mirror_zfs/module/icp/algs/sha1/sha1.c
Tom Caputi 0b04990a5d Illumos Crypto Port module added to enable native encryption in zfs
A port of the Illumos Crypto Framework to a Linux kernel module (found
in module/icp). This is needed to do the actual encryption work. We cannot
use the Linux kernel's built in crypto api because it is only exported to
GPL-licensed modules. Having the ICP also means the crypto code can run on
any of the other kernels under OpenZFS. I ended up porting over most of the
internals of the framework, which means that porting over other API calls (if
we need them) should be fairly easy. Specifically, I have ported over the API
functions related to encryption, digests, macs, and crypto templates. The ICP
is able to use assembly-accelerated encryption on amd64 machines and AES-NI
instructions on Intel chips that support it. There are place-holder
directories for similar assembly optimizations for other architectures
(although they have not been written).

Signed-off-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4329
2016-07-20 10:43:30 -07:00

664 lines
21 KiB
C

/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* The basic framework for this code came from the reference
* implementation for MD5. That implementation is Copyright (C)
* 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
*
* License to copy and use this software is granted provided that it
* is identified as the "RSA Data Security, Inc. MD5 Message-Digest
* Algorithm" in all material mentioning or referencing this software
* or this function.
*
* License is also granted to make and use derivative works provided
* that such works are identified as "derived from the RSA Data
* Security, Inc. MD5 Message-Digest Algorithm" in all material
* mentioning or referencing the derived work.
*
* RSA Data Security, Inc. makes no representations concerning either
* the merchantability of this software or the suitability of this
* software for any particular purpose. It is provided "as is"
* without express or implied warranty of any kind.
*
* These notices must be retained in any copies of any part of this
* documentation and/or software.
*
* NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
* standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
* Not as fast as one would like -- further optimizations are encouraged
* and appreciated.
*/
#include <sys/zfs_context.h>
#include <sha1/sha1.h>
#include <sha1/sha1_consts.h>
#ifdef _LITTLE_ENDIAN
#include <sys/byteorder.h>
#define HAVE_HTONL
#endif
#define _RESTRICT_KYWD
static void Encode(uint8_t *, const uint32_t *, size_t);
#if defined(__amd64)
#define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
#define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
(in), (num))
void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
#else
#define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
static void SHA1Transform(SHA1_CTX *, const uint8_t *);
#endif
static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
/*
* F, G, and H are the basic SHA1 functions.
*/
#define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
#define G(b, c, d) ((b) ^ (c) ^ (d))
#define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d)))
/*
* ROTATE_LEFT rotates x left n bits.
*/
#if defined(__GNUC__) && defined(_LP64)
static __inline__ uint64_t
ROTATE_LEFT(uint64_t value, uint32_t n)
{
uint32_t t32;
t32 = (uint32_t)value;
return ((t32 << n) | (t32 >> (32 - n)));
}
#else
#define ROTATE_LEFT(x, n) \
(((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
#endif
/*
* SHA1Init()
*
* purpose: initializes the sha1 context and begins and sha1 digest operation
* input: SHA1_CTX * : the context to initializes.
* output: void
*/
void
SHA1Init(SHA1_CTX *ctx)
{
ctx->count[0] = ctx->count[1] = 0;
/*
* load magic initialization constants. Tell lint
* that these constants are unsigned by using U.
*/
ctx->state[0] = 0x67452301U;
ctx->state[1] = 0xefcdab89U;
ctx->state[2] = 0x98badcfeU;
ctx->state[3] = 0x10325476U;
ctx->state[4] = 0xc3d2e1f0U;
}
void
SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
{
uint32_t i, buf_index, buf_len;
const uint8_t *input = inptr;
#if defined(__amd64)
uint32_t block_count;
#endif /* __amd64 */
/* check for noop */
if (input_len == 0)
return;
/* compute number of bytes mod 64 */
buf_index = (ctx->count[1] >> 3) & 0x3F;
/* update number of bits */
if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
ctx->count[0]++;
ctx->count[0] += (input_len >> 29);
buf_len = 64 - buf_index;
/* transform as many times as possible */
i = 0;
if (input_len >= buf_len) {
/*
* general optimization:
*
* only do initial bcopy() and SHA1Transform() if
* buf_index != 0. if buf_index == 0, we're just
* wasting our time doing the bcopy() since there
* wasn't any data left over from a previous call to
* SHA1Update().
*/
if (buf_index) {
bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
i = buf_len;
}
#if !defined(__amd64)
for (; i + 63 < input_len; i += 64)
SHA1_TRANSFORM(ctx, &input[i]);
#else
block_count = (input_len - i) >> 6;
if (block_count > 0) {
SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
i += block_count << 6;
}
#endif /* !__amd64 */
/*
* general optimization:
*
* if i and input_len are the same, return now instead
* of calling bcopy(), since the bcopy() in this case
* will be an expensive nop.
*/
if (input_len == i)
return;
buf_index = 0;
}
/* buffer remaining input */
bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
}
/*
* SHA1Final()
*
* purpose: ends an sha1 digest operation, finalizing the message digest and
* zeroing the context.
* input: uchar_t * : A buffer to store the digest.
* : The function actually uses void* because many
* : callers pass things other than uchar_t here.
* SHA1_CTX * : the context to finalize, save, and zero
* output: void
*/
void
SHA1Final(void *digest, SHA1_CTX *ctx)
{
uint8_t bitcount_be[sizeof (ctx->count)];
uint32_t index = (ctx->count[1] >> 3) & 0x3f;
/* store bit count, big endian */
Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
/* pad out to 56 mod 64 */
SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
/* append length (before padding) */
SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
/* store state in digest */
Encode(digest, ctx->state, sizeof (ctx->state));
/* zeroize sensitive information */
bzero(ctx, sizeof (*ctx));
}
#if !defined(__amd64)
typedef uint32_t sha1word;
/*
* sparc optimization:
*
* on the sparc, we can load big endian 32-bit data easily. note that
* special care must be taken to ensure the address is 32-bit aligned.
* in the interest of speed, we don't check to make sure, since
* careful programming can guarantee this for us.
*/
#if defined(_BIG_ENDIAN)
#define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
#elif defined(HAVE_HTONL)
#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
#else
/* little endian -- will work on big endian, but slowly */
#define LOAD_BIG_32(addr) \
(((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
#endif /* _BIG_ENDIAN */
/*
* SHA1Transform()
*/
#if defined(W_ARRAY)
#define W(n) w[n]
#else /* !defined(W_ARRAY) */
#define W(n) w_ ## n
#endif /* !defined(W_ARRAY) */
void /* CSTYLED */
SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
{
/* CSTYLED */
sha1word a = ctx->state[0];
sha1word b = ctx->state[1];
sha1word c = ctx->state[2];
sha1word d = ctx->state[3];
sha1word e = ctx->state[4];
#if defined(W_ARRAY)
sha1word w[16];
#else /* !defined(W_ARRAY) */
sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
#endif /* !defined(W_ARRAY) */
W(0) = LOAD_BIG_32((void *)(blk + 0));
W(1) = LOAD_BIG_32((void *)(blk + 4));
W(2) = LOAD_BIG_32((void *)(blk + 8));
W(3) = LOAD_BIG_32((void *)(blk + 12));
W(4) = LOAD_BIG_32((void *)(blk + 16));
W(5) = LOAD_BIG_32((void *)(blk + 20));
W(6) = LOAD_BIG_32((void *)(blk + 24));
W(7) = LOAD_BIG_32((void *)(blk + 28));
W(8) = LOAD_BIG_32((void *)(blk + 32));
W(9) = LOAD_BIG_32((void *)(blk + 36));
W(10) = LOAD_BIG_32((void *)(blk + 40));
W(11) = LOAD_BIG_32((void *)(blk + 44));
W(12) = LOAD_BIG_32((void *)(blk + 48));
W(13) = LOAD_BIG_32((void *)(blk + 52));
W(14) = LOAD_BIG_32((void *)(blk + 56));
W(15) = LOAD_BIG_32((void *)(blk + 60));
/*
* general optimization:
*
* even though this approach is described in the standard as
* being slower algorithmically, it is 30-40% faster than the
* "faster" version under SPARC, because this version has more
* of the constraints specified at compile-time and uses fewer
* variables (and therefore has better register utilization)
* than its "speedier" brother. (i've tried both, trust me)
*
* for either method given in the spec, there is an "assignment"
* phase where the following takes place:
*
* tmp = (main_computation);
* e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
*
* we can make the algorithm go faster by not doing this work,
* but just pretending that `d' is now `e', etc. this works
* really well and obviates the need for a temporary variable.
* however, we still explicitly perform the rotate action,
* since it is cheaper on SPARC to do it once than to have to
* do it over and over again.
*/
/* round 1 */
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
b = ROTATE_LEFT(b, 30);
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
a = ROTATE_LEFT(a, 30);
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
e = ROTATE_LEFT(e, 30);
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
d = ROTATE_LEFT(d, 30);
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
c = ROTATE_LEFT(c, 30);
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
b = ROTATE_LEFT(b, 30);
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
a = ROTATE_LEFT(a, 30);
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
e = ROTATE_LEFT(e, 30);
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
d = ROTATE_LEFT(d, 30);
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
c = ROTATE_LEFT(c, 30);
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
b = ROTATE_LEFT(b, 30);
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
a = ROTATE_LEFT(a, 30);
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
e = ROTATE_LEFT(e, 30);
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
d = ROTATE_LEFT(d, 30);
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
c = ROTATE_LEFT(c, 30);
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
b = ROTATE_LEFT(b, 30);
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
a = ROTATE_LEFT(a, 30);
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
e = ROTATE_LEFT(e, 30);
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
d = ROTATE_LEFT(d, 30);
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
c = ROTATE_LEFT(c, 30);
/* round 2 */
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
b = ROTATE_LEFT(b, 30);
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
a = ROTATE_LEFT(a, 30);
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
e = ROTATE_LEFT(e, 30);
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
d = ROTATE_LEFT(d, 30);
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
c = ROTATE_LEFT(c, 30);
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
b = ROTATE_LEFT(b, 30);
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
a = ROTATE_LEFT(a, 30);
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
e = ROTATE_LEFT(e, 30);
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
d = ROTATE_LEFT(d, 30);
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
c = ROTATE_LEFT(c, 30);
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
b = ROTATE_LEFT(b, 30);
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
a = ROTATE_LEFT(a, 30);
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
e = ROTATE_LEFT(e, 30);
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
d = ROTATE_LEFT(d, 30);
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
c = ROTATE_LEFT(c, 30);
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
b = ROTATE_LEFT(b, 30);
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
a = ROTATE_LEFT(a, 30);
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
e = ROTATE_LEFT(e, 30);
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
d = ROTATE_LEFT(d, 30);
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
c = ROTATE_LEFT(c, 30);
/* round 3 */
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
b = ROTATE_LEFT(b, 30);
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
a = ROTATE_LEFT(a, 30);
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
e = ROTATE_LEFT(e, 30);
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
d = ROTATE_LEFT(d, 30);
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
c = ROTATE_LEFT(c, 30);
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
b = ROTATE_LEFT(b, 30);
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
a = ROTATE_LEFT(a, 30);
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
e = ROTATE_LEFT(e, 30);
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
d = ROTATE_LEFT(d, 30);
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
c = ROTATE_LEFT(c, 30);
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
b = ROTATE_LEFT(b, 30);
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
a = ROTATE_LEFT(a, 30);
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
e = ROTATE_LEFT(e, 30);
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
d = ROTATE_LEFT(d, 30);
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
c = ROTATE_LEFT(c, 30);
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
b = ROTATE_LEFT(b, 30);
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
a = ROTATE_LEFT(a, 30);
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
e = ROTATE_LEFT(e, 30);
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
d = ROTATE_LEFT(d, 30);
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
c = ROTATE_LEFT(c, 30);
/* round 4 */
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
b = ROTATE_LEFT(b, 30);
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
a = ROTATE_LEFT(a, 30);
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
e = ROTATE_LEFT(e, 30);
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
d = ROTATE_LEFT(d, 30);
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
c = ROTATE_LEFT(c, 30);
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
b = ROTATE_LEFT(b, 30);
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
a = ROTATE_LEFT(a, 30);
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
e = ROTATE_LEFT(e, 30);
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
d = ROTATE_LEFT(d, 30);
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
c = ROTATE_LEFT(c, 30);
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
b = ROTATE_LEFT(b, 30);
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
a = ROTATE_LEFT(a, 30);
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
e = ROTATE_LEFT(e, 30);
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
d = ROTATE_LEFT(d, 30);
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
c = ROTATE_LEFT(c, 30);
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
b = ROTATE_LEFT(b, 30);
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
a = ROTATE_LEFT(a, 30);
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
e = ROTATE_LEFT(e, 30);
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
d = ROTATE_LEFT(d, 30);
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */
ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
SHA1_CONST(3);
ctx->state[1] += b;
ctx->state[2] += ROTATE_LEFT(c, 30);
ctx->state[3] += d;
ctx->state[4] += e;
/* zeroize sensitive information */
W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
}
#endif /* !__amd64 */
/*
* Encode()
*
* purpose: to convert a list of numbers from little endian to big endian
* input: uint8_t * : place to store the converted big endian numbers
* uint32_t * : place to get numbers to convert from
* size_t : the length of the input in bytes
* output: void
*/
static void
Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
size_t len)
{
size_t i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (input[i] >> 24) & 0xff;
output[j + 1] = (input[i] >> 16) & 0xff;
output[j + 2] = (input[i] >> 8) & 0xff;
output[j + 3] = input[i] & 0xff;
}
}