mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-18 02:20:59 +03:00
0037b49e83
The use of zfs_sb_t instead of zfsvfs_t results in unnecessary conflicts with the upstream source. Change all instances of zfs_sb_t to zfsvfs_t including updating the variables names. Whenever possible the code was updated to be consistent with hope it appears in the upstream OpenZFS source. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
901 lines
23 KiB
C
901 lines
23 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
|
|
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
|
|
*/
|
|
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#include <linux/compat.h>
|
|
#endif
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/zfs_vfsops.h>
|
|
#include <sys/zfs_vnops.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/zpl.h>
|
|
|
|
|
|
static int
|
|
zpl_open(struct inode *ip, struct file *filp)
|
|
{
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
error = generic_file_open(ip, filp);
|
|
if (error)
|
|
return (error);
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zpl_release(struct inode *ip, struct file *filp)
|
|
{
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
if (ITOZ(ip)->z_atime_dirty)
|
|
zfs_mark_inode_dirty(ip);
|
|
|
|
crhold(cr);
|
|
error = -zfs_close(ip, filp->f_flags, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zpl_iterate(struct file *filp, struct dir_context *ctx)
|
|
{
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_readdir(file_inode(filp), ctx, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
#if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
|
|
static int
|
|
zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
|
|
{
|
|
struct dir_context ctx = DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
|
|
int error;
|
|
|
|
error = zpl_iterate(filp, &ctx);
|
|
filp->f_pos = ctx.pos;
|
|
|
|
return (error);
|
|
}
|
|
#endif /* HAVE_VFS_ITERATE */
|
|
|
|
#if defined(HAVE_FSYNC_WITH_DENTRY)
|
|
/*
|
|
* Linux 2.6.x - 2.6.34 API,
|
|
* Through 2.6.34 the nfsd kernel server would pass a NULL 'file struct *'
|
|
* to the fops->fsync() hook. For this reason, we must be careful not to
|
|
* use filp unconditionally.
|
|
*/
|
|
static int
|
|
zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
|
|
{
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_fsync(dentry->d_inode, datasync, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef HAVE_FILE_AIO_FSYNC
|
|
static int
|
|
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
|
|
{
|
|
struct file *filp = kiocb->ki_filp;
|
|
return (zpl_fsync(filp, file_dentry(filp), datasync));
|
|
}
|
|
#endif
|
|
|
|
#elif defined(HAVE_FSYNC_WITHOUT_DENTRY)
|
|
/*
|
|
* Linux 2.6.35 - 3.0 API,
|
|
* As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
|
|
* redundant. The dentry is still accessible via filp->f_path.dentry,
|
|
* and we are guaranteed that filp will never be NULL.
|
|
*/
|
|
static int
|
|
zpl_fsync(struct file *filp, int datasync)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_fsync(inode, datasync, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef HAVE_FILE_AIO_FSYNC
|
|
static int
|
|
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
|
|
{
|
|
return (zpl_fsync(kiocb->ki_filp, datasync));
|
|
}
|
|
#endif
|
|
|
|
#elif defined(HAVE_FSYNC_RANGE)
|
|
/*
|
|
* Linux 3.1 - 3.x API,
|
|
* As of 3.1 the responsibility to call filemap_write_and_wait_range() has
|
|
* been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
|
|
* lock is no longer held by the caller, for zfs we don't require the lock
|
|
* to be held so we don't acquire it.
|
|
*/
|
|
static int
|
|
zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
cred_t *cr = CRED();
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
error = filemap_write_and_wait_range(inode->i_mapping, start, end);
|
|
if (error)
|
|
return (error);
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_fsync(inode, datasync, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
ASSERT3S(error, <=, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef HAVE_FILE_AIO_FSYNC
|
|
static int
|
|
zpl_aio_fsync(struct kiocb *kiocb, int datasync)
|
|
{
|
|
return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
#error "Unsupported fops->fsync() implementation"
|
|
#endif
|
|
|
|
static ssize_t
|
|
zpl_read_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
|
|
unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
|
|
cred_t *cr, size_t skip)
|
|
{
|
|
ssize_t read;
|
|
uio_t uio;
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
uio.uio_iov = iovp;
|
|
uio.uio_skip = skip;
|
|
uio.uio_resid = count;
|
|
uio.uio_iovcnt = nr_segs;
|
|
uio.uio_loffset = *ppos;
|
|
uio.uio_limit = MAXOFFSET_T;
|
|
uio.uio_segflg = segment;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_read(ip, &uio, flags, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
if (error < 0)
|
|
return (error);
|
|
|
|
read = count - uio.uio_resid;
|
|
*ppos += read;
|
|
task_io_account_read(read);
|
|
|
|
return (read);
|
|
}
|
|
|
|
inline ssize_t
|
|
zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
|
|
uio_seg_t segment, int flags, cred_t *cr)
|
|
{
|
|
struct iovec iov;
|
|
|
|
iov.iov_base = (void *)buf;
|
|
iov.iov_len = len;
|
|
|
|
return (zpl_read_common_iovec(ip, &iov, len, 1, ppos, segment,
|
|
flags, cr, 0));
|
|
}
|
|
|
|
static ssize_t
|
|
zpl_iter_read_common(struct kiocb *kiocb, const struct iovec *iovp,
|
|
unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
|
|
{
|
|
cred_t *cr = CRED();
|
|
struct file *filp = kiocb->ki_filp;
|
|
ssize_t read;
|
|
|
|
crhold(cr);
|
|
read = zpl_read_common_iovec(filp->f_mapping->host, iovp, count,
|
|
nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
|
|
crfree(cr);
|
|
|
|
file_accessed(filp);
|
|
return (read);
|
|
}
|
|
|
|
#if defined(HAVE_VFS_RW_ITERATE)
|
|
static ssize_t
|
|
zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
|
|
{
|
|
ssize_t ret;
|
|
uio_seg_t seg = UIO_USERSPACE;
|
|
if (to->type & ITER_KVEC)
|
|
seg = UIO_SYSSPACE;
|
|
if (to->type & ITER_BVEC)
|
|
seg = UIO_BVEC;
|
|
ret = zpl_iter_read_common(kiocb, to->iov, to->nr_segs,
|
|
iov_iter_count(to), seg, to->iov_offset);
|
|
if (ret > 0)
|
|
iov_iter_advance(to, ret);
|
|
return (ret);
|
|
}
|
|
#else
|
|
static ssize_t
|
|
zpl_aio_read(struct kiocb *kiocb, const struct iovec *iovp,
|
|
unsigned long nr_segs, loff_t pos)
|
|
{
|
|
ssize_t ret;
|
|
size_t count;
|
|
|
|
ret = generic_segment_checks(iovp, &nr_segs, &count, VERIFY_WRITE);
|
|
if (ret)
|
|
return (ret);
|
|
|
|
return (zpl_iter_read_common(kiocb, iovp, nr_segs, count,
|
|
UIO_USERSPACE, 0));
|
|
}
|
|
#endif /* HAVE_VFS_RW_ITERATE */
|
|
|
|
static ssize_t
|
|
zpl_write_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
|
|
unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
|
|
cred_t *cr, size_t skip)
|
|
{
|
|
ssize_t wrote;
|
|
uio_t uio;
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
if (flags & O_APPEND)
|
|
*ppos = i_size_read(ip);
|
|
|
|
uio.uio_iov = iovp;
|
|
uio.uio_skip = skip;
|
|
uio.uio_resid = count;
|
|
uio.uio_iovcnt = nr_segs;
|
|
uio.uio_loffset = *ppos;
|
|
uio.uio_limit = MAXOFFSET_T;
|
|
uio.uio_segflg = segment;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_write(ip, &uio, flags, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
if (error < 0)
|
|
return (error);
|
|
|
|
wrote = count - uio.uio_resid;
|
|
*ppos += wrote;
|
|
task_io_account_write(wrote);
|
|
|
|
return (wrote);
|
|
}
|
|
|
|
inline ssize_t
|
|
zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
|
|
uio_seg_t segment, int flags, cred_t *cr)
|
|
{
|
|
struct iovec iov;
|
|
|
|
iov.iov_base = (void *)buf;
|
|
iov.iov_len = len;
|
|
|
|
return (zpl_write_common_iovec(ip, &iov, len, 1, ppos, segment,
|
|
flags, cr, 0));
|
|
}
|
|
|
|
static ssize_t
|
|
zpl_iter_write_common(struct kiocb *kiocb, const struct iovec *iovp,
|
|
unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
|
|
{
|
|
cred_t *cr = CRED();
|
|
struct file *filp = kiocb->ki_filp;
|
|
ssize_t wrote;
|
|
|
|
crhold(cr);
|
|
wrote = zpl_write_common_iovec(filp->f_mapping->host, iovp, count,
|
|
nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
|
|
crfree(cr);
|
|
|
|
return (wrote);
|
|
}
|
|
|
|
#if defined(HAVE_VFS_RW_ITERATE)
|
|
static ssize_t
|
|
zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
|
|
{
|
|
size_t count;
|
|
ssize_t ret;
|
|
uio_seg_t seg = UIO_USERSPACE;
|
|
|
|
#ifndef HAVE_GENERIC_WRITE_CHECKS_KIOCB
|
|
struct file *file = kiocb->ki_filp;
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *ip = mapping->host;
|
|
int isblk = S_ISBLK(ip->i_mode);
|
|
|
|
count = iov_iter_count(from);
|
|
ret = generic_write_checks(file, &kiocb->ki_pos, &count, isblk);
|
|
if (ret)
|
|
return (ret);
|
|
#else
|
|
/*
|
|
* XXX - ideally this check should be in the same lock region with
|
|
* write operations, so that there's no TOCTTOU race when doing
|
|
* append and someone else grow the file.
|
|
*/
|
|
ret = generic_write_checks(kiocb, from);
|
|
if (ret <= 0)
|
|
return (ret);
|
|
count = ret;
|
|
#endif
|
|
|
|
if (from->type & ITER_KVEC)
|
|
seg = UIO_SYSSPACE;
|
|
if (from->type & ITER_BVEC)
|
|
seg = UIO_BVEC;
|
|
|
|
ret = zpl_iter_write_common(kiocb, from->iov, from->nr_segs,
|
|
count, seg, from->iov_offset);
|
|
if (ret > 0)
|
|
iov_iter_advance(from, ret);
|
|
|
|
return (ret);
|
|
}
|
|
#else
|
|
static ssize_t
|
|
zpl_aio_write(struct kiocb *kiocb, const struct iovec *iovp,
|
|
unsigned long nr_segs, loff_t pos)
|
|
{
|
|
struct file *file = kiocb->ki_filp;
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *ip = mapping->host;
|
|
int isblk = S_ISBLK(ip->i_mode);
|
|
size_t count;
|
|
ssize_t ret;
|
|
|
|
ret = generic_segment_checks(iovp, &nr_segs, &count, VERIFY_READ);
|
|
if (ret)
|
|
return (ret);
|
|
|
|
ret = generic_write_checks(file, &pos, &count, isblk);
|
|
if (ret)
|
|
return (ret);
|
|
|
|
return (zpl_iter_write_common(kiocb, iovp, nr_segs, count,
|
|
UIO_USERSPACE, 0));
|
|
}
|
|
#endif /* HAVE_VFS_RW_ITERATE */
|
|
|
|
static loff_t
|
|
zpl_llseek(struct file *filp, loff_t offset, int whence)
|
|
{
|
|
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
|
|
fstrans_cookie_t cookie;
|
|
|
|
if (whence == SEEK_DATA || whence == SEEK_HOLE) {
|
|
struct inode *ip = filp->f_mapping->host;
|
|
loff_t maxbytes = ip->i_sb->s_maxbytes;
|
|
loff_t error;
|
|
|
|
spl_inode_lock_shared(ip);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_holey(ip, whence, &offset);
|
|
spl_fstrans_unmark(cookie);
|
|
if (error == 0)
|
|
error = lseek_execute(filp, ip, offset, maxbytes);
|
|
spl_inode_unlock_shared(ip);
|
|
|
|
return (error);
|
|
}
|
|
#endif /* SEEK_HOLE && SEEK_DATA */
|
|
|
|
return (generic_file_llseek(filp, offset, whence));
|
|
}
|
|
|
|
/*
|
|
* It's worth taking a moment to describe how mmap is implemented
|
|
* for zfs because it differs considerably from other Linux filesystems.
|
|
* However, this issue is handled the same way under OpenSolaris.
|
|
*
|
|
* The issue is that by design zfs bypasses the Linux page cache and
|
|
* leaves all caching up to the ARC. This has been shown to work
|
|
* well for the common read(2)/write(2) case. However, mmap(2)
|
|
* is problem because it relies on being tightly integrated with the
|
|
* page cache. To handle this we cache mmap'ed files twice, once in
|
|
* the ARC and a second time in the page cache. The code is careful
|
|
* to keep both copies synchronized.
|
|
*
|
|
* When a file with an mmap'ed region is written to using write(2)
|
|
* both the data in the ARC and existing pages in the page cache
|
|
* are updated. For a read(2) data will be read first from the page
|
|
* cache then the ARC if needed. Neither a write(2) or read(2) will
|
|
* will ever result in new pages being added to the page cache.
|
|
*
|
|
* New pages are added to the page cache only via .readpage() which
|
|
* is called when the vfs needs to read a page off disk to back the
|
|
* virtual memory region. These pages may be modified without
|
|
* notifying the ARC and will be written out periodically via
|
|
* .writepage(). This will occur due to either a sync or the usual
|
|
* page aging behavior. Note because a read(2) of a mmap'ed file
|
|
* will always check the page cache first even when the ARC is out
|
|
* of date correct data will still be returned.
|
|
*
|
|
* While this implementation ensures correct behavior it does have
|
|
* have some drawbacks. The most obvious of which is that it
|
|
* increases the required memory footprint when access mmap'ed
|
|
* files. It also adds additional complexity to the code keeping
|
|
* both caches synchronized.
|
|
*
|
|
* Longer term it may be possible to cleanly resolve this wart by
|
|
* mapping page cache pages directly on to the ARC buffers. The
|
|
* Linux address space operations are flexible enough to allow
|
|
* selection of which pages back a particular index. The trick
|
|
* would be working out the details of which subsystem is in
|
|
* charge, the ARC, the page cache, or both. It may also prove
|
|
* helpful to move the ARC buffers to a scatter-gather lists
|
|
* rather than a vmalloc'ed region.
|
|
*/
|
|
static int
|
|
zpl_mmap(struct file *filp, struct vm_area_struct *vma)
|
|
{
|
|
struct inode *ip = filp->f_mapping->host;
|
|
znode_t *zp = ITOZ(ip);
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
|
|
(size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
|
|
spl_fstrans_unmark(cookie);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = generic_file_mmap(filp, vma);
|
|
if (error)
|
|
return (error);
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
zp->z_is_mapped = 1;
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Populate a page with data for the Linux page cache. This function is
|
|
* only used to support mmap(2). There will be an identical copy of the
|
|
* data in the ARC which is kept up to date via .write() and .writepage().
|
|
*
|
|
* Current this function relies on zpl_read_common() and the O_DIRECT
|
|
* flag to read in a page. This works but the more correct way is to
|
|
* update zfs_fillpage() to be Linux friendly and use that interface.
|
|
*/
|
|
static int
|
|
zpl_readpage(struct file *filp, struct page *pp)
|
|
{
|
|
struct inode *ip;
|
|
struct page *pl[1];
|
|
int error = 0;
|
|
fstrans_cookie_t cookie;
|
|
|
|
ASSERT(PageLocked(pp));
|
|
ip = pp->mapping->host;
|
|
pl[0] = pp;
|
|
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_getpage(ip, pl, 1);
|
|
spl_fstrans_unmark(cookie);
|
|
|
|
if (error) {
|
|
SetPageError(pp);
|
|
ClearPageUptodate(pp);
|
|
} else {
|
|
ClearPageError(pp);
|
|
SetPageUptodate(pp);
|
|
flush_dcache_page(pp);
|
|
}
|
|
|
|
unlock_page(pp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Populate a set of pages with data for the Linux page cache. This
|
|
* function will only be called for read ahead and never for demand
|
|
* paging. For simplicity, the code relies on read_cache_pages() to
|
|
* correctly lock each page for IO and call zpl_readpage().
|
|
*/
|
|
static int
|
|
zpl_readpages(struct file *filp, struct address_space *mapping,
|
|
struct list_head *pages, unsigned nr_pages)
|
|
{
|
|
return (read_cache_pages(mapping, pages,
|
|
(filler_t *)zpl_readpage, filp));
|
|
}
|
|
|
|
int
|
|
zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
|
|
{
|
|
struct address_space *mapping = data;
|
|
fstrans_cookie_t cookie;
|
|
|
|
ASSERT(PageLocked(pp));
|
|
ASSERT(!PageWriteback(pp));
|
|
|
|
cookie = spl_fstrans_mark();
|
|
(void) zfs_putpage(mapping->host, pp, wbc);
|
|
spl_fstrans_unmark(cookie);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
|
|
{
|
|
znode_t *zp = ITOZ(mapping->host);
|
|
zfsvfs_t *zfsvfs = ITOZSB(mapping->host);
|
|
enum writeback_sync_modes sync_mode;
|
|
int result;
|
|
|
|
ZFS_ENTER(zfsvfs);
|
|
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
wbc->sync_mode = WB_SYNC_ALL;
|
|
ZFS_EXIT(zfsvfs);
|
|
sync_mode = wbc->sync_mode;
|
|
|
|
/*
|
|
* We don't want to run write_cache_pages() in SYNC mode here, because
|
|
* that would make putpage() wait for a single page to be committed to
|
|
* disk every single time, resulting in atrocious performance. Instead
|
|
* we run it once in non-SYNC mode so that the ZIL gets all the data,
|
|
* and then we commit it all in one go.
|
|
*/
|
|
wbc->sync_mode = WB_SYNC_NONE;
|
|
result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
|
|
if (sync_mode != wbc->sync_mode) {
|
|
ZFS_ENTER(zfsvfs);
|
|
ZFS_VERIFY_ZP(zp);
|
|
if (zfsvfs->z_log != NULL)
|
|
zil_commit(zfsvfs->z_log, zp->z_id);
|
|
ZFS_EXIT(zfsvfs);
|
|
|
|
/*
|
|
* We need to call write_cache_pages() again (we can't just
|
|
* return after the commit) because the previous call in
|
|
* non-SYNC mode does not guarantee that we got all the dirty
|
|
* pages (see the implementation of write_cache_pages() for
|
|
* details). That being said, this is a no-op in most cases.
|
|
*/
|
|
wbc->sync_mode = sync_mode;
|
|
result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
|
|
}
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* Write out dirty pages to the ARC, this function is only required to
|
|
* support mmap(2). Mapped pages may be dirtied by memory operations
|
|
* which never call .write(). These dirty pages are kept in sync with
|
|
* the ARC buffers via this hook.
|
|
*/
|
|
static int
|
|
zpl_writepage(struct page *pp, struct writeback_control *wbc)
|
|
{
|
|
if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
wbc->sync_mode = WB_SYNC_ALL;
|
|
|
|
return (zpl_putpage(pp, wbc, pp->mapping));
|
|
}
|
|
|
|
/*
|
|
* The only flag combination which matches the behavior of zfs_space()
|
|
* is FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
|
|
* flag was introduced in the 2.6.38 kernel.
|
|
*/
|
|
#if defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE)
|
|
long
|
|
zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
|
|
{
|
|
int error = -EOPNOTSUPP;
|
|
|
|
#if defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE)
|
|
cred_t *cr = CRED();
|
|
flock64_t bf;
|
|
loff_t olen;
|
|
fstrans_cookie_t cookie;
|
|
|
|
if (mode != (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
|
|
return (error);
|
|
|
|
if (offset < 0 || len <= 0)
|
|
return (-EINVAL);
|
|
|
|
spl_inode_lock(ip);
|
|
olen = i_size_read(ip);
|
|
|
|
if (offset > olen) {
|
|
spl_inode_unlock(ip);
|
|
return (0);
|
|
}
|
|
if (offset + len > olen)
|
|
len = olen - offset;
|
|
bf.l_type = F_WRLCK;
|
|
bf.l_whence = 0;
|
|
bf.l_start = offset;
|
|
bf.l_len = len;
|
|
bf.l_pid = 0;
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_space(ip, F_FREESP, &bf, FWRITE, offset, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
spl_inode_unlock(ip);
|
|
|
|
crfree(cr);
|
|
#endif /* defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE) */
|
|
|
|
ASSERT3S(error, <=, 0);
|
|
return (error);
|
|
}
|
|
#endif /* defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE) */
|
|
|
|
#ifdef HAVE_FILE_FALLOCATE
|
|
static long
|
|
zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
|
|
{
|
|
return zpl_fallocate_common(file_inode(filp),
|
|
mode, offset, len);
|
|
}
|
|
#endif /* HAVE_FILE_FALLOCATE */
|
|
|
|
/*
|
|
* Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
|
|
* attributes common to both Linux and Solaris are mapped.
|
|
*/
|
|
static int
|
|
zpl_ioctl_getflags(struct file *filp, void __user *arg)
|
|
{
|
|
struct inode *ip = file_inode(filp);
|
|
unsigned int ioctl_flags = 0;
|
|
uint64_t zfs_flags = ITOZ(ip)->z_pflags;
|
|
int error;
|
|
|
|
if (zfs_flags & ZFS_IMMUTABLE)
|
|
ioctl_flags |= FS_IMMUTABLE_FL;
|
|
|
|
if (zfs_flags & ZFS_APPENDONLY)
|
|
ioctl_flags |= FS_APPEND_FL;
|
|
|
|
if (zfs_flags & ZFS_NODUMP)
|
|
ioctl_flags |= FS_NODUMP_FL;
|
|
|
|
ioctl_flags &= FS_FL_USER_VISIBLE;
|
|
|
|
error = copy_to_user(arg, &ioctl_flags, sizeof (ioctl_flags));
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* fchange() is a helper macro to detect if we have been asked to change a
|
|
* flag. This is ugly, but the requirement that we do this is a consequence of
|
|
* how the Linux file attribute interface was designed. Another consequence is
|
|
* that concurrent modification of files suffers from a TOCTOU race. Neither
|
|
* are things we can fix without modifying the kernel-userland interface, which
|
|
* is outside of our jurisdiction.
|
|
*/
|
|
|
|
#define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
|
|
|
|
static int
|
|
zpl_ioctl_setflags(struct file *filp, void __user *arg)
|
|
{
|
|
struct inode *ip = file_inode(filp);
|
|
uint64_t zfs_flags = ITOZ(ip)->z_pflags;
|
|
unsigned int ioctl_flags;
|
|
cred_t *cr = CRED();
|
|
xvattr_t xva;
|
|
xoptattr_t *xoap;
|
|
int error;
|
|
fstrans_cookie_t cookie;
|
|
|
|
if (copy_from_user(&ioctl_flags, arg, sizeof (ioctl_flags)))
|
|
return (-EFAULT);
|
|
|
|
if ((ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL)))
|
|
return (-EOPNOTSUPP);
|
|
|
|
if ((ioctl_flags & ~(FS_FL_USER_MODIFIABLE)))
|
|
return (-EACCES);
|
|
|
|
if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
|
|
fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
|
|
!capable(CAP_LINUX_IMMUTABLE))
|
|
return (-EACCES);
|
|
|
|
if (!zpl_inode_owner_or_capable(ip))
|
|
return (-EACCES);
|
|
|
|
xva_init(&xva);
|
|
xoap = xva_getxoptattr(&xva);
|
|
|
|
XVA_SET_REQ(&xva, XAT_IMMUTABLE);
|
|
if (ioctl_flags & FS_IMMUTABLE_FL)
|
|
xoap->xoa_immutable = B_TRUE;
|
|
|
|
XVA_SET_REQ(&xva, XAT_APPENDONLY);
|
|
if (ioctl_flags & FS_APPEND_FL)
|
|
xoap->xoa_appendonly = B_TRUE;
|
|
|
|
XVA_SET_REQ(&xva, XAT_NODUMP);
|
|
if (ioctl_flags & FS_NODUMP_FL)
|
|
xoap->xoa_nodump = B_TRUE;
|
|
|
|
crhold(cr);
|
|
cookie = spl_fstrans_mark();
|
|
error = -zfs_setattr(ip, (vattr_t *)&xva, 0, cr);
|
|
spl_fstrans_unmark(cookie);
|
|
crfree(cr);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static long
|
|
zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case FS_IOC_GETFLAGS:
|
|
return (zpl_ioctl_getflags(filp, (void *)arg));
|
|
case FS_IOC_SETFLAGS:
|
|
return (zpl_ioctl_setflags(filp, (void *)arg));
|
|
default:
|
|
return (-ENOTTY);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static long
|
|
zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case FS_IOC32_GETFLAGS:
|
|
cmd = FS_IOC_GETFLAGS;
|
|
break;
|
|
case FS_IOC32_SETFLAGS:
|
|
cmd = FS_IOC_SETFLAGS;
|
|
break;
|
|
default:
|
|
return (-ENOTTY);
|
|
}
|
|
return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
|
|
}
|
|
#endif /* CONFIG_COMPAT */
|
|
|
|
|
|
const struct address_space_operations zpl_address_space_operations = {
|
|
.readpages = zpl_readpages,
|
|
.readpage = zpl_readpage,
|
|
.writepage = zpl_writepage,
|
|
.writepages = zpl_writepages,
|
|
};
|
|
|
|
const struct file_operations zpl_file_operations = {
|
|
.open = zpl_open,
|
|
.release = zpl_release,
|
|
.llseek = zpl_llseek,
|
|
#ifdef HAVE_VFS_RW_ITERATE
|
|
#ifdef HAVE_NEW_SYNC_READ
|
|
.read = new_sync_read,
|
|
.write = new_sync_write,
|
|
#endif
|
|
.read_iter = zpl_iter_read,
|
|
.write_iter = zpl_iter_write,
|
|
#else
|
|
.read = do_sync_read,
|
|
.write = do_sync_write,
|
|
.aio_read = zpl_aio_read,
|
|
.aio_write = zpl_aio_write,
|
|
#endif
|
|
.mmap = zpl_mmap,
|
|
.fsync = zpl_fsync,
|
|
#ifdef HAVE_FILE_AIO_FSYNC
|
|
.aio_fsync = zpl_aio_fsync,
|
|
#endif
|
|
#ifdef HAVE_FILE_FALLOCATE
|
|
.fallocate = zpl_fallocate,
|
|
#endif /* HAVE_FILE_FALLOCATE */
|
|
.unlocked_ioctl = zpl_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = zpl_compat_ioctl,
|
|
#endif
|
|
};
|
|
|
|
const struct file_operations zpl_dir_file_operations = {
|
|
.llseek = generic_file_llseek,
|
|
.read = generic_read_dir,
|
|
#ifdef HAVE_VFS_ITERATE_SHARED
|
|
.iterate_shared = zpl_iterate,
|
|
#elif defined(HAVE_VFS_ITERATE)
|
|
.iterate = zpl_iterate,
|
|
#else
|
|
.readdir = zpl_readdir,
|
|
#endif
|
|
.fsync = zpl_fsync,
|
|
.unlocked_ioctl = zpl_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = zpl_compat_ioctl,
|
|
#endif
|
|
};
|