
return (brt->brt_savedspace);
}
uint64_t
brt_get_ratio(spa_t *spa)
{
brt_t *brt = spa->spa_brt;
if (brt->brt_usedspace == 0)
return (100);
return ((brt->brt_usedspace + brt->brt_savedspace) * 100 /
brt->brt_usedspace);
}
static int
brt_kstats_update(kstat_t *ksp, int rw)
{
brt_stats_t *bs = ksp->ks_data;
if (rw == KSTAT_WRITE)
return (EACCES);
bs->brt_addref_entry_in_memory.value.ui64 =
wmsum_value(&brt_sums.brt_addref_entry_in_memory);
bs->brt_addref_entry_not_on_disk.value.ui64 =
wmsum_value(&brt_sums.brt_addref_entry_not_on_disk);
bs->brt_addref_entry_on_disk.value.ui64 =
wmsum_value(&brt_sums.brt_addref_entry_on_disk);
bs->brt_addref_entry_read_lost_race.value.ui64 =
wmsum_value(&brt_sums.brt_addref_entry_read_lost_race);
bs->brt_decref_entry_in_memory.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_in_memory);
bs->brt_decref_entry_loaded_from_disk.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_loaded_from_disk);
bs->brt_decref_entry_not_in_memory.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_not_in_memory);
bs->brt_decref_entry_not_on_disk.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_not_on_disk);
bs->brt_decref_entry_read_lost_race.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_read_lost_race);
bs->brt_decref_entry_still_referenced.value.ui64 =
wmsum_value(&brt_sums.brt_decref_entry_still_referenced);
bs->brt_decref_free_data_later.value.ui64 =
wmsum_value(&brt_sums.brt_decref_free_data_later);
bs->brt_decref_free_data_now.value.ui64 =
wmsum_value(&brt_sums.brt_decref_free_data_now);
bs->brt_decref_no_entry.value.ui64 =
wmsum_value(&brt_sums.brt_decref_no_entry);
return (0);
}
static void
brt_stat_init(void)
{
wmsum_init(&brt_sums.brt_addref_entry_in_memory, 0);
wmsum_init(&brt_sums.brt_addref_entry_not_on_disk, 0);
wmsum_init(&brt_sums.brt_addref_entry_on_disk, 0);
wmsum_init(&brt_sums.brt_addref_entry_read_lost_race, 0);
wmsum_init(&brt_sums.brt_decref_entry_in_memory, 0);
wmsum_init(&brt_sums.brt_decref_entry_loaded_from_disk, 0);
wmsum_init(&brt_sums.brt_decref_entry_not_in_memory, 0);
wmsum_init(&brt_sums.brt_decref_entry_not_on_disk, 0);
wmsum_init(&brt_sums.brt_decref_entry_read_lost_race, 0);
wmsum_init(&brt_sums.brt_decref_entry_still_referenced, 0);
wmsum_init(&brt_sums.brt_decref_free_data_later, 0);
wmsum_init(&brt_sums.brt_decref_free_data_now, 0);
wmsum_init(&brt_sums.brt_decref_no_entry, 0);
brt_ksp = kstat_create("zfs", 0, "brtstats", "misc", KSTAT_TYPE_NAMED,
sizeof (brt_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (brt_ksp != NULL) {
brt_ksp->ks_data = &brt_stats;
brt_ksp->ks_update = brt_kstats_update;
kstat_install(brt_ksp);
}
}
static void
brt_stat_fini(void)
{
if (brt_ksp != NULL) {
kstat_delete(brt_ksp);
brt_ksp = NULL;
}
wmsum_fini(&brt_sums.brt_addref_entry_in_memory);
wmsum_fini(&brt_sums.brt_addref_entry_not_on_disk);
wmsum_fini(&brt_sums.brt_addref_entry_on_disk);
wmsum_fini(&brt_sums.brt_addref_entry_read_lost_race);
wmsum_fini(&brt_sums.brt_decref_entry_in_memory);
wmsum_fini(&brt_sums.brt_decref_entry_loaded_from_disk);
wmsum_fini(&brt_sums.brt_decref_entry_not_in_memory);
wmsum_fini(&brt_sums.brt_decref_entry_not_on_disk);
wmsum_fini(&brt_sums.brt_decref_entry_read_lost_race);
wmsum_fini(&brt_sums.brt_decref_entry_still_referenced);
wmsum_fini(&brt_sums.brt_decref_free_data_later);
wmsum_fini(&brt_sums.brt_decref_free_data_now);
wmsum_fini(&brt_sums.brt_decref_no_entry);
}
void
brt_init(void)
{
brt_entry_cache = kmem_cache_create("brt_entry_cache",
sizeof (brt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
brt_pending_entry_cache = kmem_cache_create("brt_pending_entry_cache",
sizeof (brt_pending_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
brt_stat_init();
}
void
brt_fini(void)
{
brt_stat_fini();
kmem_cache_destroy(brt_entry_cache);
kmem_cache_destroy(brt_pending_entry_cache);
}
static brt_entry_t *
brt_entry_alloc(const brt_entry_t *bre_init)
{
brt_entry_t *bre;
bre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
bre->bre_offset = bre_init->bre_offset;
bre->bre_refcount = bre_init->bre_refcount;
return (bre);
}
static void
brt_entry_free(brt_entry_t *bre)
{
kmem_cache_free(brt_entry_cache, bre);
}
static void
brt_entry_addref(brt_t *brt, const blkptr_t *bp)
{
brt_vdev_t *brtvd;
brt_entry_t *bre, *racebre;
brt_entry_t bre_search;
avl_index_t where;
uint64_t vdevid;
int error;
ASSERT(!RW_WRITE_HELD(&brt->brt_lock));
brt_entry_fill(bp, &bre_search, &vdevid);
brt_wlock(brt);
brtvd = brt_vdev(brt, vdevid);
if (brtvd == NULL) {
ASSERT3U(vdevid, >=, brt->brt_nvdevs);
/* New VDEV was added. */
brt_vdevs_expand(brt, vdevid + 1);
brtvd = brt_vdev(brt, vdevid);
}
ASSERT(brtvd != NULL);
if (!brtvd->bv_initiated)
brt_vdev_realloc(brt, brtvd);
bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
if (bre != NULL) {
BRTSTAT_BUMP(brt_addref_entry_in_memory);
} else {
/*
* brt_entry_lookup() may drop the BRT (read) lock and
* reacquire it (write).
*/
error = brt_entry_lookup(brt, brtvd, &bre_search);
/* bre_search now contains correct bre_refcount */
ASSERT(error == 0 || error == ENOENT);
if (error == 0)
BRTSTAT_BUMP(brt_addref_entry_on_disk);
else
BRTSTAT_BUMP(brt_addref_entry_not_on_disk);
/*
* When the BRT lock was dropped, brt_vdevs[] may have been
* expanded and reallocated, we need to update brtvd's pointer.
*/
brtvd = brt_vdev(brt, vdevid);
ASSERT(brtvd != NULL);
racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
if (racebre == NULL) {
bre = brt_entry_alloc(&bre_search);
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
avl_insert(&brtvd->bv_tree, bre, where);
brt->brt_nentries++;
} else {
/*
* The entry was added when the BRT lock was dropped in
* brt_entry_lookup().
*/
BRTSTAT_BUMP(brt_addref_entry_read_lost_race);
bre = racebre;
}
}
bre->bre_refcount++;
brt_vdev_addref(brt, brtvd, bre, bp_get_dsize(brt->brt_spa, bp));
brt_unlock(brt);
}
/* Return TRUE if block should be freed immediately. */
boolean_t
brt_entry_decref(spa_t *spa, const blkptr_t *bp)
{
brt_t *brt = spa->spa_brt;
brt_vdev_t *brtvd;
brt_entry_t *bre, *racebre;
brt_entry_t bre_search;
avl_index_t where;
uint64_t vdevid;
int error;
brt_entry_fill(bp, &bre_search, &vdevid);
brt_wlock(brt);
brtvd = brt_vdev(brt, vdevid);
ASSERT(brtvd != NULL);
bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
if (bre != NULL) {
BRTSTAT_BUMP(brt_decref_entry_in_memory);
goto out;
} else {
BRTSTAT_BUMP(brt_decref_entry_not_in_memory);
}
/*
* brt_entry_lookup() may drop the BRT lock and reacquire it.
*/
error = brt_entry_lookup(brt, brtvd, &bre_search);
/* bre_search now contains correct bre_refcount */
ASSERT(error == 0 || error == ENOENT);
/*
* When the BRT lock was dropped, brt_vdevs[] may have been expanded
* and reallocated, we need to update brtvd's pointer.
*/
brtvd = brt_vdev(brt, vdevid);
ASSERT(brtvd != NULL);
if (error == ENOENT) {
BRTSTAT_BUMP(brt_decref_entry_not_on_disk);
bre = NULL;
goto out;
}
racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
if (racebre != NULL) {
/*
* The entry was added when the BRT lock was dropped in
* brt_entry_lookup().
*/
BRTSTAT_BUMP(brt_decref_entry_read_lost_race);
bre = racebre;
goto out;
}
BRTSTAT_BUMP(brt_decref_entry_loaded_from_disk);
bre = brt_entry_alloc(&bre_search);
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
avl_insert(&brtvd->bv_tree, bre, where);
brt->brt_nentries++;
out:
if (bre == NULL) {
/*
* This is a free of a regular (not cloned) block.
*/
brt_unlock(brt);
BRTSTAT_BUMP(brt_decref_no_entry);
return (B_TRUE);
}
if (bre->bre_refcount == 0) {
brt_unlock(brt);
BRTSTAT_BUMP(brt_decref_free_data_now);
return (B_TRUE);
}
ASSERT(bre->bre_refcount > 0);
bre->bre_refcount--;
if (bre->bre_refcount == 0)
BRTSTAT_BUMP(brt_decref_free_data_later);
else
BRTSTAT_BUMP(brt_decref_entry_still_referenced);
brt_vdev_decref(brt, brtvd, bre, bp_get_dsize(brt->brt_spa, bp));
brt_unlock(brt);
return (B_FALSE);
}
uint64_t
brt_entry_get_refcount(spa_t *spa, const blkptr_t *bp)
{
brt_t *brt = spa->spa_brt;
brt_vdev_t *brtvd;
brt_entry_t bre_search, *bre;
uint64_t vdevid, refcnt;
int error;
brt_entry_fill(bp, &bre_search, &vdevid);
brt_rlock(brt);
brtvd = brt_vdev(brt, vdevid);
ASSERT(brtvd != NULL);
bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
if (bre == NULL) {
error = brt_entry_lookup(brt, brtvd, &bre_search);
ASSERT(error == 0 || error == ENOENT);
if (error == ENOENT)
refcnt = 0;
else
refcnt = bre_search.bre_refcount;
} else
refcnt = bre->bre_refcount;
brt_unlock(brt);
return (refcnt);
}
static void
brt_prefetch(brt_t *brt, const blkptr_t *bp)
{
brt_entry_t bre;
uint64_t vdevid;
ASSERT(bp != NULL);
if (!zfs_brt_prefetch)
return;
brt_entry_fill(bp, &bre, &vdevid);
brt_entry_prefetch(brt, vdevid, &bre);
}
static int
brt_pending_entry_compare(const void *x1, const void *x2)
{
const brt_pending_entry_t *bpe1 = x1, *bpe2 = x2;
const blkptr_t *bp1 = &bpe1->bpe_bp, *bp2 = &bpe2->bpe_bp;
int cmp;
cmp = TREE_CMP(BP_PHYSICAL_BIRTH(bp1), BP_PHYSICAL_BIRTH(bp2));
if (cmp == 0) {
cmp = TREE_CMP(DVA_GET_VDEV(&bp1->blk_dva[0]),
DVA_GET_VDEV(&bp2->blk_dva[0]));
if (cmp == 0) {
cmp = TREE_CMP(DVA_GET_OFFSET(&bp1->blk_dva[0]),
DVA_GET_OFFSET(&bp2->blk_dva[0]));
}
}
return (cmp);
}
void
brt_pending_add(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
{
brt_t *brt;
avl_tree_t *pending_tree;
kmutex_t *pending_lock;
brt_pending_entry_t *bpe, *newbpe;
avl_index_t where;
uint64_t txg;
brt = spa->spa_brt;
txg = dmu_tx_get_txg(tx);
ASSERT3U(txg, !=, 0);
pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
pending_lock = &brt->brt_pending_lock[txg & TXG_MASK];
newbpe = kmem_cache_alloc(brt_pending_entry_cache, KM_SLEEP);
newbpe->bpe_bp = *bp;
newbpe->bpe_count = 1;
mutex_enter(pending_lock);
bpe = avl_find(pending_tree, newbpe, &where);
if (bpe == NULL) {
avl_insert(pending_tree, newbpe, where);
newbpe = NULL;
} else {
bpe->bpe_count++;
}
mutex_exit(pending_lock);
if (newbpe != NULL) {
ASSERT(bpe != NULL);
ASSERT(bpe != newbpe);
kmem_cache_free(brt_pending_entry_cache, newbpe);
} else {
ASSERT(bpe == NULL);
}
/* Prefetch BRT entry, as we will need it in the syncing context. */
brt_prefetch(brt, bp);
}
void
brt_pending_remove(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
{
brt_t *brt;
avl_tree_t *pending_tree;
kmutex_t *pending_lock;
brt_pending_entry_t *bpe, bpe_search;
uint64_t txg;
brt = spa->spa_brt;
txg = dmu_tx_get_txg(tx);
ASSERT3U(txg, !=, 0);
pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
pending_lock = &brt->brt_pending_lock[txg & TXG_MASK];
bpe_search.bpe_bp = *bp;
mutex_enter(pending_lock);
bpe = avl_find(pending_tree, &bpe_search, NULL);
/* I believe we should always find bpe when this function is called. */
if (bpe != NULL) {
ASSERT(bpe->bpe_count > 0);
bpe->bpe_count--;
if (bpe->bpe_count == 0) {
avl_remove(pending_tree, bpe);
kmem_cache_free(brt_pending_entry_cache, bpe);
}
}
mutex_exit(pending_lock);
}
void
brt_pending_apply(spa_t *spa, uint64_t txg)
{
brt_t *brt;
brt_pending_entry_t *bpe;
avl_tree_t *pending_tree;
kmutex_t *pending_lock;
void *c;
ASSERT3U(txg, !=, 0);
brt = spa->spa_brt;
pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
pending_lock = &brt->brt_pending_lock[txg & TXG_MASK];
mutex_enter(pending_lock);
c = NULL;
while ((bpe = avl_destroy_nodes(pending_tree, &c)) != NULL) {
boolean_t added_to_ddt;
mutex_exit(pending_lock);
for (int i = 0; i < bpe->bpe_count; i++) {
/*
* If the block has DEDUP bit set, it means that it
* already exists in the DEDUP table, so we can just
* use that instead of creating new entry in
* the BRT table.
*/
if (BP_GET_DEDUP(&bpe->bpe_bp)) {
added_to_ddt = ddt_addref(spa, &bpe->bpe_bp);
} else {
added_to_ddt = B_FALSE;
}
if (!added_to_ddt)
brt_entry_addref(brt, &bpe->bpe_bp);
}
kmem_cache_free(brt_pending_entry_cache, bpe);
mutex_enter(pending_lock);
}
mutex_exit(pending_lock);
}
static void
brt_sync_entry(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre, dmu_tx_t *tx)
{
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
ASSERT(brtvd->bv_mos_entries != 0);
if (bre->bre_refcount == 0) {
int error;
error = brt_entry_remove(brt, brtvd, bre, tx);
ASSERT(error == 0 || error == ENOENT);
/*
* If error == ENOENT then zfs_clone_range() was done from a
* removed (but opened) file (open(), unlink()).
*/
ASSERT(brt_entry_lookup(brt, brtvd, bre) == ENOENT);
} else {
VERIFY0(brt_entry_update(brt, brtvd, bre, tx));
}
}
static void
brt_sync_table(brt_t *brt, dmu_tx_t *tx)
{
brt_vdev_t *brtvd;
brt_entry_t *bre;
uint64_t vdevid;
void *c;
brt_wlock(brt);
for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
brtvd = &brt->brt_vdevs[vdevid];
if (!brtvd->bv_initiated)
continue;
if (!brtvd->bv_meta_dirty) {
ASSERT(!brtvd->bv_entcount_dirty);
ASSERT0(avl_numnodes(&brtvd->bv_tree));
continue;
}
ASSERT(!brtvd->bv_entcount_dirty ||
avl_numnodes(&brtvd->bv_tree) != 0);
if (brtvd->bv_mos_brtvdev == 0)
brt_vdev_create(brt, brtvd, tx);
c = NULL;
while ((bre = avl_destroy_nodes(&brtvd->bv_tree, &c)) != NULL) {
brt_sync_entry(brt, brtvd, bre, tx);
brt_entry_free(bre);
ASSERT(brt->brt_nentries > 0);
brt->brt_nentries--;
}
brt_vdev_sync(brt, brtvd, tx);
if (brtvd->bv_totalcount == 0)
brt_vdev_destroy(brt, brtvd, tx);
}
ASSERT0(brt->brt_nentries);
brt_unlock(brt);
}
void
brt_sync(spa_t *spa, uint64_t txg)
{
dmu_tx_t *tx;
brt_t *brt;
ASSERT(spa_syncing_txg(spa) == txg);
brt = spa->spa_brt;
brt_rlock(brt);
if (brt->brt_nentries == 0) {
/* No changes. */
brt_unlock(brt);
return;
}
brt_unlock(brt);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
brt_sync_table(brt, tx);
dmu_tx_commit(tx);
}
static void
brt_table_alloc(brt_t *brt)
{
for (int i = 0; i < TXG_SIZE; i++) {
avl_create(&brt->brt_pending_tree[i],
brt_pending_entry_compare,
sizeof (brt_pending_entry_t),
offsetof(brt_pending_entry_t, bpe_node));
mutex_init(&brt->brt_pending_lock[i], NULL, MUTEX_DEFAULT,
NULL);
}
}
static void
brt_table_free(brt_t *brt)
{
for (int i = 0; i < TXG_SIZE; i++) {
ASSERT(avl_is_empty(&brt->brt_pending_tree[i]));
avl_destroy(&brt->brt_pending_tree[i]);
mutex_destroy(&brt->brt_pending_lock[i]);
}
}
static void
brt_alloc(spa_t *spa)
{
brt_t *brt;
ASSERT(spa->spa_brt == NULL);
brt = kmem_zalloc(sizeof (*brt), KM_SLEEP);
rw_init(&brt->brt_lock, NULL, RW_DEFAULT, NULL);
brt->brt_spa = spa;
brt->brt_rangesize = 0;
brt->brt_nentries = 0;
brt->brt_vdevs = NULL;
brt->brt_nvdevs = 0;
brt_table_alloc(brt);
spa->spa_brt = brt;
}
void
brt_create(spa_t *spa)
{
brt_alloc(spa);
brt_vdevs_alloc(spa->spa_brt, B_FALSE);
}
int
brt_load(spa_t *spa)
{
brt_alloc(spa);
brt_vdevs_alloc(spa->spa_brt, B_TRUE);
return (0);
}
void
brt_unload(spa_t *spa)
{
brt_t *brt = spa->spa_brt;
if (brt == NULL)
return;
brt_vdevs_free(brt);
brt_table_free(brt);
rw_destroy(&brt->brt_lock);
kmem_free(brt, sizeof (*brt));
spa->spa_brt = NULL;
}
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs_brt, zfs_brt_, prefetch, INT, ZMOD_RW,
"Enable prefetching of BRT entries");
#ifdef ZFS_BRT_DEBUG
ZFS_MODULE_PARAM(zfs_brt, zfs_brt_, debug, INT, ZMOD_RW, "BRT debug");
#endif
/* END CSTYLED */